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1 Introduction

In [C1,C2,C3] a theory for general two-phase free boundary problems for the Laplace operator was
developed. In [C1] Lipschitz free boundaries were shown to be C1,γ-smooth for some γ ∈ (0, 1)
and in [C2] it was shown that free boundaries which are well approximated by Lipschitz graphs
are in fact Lipschitz. Finally, in [C3] the existence part of the theory was developed.

In this paper, which is the first in a sequel, we begin our study of the corresponding problems
for the p-Laplace operator by generalizing the results in [C1] to the p-Laplace operator when
p 6= 2, 1 < p <∞. This generalization is highly nontrivial due to the non-linear and degenerate
character of the p-Laplace operator for p 6= 2. Indeed, what enables us to proceed on these
problems in the case p 6= 2, 1 < p <∞, are the recent results in [LN,LN1,LN2] (see also [LN3]).
To briefly outline these results we recall that in [LN] we established the boundary Harnack
inequality for positive p-harmonic functions, 1 < p <∞, vanishing on a portion of the boundary
of a Lipschitz domain Ω ⊂ Rn and we carried out an in depth analysis of p-capacitary functions in
starlike Lipschitz ring domains. The study in [LN] was continued in [LN1] where we established,
as one of our results, the Hölder continuity for ratios of positive p-harmonic functions, 1 < p <∞,
vanishing on a portion of the boundary of a Lipschitz domain Ω ⊂ Rn. Finally, in [LN2] several
results concerning the boundary behaviour of the gradient of a p-harmonic function, vanishing
on a portion of the boundary of a Lipschitz or C1-domain, were proved. The analysis in this
paper is a ‘tour de force’ of the techniques developed in [LN,LN1,LN2].

To properly state our results we need to introduce some notation. Points in Euclidean n-space
Rn are denoted by x = (x1, . . . , xn) or (x′, xn) where x′ = (x1, . . . , xn−1) ∈ Rn−1 and we let Sn−1

denote the (n− 1)-dimensional unit sphere in Rn. Let Ē, ∂E, diam E, be the closure, boundary,
diameter, of the set E ⊂ Rn and let d(y, E) be equal to the distance from y ∈ Rn to E. 〈·, ·〉
denotes the standard inner product on Rn and |x| = 〈x, x〉1/2 is the Euclidean norm of x. Let
B(x, r) = {y ∈ Rn : |x − y| < r} whenever x ∈ Rn, r > 0, and let dx be Lebesgue n-measure
on Rn. If O ⊂ Rn is open and 1 ≤ q ≤ ∞, then by W 1,q(O), we denote the space of equivalence
classes of functions f with distributional gradient ∇f = (fx1 , . . . , fxn), both of which are q th
power integrable on O. Let

‖f‖W 1,q(O) = ‖f‖Lq(O) + ‖ |∇f | ‖Lq(O)

be the norm in W 1,q(O) where ‖·‖Lq(O) denotes the usual Lebesgue q norm in O. Next let C∞
0 (O)

be the set of infinitely differentiable functions with compact support in O and let W 1,q
0 (O) be the

closure of C∞
0 (O) in the norm of W 1,q(O). Finally let C(E) be the set of continuous functions

on E.
Given D ⊂ Rn a bounded domain (i.e, a connected open set) and 1 < p <∞, we say that u

is p-harmonic in D provided u ∈ W 1,p(D) and∫
|∇u|p−2 〈∇u,∇θ〉 dx = 0 (1.1)

whenever θ ∈ W 1,p
0 (D) . Observe that if u is smooth enough and ∇u 6= 0 in D, then

∇ · (|∇u|p−2∇u) ≡ 0 in D (1.2)

so u is a classical solution in D to the p-Laplace partial differential equation. Here, as in the
sequel, ∇· is the divergence operator. u is said to be a p-subsolution (p-supersolution) in D
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provided u ∈ W 1,p(D) and provided (1.1) holds with = replaced by ≤ (≥) whenever θ ≥ 0 a.e.
in D. Let u ∈ C(D̄) and suppose that u changes sign in D. Put D+(u) = {x ∈ D : u(x) > 0},
F (u) = ∂D+(u) ∩ D, and let D−(u) be the interior of the set {x ∈ D : u(x) ≤ 0}. Set
u+ = max{u, 0}, u− = −min{u, 0}. Assuming that w ∈ F (u) and that F (u) is smooth in a
neighborhood of w we let ν = ν(w) denote the unit normal, to F (u) at w, pointing into D+(u).
Moreover, we let u+

ν (w) and u−ν (w) denote the normal derivatives of u+ and u− at w in the
direction of ν. Note that u+

ν ,−u−ν ≥ 0. In this paper we consider weak solutions, defined and
continuous in D̄, to the following general two-phase free boundary problem,

(i) ∇ · (|∇u|p−2∇u) = 0 in D+(u) ∪D−(u),

(ii) u+
ν (w) = G(−u−ν (w)) whenever w ∈ F (u),

(iii) u = f ∈ C(∂D) on ∂D. (1.3)

In (1.3) (ii) the functionG : [0,∞) → [0,∞) defines the free boundary condition and the interface
F (u) is referred to as the free boundary. If we make no a priori classical regularity assumptions
on the interface F (u) then the free boundary condition in (1.3) (ii) must be interpreted in a weak
sense and in particular a notion of weak solutions to the problem in (1.3) has to be introduced.
Let 〈·, ·〉+ = max{〈·, ·〉, 0}, 〈·, ·〉− = −min{〈·, ·〉, 0}. We will work with the following notion of
weak solutions to the problem in (1.3).

Definition 1.4. Let D ⊂ Rn be a bounded domain, u ∈ C(D̄) and 1 < p <∞, be given. u is a
(weak) solution to the problem in (1.3) if u is p-harmonic in D+(u)∪D−(u), u = f on ∂D and if
the free boundary condition in (1.3) (ii) is satisfied in the following sense. Assume that w ∈ F (u)
and there exists a ball B(ŵ, ρ̂), ŵ ∈ D+(u)∪D−(u) with w ∈ ∂B(ŵ, ρ̂). If ν = (ŵ−w)/|ŵ−w|,
then the following holds, as x→ w non-tangentially, for some α, β ∈ [0,∞] with α = G(β),

(i) if B(ŵ, ρ̂) ⊂ D+(u), then u(x) = α〈x− w, ν〉+ − β〈x− w, ν〉− + o(|x− w|),
(ii) if B(ŵ, ρ̂) ⊂ D−(u), then u(x) = α〈w − x, ν〉+ − β〈w − x, ν〉− + o(|x− w|).

Recall that φ : E→R is said to be Lipschitz on E provided there exists b, 0 < b < ∞, such
that |φ(z)− φ(w)| ≤ b |z − w| whenever z, w ∈ E. The infimum of all b such that this holds is

called the Lipschitz norm of φ on E, denoted ‖φ‖̂E. It is well known that if E = Rn−1, then φ is

differentiable almost everywhere on Rn−1 and ‖φ‖̂Rn−1 = ‖ |∇φ| ‖L∞(Rn−1).
We can now state the first main result proved in this paper.

Theorem 1. Let D ⊂ Rn be a bounded domain, assume that u ∈ C(D̄) and that u is a solution
in D, for some 1 < p < ∞, to the problem in (1.3) in the sense of Definition 1.4. Moreover,
suppose that G > 0 is strictly increasing on [0,∞) and, for some N > 0, that s−NG(s) is
decreasing on (0,∞). Assume that 0 ∈ F (u), B̄(0, 2) ⊂ D, maxB(0,2) |u| = 1 and that

D+(u) ∩B(0, 2) = Ω ∩B(0, 2), F (u) ∩B(0, 2) = ∂Ω ∩B(0, 2),

Ω = {y = (y′, yn) ∈ Rn : yn > ψ(y′)},

in an appropriate coordinate system where ψ is Lipschitz on Rn−1 with M = ‖ψ‖̂Rn−1 . Then
there exists σ = σ(p, n,M,N) ∈ (0, 1) such that ∇ψ is Hölder continuous of order σ on
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{x′ : (x′, ψ(x′))} ∈ B(0, 1/8). The Cσ Hölder norm of ∇ψ depends only on p, n,M,N.

We say that F (u) ∩B(0, 1/8) is C1,σ whenever the conclusion of Theorem 1 holds. Theorem
1 is completely new if 1 < p < ∞, p 6= 2, while, as previously stated, Theorem 1 was proved in
[C1] for p = 2 and the Laplace operator. We also note that the work in [C1] was generalized
in [W] to solutions of fully nonlinear PDEs of the form F (∇2u) = 0, where F is homogeneous.
Further analogues of the work in [C1] were obtained for a class of nonisotropic operators in [F]
and for fully nonlinear PDEs of the form F (∇2u,∇u) = 0, where F is homogeneous in both
arguments, in [F1]. Finally generalizations of the results in [C1] were made to non-divergence
form linear PDE with variable coeficients in [CFS] and generalized in [Fe] to fully nonlinear PDEs
of the form F (∇2u, x) = 0. Each of the above generalizations is concerned with non-divergence
form PDE. Generalizations of the work in [C1] to linear divergence form PDEs with variable
coefficients were obtained in [FS], [FS1].

To briefly outline the proof of Theorem 1 we note that our argument combines the geometric
approach developed in [C1] with the analytic techniques for p-harmonic functions in Lipschitz
domains developed in [LN,LN1,LN2]. In particular, let ν ∈ Rn, |ν| = 1, and consider ν̃ ∈ Rn.
Let θ(ν, ν̃) denote the angle between ν and ν̃ and for θ0 ∈ [0, π], ε0 ∈ R+ = (0,∞), we introduce

Γ(ν, θ0, ε0) := {ν̃ ∈ Rn : θ(ν, ν̃) < θ0, |ν̃| ≤ ε0}. (1.5)

Then Γ(ν, θ0, ε0) is a cone of directions and if ε0 = 1 we write Γ(ν, θ0) = Γ(ν, θ0, ε0). Let O ⊂ Rn

be an open set and let u ∈ C(Ō). Let ν ∈ Rn, |ν| = 1, θ0 ∈ (0, π/2] and ε0 ∈ R+ be given. Put

O(ν, θ0, ε0) = {x ∈ O : B(x− τ, |τ | sin(θ0/2)) ⊂ O for every τ ∈ Γ(ν, θ0/2, ε0)}.

Then u is said to be monotone in O with respect to the directions in the cone Γ(ν, θ0, ε0) if

sup
B(x,|τ | sin(θ0/2))

u(y − τ) ≤ u(x) whenever τ ∈ Γ(ν, θ0/2, ε0) and x ∈ O(ν, θ0, ε0). (1.6)

If (1.6) is true then Γ(ν, θ0, ε0) is referred to as a cone of monotonicity for u in O.
Let u, Ω, 0 ∈ F (u) be as in the statement of Theorem 1 and let M denote the Lipschitz

constant of Ω. To prove Theorem 1 we establish the following steps.

Step 0. (Existence of a cone of monotonicity) Using the Lipschitz character of Ω it follows that
u is monotone in B(0, r1), r1 = 1/(4c2) where c2 is the constant defined in Theorem 2.4 of section
2, with respect to the directions in the cone Γ(en, θ0, ε0) for some θ0 = θ0(p, n,M) ∈ (0, π/2] and
for some small ε0 = ε0(p, n,M) > 0.

Step 1. (Enlargement of the cone of monotonicity in the interior) If τ ∈ Γ(en, θ0/2, ε0) for some
(θ0, ε0), put ε = |τ | sin(θ0/2) and set

vε(x) = vε,τ (x) = sup
B(x,ε)

u(y − τ)

whenever u(y − τ) is defined in B(x, ε). Let ν = ∇u( r1en

32
)/|∇u( r1en

32
)|. In Lemma 4.2 we prove

the existence of positive µ = µ(p, n,M) and ρ = ρ(M) such that if ε = |τ | sin(θ0/2), λ =
cos(θ0/2 + θ(ν, τ)) and 0 < ε ≤ ε0ρ, then

v(1+µλ)ε(x) ≤ (1− µλ)u(x) whenever x ∈ B( en

32
, ρr1).
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Step 2. (Enlargement of the cone of monotonicity at the free boundary) Using the notation
stated in Steps 0,1, we in Lemma 4.3 prove that there exists µ̄ > 0, depending only on p, n, M ,
and N, such that

v(1+µ̄λ)ε(x) ≤ u(x) whenever x ∈ B(0, r1/100).

