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Dedi
ated to V. G. Maz′ya on the o

asion of his 80th birthdayNOTE ON AN EIGENVALUE PROBLEM FOR AN ODEORIGINATING FROM A HOMOGENEOUS p-HARMONICFUNCTION© M. AKMAN, J. LEWIS, A. VOGELWe dis
uss what is known about homogeneous solutions u to the p-Lapla
eequation, p �xed, 1 < p < ∞, when (A) u is an entire p-harmoni
 fun
tionon Eu
lidean n-spa
e, Rn, or (B) u > 0 is p-harmoni
 in the 
one
K(α) = {x = (x1, . . . , xn) : x1 > cosα |x|} ⊂ R

n, n > 2,with 
ontinuous boundary value zero on ∂K(α) \ {0} when α ∈ (0, π].We also outline a proof of our new result 
on
erning the exa
t value,
λ = 1 − (n − 1)/p, for an eigenvalue problem in an ODE asso
iated with
u when u is p hamoni
 in K(π) and p > n − 1. Generalizations of thisresult are stated. Our result 
omplements the work of Krol′�Maz′ya for
1 < p 6 n− 1.

�1. Introdu
tionIn this paper we �rst dis
uss what is known about homogeneous solutions uto the p-Lapla
e equation, p �xed, 1 < p < ∞, when (A) u is an entire p-har-moni
 fun
tion on Eu
lidean n-spa
e, Rn, or (B) u > 0 is p-harmoni
 in the
one
K(α) =

{
x = (x1, . . . , xn) : x1 > cosα |x|

}
⊂ R

n, n > 2,with 
ontinuous boundary value 0 on ∂K(α). More spe
i�
ally, for �xed p,
1 < p <∞, u is a solution to

∇ ·
(
|∇u|(p−2)∇u

)
= 0 in R

n or K(α) (1)Key words: p-Lapla
ian, boundary Harna
k inequalities, homogeneous p-harmoni
 fun
-tions, eigenvalue problem. 3



4 M. AKMAN, J. LEWIS, A. VOGELand
u(tx) = tλu(x), for some real λ whenever t > 0and x is in the domain of u. (2)Given x ∈ R

n \ {0}, we introdu
e spheri
al 
oordinates r = |x|, x1 = r cos θ,
0 6 θ 6 π. If u as in (2) is p-harmoni
 in K(α) and u(1, 0, . . . , 0) = 1, then itturns out that u has the additional form:
u(x) = u(r, θ) = rλφ(θ), r > 0, 0 6 θ < α, with φ(0) = 1, φ(α) = 0, (3)for some λ ∈ (−∞,∞) and φ ∈ C∞([0, α]).1.1. WHAT IS KNOWN. Case (A): Entire Solutions.In R
2, Krol′ in [12℄ 
onstru
ted homogeneous p-harmoni
 fun
tions, u, as in (3)with 
ontinuous boundary value 0 on ∂K(α) whenever α ∈ (0, π]. If α = π/(2k)and k is a positive integer, one 
an use S
hwarz re�e
tion to extend u to anentire p-harmoni
 fun
tion in R

2. Moreover, in [14℄, the se
ond author showedthere are no real polynomial solutions to the p-Lapla
e equation in R
2 when

1 < p < ∞. Tka
hev in [23℄ proved for 1 < p < ∞, p 6= 2, that there are noreal homogeneous polynomials of degree three in R
n, n > 3, that are solutionsto the p-Lapla
e equation. The se
ond and third authors in [19℄ showed thereare no real homogeneous polynomial solutions of degree four in R

n, n > 3,and none of degree 5 in R
3 to the p-Lapla
e equation when 1 < p < ∞,

p 6= 2. Finally, re
ent work was done by Tka
hev in [24℄. That paper 
ontainssome very interesting examples of p-harmoni
 and related fun
tions but stillno examples of p-harmoni
 real polynomials when p > 1, p 6= 2. In short we donot know of any entire homogeneous real solutions to the p-Lapla
e equationof the form (2) in R
n when 1 < p < ∞, p 6= 2, other than those 
onstru
tedby Krol′ in two dimensions.Case (B): Solutions in a Cone.It was �rst shown by Krol′ and Maz′ya in [13℄ that if 1 < p 6 n − 1 and

