
Regularity of Flat Free Boundaries in Two-phase
Problems for the p-Laplace Operator

John L. Lewis∗†

Department of Mathematics
University of Kentucky

Lexington, KY 40506-0027, USA
Kaj Nyström‡§

Department of Mathematics
Ume̊a University

S-90187 Ume̊a, Sweden

June 13, 2011

Abstract

In this paper we continue the study in [LN6], concerning the regularity of the free bound-
ary in a general two-phase free boundary problem for the p-Laplace operator, by proving
regularity of the free boundary assuming that the free boundary is close to a Lipschitz graph.

2000 Mathematics Subject Classification. Primary 35J25, 35J70

Keywords and phrases: p-harmonic function, p-subharmonic, free boundary, two-phase,
boundary Harnack inequality, Hopf boundary principle, Lipschitz domain, ε-monotone, mono-
tone, regularity.

∗email: john@ms.uky.edu
†Lewis was partially supported by NSF grants DMS-0552281 and DMS-0900291
‡email: kaj.nystrom@math.umu.se
§Nyström was partially supported by grant VR-70629701 from the Swedish research council VR.

1



1 Introduction

In [C1,C2,C3] a theory for general two-phase free boundary problems for the Laplace operator
was developed. In particular, in [C1] Lipschitz free boundaries were shown to be C1,γ-smooth
for some γ ∈ (0, 1) and in [C2] it was shown that free boundaries which are well approximated
by Lipschitz graphs are in fact Lipschitz. Finally, in [C3] the existence part of the theory was
developed. In [LN6] we initiated our study of the corresponding problems for the p-Laplace
operator by generalizing the results in [C1] to the p-Laplace operator when p 6= 2, 1 < p <∞. In
this paper we continue our study by establishing results similar to [C2] for the p-Laplace operator
when p 6= 2, 1 < p <∞. As in [LN6] we note that the generalization beyond the harmonic case,
which corresponds to p = 2, is non-trivial due to the non-linear and degenerate character of
the p-Laplace operator. In particular, our results and arguments rely heavily on the techniques
developed in [LN1-LN6, LLN].

To properly state our results we need to introduce some notation. Points in Euclidean n-
space Rn are denoted by x = (x1, . . . , xn) or (x′, xn) where x′ = (x1, . . . , xn−1) ∈ Rn−1. Let
Ē, ∂E, diam E be the closure, boundary, and diameter of E. Let 〈·, ·〉 denote the standard
inner product on Rn, |x| = 〈x, x〉1/2, the Euclidean norm of x, and let dx be Lebesgue n-
measure on Rn. Given x ∈ Rn, r > 0 and s > 0, put B(x, r) = {y ∈ Rn : |x − y| < r} and
Qr,s(x) = {y = (y′, yn) : |y′ − x′| < r, |yn − xn| < s}. In case r = s, we write Qr(x) for Qr,r(x).
Given E,F ⊂ Rn, let E + F denote the set {x + y : x ∈ E, y ∈ F} and let d(E,F ) be the
Euclidean distance from E to F . In case E = {y}, we write d(y, F ). Let

h̆(E,F ) = max{sup
y∈E

d(y, F ), sup
y∈F

d(y, E)}

be the Hausdorff distance from E to F.
If O ⊂ Rn is open and 1 ≤ q ≤ ∞, then by W 1,q(O), we denote the space of equivalence

classes of functions f with distributional gradient ∇f = (fx1 , . . . , fxn), both of which are q-th
power integrable on O. Let

‖f‖W 1,q(O) = ‖f‖Lq(O) + ‖ |∇f | ‖Lq(O)

be the norm in W 1,q(O) where ‖·‖Lq(O) denotes the usual Lebesgue q-norm in O. Next let C∞0 (O)
be the set of infinitely differentiable functions with compact support in O and let C(E), be the
set of continuous functions on E.

Given D ⊂ Rn a bounded domain (i.e, a connected open set) and 1 < p <∞, we say that u
is p-harmonic in D provided u ∈ W 1,p(O) whenever Ō ⊂ D and∫

|∇u|p−2 〈∇u,∇θ〉 dx = 0 (1.1)

whenever θ ∈ C∞0 (D) . Observe that if u is smooth enough and ∇u 6= 0 in D, then

∇ · (|∇u|p−2∇u) ≡ 0 in D (1.2)

so u is a classical solution in D to the p-Laplace partial differential equation. Here, as in the
sequel, ∇· is the divergence operator. u is said to be p-subharmonic (p-superharmonic) in D
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provided u ∈ W 1,p(O) whenever Ō ⊂ D and (1.1) holds with = replaced by ≤ (≥) whenever
θ ≥ 0 in D. Let u ∈ C(D̄) and put D+(u) = {x ∈ D : u(x) > 0}, F (u) = ∂D+(u)∩D. Let D−(u)
be the interior of {x ∈ D : u(x) ≤ 0} and set u+ = max{u, 0}, u− = −min{u, 0}. Assuming
that w ∈ F (u), and that F (u) is smooth in a neighborhood of w, we let ν = ν(w) denote the
unit normal, to F (u) at w, pointing into D+(u). Moreover, we let u+