It is shown in [C1, Lemma 17] that Step 2 implies the existence of ω ∈ Sn−1, θ̄ ∈ (0, π/2],
c−, c+ > 1, depending only on p, n,M and N such that

π/2− θ̄ = c−1
− (π/2− θ0), Γ(en, θ0, ε0) ⊂ Γ(ω, θ̄, ε0/c+), and u monotone in Γ(ω, θ̄, ε0/c+).

Using this fact, as well as invariance of the p-Laplace equation under scalings and translations,
we can replace u(x) by u(x0 + ηx)/η and given Step 0, repeat Steps 1, 2, in order to conclude,
as in [C1, p.157], the C1,σ-smoothness of F (u) ∩ B(0, 1/8) for some σ = σ(p, n,M,N) ∈ (0, 1).
Hence to prove Theorem 1 we only have to prove the statements in Step 0-2. The proof will use
the full strength of the toolbox developed in [LN,LN1,LN2]. In particular, we establish, a Hopf
boundary type principle for p-harmonic functions vanishing on a portion of a Lipschitz domain.

In order to describe some crucial ideas and an operator, L̂, considered throughout this paper,
we assume that Ω′ is Lipschitz with constant M ′, w′ ∈ ∂Ω′, r′ > 0, and that u′, v′, are non-
negative p-harmonic functions in Ω′ ∩ B(w′, 2r′). Also assume that u′, v′, are continuous on the
closure of Ω′ ∩ B(w′, 2r′) and u′, v′ vanish continuously on ∂Ω′ ∩ B(w′, 2r′). We say that |∇u′|
and |∇v′| satisfy a uniform non-degeneracy condition in Ω′ ∩B(w′, 2r′) if there exists a constant
b > 1 such that, for all y ∈ Ω′ ∩B(w′, 2r′),

b−1 ũ(y)

d(y, ∂Ω′)
≤ |∇ũ(y)| ≤ b

ũ(y)

d(y, ∂Ω′)
, ũ ∈ {u′, v′}. (1.7)

In general, in our applications, b = b(p, n,M ′). We note that (1.7), (1.8) (see Lemma 2.2) imply
u′, v′ are infinitely differentiable in Ω′ ∩B(w, 2r′). Let

e(y) = u′(y)− v′(y) whenever y ∈ Ω̄′ ∩ B̄(w′, 2r′) (1.8)

and introduce

u(y, τ) = τu′(y) + (1− τ)v′(y) whenever y ∈ Ω̄′ ∩ B̄(w′, 2r′) and τ ∈ [0, 1]. (1.9)

Using the fact that u′, v′ are classical solutions to the p-Laplace operator in (1.2) and the fact
that

|ξ|p−2ξ − |η|p−2η =

∫ 1

0

d{|tξ + (1− t)η|p−2[tξ + (1− t)η]}
dt

dt

whenever ξ, η ∈ Rn \ {0}, it follows that

L̂e :=
n∑

i,j=1

∂

∂yi
( b̂ij(y)eyj

(y) ) = 0 whenever y ∈ Ω′ ∩B(w′, 2r′) (1.10)
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where

b̂ij(y) =

1∫
0

bij(y, τ)dτ,

bij(y, τ) = |∇u(y, τ)|p−4((p− 2)uyi
(y, τ)uyj

(y, τ) + δij|∇u(y, τ)|2), (1.11)

for i, j ∈ {1, ..., n} and δij is the Kronecker δ. We observe that the operator L̂ in (1.10)-(1.11)
is a symmetric linear operator in divergence form in Ω′ ∩ B(w′, 2r′) and that, in particular, the
function e, representing the difference between the p-harmonic functions u′ and v′, satisfies the
linear pde in (1.10). To estimate the ellipticity of L̂ at y ∈ Ω′ ∩B(w′, 2r′) we note that

min{p− 1, 1}|ξ|2λ̂(y) ≤
n∑

i,j=1

b̂ij(y)ξiξj ≤ max{p− 1, 1}|ξ|2λ̂(y) (1.12)

whenever ξ ∈ Rn and

λ̂(y) =

1∫
0

|∇u(y, τ)|p−2dτ ≈
(
|∇u′(y)|+ |∇v′(y)|

)p−2

. (1.13)

Here, as in the sequel, A ≈ B means that A/B is bounded above and below by constants which,
unless otherwise stated, may only depend on p, n and M. In Lemmas 2.12 and 2.14, we establish
interior and boundary Harnack inequalities for non-negative solutions to L̂ (assuming u′, v′ satisfy
(1.7)). Similar arguments are used to establish Theorem 2.22 which plays a fundamental role in
the proof of Theorem 1. As mentioned earlier, the proofs in section 2 use the toolbox developed
in [LN, LN1, LN2].

As an application of Theorem 1 to free boundary-inverse type problems below the continuous
threshold, we show, see Theorem 5.1 in section 5, that Theorem 3 in [LN2] remains true without
any smallness assumption on the Lipschitz constant of the domain. A full statement of this
theorem together with an outline of its proof is given in section 5. Given Theorem 1 in this
paper and the results in [LN2], our task is to show that a certain blow-up limit p-harmonic
function, u∞, is a weak solution to a one phase free boundary problem in the sense described in
Definition 1.4.

This paper is organized in the following way. In section 2 we state a number of results
from [LN,LN1,LN2] concerning p-harmonic functions in Lipschitz domains. Moreover, in this
section we focus on the operator L̂ constructed as in (1.7)-(1.13) and we develop, as described
above, a number of new results using the toolbox developed in [LN,LN1,LN2]. In section 3
we then construct, in analogy with [C1], appropriate continuous p-subsolutions to be used for
comparison. In section 4 we establish Step 0-2 using the results stated and established in sections
2 and 3. In section 5 we prove Theorem 5.1 mentioned above. Finally in section 6, we briefly
discuss a generalization of Theorem 1.

2 p-Harmonic functions in Lipschitz domains

This section is devoted to the boundary behaviour of p-harmonic functions vanishing on a portion
of a Lipschitz domain. In particular, in the following we let Ω ⊂ Rn be a bounded Lipschitz
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domain, i.e., we assume that there exists a finite set of balls {B(xi, ri)}, with xi ∈ ∂Ω and ri > 0,
such that {B(xi, ri)} constitutes a covering of an open neighborhood of ∂Ω and such that, for
each i,

Ω ∩B(xi, 4ri) = {y = (y′, yn) ∈ Rn : yn > φi(y
′)} ∩B(xi, 4ri),

∂Ω ∩B(xi, 4ri) = {y = (y′, yn) ∈ Rn : yn = φi(y
′)} ∩B(xi, 4ri),

in an appropriate coordinate system and for a Lipschitz function φi. The Lipschitz constant
of Ω is defined to be M = maxi ‖|∇φi|‖∞. If Ω is Lipschitz and r0 = min ri, then for each
w ∈ ∂Ω, 0 < r < r0, we can find points ar(w) ∈ Ω ∩ ∂B(w, r) with d(ar(w), ∂Ω) ≥ c−1r for
a constant c = c(M). In the following we let ar(w) denote one such point. Furthermore, if
w ∈ ∂Ω, 0 < r < r0, then we let ∆(w, r) = ∂Ω ∩ B(w, r) be the naturally defined surface ball.
We let ei, 1 ≤ i ≤ n, denote the point in Rn with one in the i th coordinate position and zeroes
elsewhere. Moreover, throughout the paper c will denote, unless otherwise stated, a positive
constant ≥ 1, not necessarily the same at each occurrence, which only depends on p, n and
M . In general, c(a1, . . . , an) denotes a positive constant ≥ 1, not necessarily the same at each
occurrence, which depends on p, n, M and a1, . . . , an. With this notation we state,

Lemma 2.1. Let Ω ⊂ Rn be a bounded Lipschitz domain. Given p, 1 < p < ∞, w ∈ ∂Ω, 0 <
r < r0, suppose û > 0 is p-harmonic in Ω ∩ B(w, 4r), and continuous in B(w, 4r) with û ≡ 0
on B(w, 4r) \ Ω. There exists, c, c′ ≥ 1, α ∈ (0, 1), depending only on p, n,M, such that if
x ∈ Ω ∩B(w, r/c), then

(a) max
B(x, 1

2
d(x,∂Ω))

û ≤ c′û(x) .

(b) |û(z)− û(y)| ≤ c′
(

|z−y|
d(x,∂Ω)

)α
û(x) whenever z, y ∈ B(x, 2d(x, ∂Ω)).

Lemma 2.2. Let Ω, w, p, û, r, be as in Lemma 2.1. Then û has a representative in W 1,p(B(w, 4r))
with Hölder continuous partial derivatives in Ω∩B(w, 4r). In particular there exists σ ∈ (0, 1], c ≥
1, depending only on p, n, such that if x, y ∈ B(w̃, r̃/2), B(w̃, 4r̃) ⊂ Ω ∩B(w, 4r), then

c−1 |∇û(x)−∇û(y)| ≤ (|x− y|/r̃)σ max
B(w̃,r̃)

|∇û| ≤ c(|x− y|/r̃)σ u(w̃)/d(w̃, ∂Ω).

If ∇u(w̃) 6= 0, then u is infinitely differentiable in a neighborhood of w̃. Moreover, if for some
β ∈ (1,∞),

û(y)

d(y, ∂Ω)
≤ β |∇û(y)| whenever y ∈ B(w̃, 2r̃),

then there exists c̄ ≥ 1, depending only on p, n, β, such that

max
B(w̃, r̃

2
)

n∑
i,j=1

|ûyiyj
| ≤ c̄

(
r̃−n

∫
B(w̃,r̃)

n∑
i,j=1

|ûyiyj
|2 dy

)1/2

≤ c̄2 û(w̃)/d(w̃, ∂Ω)2.

7



For the proof of Lemma 2.1, see [LN, Lemmas 2.1, 2.2]. A proof of the first display in Lemma
2.2 can be found for example in [L]. The rest of the proof of Lemma 2.2 follows from the first
display and Schauder type estimates. The following theorem is given in [LN1, Theorem 2].

Theorem 2.3. Let Ω ⊂ Rn be a bounded Lipschitz domain with constant M . Given p, 1 < p <
∞, w ∈ ∂Ω, 0 < r < r0, suppose that û, v̂ > 0, are p-harmonic in Ω ∩ B(w, 2r), continuous in
B(w, 2r) with u ≡ v ≡ 0 on B(w, 2r) \ Ω. Under these assumptions there exist c1, 1 ≤ c1 < ∞,
and σ̃, σ̃ ∈ (0, 1), both depending only on p, n, and M , such that if r̃ = r/c1 and y1, y2 ∈
Ω ∩B(w, r/c1), then ∣∣∣∣ û(y1)

v̂(y1)
− û(y2)

v̂(y2)

∣∣∣∣ ≤ c1
û(ar̃(w))

v̂(ar̃(w))

(
|y1 − y2|

r

)σ̃
.

We note that the proof in [LN1] of Theorem 2.3 uses an iteration-induction type argument
which assumes boundedness in the above inequality, i.e.,∣∣∣∣ û(y1)

v̂(y1)
− û(y2)

v̂(y2)

∣∣∣∣ ≤ c
û(ar̃(w))

v̂(ar̃(w))
.

This inequality was proved in [LN]. Moreover, the proof of Theorem 2.3 in [LN1] also yields,

Theorem 2.4. Let Ω ⊂ Rn be a bounded Lipschitz domain with constant M . Let w ∈ ∂Ω, 0 <
r < r0, and suppose that Ω ∩ B(w, 2r) = {x : xn > φ(x′)} ∩ B(w, 2r), where φ is Lipschitz with
norm ≤ M. Given p, 1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that û > 0 is p-harmonic in
Ω∩B(w, 2r) and continuous in B(w, 2r) with û ≡ 0 on B(w, 2r)\Ω. There exist θ0, θ0 ∈ (0, π/2],
and c2 > 1, which both depend only on p, n, M , such that if r̃ = r/c2, then

c−1
2

û(y)

d(y, ∂Ω)
≤ 〈∇û(y), ξ〉 ≤ |∇û(y)| ≤ c2

û(y)

d(y, ∂Ω)

whenever y ∈ Ω ∩B(w, r̃) and ξ ∈ Γ(en, θ0) ∩ Sn−1 .