α ∈ (0, π) is near enough π, then there exists a unique solution to (1) in K(α)of the spe
ial form (3) with λ(α) > 0. Tolksdorf in [25℄ showed that given
α ∈ (0, π), there exist unique λi, φi, i = 1, 2, with λ2 < 0 < λ1, and φi in�nitelydi�erentiable on [0, α] satisfying φi(α) = 0, φi(0) = 1, and ui(r, θ) = rλiφi(θ),
i = 1, 2, are solutions to the p-Lapla
e equation in K(α). Also Porretta andV�eron gave another proof of Tolksdorf's result in [26℄. A similar study wasdone in more general Lips
hitz 
ones by Gkikas and V�eron in [8℄.Now we dis
uss what is known about eigenvalues λ in (3) for various α, n.Krol′ and Krol′ and Maz′ya in the papers mentioned above (see also [4℄) used (1)



NOTE ON AN EIGENVALUE PROBLEM 5to show for u as in (3) that
0 =

d

dθ

{
[λ2φ2(θ) + (φ′)2(θ)](p−2)/2 φ′(θ) (sin θ)n−2

}

+ λ[λ(p − 1) + (n− p)][λ2φ2(θ) + (φ′)2(θ)](p−2)/2φ(θ)(sin θ)n−2Letting ψ = φ′/φ in the above equation, Krol′ in [12℄ obtained the �rst or-der DE
0 =

(
(p − 1)ψ2 + λ2

)
ψ′

+ (λ2 + ψ2)
[
(p− 1)ψ2 + (n− 2) cot θψ + λ2(p− 1) + λ(n− p)

]
.

(4)If n = 2, the 
otangent term in the above DE goes out and variables 
an beseparated in (4) to get
λdψ

λ2 + ψ2
− (λ− 1) dψ

λ2 + ψ2 + λ(2− p)/(p − 1)
+ dθ = 0.The boundary 
onditions imply that φ de
reases on (0, α) so ψ(α) = −∞,

ψ(0) = 0. Using this fa
t and integrating, we see that
±1− λ− 1√

λ2 + λ(2− p)/(p − 1)
= 2α/π (5)where +1 is taken if λ > 0 and −1 if λ < 0. For later dis
ussion we note thatif α = π/2, i.e, K(π/2) is a half spa
e, then (5) gives

λ1 = 1, λ2 = (1/3)
(
p− 3− 2

√
p2 − 3p + 3

)
/(p − 1)(λ1(π/2) = 1 for n > 2 sin
e x1 = r cos θ is p-harmoni
 for 1 < p < ∞). Alsoif α = π, n = 2, i.e, K(π) = R2 \ (−∞, 0], then (5) yields

λ1 = 1− 1/p, λ2 = (1/16)
(
7p − 16−

√
81p2 − 288p + 288

)
/(p − 1).For other values of λ2(α) when n = 2, see [20℄. For n > 3, α = π/2, and p = 2,one 
an use the Kelvin transformation to get λ2(π/2) = 1 − n while if p = n,from the 
onformal invarian
e of the n-Lapla
ian it follows that λ2(π/2) = −1.Also if p = (4n− 2)/3, then

−2λ2(π) =
p+ 1− n

p− 1
= β =

n+ 1

4n− 5
sin
e u(r, θ) = r−β/2

(
cos(θ/2)