ν (w) and u−ν (w) denote the
normal derivatives of u+ and u− at w in the direction of ν. Note that u+

ν ,−u−ν ≥ 0. In this paper
we consider weak solutions, defined and continuous in D̄, to the following general two-phase free
boundary problem,

(i) ∇ · (|∇u|p−2∇u) = 0 in D+(u) ∪D−(u),

(ii) u+
ν (w) = G(−u−ν (w)) whenever w ∈ F (u),

(iii) u = k ∈ C(∂D) on ∂D. (1.3)

In (1.3) (ii) the function G : [0,∞)→ [0,∞) defines the free boundary condition and the interface
F (u) is referred to as the free boundary. If we make no a priori classical regularity assumptions
on the interface F (u) then the free boundary condition in (1.3) (ii) must be interpreted in a weak
sense and in particular a notion of weak solutions to the problem in (1.3) has to be introduced.
Let 〈·, ·〉+ = max{〈·, ·〉, 0}, 〈·, ·〉− = −min{〈·, ·〉, 0}. We will work with the following notion of
weak solutions to the problem in (1.3).

Definition 1.4. Let D ⊂ Rn be a bounded domain, u ∈ C(D̄) and 1 < p < ∞, be given. u
is said to be a (weak) solution to the problem in (1.3) if u is p-harmonic in D+(u) ∪ D−(u),
u = k, on ∂D and if the free boundary condition in (1.3) (ii) is satisfied in the following sense.
Assume that w ∈ F (u) and there exists a ball B(ŵ, ρ̂), ŵ ∈ D+(u)∪D−(u) with w ∈ ∂B(ŵ, ρ̂). If
ν = (ŵ−w)/|ŵ−w|, then the following holds, as x→ w, for some α, β ∈ [0,∞] with α = G(β),

(i) if B(ŵ, ρ̂) ⊂ D+(u), then u(x) = α〈x− w, ν〉+ − β〈x− w, ν〉− + o(|x− w|),
(ii) if B(ŵ, ρ̂) ⊂ D−(u), then u(x) = α〈w − x, ν〉+ − β〈w − x, ν〉− + o(|x− w|).

Let θ(ν, ν̃) be the angle between ν, ν̃ 6= 0 in Rn. If |ν| = 1, θ0 ∈ (0, π/2], set

Γ(ν, θ0) := {ν̃ : |ν̃| = 1 and θ(ν, ν̃) < θ0},

C(ν, θ0) := {tν̃ : ν̃ ∈ Γ(ν, θ0) and 0 < t <∞}.
(1.5)

Given ε > 0 we say that u is ε-monotone in O ⊂ Rn, with respect to the directions in Γ(ν, θ0) if

sup
B(x,ε′ sin θ0)

u(y − ε′ν) ≤ u(x) (1.6)

whenever ε′ ≥ ε and x ∈ O with B(x− ε′ν, ε′ sin θ0) ⊂ O. u is said to be monotone in O ⊂ Rn

with respect to the directions in Γ(ν, θ0) if whenever y ∈ B(x, r) ⊂ O and y−x
|y−x| ∈ Γ(ν, θ0), it

is true that u(y) ≥ u(x). Note that if u is monotone in O and B(x, r) ⊂ O, then (1.6) holds
whenever 0 < ε′ ≤ r/4.
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Recall that f : E→R is Lipschitz on E provided there exists b, 0 < b < ∞, such that
|f(z) − f(w)| ≤ b |z − w| whenever z, w ∈ E. The infimum of all b such that this inequality
holds is called the Lipschitz norm of f on E, denoted ‖f‖Lip (E). It is well known that if E = Rn−1,
then f is differentiable almost everywhere on Rn−1 and ‖f‖Lip (Rn−1) = ‖ |∇f | ‖L∞(Rn−1). In this
paper we prove the following theorems.

Theorem 1. Let D ⊂ Rn be a bounded domain, assume that u ∈ C(D̄) and that u is a weak
solution in D, for some 1 < p < ∞, to the problem in (1.3) in the sense of Definition 1.4.
Assume that the function G ≥ 0 is strictly increasing and, for some N > 0, that s→s−NG(s)
is decreasing on (0,∞). Assume 0 ∈ F (u), Q̄1(0) ⊂ D, and that θ̄ ∈ (π/4, π/2). Then there
exists ε̄ = ε̄(θ̄, p, n,N) > 0 such that if u is ε-monotone on Q1(0) with respect to the directions
in the spherical cap, Γ(en, θ̄), for some ε ∈ (0, ε̄), then u is monotone in Q1/2(0) with respect to
the directions in Γ(en, θ̄1) where θ̄1 > π/4. In particular,

D+(u) ∩Q1/2(0) = {(x′, xn) ∈ Rn : xn > f̄(x′)} ∩Q1/2(0),

F (u) ∩Q1/2(0) = {(x′, xn) ∈ Rn : xn = f̄(x′)} ∩Q1/2(0),

where f̄ : Rn−1→R is Lipschitz with ‖f̄‖Lip (Rn−1) < 1.