We note that assuming Theorem 2.3, Theorem 2.4 can also be derived as in [C, Lemma 5].
The following lemma gives us a criteria for determining when the non degeneracy inequality in
Theorem 2.4. holds at a point.

Lemma 2.5. Let O be an open set, w ∈ ∂O, r > 0, and suppose that û, v̂ are positive p-harmonic
functions in O. Let a ≥ 1, y ∈ O, ξ ∈ Rn, |ξ| = 1 and assume that

1

a

v̂(y)

d(y, ∂O)
≤ 〈∇v̂(y), ξ〉 ≤ |∇v̂(y)| ≤ a

v̂(y)

d(y, ∂O)
.

Let ε̃−1 = (ca)(1+σ)/σ, where σ is as in Lemma 2.2 and c = c(p, n). Then the following statement
is true for c = c(p, n) suitably large. If

(1− ε̃)L̃ ≤ v̂

û
≤ (1 + ε̃)L̃

8



in B(y, 1
4
d(y, ∂O)) for some L̃, 0 < L̃ <∞, then

1

ca

û(y)

d(y, ∂O)
≤ 〈∇û(y), ξ〉 ≤ |∇û(y)| ≤ ca

û(y)

d(y, ∂O)
.

Proof. The stated lemma is similar to Lemmas 4.3 and 5.4 in [LN1] and Lemma 3.1 in [LN4].
We omit the details. 2

We will also need one of the main theorems proved in [LN2]. To state this theorem, we need
some more notation. Let Ω ⊂ Rn be a bounded Lipschitz domain and w ∈ ∂Ω, 0 < r < r0. If
0 < b < 1 and x ∈ ∆(w, 2r) then we let

Γ(x) = Γb(x) = {y ∈ Ω : d(y, ∂Ω) > b|x− y|} ∩B(w, 4r). (2.6)

Let σ denote surface area or Hausdorff (n − 1)-measure on ∂Ω. Given a measurable function k
on ∪x∈∆(w,2r)Γ(x) we define the non tangential maximal function N(k) : ∆(w, 2r)→R for k as

N(k)(x) = sup
y∈Γ(x)

|k|(y) whenever x ∈ ∆(w, 2r). (2.7)

Next let Lq(∆(w, 2r)), 1 ≤ q ≤ ∞, be the space of q th power integrable functions, with respect
to σ, on ∆(w, 2r). Furthermore, given a measurable function f on ∆(w, 2r) we say that f is of
bounded mean oscillation on ∆(w, r), f ∈ BMO(∆(w, r)), if there exists A, 0 < A < ∞, such
that ∫

∆(x,s)

|f − f∆|2dσ ≤ A2σ(∆(x, s)) (2.8)

whenever x ∈ ∆(w, r) and 0 < s ≤ r. Here f∆ denotes the average of f on ∆ = ∆(x, s) with
respect to σ. The least A for which (2.8) holds is denoted by ‖f‖BMO(∆(w,r)). The following
theorem is Theorem 1 in [LN2].

Theorem 2.9. Let Ω ⊂ Rn be a bounded Lipschitz domain with constant M . Given p, 1 < p <
∞, w ∈ ∂Ω, 0 < r < r0, suppose that û is a positive p-harmonic function in Ω ∩ B(w, 4r), û is
continuous in Ω̄ ∩B(w, 4r), and û = 0 on ∆(w, 4r). Then

lim
y∈Γ(x),y→x

∇û(y) = ∇û(x)

for σ almost every x ∈ ∆(w, 4r). Furthermore, there exist q > p and a constant c, 1 ≤ c < ∞,
which both only depend on p, n and M , such that

(i) N(|∇û|) ∈ Lq(∆(w, 2r)),

(ii)

∫
∆(w,2r)

|∇û|qdσ ≤ cr(n−1)( p−1−q
p−1

)

( ∫
∆(w,2r)

|∇û|p−1dσ

)q/(p−1)

,

(iii) log |∇û| ∈ BMO(∆(w, r)), ‖ log |∇û|‖BMO(∆(w,r)) ≤ c.

9



2.1 Degenerate elliptic equations

Let Ω ⊂ Rn be a Lipschitz domain with constant M , w ∈ ∂Ω, and 0 < r < r0. Suppose that
u′, v′ > 0 are p-harmonic in Ω ∩ B(w, 2r) and continuous on B(w, 2r) with u′ ≡ v′ ≡ 0 on
B(w, 2r) \ Ω. Let r′ = r/(4 max{c1, c2}) where c1 is defined in Theorem 2.3 and c2 is defined
in Theorem 2.4. From these theorems we deduce, for some c = c(p, n,M), 1 ≤ c < ∞, and all
y ∈ Ω ∩B(w, 2r′), that

(i) c−1 ũ(y)

d(y, ∂Ω′)
≤ |∇ũ(y)| ≤ c

ũ(y)

d(y, ∂Ω′)
for ũ ∈ {u′, v′},

(ii) c−1u
′(ar′(w))

v′(ar′(w))
≤ u′(y)

v′(y)
≤ c

u′(ar′(w))

v′(ar′(w))
. (2.10)

We define

e(y) = u′(y)− v′(y) whenever y ∈ Ω̄ ∩ B̄(w, 2r′) (2.11)

and let L̂ be the operator defined in (1.10)-(1.11). Recall that the ellipticity of L̂ is estimated in
(1.12)-(1.13). We first state an interior Harnack inequality for positive solutions to L̂.

Lemma 2.12. Let Ω, M , w ∈ ∂Ω, r, u′, v′, r′ and L̂ be as above. Assume that B(w̃, 2r̃) ⊂
Ω ∩ B(w, 2r′) for some w̃ ∈ Ω and for some r̃ > 0. There exists a constant c = c(p, n,M) > 1
such that if h is non-negative and L̂h = 0 in B(w̃, 2r̃), then

max
B(w̃,r̃)

h ≤ c min
B(w̃,r̃)

h.

Proof. Using (2.10) (i), the Harnack inequality for p-harmonic functions, and (1.12), (1.13), we
see that L̂ is uniformly elliptic in B(w̃, 3r̃/2). The stated Harnack inequality then follows from
classical arguments, see [LSW]. 2

Lemma 2.13. Let Ω, M , w ∈ ∂Ω, r, u′, v′, r′ and L̂ be as above. Let ζ ∈ Ω∩∂B(w, 3r′/2) with
d(ζ, ∂Ω) ≥ ηr. Let h∗ be a solution to L̂ in Ω ∩ B(w, 3r′/2) with continuous boundary values.
Suppose that h∗ ≥ 0 on ∂[Ω ∩ B(w, 3r′/2)] and h∗ ≥ 1 on Ω ∩ ∂B(w, 3r′/2) ∩B(ζ, d(ζ, ∂Ω)/4).
Then there exists c = c(p, n,M, η) such that

ch∗(ar′(w)) ≥ 1.

Proof. Lemma 2.13 follows from Lemma 2.12 and standard arguments as in ([CFMS]) for uni-
formly elliptic PDE. 2

Next we prove the boundary Harnack inequality for the operator L̂.

Lemma 2.14. Let Ω, M , w ∈ ∂Ω, r, u′, v′, r′ and L̂ be as above. There exists ĉ, 1 ≤ ĉ <
∞, depending only on p, n,M, such that if if e1, e2, are positive solutions to the operator L̂ in
Ω ∩B(w, 2r′) and e1, e2, are continuous in B̄(w, 2r′) with e1 ≡ 0 ≡ e2 on B(w, 2r′) \ Ω, then

ĉ−1 e1(ar′′(w))

e2(ar′′(w))
≤ e1(y)

e2(y)
≤ ĉ

e1(ar′′(w))

e2(ar′′(w))
where r′′ = r′/ĉ
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whenever y ∈ Ω ∩B(w, r′′). Moreover, if 0 < ρ < r, then the continuous Dirichlet problem for L̂
in Ω ∩B(w, ρ) always has a solution.

Proof. The proof of Lemma 2.14 is similar to the proof of Theorem 1 in [LN]. To outline the
proof observe from Theorem 2.9 (iii) that

log |∇ũ| ∈ BMO(∆(w, r)) whenever ũ ∈ {u′, v′}

with norms ≤ c(p, n,M). Using this fact and arguing as in [LN4, Lemma 4.1] (this lemma is a
refined version of Lemma 2.45 in [LN]), it follows that there exists, given z ∈ ∂Ω, B(z, 4s) ⊂
B(w, 2r′), a starlike Lipschitz domain Ω̃ ⊂ Ω∩B(z, s) with center z̃, d(z̃, ∂Ω) ≥ c−1s, such that

(a) c σ(∂Ω̃ ∩∆(z, s)) ≥ sn−1,

(b) c−1s−1 ũ(z̃) ≤ |∇ũ(x)| ≤ cs−1 ũ(z̃) whenever x ∈ Ω̃, ũ ∈ {u′, v′}. (2.15)

In (a)− (b) the constant c depends only on p, n and M . Next we define, for x ∈ Ω̃, the measure

dγ(x) = d(x, ∂Ω̃)

(
max

B(x, 1
2
d(x,∂Ω̃))

n∑
i,j=1

|∇b̂ij(·)|2
)
dx (2.16)

where b̂ij(·) is defined in (1.11) relative to u′, v′. From the conclusion of Theorem 2.4 we see that

|∇ũ| ≈ 〈∇ũ, ξ〉 for ũ ∈ {u′, v′} and some ξ ∈ Sn−1 .

Using this fact and Lemma 2.2 we see that the integral defining b̂ij(x) can be differentiated with
respect to xi, 1 ≤ i ≤ n, under the integral sign. Doing this and using (2.10) (i), (ii), we deduce
that

n∑
i,j=1

|∇b̂ij(x)|2 ≤ c

(
(|∇u′(x)|+ |∇v′(x)|)2p−6

n∑
i,j=1

(u′xixj
(x))2 + (v′xixj

(x))2

)
(2.17)

for some c = c(p, n,M), 1 ≤ c <∞. We assume, as we may, that u(z̃) ≥ v(z̃). Then from (2.15)
(b), (2.17) we deduce that

n∑
i,j=1

|∇b̂ij(x)|2 ≤ c|∇u′(x)|2p−6

n∑
i,j=1

(u′xixj
(x))2 + c(u′(z̃)/v′(z̃))2p−6 |∇v′(x)|2p−6

n∑
i,j=1

(v′)2
xixj

(x).

(2.18)
We define the following measures whenever x ∈ Ω̃,

dγ1(x) = d(x, ∂Ω̃)

(
max

B(x, 1
2
d(x,∂Ω̃))

|∇u′(·)|2p−6

n∑
i,j=1

(u′xixj
(·))2

)
dx,

dγ2(x) = d(x, ∂Ω̃)

(
max

B(x, 1
2
d(x,∂Ω̃))

|∇v′(·)|2p−6

n∑
i,j=1

(v′xixj
(·))2

)
dx.