)βin (3) for α = π, as we �rst found using Maple and Mathemati
a, and thenby dire
t 
al
ulation (see the dis
ussion following Theorem 1). DeBlassie andSmits in [6℄ obtained estimates on −λ2(π/2), 1 < p < ∞, p 6= 2, by leavingout the 
otangent term in (4). In fa
t their solution to the DE in (4) with the
otangent term omitted leads to a super solution of the form (3) for the p-Lap-la
e equation, so leads to an upper estimate for −λ2(π/2) in the p-harmoni




6 M. AKMAN, J. LEWIS, A. VOGELequation. Upper and lower estimates for λ2(π/2) were also obtained by theseauthors in [7℄. Re
ently, Llorente, Manfredi, Troy, and Wu in [21℄ used shootingmethods to get upper and lower bounds for λ2(π/2). These authors also gavea stri
tly ODE proof for the existen
e of a solution in this 
ase.In [3℄ we prove the following statement.Theorem 1. The existen
e and uniqueness of ui = rλiφi, i = 1, 2, also o

urwhen α = π, n− 1 < p < ∞. Moreover, λ1(π) = 1 − (n − 1)/p for n > 3 and
n−1 < p <∞. In fa
t, as α→π, we have λ1(α)−1+(n−1)/p ≈ (π−α)

p+1−n

p−1 .Here ≈ means that the ratio of the two fun
tions is bounded above andbelow by 
onstants depending only on p and n. We note that if 1 < p 6 n− 1,then a slit has p-
apa
ity zero in R
n, n > 3, and so there are no solutionsto (4). In fa
t Krol′ and Maz′ya in the paper mentioned earlier obtained thatas α→π,

λ1(α) ≈
{
(π − α)

n−1−p

p−1 for 1 < p < n− 1,

− 1
log(π−α) for p = n− 1.We also point out that Theorem 1 and 
onformal invarian
e of the n-Lapla
ianimply for p = n that λ2(π) = −1/n.To outline our e�orts in proving Theorem 1, we began by trying to use theDE in (4) to solve for λ1(π), ψ. From a boundary Harna
k inequality in [17℄(see Theorem 1.9 and Lemma 5.3), we knew that
lim
θ→π

ψ(θ)(π − θ) = −βwhere β = 1+p−n
p−1 . Sin
e φ has a relative maximum at θ = 0, it also followedthat ψ(0) = 0. Using these initial 
onditions, we �rst assumed for 
ertain p, nthat

φ(θ) = cos(θ/2)βeg(cos(θ/2)) for 0 6 θ 6 π. (6)To test the validity of what was then a 
onje
ture, we 
onsidered as a test 
ase
n = 3, p = 5/2 (so λ1(π) = 1/5??) and in (6) put

g(cos(θ/2)) =
∞∑

k=0

ak(cos(θ/2))
2k, 0 6 θ 6 π,where the ak, k = 1, 2, . . . , are 
onstants. Using this expression for g, our initial
onditions, and then 
omputing ψ in (4), we dedu
ed that the 
oe�
ients ak,
ould be 
omputed re
ursively. Thanks to Maple and Mathemati
a, we wereable to 
ompute a1 − a10. Using the resulting partial sum for g, and then
omputing ψ we re
eived strong eviden
e that λ1(π) = 1/5 in this test 
ase.



NOTE ON AN EIGENVALUE PROBLEM 7Later we put x = cos(θ/2), h(x) = β + xg′(x), x ∈ (−1, 1), where g is asin (6), and transformed (4) into
(1− x2)xh′(x)

[
(p− 1)(1 − x2)h2(x) + 4x2λ2

]

= −(p− 1)(1− x2)2 h4(x) + [(p − 1) + (n− 2)(2x2 − 1)](1 − x2)h3(x)

− 4λ [2λ(p − 1) + (n − p)]x2 (1− x2)h2(x)

+ 4λ2[1 + (n− 2)(2x2 − 1)]x2h(x)− 16λ3[λ(p− 1) + (n− p)]x4,where h(0) = β and √
1− x2h(x)→0 as x→1. Expanding h in a Ma

laurinseries and using Maple and Mathemati
a, we re
eived even stronger eviden
eof the validity of λ1(π) = 1/5 when n = 3, p = 5/2. We also used this approa
hto 
he
k other values of our 
onje
ture. However this approa
h seemed hopelessfor proving Theorem 1. Finally we hit on using the following �ness type proof.�2. Outline of the Proof of Theorem 1 for λ1(π) when n− 1 < p < nTo outline the proof of Theorem 1 we need some notation. Let

B(z, ρ) = {y = (y1, . . . , yn) ∈ R
n : |z − y| < ρ} whenever z ∈ R

n, ρ > 0,and let e1 = (1, 0, . . . , 0). Let Hn−1 denote (n − 1)-dimensional Hausdor�measure on R
n and let d(F1, F2) denote the distan
e between the sets F1, F2.We write d(x, F ) for d({x}, F ). Set

S
n−1 = {x ∈ R

n : |x| = 1}and let c denote a positive 
onstant greater than or equal to 1, whi
h unlessotherwise stated may only depend on p, n, α.The existen
e of a positive p-harmoni
 fun
tion v in K(α), 0 < α 6 π,with v(e1) = 1 and 
ontinuous boundary value 0 on ∂K(α), follows easily frominterior regularity results, the Diri
hlet problem, and Wiener type estimates for
p-harmoni
 fun
tions given in [9℄. For example, given 1 < p <∞, π/2 6 α < π,and l = 1, 2, . . . , let vl be the 
ontinuous fun
tion in B̄(0, 2l) with vl a p-harmo-ni
 fun
tion in B(0, 2l)\[(Rn\K(α))∩B̄(0, l)] and vl ≡ 0 on (Rn\K(α))∩B̄(0, l)while vl =Ml on ∂B(0, 2l). Also Ml is 
hosen so that vl(e1) = 1. Using resultswhi
h 
an be found in [9℄, one 
an show that a 
ertain subsequen
e of {vl}l>1,
onverges uniformly to v > 0, a H�older 
ontinuous fun
tion on R

n whi
h is
p-harmoni
 in K(α) with v ≡ 0 on ∂K(α) and v(e1) = 1. The same argumentgives a solution inK(π) provided p > n−1. To prove the existen
e of v with theabove properties in K(α) when 0 < α < π/2, let vl be a 
ontinuous fun
tionin B̄(0, 2l) with vl a p-harmoni
 fun
tion in B(0, 2l) ∩ (K(α) \ B̄(le1, lα/8)),
vl(e1) = 1, and vl ≡ Ml on B̄(le1, lα/8) while vl ≡ 0 on [B(0, 2l) \ K(α)] ∪
∂B(0, 2l). Taking limits as above, we get v.



8 M. AKMAN, J. LEWIS, A. VOGELThe uniqueness of v with the above properties 
an be shown by using bound-ary Harna
k inequalities proved by Lewis and Nystr�om in [16,17℄. Indeed in [16,Theorem 2℄, the authors proved a boundary Harna
k theorem for domains witha Lips
hitz boundary, whi
h, tailored to K(α), 0 < α < π, is stated as follows.Lemma 1. Let α ∈ (0, π), ρ > 0, let p be �xed with 1 < p < ∞, and let
0 < v1, v2, be p-harmoni
 in K(α) ∩ B(0, ρ) with 
ontinuous boundary valuesand v1 = v2 ≡ 0 on ∂K(α) ∩ B(0, ρ). There exists c+ > 1and σ ∈ (0, 1),depending only on α, n, p, su
h that if ρ+ = ρ/c+ and x, y ∈ B(0, ρ+) ∩K(α),then ∣∣∣∣

v1(x)

v2(x)
− v1(y)

v2(y)