Using this display, (2.15) (b), and the estimate for second derivatives in Lemma 2.2, we get by
arguing as in [LN, Lemma 2.54],

γi(Ω̃ ∩B(y, t)) ≤ c tn−1 (ζi(z̃)/s)
2p−4
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whenever i = 1, 2, y ∈ Ω̃, and 0 < t < s/4. Here ζ1 = u′ and ζ2 = v′. From this display and (2.18)
we see first that γ ≤ c(γ1 + (u′(z̃)/v′(z̃))2p−6γ2) and thereupon that γ is a Carleson measure on
∂Ω̃ in the sense that

γ(Ω̃ ∩B(z, t)) ≤ c tn−1 (u′(z̃)/s)2p−4, (2.19)

whenever z ∈ ∂Ω̃ and 0 < t < s/4. From (2.15)(b) and (1.11) we also see that

c−1(u′(z̃)/s)p−2 |ξ|2 ≤
n∑

i,j=1

b̂ij(y)ξiξj ≤ c (u′(z̃)/s)p−2 |ξ|2 (2.20)

whenever ξ ∈ Rn and y ∈ Ω̃. For 1 ≤ i, j ≤ n, set b∗ij = (u′(z̃)/s)2−p b̂ij(y) when y ∈ Ω̃. Let

L∗ = (u′(z̃)/s)2−p L̂ and define γ∗ as in (2.16) relative to (b∗ij). From (2.20) we observe that L∗

is uniformly elliptic in Ω̃ with constants depending only on p, n,M and L∗ei = 0, i = 1, 2. From
(2.19) we also have

γ∗(Ω̃ ∩B(z, t)) ≤ c tn−1

whenever z ∈ ∂Ω̃ and 0 < t < s/4. From this discussion and a theorem in [KP] it follows that
if ω∗(·, z̃) is elliptic measure defined with respect to L∗, z̃, in Ω̃, then ω∗(·, z̃) is an A∞ weight
with respect to surface area on ∂Ω̃ (see [LN, Theorem 3.11]). Since ω∗(∂Ω̃∩B(z, s), z̃) ≥ c−1, it
follows from the A∞ condition and (2.15) (a) that

ω∗(∂Ω̃ ∩∆(z, s), z̃) ≥ c−1
∗ , (2.21)

where c∗ = c∗(p, n,M). Finally one can use arbitrariness of z, s, in (2.21), as well as Lemma 2.12,
and some arguments on elliptic measure from [LN, Lemma 3.13], [HL, ch 3, sec 4], to conclude
that Lemma 2.14 is true. 2

2.2 The Hopf boundary principle

The following theorem is a refinement of Theorem 2.3.

Theorem 2.22. Let Ω ⊂ Rn be a bounded Lipschitz domain with constant M . Given p, 1 <
p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that û and v̂ are non-negative p-harmonic functions in
Ω ∩ B(w, 2r) with v̂ ≤ û. Assume also that û, v̂, are continuous in B(w, 2r) with û ≡ 0 ≡ v̂ on
B(w, 2r) \Ω. There exists c3, 1 ≤ c3 <∞, depending only on p, n,M, such that if r̃ = r/c3, then

c−1
3

û(ar̃(w))− v̂(ar̃(w))

v̂(ar̃(w))
≤ û(y)− v̂(y)

v̂(y)
≤ c3

û(ar̃(w))− v̂(ar̃(w))

v̂(ar̃(w))

whenever y ∈ Ω ∩B(w, r̃).

Proof. We first prove the left hand inequality in Theorem 2.22. To do so we argue as in [W].
Let r′ = r/(4 max{c1, c2, ĉ}) where c1, c2, ĉ are defined in Theorems 2.3, 2.4 and Lemma 2.14,
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respectively. Put r̂ = r′/(4ĉ). We prove the existence of λ, 1 ≤ λ < ∞, depending on p, n,M,
such that if

e(y) = λ

(
û(y)− v̂(y)

û(ar̂(w))− v̂(ar̂(w))

)
− v̂(y)

v̂(ar̂(w))
(2.23)

for y ∈ Ω ∩B(w, 2r′), then

e(y) ≥ 0 whenever y ∈ Ω ∩B(w, 2r̂). (2.24)

To do this, we initially allow λ ≥ 1 to vary in (2.23). λ is then fixed near the end of the argument.
Set

u′(y) =
λ û(y)

û(ar̂(w))− v̂(ar̂(w))
,

v′(y) =
λ v̂(y)

û(ar̂(w))− v̂(ar̂(w))
+

v̂(y)

v̂(ar̂(w))
.

Observe from (2.23) that e = u′− v′. Let L̂ be defined as in (1.9)-(1.11) using u′, v′, and let e1, e2
be the solutions to L̂ei = 0, i = 1, 2, in Ω ∩B(w, 3r′/2), with continuous boundary values:

e1(y) =
û(y)− v̂(y)

û(ar̂(w))− v̂(ar̂(w))

e2(y) =
v̂(y)

v̂(ar̂(w))

(2.25)

whenever y ∈ ∂(Ω ∩ B(w, 3r′/2)). Existence of e1, e2, follows from Lemma 2.14. From Lemma
2.14 we also get that

ĉ−1 e1(ar̂(w))

e2(ar̂(w))
≤ e1(y)

e2(y)
≤ ĉ

e1(ar̂(w))

e2(ar̂(w))
(2.26)

whenever y ∈ Ω ∩B(w, 2r̂). We now put

λ = ĉ
e2(ar̂(w))

e1(ar̂(w))

and observe from (2.26) that

λe1(y)− e2(y) ≥ 0 whenever y ∈ Ω ∩B(w, 2r̂). (2.27)

Let ê = λe1 − e2 and note from linearity of L̂ that ê, e, both satisfy the same linear pde in
Ω ∩ B(w, 3r′/2) and also that these functions have the same continuous boundary values on
∂(Ω ∩ B(w, 3r′/2)). Hence, using the maximum principle for the operator L̂, it follows that
e = ê and then by (2.27) that e(y) ≥ 0 in Ω ∩ B(w, 2r̂). To complete the proof of the left hand
inequality in Theorem 2.22 with r̃ replaced by r̂, we show that

λ ≤ c(p, n,M). (2.28)
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In fact let L̃ denote the operator corresponding to û − v̂ defined as in (1.9) - (1.11) with u′, v′

replaced by û, v̂. Then from the Harnack inequality in Lemmas 2.12 for L̃, applied to û − v̂,
and the definition of r̂, we deduce the existence of ζ ∈ Ω ∩ ∂B(w, 3r′/2) with d(ζ, ∂Ω) ≥ r/c
and e1 ≥ c−1 on Ω ∩ ∂B(w, 3r′/2) ∩ B(ζ, d(ζ, ∂Ω)/4). Lemmas 2.12, 2.13 can now be applied
with h, h∗ replaced by e1, in order to get e1(ar̂(w)) ≥ c̄−1. Also from Lemma 2.1 applied to v̂
we get e2(ar̂(w)) ≤ c̄ for some c̄ = c̄(p, n,M). Thus (2.28) is true and the proof of the left hand
inequality in Theorem 2.22 is valid.

To prove the right hand inequality in this theorem, one proceeds similarly only in this case
one needs to show for e1, e2 as above that

e1(ar̂(w)) ≤ c̄ and e2(ar̂(w)) ≥ c̄.

The first inequality follows from the proof that (2.21) implies Lemma 2.14 for L̃ in [LN, section
3] while the second inequality follows from Lemma 2.1 and Lemma 2.13. This finishes the proof
of Theorem 2.22. 2

Finally we note the following consequence of Theorem 2.22.

Corollary 2.29. Let Ω, û, v̂, w, p, r, r′, r̃, be as in Theorem 2.22. Assume B(ŵ, ρ̂) ⊂ Ω∩B(w, r̃/2)
and ζ ∈ ∂B(ŵ, ρ̂) ∩ ∂Ω. There exists c4 = c4(p, n,M) ≥ 1 such that if y ∈ B(ŵ, ρ̂), then

c5(û(y)− v̂(y)) ≥ (û(ŵ)− v̂(ŵ))
|y − ζ|
ρ̂

.

Proof. Let v∗ be the p-harmonic function in B(ŵ, ρ̂)\B(ŵ, ρ̂/4) which has continuous boundary
values zero on ∂B(ŵ, ρ̂) and v̂(ŵ) on ∂B(ŵ, ρ̂/4). From Harnack’s inequality and the maximum
principle for p harmonic functions we see that v∗ ≤ c′v̂ in B(ŵ, ρ̂)\B(ŵ, ρ̂/4) where c′ = c′(p, n).
Using this fact it is easily seen (e.g., direct calculation) that if y ∈ B(ŵ, ρ̂) \B(ŵ, ρ̂/4), then

v̂(ŵ) |ζ−y|
ρ̂

≤ cv∗(y) ≤ c2v̂(y) (2.30)

on B(ŵ, ρ̂) \ B(ŵ, ρ̂/4). From Harnack’s inequality we see that (2.30) holds for v̂ in B(ŵ, ρ̂).
Using (2.30) and the conclusion of Theorem 2.22 we deduce the last display in Corollary 2.29. 2

3 Construction of subsolutions

Recall that given a bounded domain D and 1 < p < ∞, we say that u is a p-subsolution in D
provided u ∈ W 1,p(D) and ∫

|∇u|p−2 〈∇u,∇θ〉 dx ≤ 0 (3.1)

whenever θ ∈ W 1,p
0 (D) and θ ≥ 0 a.e. on D. Moreover, we say that u is a p-supersolution pro-

vided −u is a p-subsolution. Finally, let C2(D) denote functions with continuous second partials
on D. If φ ∈ C2(D) we let ∇2φ(x) denote the Hessian matrix of φ at x ∈ D. We shall need the
following criteria for p-subharmonicity.
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Lemma 3.2. Let u be continuous in the bounded open set D and suppose that if u ≤ h on
∂G, then u ≤ h in G, whenever G is an open set with Ḡ ⊂ D and h is p-harmonic on G with
continuous boundary values. Then u is a p-subsolution in the open set G whenever Ḡ ⊂ D.

Proof. see [HKM, Theorem 7.25]. 2

Let S(n) denote the set of all symmetric n×n matrices and let P be the Pucci type extremal
operator (see [CC]) defined for M ∈ S(n) by

P (M) = inf
A∈Ap

n∑
i,j=1

aijMij . (3.3)

Here Ap denotes the set of all symmetric n× n matrices A = {aij} which satisfy

min{p− 1, 1} |ξ|2 ≤
n∑

i,j=1

aijξiξj ≤ max{p− 1, 1} |ξ|2 whenever ξ ∈ Rn. (3.4)

In this section we first prove the following lemma.

Lemma 3.5. Let D ⊂ Rn, let φ > 0 be in C2(D), ‖∇φ‖L∞(D) ≤ 1/2, p fixed, 1 < p < ∞, and
suppose that

φ(x)P (∇2φ(x)) ≥ 50pn |∇φ(x)|2 whenever x ∈ D.

Let u be continuous in an open set O containing the closure of
⋃
x∈D B(x, φ(x)) and define

v(x) = max
B̄(x,φ(x))

u

whenever x ∈ D. If u is p-harmonic in O \ {u = 0}, then v is continuous and a p-subsolution in
{v 6= 0} ∩G whenever G is an open set with Ḡ ⊂ D.

Proof. We note that v is continuous in D as follows easily from the fact that u, φ, are continuous
in D. We first prove Lemma 3.5 with D replaced by D+(v). The proof is by contradiction.
Indeed, if Lemma 3.5 is false, relative to D+(v), then there exists G open with Ḡ ⊂ D+(v) and
a p-harmonic function h on G that is continuous on Ḡ with

v ≤ h on ∂G and max
G

(v − h) > 0.

From continuity it follows for small ε > 0 that there exists x̂ ∈ G with

max
∂G

(v1+ε − h)(y) < max
G

(v1+ε − h)(y) = (v1+ε − h)(x̂). (3.6)

Using translation and rotation invariance of the p-Laplacian, as well as the maximum principle
for p-harmonic functions, we may assume that

x̂ = 0 and max
B̄(0,φ(0))

u = u(φ(0)en). (3.7)

15



Also, we may assume φ(0) = 1, since otherwise we put

ũ(x) = u(φ(0)x), h̃(x) = h(φ(0)x)

φ̃(x) = φ(φ(0)x)/φ(0), ṽ(x) = max
B̄(x,φ̃(x))

ũ.