∣∣∣∣ 6 c+

( |x− y|
ρ+

)σ v1(x)

v2(x)
. (7)Letting ρ→∞ in Lemma 1, we see that if v = v1 and v2 are positive p-har-moni
 fun
tions in K(α) with 
ontinuous boundary value 0 on ∂K(α), then

v/v2 ≡ 
onstant. To prove that v has the form (3), observe that for �xed t > 0,the fun
tion x→v(tx), x ∈ K(α), is positive, p-harmoni
, and has boundaryvalue 0 on ∂K(α), so by the uniqueness of v, we have
v(tx) = v(te1)v(x), x ∈ K(α). (8)Di�erentiating (8) with respe
t to t and evaluating at t = 1, we see that

〈x,∇v(x)〉 = 〈e1,∇v(e1)〉v(x) whenever x ∈ K(α).If we put ρ = |x|, x/|x| = ω ∈ S
n−1, in this identity we obtain

ρvρ(ρω) = 〈e1,∇v(e1)〉v(ρω).Dividing this relation by ρv(ρω) and integrating with respe
t to ρ over (0, r) wededu
e that v(rω) = rλv(ω) whenever ω ∈ S
n−1, where λ = 〈e1, ∇v(e1)〉. Fi-nally sin
e p-harmoni
 fun
tions are invariant under rotation, from this equalityand uniqueness it follows that v has the form (3).To prove the uniqueness of v in K(π), we use arguments from [17, Se
tion 4℄,to prove (7) when p > n−1 and v1, v2 are positive p-harmoni
 fun
tions inK(π)with 
ontinuous boundary value 0 on ∂K(π). The uniqueness of v implies, asin the argument following (8), that v has the form (3). Existen
e, uniqueness,and showing u has the form (3) when λ < 0 in the so-
alled Martin problemforK(α) is proved similarly (see [16, Corollary 5.25℄, for an analog of Lemma 1).We omit the details.To avoid 
onfusion in the rest of the proof of Theorem 1, we shall oftenwrite u( · , α) for the positive p-harmoni
 fun
tion in (3) with u( · , α) ≡ 0 on

R
n \K(α), u(e1, α) = 1, when α ∈ (0, π] and p is �xed, n − 1 < p < ∞. Wealso write λ(α) for the eigenvalue, λ1, in (3). From the maximum prin
iplefor p-harmoni
 fun
tions, it follows that if 0 < α1 < α2 6 π, then u( · , α1) 6
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cu( · , α2) inK(α1)∩B(0, 1) so ne
essarily, λ(α2) 6 λ(α1). Also stri
t inequalitymust o

ur sin
e otherwise from (3) it would follow that u( · , α1)/u( · , α2) hasan absolute maximum in K(α1), whi
h again leads to a 
ontradi
tion by wayof the maximum prin
iple for p-harmoni
 fun
tions. From regularity estimatesin [9℄ it follows that u( · , α) 
onverges uniformly to u( · , π) on R

n when α→π.Thus
lim
α→π

λ(α) = λ(π) and λ(α) > λ(π) when α ∈ (0, π). (9)To 
omplete our proof of Theorem 1, we shall need some more notation,de�nitions, and lemmas. We begin with the following de�nition.De�nition 1. A bounded domain D ⊂ R
n is said to be starlike Lips
hitz withrespe
t to z ∈ D provided

∂D = {z +R(ω)ω : ω ∈ ∂B(0, 1)}where logR : ∂B(0, 1) → R is Lips
hitz on ∂B(0, 1).Under the above s
enario we say that z is the 
enter of D. Let ‖ logR‖Sn−1denote the Lips
hitz norm of logR. We refer to ‖ logR‖Sn−1 as the starlikeLips
hitz 
onstant for D.In [15, Theorem 3℄, Lewis and Nystr�om proved the following fa
t.Lemma 2. Suppose D is a starlike Lips
hitz domain with 
enter at z, w ∈ ∂D,
0 < r < |w − z|/10, and p is �xed, 1 < p < ∞. Let v be p-harmoni
 in
D ∩ B(w, 4r) with 
ontinuous boundary value v ≡ 0 on ∂D ∩ B(w, r). Thereexists c⋆ > 1, depending only on n, p, and the starlike Lips
hitz 
onstant for D,su
h that if r̃ = r/c⋆, then(a) c−1

⋆
v(x)

d(x,∂D) 6 |∇v(x)| 6 c⋆
v(x)

d(x,∂D) , x ∈ D ∩B(w, r̃),(b) the limit limx→y ∇v(x) = ∇v(y) exists nontangentially for Hn−1-al-most every y ∈ ∂D ∩B(w, r̃),(
) ∇v(y) = −|∇v(y)|ν(y) for Hn−1-almost every y ∈ ∂D ∩B(w, r̃) where
ν(y) is the unit outer normal to ∂D(α) at y,(d) there exists q > p and c⋆⋆ with the same dependen
e as c⋆ su
h that

∫

∂D∩B(w,r̃)

|∇v|q dHn−1 6 c⋆⋆r
n−1−qv(w′)qwhere |w − w′| = r̃/4 and w′ lies on the ray from z to w.Next if 1 < p < n, let

F (x) = cp|x|(p−n)/(p−1).
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n−p ω

1/(1−p)
n where Hn−1(Sn−1) = ωn. Then as is easily 
he
ked,

∫

Rn

〈
|∇F |p−2∇F,∇k

〉
dx = k(0), whenever k ∈ C∞

0 (Rn).

F is said to be a fundamental solution to the p-Lapla
e equation with pole at 0.De�nition 2. Given a starlike Lips
hitz domain D with 
enter z, we saythat G is Green's fun
tion for the p-Lapla
e equation in D, with pole at zprovided(a) G is p-harmoni
 in D \ {z},(b) G has 
ontinuous boundary value 0 on ∂D,(
) F (x− z) = G(x) + ζ(x), x ∈ D \ {z}, where 0 6 ζ is boundedand H�older 
ontinuous in D,(d) ∫
D
〈|∇G|p−2∇G,∇θ〉dHn−1 = θ(z) whenever θ ∈ C∞

0 (D). (10)For the existen
e and uniqueness of G satisfying (10), see Lemma 10.4in [1℄. In [1℄ we used Lemma 2 to prove the following Relli
h type formulafor 1 < p < n,Lemma 3. Let D be a starlike Lips
hitz domain with 
enter at z, and for�xed p, 1 < p < n, let G be the Green fun
tion for the p-Lapla
e equation in Dwith pole at z. Then
∫

∂D

|∇G(x)|p〈x− z, ν〉 dHn−1 =
(n− p)

p− 1
ζ(z) > 0 (11)where ν is the outer unit normal to ∂D.For p = 2 this relation was proved by Jerison and Kenig in [JK℄.We now return to our proof of Theorem 1. For a �xed p, n−1 < p < n, let G1denote the Green fun
tion for D1 = B(0, 2) ∩K(α), z = (1, 0 . . . , 0) = e1, and

0 < π − α < π/4. Also let G2 denote the Green fun
tion for B(0, 2) with poleat 4e1. With this notation we state a lemma.Lemma 4. For some c̃ > 1 depending only on p, n, we have
∫

∂K(α)∩B(0,2)

|∇G1(x)|p〈x− e1, ν〉 dHn−1 >
n− p

p− 1
(ζ1 − ζ2)(e1) > c̃−1, (12)where ν is the outer unit normal to ∂K(α) and ζ1, ζ2, are de�ned relative to

G1, G2, as in 10(
).