Then (3.6) holds with v, h replaced by ṽ, h̃ in a neighborhood of 0. Also, ũ, h̃ are p-harmonic
and φ̃ satisfies the same condition as φ in Lemma 3.5. Clearly φ̃(0) = 1. Repeating the following
argument, we get a contradiction to (3.6) with v, h replaced by ṽ, h̃. Thus we assume that (3.7)
holds and φ(0) = 1. We claim that ∇u(en) 6= 0. Indeed, otherwise, since u(en) = maxB̄(0,1) u
we can use the maximum principle for p-harmonic functions and estimate u(en)− u from below
by a p-harmonic function ψ in B(ten, 1− t) \ B̄(ten, (1− t)/2) where 0 < t < 1 is so small that
B̄(ten, 1 − t) ⊂ O \ {u = 0}. Moreover, ψ has continuous boundary value 0 on ∂B(ten, 1 − t)
and ψ ≡ min

B̄(ten,(1−t)/2)
(u(en)− u), continuously on ∂B(ten, (1− t)/2). ψ can be written explicitly.

Doing this and using a Hopf boundary maximum principle type argument it follows that either
our claim is true or u ≡ u(en) in B(ten, 1− t). In the latter case one readily concludes that u 6= 0
in B(0, 1) and thereupon that u(0) = u(en). Then from (3.6) and u ≤ v we deduce

max
∂G

(u1+ε − h)(y) < max
G

(u1+ε − h)(y) = (u1+ε − h)(0).

Now u1+ε is a p-subsolution as is easily checked. Using this fact and the boundary maximum
principle for p-subsolutions we see that the above inequality cannot hold. Thus ∇u(en) 6= 0.

To continue the proof of Lemma 3.5 we note that ∇u(en) = |∇u(en)|en. and following [C1]
we choose the system of coordinates so that

∇φ(0) = αe1 + βen (3.8)

for some constants α, β ∈ R and we introduce the direction

σ =
σ∗

|σ∗|
, σ∗ = σ∗(x) = en + (βx1 − αxn)e1 + γ

n−1∑
i=2

xiei. (3.9)

The constant γ is chosen below (3.15). Then

|σ∗|2 = 1 + (βx1 − αxn)
2 + γ2

n−1∑
i=2

x2
i . (3.10)

Let y(x) = x + φ(x)σ(x) and note that y(0) = en, as well as, v(x) ≥ u(y(x)) for x in a
neighborhood of zero. In view of (3.6), (3.7), it follows for some t > 0 that if

f(x) = u1+ε(y(x))− h(x), x ∈ B̄(0, t), then 0 < f(0) = max
B̄(0,t)

f. (3.11)

It turns out, as we will see below, that f has continuous second partials in a neighborhood of
0. Moreover, we will be able to use the second derivative test for a relative maximum in order
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to obtain a contradiction to (3.11). With this game plan in mind, we again follow [C1] and use
Taylor’s formula at x = 0 to derive that

y(x) = en + y1(x) + y2(x) + o(|x|2) (3.12)

where

y1(x) = x+ (αx1 + βxn)en + (βx1 − αxn)e1 + γ

n−1∑
i=2

xiei,

y2(x) =

(
1

2

n∑
i,j=1

φxixj
(0)xixj −

1

2
(βx1 − αxn)

2 − 1

2
γ2

n−1∑
i=2

x2
i

)
en (3.13)

+〈∇φ(0), x〉((βx1 − αxn)e1 + γ
n−1∑
i=2

xiei).

Using the chain rule and (3.12), (3.13), we see that if g(x) = u(y(x)), x ∈ B(0, t), then

∇g(0) = |∇u(en)|[αe1 + (1 + β)en] 6= 0, (3.14)

since |∇φ(0)| ≤ 1/2 and ∇u(en) 6= 0.
From (3.11) and (3.14) we find that

0 = ∇f(0) = (1 + ε)u(en)
ε∇g(0)−∇h(0).

Thus
ξ = ∇g(0)/|∇g(0)| = ∇h(0) |∇h(0)|.

From this display, (3.14), and Lemma 2.2 we obtain first that h is infinitely differentiable in a
neighborhood of 0 and thereupon from rotational invariance of the p-Laplace equation that

(p− 2)hξξ(0) + ∆h(0) = 0 (3.15)

where ∆ denotes the Laplacian and hξξ is the second directional derivative of h in the direction
of ξ. We now choose γ so that (1 + γ)−2[(1 + β)2 + α2] = 1 and note by an easy calculation that
y1(x) = Γx where Γ is an orthogonal matrix. Hence y1(x) can be interpreted as the composition
of a rotation and a dilation. Again using translation, rotation, and dilation invariance of the
p-Laplacian it follows that if g1(x) = u(en + y1(x)), then g1 is p-harmonic in a neighborhood of
0. Also ∇g1(0) = ∇g(0) 6= 0, so as in (3.15) we have,

(p− 2)(g1)ξξ(0) + ∆g1(0) = 0. (3.16)

Let g2(x) = g(x)− g1(x). Using Taylor’s formula at en for u (permissible by Lemma 2.2), we see
that

g2(x) = 〈∇u(en), y2(x)〉+O(|x|3)

=
1

2
|∇u(en)|

( n∑
i,j=1

φxixj
(0)xixj − (βx1 − αxn)

2 − γ2

n−1∑
i=2

x2
i

)
+O(|x|3). (3.17)
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Thus,

|∇u(en)|−1[(p− 2)(g2)ξξ(0) +∆g2(0)] = (p− 2)φξξ(0) + ∆φ(0)

−α2(1 + γ)−2(p− 2)− (α2 + β2 + (n− 2)γ2)

≥ P (∇2φ(0))− 50pn|∇φ(0)|2 ≥ 0,

(3.18)

where the last inequality was obtained from using the definition of P, α, β, γ, |∇φ(0)| ≤ 1/2, and
a ball park estimate. From (3.16), (3.18) we see that

(p− 2)gξξ(0) + ∆g(0) ≥ 0. (3.19)

Finally, using (3.19) and (3.11) we compute,

(p− 2)fξξ(0) + ∆f(0) ≥ (p− 1)ε(1 + ε)u(en)
ε−1|∇g(0)|2 > 0, (3.20)

which is a contradiction to the second derivative test for maxima. From this contradiction we
conclude that v ≤ h in G. Hence v satisfies the hypotheses of Lemma 3.2 in D+(v). Applying
Lemma 3.2 we get Lemma 3.5 in D+(v). The proof of Lemma 3.5 in D−(v) is similar. In fact the
only place we used positivity of v was in (3.6). If we replace v1+ε in this display by −(−v)1−ε,
then the proof for D−(v) is essentially unchanged from the proof for D+(v). 2

The next lemma gives the asymptotic development of the p-subsolution constructed in Lemma
3.5.

Lemma 3.21. Let D, u, φ,O, and v = vφ be as in the statement of Lemma 3.5 and assume
that (i), (ii) of Definition 1.4 hold for some α, β whenever w ∈ O ∩ ∂{u > 0} and there exists
B(ŵ, ρ̂) ⊂ O \∂{u > 0} with w ∈ ∂B(ŵ, ρ̂). If w̃ ∈ F (v), then there exist w∗ ∈ D+(v) and ρ∗ > 0
such that B(w∗, ρ∗) ⊂ D+(v) and w̃ ∈ ∂B(w∗, ρ∗). Also, there exist α̃, β̃ ∈ [0,∞), such that the
following holds, as x→ w̃ non-tangentially with ν̃ = (w∗ − w̃)/|w∗ − w̃|,

(a) v(x) ≥ α̃〈x− w̃, ν̃〉+ − β̃〈x− w̃, ν̃〉− + o(|x− w̃|),

(b)
α̃

1− |∇φ(w̃)|
≥ G

(
β̃

1 + |∇φ(w̃)|

)
.

Furthermore, assume that O ∩ ∂{u > 0} is a Lipschitz graph, with Lipschitz constant M . If
‖∇φ‖L∞(D) ≤ b and b = b(M) > 0 is sufficiently small, then F (v) is a Lipschitz graph with
Lipschitz constant M ′ where M ′ ≤M + c‖∇φ‖L∞(D).

Proof. The proof of Lemma 3.21 for p = 2 can be found in Lemmas 10,11 of [C1]. The proof is
based on a purely geometric argument using only smoothness of φ, the asymptotic expansion of
u in balls tangent to F (u), and Lipschitzness of F (u), so is also valid here. 2

Lemma 3.22. Let ρ ∈ (0, 10−2), γ ∈ (0, 1/2), be given. There exists h = h(ρ, p, n), 0 < h ≤ 1,
and a family of C2 functions {φt}, 0 ≤ t ≤ 1, defined in B(0, 2) \B(en/8, ρ) such that
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(i) φt(x) = 1 if x ∈ B̄(0, 2) \B(0, 1/2) and φt(x) ≥ 1 + hγt whenever x ∈ B(0, 1/16),

(ii) 1 ≤ φt(x) ≤ 1 + tγ, |∇φt(x)| ≤ γt whenever x ∈ B̄(0, 2) \ B̄(en/8, ρ),

(iii) φt(x)P (∇2φt(x)) ≥ 50pn|∇φt(x)|2 whenever x ∈ B̄(0, 2) \B(en/8, ρ).

Proof. To prove this lemma we argue as in [F, Lemma 1.4]. Given ρ ∈ (0, 10−2), γ ∈ (0, 1/2),
let A = {aij} be an arbitrary symmetric n × n matrix satisfying (3.4) and let L =

∑
aij

∂
∂xi∂xj

be the associated non divergence form operator. Let f(x) = 1/|x|2N whenever x ∈ Rn \ {0} and
for some large positive N . By an explicit calculation it follows that if c = c(n) is large enough
and N ≥ cmax{p, 1/(p− 1)}, then for every operator L, as above,

Lf(x) ≥ |∇f(x)| whenever x ∈ B(0, 4) \ {0}. (3.23)

Next we let

f̃(x) = max{|en/8− x|−2N − 42N , 0} whenever x ∈ B(0, 2) \ B̄(en/8, ρ). (3.24)

Then from (3.23), (3.24), we have Lf̃ ≥ |∇f̃ | on B(en/8, 1/4) \ B(en/8, ρ) and f̃ ≡ 0 outside
of B(en/8, 1/4). Moreover, if we let f̂ = γ̃f̃ 4 then f̂ is C2 on B(0, 2) \ B̄(en/8, ρ). Choose
γ̃ = γ̃(ρ, p, n) > 0 small enough so that

0 ≤ max(f̂ , |∇f̂ |) ≤ 1 on B(0, 2) \B(en/8, ρ). (3.25)

Now on {f̃ > 0}, we have

Lf̂ ≥ 4γ̃f̃ 3 Lf̃ ≥ 4γ̃f̃ 3|∇f̃ | and |∇f̂ | = 4γ̃ f̃ 3 |∇f̃ |.

Therefore,

Lf̂ ≥ |∇f̂ | in B(0, 2) \B(en/8, ρ) and f̂ ≡ 0 in B(0, 2) \B(0, 1/2). (3.26)

Also,
f̂ ≥ k−1

+ on B(0, 1/16) for some k+ = k+(p, n, ρ) ≥ 1. (3.27)

To complete the construction we let φt(x) = 1 + tγ
50pn

f̂(x). From (3.25) - (3.27) we see that {φt},
t ∈ [0, 1], satisfies (i)− (iii) of Lemma 3.22. 2

4 Regularity of the free boundary: establishing Step 0-2

The purpose of this section is to establish Step 0-2 stated in the introduction. In particular, we
prove the following three lemmas.

Lemma 4.1. Let u, Ω, 0 ∈ F (u), p,M, be as in the statement of Theorem 1. Let r1 =
(8 max{c1, c2, c3})−1 where c1, c2, c3 are defined in Theorems 2.3, 2.4, and 2.22, respectively.
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Then u is monotone in B(0, r1) with respect to the directions in the cone Γ(en, θ0, ε0) for some
θ0 = θ0(p, n,M) ∈ (0, π/2) and for some ε0 = ε0(p, n,M), 0 < ε0 ≤ 1.

Lemma 4.2. Let u, Ω, 0 ∈ F (u), p, M , r1, θ0, and ε0 be as in the statement of Lemma 4.1. If
τ ∈ Γ(en, θ0/2, ε0), let ε = |τ | sin(θ0/2) and put

vε(x) = vε,τ (x) = sup
B(x,ε)

u(y − τ) whenever x ∈ B(0, 2− 2ε).