NOTE ON AN EIGENVALUE PROBLEM 11Proof. To prove the key inequality in (12), we �rst use (11) for G1,D1. Nextwe note that |∇G1| 6 |∇G2| on ∂B(0, 2) ∩ ∂D1 as follows from the Hopfboundary maximum prin
iple. Using this note and (11) for G2, B(0, 2), we getthe left-hand inequality in (12). To prove the right-hand inequality in (12), wenote that G2 ≈ 1 in B(0, 1/4). Also if we put G1 ≡ 0 in B(0, 1/4)\K(α), thenfrom Wiener type estimates for the p-Lapla
e equation (by using the fa
t thata slit has positive p-
apa
ity when n− 1 < p < n, see [22℄), it follows that G1is H�older 
ontinuous in B(0, 1/4) with H�older exponent and norm independentof α ∈ (3π/4, π). Thus G2 − G1 = ζ1 − ζ2 > a 
onstant independent of α in
B(0, 2ρ) for some 0 < ρ < 1/8. Also one 
an show that G2−G1 satis�es lo
allya uniformly ellipti
 PDE in divergen
e form. Using Harna
k's inequality forpositive solutions to this PDE, we 
an 
onne
t a point in K(α)∩B(0, ρ) to e1by a 
hain of balls with radii > c−1 = c(p, n)−1, and then apply Harna
k'sinequality in su

essive balls to �nally get the right-hand side of (12). Wegarnered the idea to use a Relli
h type inequality to make estimates as abovefrom a paper of Venouziou and Ver
hota, see [27℄.In order to use Lemma 4 in the proof of Theorem 1, �rst we observe that
c̄ u( · , α) > G1 on D1 \ B(e1, 1/2) where c̄ = c̄(p, n) > 1 is independent of
α ∈ (3π/4, π) so by the Hopf maximum prin
iple

c̄ |∇u( · , α)| > |∇G| on ∂K(α) ∩B(0, 2) (13)and from the boundary Harna
k inequality in Theorem 1.9 of [17℄, mentionedin the display above (6), we have
|∇u( · , α)| 6 ĉ (π − α)(2−n)/(p−1) on ∂K(α) ∩

[
B(0, 2) \B(0, 1)

] (14)where ĉ > 1 depends only on p, n when α ∈ [3π/4, π]. Finally note that
〈x− e1, ν〉 = sin(π − α) on ∂K(α) ∩ B(0, 2). Using this note and (13), (14),in (12) we 
on
lude in view of (3) that for some c̆ depending only on p, n wehave

c̃−16

∫

∂K(α)∩B(0,2)

sin(π − α)|∇G|p dHn−1

6 c̆

( 2∫

0

r(λ(α)−1)p+n−2 dr

)
(π−α)

p−n+1

p−1

6
c̆2

(λ(α)− 1)p + n− 1
(π−α)

p−n+1

p−1 ,

(15)
where we have also used the fa
t that an element of surfa
e area on ∂S(α) isof the form sin(π− α)n−2rn−2dr. From (15) and some arithmeti
 we 
on
lude
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λ(π) < λ(α) 6 1− (n− 1)/p + c∗ (π − α)

p−n+1

p−1 as α→π (16)for some c∗ = c∗(p, n) whi
h gives the upper estimate for λ1(α) in Theorem 1when n− 1 < p < n. The proof of the lower estimate for λ1(α) as α→π when
n − 1 < p < n is similar, merely by using Lemmas 3, 4, and Theorem 1.9in [17℄, but somewhat more tedious. This 
ompletes our outline of the proof ofTheorem 1 when n− 1 < p < n. ��3. Generalizations of Theorem 1If O ⊂ R

n is open and 1 ≦<∞, let W 1,q(O) denote the spa
e of equivalen
e
lasses of fun
tions h with distributional gradient ∇h, both of whi
h are qthpower integrable on O.De�nition 3. For �xed p>1, δ∈(0, 1), and A=(A1, . . . ,An) : R
n \ {0}→R

nwe say that A ∈ Mp(δ) provided A = A(η) has 
ontinuous partial derivativesin ηk, 1 6 k 6 n, and whenever ξ ∈ R
n, η ∈ R

n \ {0},(i) δ |η|p−2|ξ|2 6

n∑

i,j=1

∂Ai

∂ηj
ξiξj and n∑

i=1

|∇Ai(η)| 6 δ−1|η|p−2,(ii) A(η) = |η|p−1A(η/|η|).De�nition 4. Given A ∈ Mp(δ), we say that u is A-harmoni
 in an openset O provided u ∈W 1,p(Ω) for ea
h bounded open Ω with Ω̄ ⊂ O and
∫ 〈