Let ν = ∇u(r1en/32)/|∇u(r1en/32)|. There exists c4 ≥ 1000 max{c1, c2, c3}, depending only on
p, n,M such that if ρ = (100n[M + 1])−1, µ = 1/c4, λ = cos(θ0/2 + θ(ν, τ)), and 0 < |τ | ≤ ρε0r1,
then

v(1+µλ)ε(x) ≤ (1− µλε)u(x) whenever x ∈ B(r1en/32, ρr1).

Lemma 4.3. Let u, Ω, 0 ∈ F (u), p, M , r1, θ0, ε0, τ , ε, vε, ν, c4, ρ, µ, λ be as in Lemma 4.2.
There exists c5 = c5(p, n,M,N) ≥ 1 such that if µ̄ = 1/c5, then

v(1+µ̄λ)ε(x) ≤ u(x) whenever x ∈ B(0, r1/100).

Proof of Lemma 4.1. Observe from the hypotheses of Theorem 1 and the maximum principle
for p-harmonic functions that either F (u) = D ∩ ∂{x ∈ D : u(x) < 0} or u ≥ 0 in D. Using this
observation we see that Lemma 4.1 is an easy consequence of Theorem 2.4. 2

Proof of Lemma 4.2. Recall that θ(y, z) denotes the angle between the rays drawn from the
origin to y, z ∈ Rn. From Theorem 2.4 and the definition of r1 we have

c−1
2

u(x)

d(x, ∂Ω)
≤ 〈∇u(x), ξ〉 ≤ |∇u(x)| ≤ c2

u(x)

d(x, ∂Ω)
(4.4)

whenever x ∈ Ω∩B(0, 4r1) and ξ ∈ Γ(en, θ0)∩ Sn−1, where c2 ≥ 1 depends only on p, n and M .
Let τ ∈ Γ(en, θ0/2, ε0) and let ε be as in the statement of Lemma 4.2. Let y ∈ B(x, ε), define
τ̄ = τ − (y − x), and note from basic geometry that

θ(τ, τ̄) < θ0/2, |τ − τ̄ | < |τ | sin(θ0/2), |τ̄ | ≥ |τ |/2. (4.5)

From Lemma 4.1 we see that u is monotone in B(0, r1) with respect to the directions in the
cone Γ(en, θ0, ε0). This fact, (4.5), and the definition of ρ in Lemma 4.2 imply that

〈∇u(x), τ̄〉 ≥ 0 whenever x ∈ B(r1en/32, 8ρr1). (4.6)

Using the uniform non-degeneracy property of |∇u| in (4.4) and Lemma 2.2, it follows from
differentiation of (1.2), that if ζ = 〈∇u(x), τ̄ /|τ̄ |〉, then ζ satisfies, at x ∈ B(r1en/32, 8ρr1), the
partial differential equation Lζ = 0, where

L =
n∑

i,j=1

∂

∂xi

(
bij(x)

∂

∂xj

)
(4.7)
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and
bij(x) = |∇u|p−4[(p− 2)uxi

uxj
+ δij|∇u|2](x), 1 ≤ i, j ≤ n. (4.8)

In (4.8), δij denotes the Kronecker δ. Furthermore, if ξ ∈ Rn \ {0}, then

min(p− 1, 1) |∇u(x)|p−2 |ξ|2 ≤
n∑

i,j=1

bij(x)ξiξj ≤ max{p− 1, 1}|∇u(x)|p−2 |ξ|2. (4.9)

Therefore, using (4.4) we see first that L is uniformly elliptic in B(r1en/32, 8ρr1) and second
that positive solutions satisfy an interior Harnack inequality. In particular, we can conclude
there exists c = c(p, n,M), 1 ≤ c <∞, such that

c−1〈∇u(r1en/32), τ̄〉 ≤ 〈∇u(x), τ̄〉 ≤ c〈∇u(r1en/32), τ̄〉 whenever x ∈ B(r1en/32, 4ρr1). (4.10)

Using (4.10), as well as our assumptions on ε, ρ, and the mean value theorem from elementary
calculus, we see that if x ∈ B(r1en/32, 2ρr1), then

u(x− τ̄) ≤ u(x)− 〈∇u(x̂), τ̄〉 (4.11)

for some x̂ ∈ B(r1en/32, 4ρr1) located on the line connecting the points x and x− τ̄ . Combining
(4.11), (4.10), (4.4), and the Harnack inequality for p-harmonic functions, we see for some c =
c(p, n,M) ≥ 1 that

u(x− τ̄) ≤ u(x)− c−1〈∇u(r1en/32), τ̄〉 ≤ u(x)− c−2ε cos(θ/2 + θ(ν, τ))
u(x)

r1
(4.12)

whenever x ∈ B(r1en/32, 2ρr1) and where ν is as stated in Lemma 4.2. Since u(y−τ) = u(x− τ̄)
we can take the supremum over y ∈ B(x, ε) in (4.12) to get,

vε(x) ≤
(

1− λε/c′
)
u(x) (4.13)

for some c′ = c′(p, n,M) ≥ 1 whenever x ∈ B(r1en/32, 2ρr1). Finally we use (4.13) to complete
the proof of Lemma 4.2. In particular, for ξ ∈ Rn, |ξ| < 1, and x ∈ B(r1en/32, 2ρr1) we define
e(x) = u(x)−u(x− τ + εξ) and let µ > 0 be a small positive constant to be chosen. To complete
the proof we intend to estimate u(x)−u(x−τ+(1+µλ)εξ). Using (4.4), the mean value theorem,
and Harnack’s inequality for p-harmonic functions we see, for some c = c(p, n,M) ≥ 1, that

u(x)− u(x− τ + (1 + µλ)εξ) = e(x) + u(x− τ + εξ)− u(x− τ + (1 + µλ)εξ)

≥ e(x)− cµλεu(x) (4.14)

whenever x ∈ B(r1en/32, 2ρr1). From (4.13) we also have,

e(x) ≥ (λε/c′)u(x) whenever x ∈ B(r1en/32, 2ρr1). (4.15)

Combining (4.14)-(4.15) we get

u(x)− u(x− τ + (1 + µλ)εξ) ≥ λε/c′u(x)− cµλεu(x)

≥ c−1
+ λε(1− µc2+)u(x) (4.16)
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whenever x ∈ B(r1en/32, 2ρr1) provided c+ = c+(p, n,M) ≥ 1 is large enough and µ < 1/c2+. If
µ = 1

2c2+
, then from (4.16) we conclude that

(1− µλε)u(x) ≥ u(x− τ + (1 + µλ)εξ) (4.17)

whenever x ∈ B(r1en/32, 2ρr1). Taking the supremum of the right hand side of (4.17) over
ξ ∈ B(0, 1) we obtain Lemma 4.2. 2

Proof of Lemma 4.3. Note that by scaling we can without loss of generality assume that
r1 = 4. Using Lemma 4.2 we see that

v(1+µλ)ε(x) ≤ (1− µλε)u(x) whenever x ∈ B(en/8, 4ρ) (4.18)

where µ, λ, ε, and ρ are as in the statement of Lemma 4.2. From Lemma 4.1 we also know, after
the rescaling, that

vε(x) ≤ u(x) whenever x ∈ B̄(0, 4). (4.19)

Let {φt}, t ∈ [0, 1], be the C2-regular family of functions introduced in Lemma 3.22, defined in
B(0, 2) \ B(en/8, ρ) and adapted to the parameters ρ, γ, where γ << 1 is a parameter to be
chosen. Let

ṽt(x) := sup
B(x,εφµλt(x))

u(y − τ) for t ∈ [0, 1] whenever x ∈ B(0, 2) \B(en/8, ρ). (4.20)

Then we see, using (4.18) - (4.20), Lemma 3.22, that

ṽt(x) ≤ u(x) whenever x ∈ B(0, 2) \B(0, 1/2),

ṽt(x) ≤ v(1+µλ)ε(x) ≤ (1− µλε)u(x) whenever x ∈ ∂B(en/8, ρ). (4.21)

Let

D+(ṽt) = {x : ṽt(x) > 0} ∩ [B(0, 2) \ B̄(en/8, ρ)]

D−(ṽt) = B(0, 2) \ [B̄(en/8, ρ) ∪ D̄+(ṽt)]

F (ṽt) = ∂{x ∈ B(0, 2) : ṽt(x) > 0} ∩ [B(0, 2) \ B̄(en/8, ρ)].

We observe from the hypotheses on u, φt, t ∈ [0, 1], that either ṽt(x) < 0 for x ∈ D−(ṽt) or ṽt ≡ 0
in D−(ṽt). From this observation and Lemma 3.5 we deduce that ṽt, t ∈ [0, 1], is p-subharmonic
in D+(ṽt)∪D−(ṽt). Using Lemma 3.21 we find for γ = γ(p, n,M) small enough, that there exists
ψt : Rn−1→R and Ωt, t ∈ [0, 1], with

Ωt = {y = (y′, yn) ∈ Rn : yn > ψt(y
′)},

D+(ṽt) ∩B(0, 3/2) = Ωt ∩ [B(0, 3/2) \ B̄(en/8, ρ)],
F (ṽt) ∩B(0, 3/2) = ∂Ωt ∩B(0, 3/2),

(4.22)

and ||∇ψt|‖∞ ≤M+cεγ. Also, from the definition of ρ, ṽt, and the above observation we conclude
that if t ∈ [0, 1], then

F (ṽt) ∩B(en/8, 20ρ) = ∅ and either F (ṽt) = B(0, 2) ∩ ∂{ṽt < 0} or ṽt ≡ 0 in D−(ṽt). (4.23)
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To proceed we let

Γ = {t : t ∈ [0, 1], ṽt(x) ≤ u(x) whenever x ∈ B(0, 1) \B(en/8, ρ)}. (4.24)

Using the fact that φ0 ≡ 1 and (4.19) we see that 0 ∈ Γ and we intend to prove, for sufficiently
small γ = γ(p, n,M,N) > 0, that Γ = [0, 1] by proving that Γ is both closed as well as relatively
open in [0, 1]. Here N is as in Theorem 1. In fact, by the continuity of u and ṽt we immediately
see that Γ is closed and hence it is enough to prove that Γ is open. Note that if t ∈ Γ, then
D+(ṽt) ⊆ D+(u). To prove that Γ is open it is enough to prove that

F (u) ∩ F (ṽt) ∩ (B(0, 3/4) \B(en/8, ρ)) = ∅ whenever t ∈ Γ, t 6= 1. (4.25)

Indeed if (4.25) is true, then from (4.23) and another continuity argument, we deduce the exis-
tence of η > 0 such that

B̄(0, 5/8) ∩ F (ṽs) ⊂ D+(u) whenever s ∈ (t− η, t+ η) ∩ [0, 1]. (4.26)

From (4.26) and (4.21), we obtain

ṽs ≤ u on ∂(B(0, 1) \ [F (ṽs) ∪B(en/8, ρ)]). (4.27)

From (4.27), Lemma 3.5, and the maximum principle for p-harmonic functions, we have s ∈ Γ.
Thus (t− η, t+ η) ∩ [0, 1] ⊂ Γ and Γ is relatively open. We conclude that Γ = [0, 1] when (4.25)
holds.

To prove (4.25) we argue by contradiction and thus we assume that (4.25) does not hold for
some t. Hence there exists

w̃ ∈ F (u) ∩ F (ṽt) ∩B(0, 3/4). (4.28)

To obtain a contradiction to (4.28) we note from Lemma 3.21 that there exists ŵ ∈ D+(ṽt), and
ρ̂ > 0 such that B(ŵ, ρ̂) ⊂ D+(ṽt), w̃ ∈ ∂B(ŵ, ρ̂). Moreover if ν̃ = (ŵ − w̃)/|ŵ − w̃|, then there
exists, ᾱ, β̄,∈ [0,∞), such that

ṽt(x) ≥ ᾱ〈x− w̃, ν̃〉+ − β̄〈x− w̃, ν̃〉− + o(|x− w̃|), (4.29)

non-tangentially near w̃. Furthermore,

ᾱ

1− ε|∇φµλt(w̃)|
≥ G

(
β̄

1 + ε|∇φµλt(w̃)|

)
. (4.30)

Since D+(ṽt) ⊂ D+(u)∩B(0, 2), we see that B(ŵ, ρ̂) is also a tangent ball for D+(u). Using the
fact that u is a weak solution to the free boundary problem in (1.3), as defined in Definition 1.4,
we obtain

u(x) = α〈x− w̃, ν̃〉+ − β〈x− w̃, ν̃〉− + o(|x− w̃|, (4.31)

as x→w̃, non-tangentially for some α, β ∈ [0,∞) with α = G(β).
We claim for some c = c(p, n,M) ≥ 1 that

0 ≤ ᾱ ≤ α(1− λε/c). (4.32)
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(4.30)-(4.32) easily lead to a contradiction for sufficiently small γ = γ(p, n,M,N) > 0. Here γ is
as in Lemma 3.22. In fact, from (4.29), (4.31), and our assumption that t ∈ Γ we see that ᾱ ≤ α
while β ≤ β̄. Using the assumptions on G in Theorem 1 and (4.32) we find that if β̄ 6= 0, then

G(β) ≤ G(β̄) ≤ β̄N
(

β̄
1+ε|∇φµλt(w̃)|

)−N
G

(
β̄

1+ε|∇φµλt(w̃)|

)

≤ (1 + ε|∇φµλt(w̃)|)N

1− ε|∇φµλt(w̃)|
ᾱ ≤ (1 + εγµλ)N

1− εγµλ
ᾱ < α,

(4.33)

provided γ is small enough, thanks to (4.32). If β̄ = 0, we can omit the second inequality in
(4.33) and still get G(0) = G(β) < α. Since α = G(β), we have reached a contradiction in either
case.

To prove claim (4.32) let 0 < δ0 < µ/2, be a parameter to be chosen and let v̂ be the
p-harmonic function in Ω ∩ B(0, 1) \ B̄(en/8, ρ) with continuous boundary values, v̂ ≡ u on
∂[Ω∩B(0, 1)] and v̂ = (1− δ0λε)u on ∂B(en/8, ρ). We note from Theorem 1 in [Li] that v̂ has a
C1,ξ-extension to the closure of B(en/8, 2ρ) \B(en/8, ρ) for some small ξ > 0 with

|∇v̂(x)| ≤ cu(en/8)ρ−1 ≤ c2u(x) (4.34)

on B(en/8, 2ρ) \ B̄(en/8, ρ), for c = c(p, n) large enough. Next observe from the maximum
principle for p-harmonic functions that

1/2 ≤ 1− εδ0λ ≤ v̂

u
≤ 1 (4.35)

in Ω ∩ B(0, 1) \ B(en/8, ρ). From (4.35), (4.4), and Lemma 2.5 with u, v̂ playing the role of
v̂, û, respectively, we deduce that if δ0 = δ0(p, n,M) > 0 is small enough, then for some c =
c(p, n,M) ≥ 1,

c−1 v̂(x)

d(x, ∂Ω)
≤ |∇v̂(x)| ≤ c

v̂(x)

d(x, ∂Ω)
(4.36)

whenever x ∈ Ω ∩ B(0, 9/10) \ B(en/8, 2ρ). From (4.21) and the definition of Γ, we see that we
can also choose δ0 so small that

ṽt ≤ v̂ (4.37)

on ∂(D+(ṽt)∩B(0, 9/10)). From Lemma 3.5 and the maximum principle for p-harmonic functions,
we find that this inequality also holds in D+(ṽt) ∩ B(0, 9/10). With δ0 now fixed, let L̂ be the
elliptic operator in (1.11), with u′, v′ replaced by u, v̂ and put e = u− v̂. From (4.4), (4.34)-(4.36),
and (1.12), (1.13), we conclude that L̂ is uniformly elliptic in Ω∩ [B̄(en/8, 3ρ) \B(en/8, ρ)] with
bounded measurable coefficients. Constants are proportional to u(en/8)p−2. Also, it follows from
these displays that if x ∈ B(0, 9/10) \ B(en/8, 3ρ), then L̂ is uniformly elliptic with bounded
coefficients in B(x, d(x, ∂Ω)/2). Constants are proportional to (u(x)/d(x, ∂Ω))p−2.We assert that

λε/c ≤ e/u on ∂B(en/8, 2ρ) (4.38)

provided c = c(p, n) is large enough. To prove (4.38) we compare boundary values of e, u, and
argue as in the proof of Lemma 2.13. We omit the details. From (4.4), (4.34) - (4.38), Harnack’s
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inequality for e, u, v̂, and Theorem 2.22, we conclude that if c̃ = c̃(p, n,M) ≥ 1 is large enough,
then

ελ

c̃
≤ e

u
(4.39)

in Ω ∩B(w̃, 1/c̃). Using (4.39), (4.37) we see that

ṽt(y) ≤ v̂(y) ≤ (1− ελ/c̃)u(y) whenever y ∈ B(ŵ, ρ̂) ∩B(w̃, 1/c̃). (4.40)

Clearly, (4.40), (4.29), (4.31), imply (4.32). In view of our earlier remarks, the proof of Lemma
4.3 is now complete. 2

Proof of Theorem 1. Theorem 1 follows from Lemma 4.3 and an iteration argument, as
discussed in section 1 below Step 2. 2

5 Regularity in a one-phase free boundary problem

Let Ω ⊂ Rn be a bounded Lipschitz domain and let w ∈ ∂Ω, 0 < r < r0. To start with, recall that
the definition of BMO was given below (2.7). If f is a vector valued function, f = (f1, .., fn),
then we set f∆ = (f1,∆, .., fn,∆) and we let the BMO-norm of f be defined as in (2.8) with
|f − f∆|2 = 〈f − f∆, f − f∆〉. Moreover, we say that f is of vanishing mean oscillation on
∆(w, r) = ∂Ω ∩ B(w, r), written f ∈ VMO(∆(w, r)), provided for each ε > 0 there is a δ > 0
such that (2.8) holds with A replaced by ε whenever 0 < s < min(δ, r) and x ∈ ∆(w, r). Note
that if û,Ω, p, r, w, are as in Theorem 2.9, then ∇û exists as a non-tangential limit, σ almost
everywhere on ∆(w, 4r), and log |∇û| ∈ BMO(∆(w, r)).

In this section we use Theorem 1 to prove the following theorem.

Theorem 5.1. Let Ω ⊂ Rn be a bounded Lipschitz domain with constant M . Given p, 1 <
p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that u is a positive p-harmonic function in Ω ∩ B(w, 4r),
u is continuous in Ω̄ ∩ B̄(w, 4r) and u = 0 on ∆(w, 4r). Moreover, assume that log |∇u| ∈
VMO(∆(w, r)). Then the outer unit normal to ∆(w, r) is in VMO(∆(w, r/2)).

We let n denote the outer unit normal to ∂Ω. To begin the proof of Theorem 5.1 we first
outline the argument used in the proof of Theorem 3 in [LN2]. In particular, we define

η = lim
r̃→0

sup
w̃∈∆(w,r/2)

‖n‖BMO(∆(w̃,r̃)) (5.2)

and we note that to prove Theorem 5.1 it is enough to prove that η = 0. To do this we argue by
contradiction and assume that (5.2) holds for some η > 0. This assumption implies that there
exist a sequence of points {wj}, wj ∈ ∆(w, r/2), and a sequence of scales {rj}, rj → 0, such that
‖n‖BMO(∆(wj ,rj)) → η as j →∞. To establish a contradiction we then use a blow-up argument.
In particular, let u be as in the statement of Theorem 5.1 and extend u to B(w, 4r) by putting
u = 0 in B(w, 4r) \ Ω. For {wj}, {rj} as above we define Ωj = {r−1

j (x− wj) : x ∈ Ω} and

uj(z) = λju(wj + rjz) whenever z ∈ Ωj (5.3)
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where {λj} is an appropriate sequence of real numbers defined as in [LN2, (4.21)]. It also follows
from [LN2, section 4] that a subsequence of {Ωj}, converges to Ω∞, in the Hausdorff distance
sense, where Ω∞ is an unbounded Lipschitz graph domain with Lipschitz constant bounded by
M . Moreover, by the choice of the sequence {λj} it follows that a subsequence of {uj} converges
uniformly on compact subsets of Rn to u∞, a positive p-harmonic function in Ω∞, which is Hölder
continuous in Rn with u∞ ≡ 0 on Rn \ Ω∞. Also,∫

Rn

|∇u∞|p−2〈∇u∞,∇φ〉dx = −
∫

∂Ω∞

φdσ∞ (5.4)

whenever φ ∈ C∞
0 (Rn) and

c−1 ≤ |∇u∞(z)| ≤ 1 whenever z ∈ Ω∞. (5.5)

In (5.4), σ∞ is surface measure on ∂Ω∞ and c is a constant, 1 ≤ c <∞, depending only on p, n
and M . The proof of Theorem 5.1 now boils down to proving that (5.4) and (5.5) imply Ω∞ is a
halfspace. Indeed once this is shown, we can get a contradiction to our assumption that η > 0,
by arguing as in [LN2, (4.42)].

In [LN2] we proved Ω∞ is a halfspace using (5.4), (5.5) and a theorem of Alt, Caffarelli and
Friedman [ACF]. In order to apply this theorem we needed a smallness assumption on the Lips-
chitz constant M of Ω. Here we show Theorem 1 implies this conclusion without any smallness
assumption on M. Thus we prove,

Lemma 5.6. Let Ω∞ ⊂ Rn be constructed as above and assume that (5.4), (5.5) hold. Then
Ω∞ is a half space.

Proof. We intend to first show that u∞ is a weak solution in Rn, in the sense of Definition 1.4,
to the free boundary problem in (1.3) with u−∞ ≡ 0 and G(s) = 1 + s, s ∈ [0,∞). To this end,
assume w ∈ F (u∞) and that there exists a ball B(ŵ, ρ̂), ŵ ∈ Rn \ ∂Ω∞ and ρ̂ > 0, such that
w ∈ ∂B(ŵ, ρ̂). Let P be the plane through w with normal ν = (ŵ − w)/|ŵ − w|. We claim that
P is a tangent plane to Ω∞ at w in the usual sense. That is given ε > 0 there exists r̂(ε) > 0
such that

h(P ∩B(w, r), ∂Ω∞ ∩B(w, r)) ≤ εr (5.7)

whenever 0 < r ≤ r̂(ε), where the Hausdorff distance, h(·, ·) between two sets E,F ⊂ Rn is
defined by

h(E,F ) = max (sup{d(y, E) : y ∈ F}, sup{d(y, F ) : y ∈ E}) .

Once (5.7) is proved we can show that

(i) if B(ŵ, ρ̂) ⊂ Ω∞ then u+
∞(x) = 〈x− w, ν〉+ o(|x− w|) in Ω∞

(ii) if B(ŵ, ρ̂) ⊂ Rn \ Ω∞ then u+
∞(x) = 〈w − x, ν〉+ o(|x− w|) in Ω∞.

(5.8)

Indeed, to prove (5.8), we assume that w = 0, ν = en, and ρ̂ = 1. This assumption is
permissible since linear functions and the p-Laplacian are invariant under rotations, translations,
and dilations. Then ŵ = en and either B(en, 1) ⊂ Ω∞ or B(en, 1) ⊂ Rn \ Ω̄∞. In the proof that
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(5.7) implies (5.8) we also assume that B(en, 1) ⊂ Ω∞, since the other possibility, B(en, 1) ⊂
Rn \ Ω̄∞, is handled similarly. Let {rj} be a sequence of positive numbers tending to 0 and let

ûj(z) = u∞(rjz)/rj whenever z ∈ Rn. Let Ω̂j = {z : rjz ∈ Ω∞} be the corresponding blow-up

regions. Then ûj is p-harmonic in Ω̂j and Hölder continuous in Rn with ûj ≡ 0 on Rn \ Ω̂j.
Moreover, (5.5) is valid for each j with u∞ replaced by ûj. Using these facts, assumption (5.7),
and Lemmas 2.1, 2.2 we see that a subsequence of {ûj}, denoted {u′j}, converges uniformly
on compact subsets of Rn, as j→∞, to a Hölder continuous function u′∞. Moreover, u′∞ is a
nonnegative p-harmonic function in H = {x : xn > 0} with u′∞ ≡ 0 on Rn \H.