A(∇u(y)),∇θ(y)
〉
dy = 0 whenever θ ∈ C∞

0 (Ω). (17)As a short notation for (17) we write ∇ · (A(∇u)) = 0 in O.An important spe
ial 
lass of A's for us is when(a) there exists 1 6 Λ <∞ su
h that
∣∣∣∂Ai

∂ηj
(η)− ∂Ai

∂η′j
(η′)

∣∣∣ 6 Λ|η − η′||η|p−3whenever 0 < 1
2 |η| 6 |η′| 6 2|η| and 1 6 i, j 6 n,(b)A(η)=Df(η)=

( ∂f
∂η1

,
∂f

∂η2
, . . . ,

∂f

∂ηn

) so f(tη)= tpf(η) when t>0. (18)Note that if A = Df in (18) and f(η) = p−1|η|p, then u as in (17) is aweak solution to the p-Lapla
e equation in O. Also observe that A-harmoni
fun
tions remainA-harmoni
 under translation and dilation but not ne
essarilyunder rotations. We use the same notation as in Theorem 1.



NOTE ON AN EIGENVALUE PROBLEM 13Theorem 2. Given α ∈ (0, π), p ∈ (1,∞), or α = π, p > n − 1, and
A ∈ Mp(δ), there exist unique ui for i = 1, 2 that are positive A-harmoni
in K(α) with 
ontinuous boundary value 0 on ∂K(α) \ {0}, ui(e1) = 1, and ofthe form (2) with λ2(α) < 0 < λ1(α).Moreover, if A also satis�es (18), then λ1(π) = 1 − (n − 1)/p for n − 1 <
p <∞. In fa
t

λ1(α)− 1 + (n− 1)/p ≈ (π − α)
p−n+1

p−1 as α→πwhere the ratio 
onstants depend only on p, n, δ,Λ.3.1. Outline of the proof of Theorem 2.Proof. The existen
e and uniqueness of ui, i = 1, 2, in K(α), 0 < α 6 π,follows from boundary Harna
k inequalities proved in [18℄ for Reifenberg �atdomains and arguments similar to those in Se
tion 4 of [17℄. The proof that
λ1(π) = 1 − (n − 1)/p is essentially the same as the proof we outlined in the
p-harmoni
 setting for n− 1 < p < n. Indeed, Lemmas 1, 2, 3, 4 are proved inProposition 9.7, Lemma 10.9, Lemma 13.7, and display (13.86), respe
tively,of [1℄ in the A-harmoni
 setting when A ∈ Mp(δ), 1 < p < n, satis�es (18). �Remark 1. Lemma 3 remains valid when p > n, for G properly de�ned.However for p > n there is a sign reversal in the inequality and so this lemma
an no longer be used to get an analog of Lemma 4 when p > n. Insteadin [3℄ we use a di�erent Relli
h inequality derived from the work on TheoremB in [1℄ and Theorem B in [2℄ on a Minkowski existen
e problem. Armed withthis inequality, the proof of Theorems 1, 2 are similar to the proof outlined for
n − 1 < p < n. Finally we note that our interest in this eigenvalue problemstems from our study of regularity in a Minkowski problem, originally proved inTheorem 0.7 of [10℄ for harmoni
 fun
tions and later generalized in Theorem 1.4of [5℄ to p-harmoni
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