Let {Ω′
j} be the subsequence of {Ω̂j} corresponding to {u′j}. From (5.7) we see that Ω′

j ∩
B(0, R) converges to H ∩ B(0, R) whenever R > 0, in the sense of Hausdorff distance as j→∞.
Finally we note that ∇u′j→∇u′∞ uniformly on compact subsets of H and hence

c−1 ≤ |∇u′∞| ≤ 1 (5.9)

where c is the constant in (5.5). Next we apply Theorem 2.3 with

Ω = H, û(x) = u′∞(x), and v̂(x) = xn.

Letting r→∞ in Theorem 2.3 it follows that

u′∞(x) = lxn (5.10)

for some nonnegative l. From (5.9) and the above discussion we conclude that

c−1 ≤ l ≤ 1. (5.11)

Next using (5.4) we see that if σ′j is surface area on Ω′
j, σ surface area on H, and φ ≥ 0 ∈ C∞

0 (Rn),
then ∫

∂{u′j>0}

φdσ′j = −
∫
Rn

|∇u′j|p−2〈∇u′j,∇φ〉dx

→ −
∫
Rn

|∇u′∞|p−2〈∇u′∞,∇φ〉dx = lp−1

∫
{xn=0}

φdσ (5.12)

as j →∞. Moreover, using the divergence theorem we find that∫
∂{u′j>0}

φdσ′j ≥ −
∫

{u′j>0}

∇ · (φen)dx→ −
∫

{u′∞>0}

∇ · (φen)dx =

∫
{xn=0}

φdσ (5.13)

as j→∞. Combining (5.12), (5.13) we obtain first that l ≥ 1 and thereupon from (5.11) that
l = 1. Thus any blowup sequence of u∞, relative to zero, tends to x+

n uniformly on compact
subsets of Rn, and the corresponding gradients tend uniformly to en on compact subsets of H.
This conclusion is easily seen to imply (5.8). Hence (5.7) implies (5.8)(i).
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Proof of (5.7). The proof of (5.7) is by contradiction. We continue under the assumption that
w = 0, ν = ŵ = en, and ρ̂ = 1. First suppose that

B(en, 1) ⊂ Ω∞. (5.14)

If (5.7) is false, then there exists a sequence {sm} of positive numbers and δ > 0 with lim
m→∞

sm = 0

and the property that
Ω∞ ∩ ∂B(0, sm) ∩ {x : xn ≤ −δsm} 6= ∅ (5.15)

for each m. To get a contradiction we show that (5.15) leads to

lim sup
t→0

t−1u∞(ten) = ∞ (5.16)

which in view of the mean value theorem from elementary calculus, contradicts (5.5). For this
purpose let f be the p-harmonic function in B(en, 1) \ B̄(en, 1/2) with continuous boundary
values,

f ≡ 0 on ∂B(en, 1) and f ≡ min
B̄(en,1/2)

u∞ on ∂B(en, 1/2).

Now f can be written explicitly in the form,

f(x) =

{
A|x− en|(p−n)/(p−1) +B when p 6= n,
−A log |x− en|+B when p = n,

where A,B are constants. Doing this we see that

lim
t→0

t−1f(ten) > 0. (5.17)

From the maximum principle for p-harmonic functions we also have

u∞ ≥ f in B(en, 1) \ B̄(en, 1/2). (5.18)

Next we show that if 0 < s < 1/4, and u∞ ≥ kf in B̄(0, s) ∩ B(en, 1), for some k ≥ 1, then
there exists ξ = ξ(p, n,M, δ) > 0 and s′, 0 < s′ < s/2, such that

u∞ ≥ (1 + ξ)kf in B̄(0, s′) ∩B(en, 1). (5.19)

Clearly (5.17) - (5.19) and an iterative argument yield (5.16).
To prove (5.19) we observe from a direct calculation or Lemma 2.5 in [LN] that

|∇f(x)| ≈ f(x)/(1− |x− en|) when x ∈ B(en, 1) \ B̄(en, 1/2), (5.20)

where proportionality constants depend only on p, n. Also, we observe from (5.15) and Lips-
chitzness of ∂Ω∞ that if m0 is large enough, then there exists a sequence of points {tl}∞m0

in
Ω∞ ∩ {x : xn = 0} and η = η(p, n,M, δ) > 0 such that for l ≥ m0,

ηsl ≤ |tl| ≤ η−1sl and d(tl, ∂Ω∞) ≥ η|tl|. (5.21)
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Choose tm ∈ {tl}∞m0
such that η−1|tm| ≤ s/100. If ρ = d(tm, ∂Ω∞), then from (5.21), Lemma 2.1

for u∞ and Harnack’s inequality we deduce for some C = C(p, n,M, δ) ≥ 1 that

Cu∞(tm) ≥ max
B̄(0,4|tm|)

u∞. (5.22)

From (5.22), the assumption that kf ≤ u∞, Lemma 2.1 for kf, and the fact that tm lies in the
tangent plane to B(en, 1) through 0, we see there exists λ = λ(p, n,M, δ), 0 < λ ≤ 10−2, and
m1 ≥ m0 such that if m ≥ m1 and t′m = tm + 3λρen, then

B(t′m, 2ρλ) ⊂ B(en, 1) and (1 + λ)kf ≤ u∞ on B̄(t′m, ρλ). (5.23)

Let f̃ be the p-harmonic function in G = B(0, 4|tm|) ∩ B(en, 1) \ B̄(t′m, ρλ) with continuous
boundary values f̃ = kf on ∂[B(en, 1) ∩ B(0, 4|tm|)] while f̃ = (1 + µ)kf on ∂B(t′m, ρλ). If
0 < µ ≤ λ and µ is small enough, depending on p, n,M, δ, then we can use (5.20), Theorem 2.22,
and Harnack’s inequality for f̃ −kf, kf as in the proof of (4.40), in order to deduce the existence
of τ > 0, c̄ ≥ 1, with

(1 + τµ)kf ≤ f̃ (5.24)

in B(en, 1) ∩ B̄(0, |tm|/c̄) where τ = τ(p, n,M, δ), 0 < τ < 1, and c̄ = c̄(p, n,M) ≥ 1. Moreover,
using the maximum principle for p-harmonic functions we see from (5.23) that

f̃ ≤ u∞ in G. (5.25)

Combining (5.24), (5.25), we get (5.19) with ξ = τµ and s′ = |tm|/c̄. As mentioned earlier, (5.19)
leads to a contradiction. Hence (5.7) is true when (5.14) holds.

If B(en, 1) ⊂ Rn \ Ω̄∞ we proceed similarly. That is, if (5.7) is false, then there exists a
sequence {sm} of positive numbers and δ > 0 with lim

m→∞
sm = 0 and the property that

Rn \ Ω̄∞ ∩ ∂B(0, sm) ∩ {x : xn ≤ −δsm} 6= ∅ (5.26)

for each m. To get a contradiction we show that (5.26) leads to

lim inf
t→0

t−1 max
B(0,t)

u∞ = 0 (5.27)

which in view of Lipschitzness of Ω∞ and the mean value theorem from elementary calculus,
contradicts (5.5). For this purpose let g be the p-harmonic function in B(0, 2) \ B̄(en, 1) with
continuous boundary values,

g ≡ 0 on ∂B(en, 1) and g ≡ max
B̄(0,2)

u∞ on ∂B(0, 2).

Then u∞ ≤ g in B(0, 2) \ B̄(en, 1) and

lim sup
t→0

t−1 max
B(0,t)\B̄(en,1)

g <∞. (5.28)

(5.28) can be proved for example by comparison with functions of the type used to define f above
(5.17). In analogy with (5.19) we show that if 0 < s < 1/4, and u∞ ≤ kg in Ω∞ ∩ B(0, s), for
some 0 < k ≤ 1, then there exists ξ′ = ξ′(p, n,M, δ) > 0 and s′, 0 < s′ < s/2, such that

u∞ ≤ (1− ξ′)kg in Ω∞ ∩B(0, s′). (5.29)
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To prove (5.29) we argue as in (5.21) to get tm ∈ (Rn\Ω̄∞)∩{x : xn = 0} and η′ = η′(p, n,M, δ) >
0, with |tm| ≤ sη′/100 while ρ′ = d(tm, ∂Ω∞)/8 ≥ η′|tm|. From Lemma 2.1 and Theorem 2.4 we
may also suppose |tm| is so small that

|∇g(x)| ≈ g(x)/d(x, ∂B(en, 1)) when x ∈ B(0, 4|tm|) \ B̄(en, 1). (5.30)

If t′m = tm − 3ρ′en, then

B(t′m, 2ρ
′) ⊂ Rn \ Ω̄∞ and C ′g ≥ max

B(0,4|tm|)\B(en,1)
g on B(t′m, ρ

′). (5.31)

Here C ′ = C ′(p, n, δ) ≥ 1. Let g̃ be the p-harmonic function in G = B(0, 4|tm|) \ [B̄(en, 1) ∪
B̄(t′m, ρ

′)] with continuous boundary values g̃ = kg on ∂[B(0, 4|tm|)\B̄(en, 1)] while g̃ = (1−µ′)kg
on ∂B(t′m, ρ

′). Using (5.30), (5.31), and arguing as in the proof of (5.24), we get

g̃ ≤ (1− τ ′µ′)kg (5.32)

in B(0, |tm|/c′) where τ ′, µ′, c′, depend only on p, n,M, δ. Since u∞ ≤ g̃ on ∂G we see from the
boundary maximum principle for p-harmonic functions, that (5.32) holds with g̃ replaced by
u∞. Thus (5.29) is true with s′ = |tm|/c′, ξ′ = τ ′µ′. From (5.29), (5.28), and iteration we get
(5.27) which leads to a contradiction. Hence (5.7) is true in all cases. From (5.7) and our earlier
remarks we now get (5.8). Thus u∞ satisfies the tangent ball condition in Definition 1.4.

To complete the proof of Lemma 5.6 we assume, as we may, that ∂Ω∞ = {(x′, xn) : xn >
ψ∞(x′)}, where ψ∞ : Rn−1→R is Lipschitz with Lipschitz norm ≤ M, since otherwise we
change coordinates and use invariance of the p-Laplacian under rotations. Thanks to (5.8),
we can now apply Theorem 1 with u(x) = u∞(Rx)/R, x ∈ B(0, 2), and with ∂Ω ∩ B(0, 2) =
{(x′, ψ∞(Rx′)/R)} ∩B(0, 2). Doing this, we find that

sup
{x′: (x′,ψ∞(x′))∈B(0,R/8)}

|∇ψ∞(x′)−∇ψ∞(0)| ≤ c|x′|σR−σ (5.33)

where c = c(p, n,M). Letting R→∞ we see that ∇ψ∞ ≡ ∇ψ∞(0). Thus ψ∞ is linear and
consequently Ω∞ is a halfspace. This completes the proof of Lemma 5.6. In view of the discussion
above Lemma 5.6, we also conclude the validity of Theorem 5.1. 2

6 Concluding Remarks

We note that with minor modifications in the proof of Theorem 1 one can get, see the end of
[C1] and [W], the following generalization of Theorem 1.

Theorem 2. Let D ⊂ Rn be a bounded domain, assume that u ∈ C(D̄) and assume that u is a
solution in D, for some 1 < p < ∞, to the problem in (1.3) in the sense of Definition 1.4 with
G(·) replaced by G(·, w, ν) where G : [0,∞)×Rn × Sn−1 → (0,∞). Assume that the function G
satisfies the following conditions.

(i) logG(s, w, ν) is Lipschitz in w and ν with Lipschitz constant independent of s.

(ii) G(s, w, ν) is, for fixed w and ν, strictly increasing in s and s−NG(s, w, ν) is decreasing

in s on (0,∞) for some N > 0 which is independent of w and ν.
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Then the statement and conclusion of Theorem 1 remain true.
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