Theorem 2. Let D ⊂ Rn be a bounded domain, assume that u ∈ C(D̄) and that u is a solution
in D, for some 1 < p < ∞, to the problem in (1.3) in the sense of Definition 1.4. Assume
that G ≥ 0 is strictly increasing, Lipschitz continuous with ‖G‖Lip (Rn−1) ≤ C,G(0) > 0, and,
for some N > 0, that s−NG(s) is decreasing on (0,∞). If 0 ∈ F (u) and Q̄1(0) ⊂ D, then there
exist ε̂ > 0, θ̂ ∈ (π/4, π/2), both depending on p, n, C,N,G(0), and maxQ̄1(0) u

−, such that the

following statement is valid. If 0 < ε ≤ ε̂, θ̂ ≤ θ ≤ π/2, and if u+ is ε-monotone in Q1(0) with
respect to the directions in Γ(en, θ), then u+ is monotone in Q1/2(0) with respect to the directions

in Γ(en, θ̂1) where θ̂1 > π/4.

As a corollary to Theorem 2 we also prove the following.

Corollary 1. Let D ⊂ Rn be a bounded domain, assume that u ∈ C(D̄) and that u is a solution
in D, for some 1 < p < ∞, to the problem in (1.3) in the sense of Definition 1.4. Let G be as
in the statement of Theorem 2 and assume that 0 ∈ F (u) and Q̄1(0) ⊂ D. Assume that there
exists η ≥ 1 such that

η−1d(x, F (u)) ≤ u(x) ≤ ηd(x, F (u)) whenever x ∈ D+(u) ∩ Q̄1(0).

Then there exist ε̂ > 0, θ̂ ∈ (π/4, π/2), both depending on p, n, C,N,G(0),maxQ̄1(0) u
− and η,

such that the following statement is valid. If 0 < ε ≤ ε̂, θ̂ ≤ θ ≤ π/2, and if

h̆
(
F (u) ∩ Q̄1(0),Λ ∩ Q̄1(0)

)
≤ ε,

where Λ = {(x′, f̃(x′)) : x′ ∈ Rn−1} and ‖f̃‖Lip (Rn−1) ≤ tan(π/2 − θ), then u+ is monotone in

Q1/2(0) with respect to the directions in Γ(en, θ̂1) where θ̂1 > π/4.
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As mentioned earlier, Theorem 1, Theorem 2, and Corollary 1 are part of the program initi-
ated in [LN6]. In particular, in [LN6] we proved the following theorem.

Theorem A. Let D ⊂ Rn be a bounded domain, assume that u ∈ C(D̄) and that u is a solution
in D, for some 1 < p < ∞, to the problem in (1.3) in the sense of Definition 1.4. Moreover,
suppose that G > 0 is strictly increasing on [0,∞) and, for some N > 0, that s−NG(s) is
decreasing on (0,∞). Assume that 0 ∈ F (u), B̄(0, 2) ⊂ D, maxB(0,2) |u| = 1 and that,

D+(u) ∩B(0, 2) = Ω ∩B(0, 2), F (u) ∩B(0, 2) = ∂Ω ∩B(0, 2),

Ω = {y = (y′, yn) ∈ Rn : yn > ψ(y′)},

in an appropriate coordinate system, where ψ is Lipschitz on Rn−1 with M = ‖ψ‖Lip (Rn−1).
Then there exists σ = σ(p, n,M,N) ∈ (0, 1) such that ∇ψ is Hölder continuous of order σ on
{x′ : (x′, ψ(x′))} ∈ B(0, 1/8). The Cσ-Hölder norm of ∇ψ depends only on p, n,M,N.

Using Theorem A and invariance of the p-Laplacian under rotations, translations, and di-
lations, we deduce under the scenario of either Theorem 1, Theorem 2 or Corollary 1, that
F (u) ∩ B(0, 1/16) is of class C1,σ. Furthermore, to indicate earlier work, for p = 2, Theorem
A is given in [C1] while Theorem 1, Theorem 2 and Corollary 1 can be found in [C2]. The
work in [C1, C2] was generalized in [W], [W1], to solutions of fully non-linear concave PDE of
the form F (D2u) = 0, where F is homogeneous. Further analogues of the work in [C1] were
obtained for a class of nonisotropic operators in [F] and in [F1] the concavity assumption in [W]
was removed for viscosity solutions to fully non-linear PDE of the form, F (D2u,Du) = 0, where
F is homogeneous in both arguments. Moreover, generalizations of the results in [C1] were made
in [Fe] to fully non-linear PDE of the form F (D2u, x) = 0 which have interior C1,1-estimates.
Generalizations of the work in [C1], to linear divergence form PDE with variable Lipschitz con-
tinuous coefficients were obtained in [CFS], [FS1]. Finally the work in [C1], [C2] was generalized
to viscosity solutions of certain linear nondivergence form elliptic PDE with drift term in [FS].
However, Theorem A, Theorem 1, Theorem 2 and Corollary 1 are the first generalizations of [C1,
C2] to divergence form operators of p-Laplacian type.

The rest of the paper is organized in the following way. In section 2, which partly is of a
preliminary nature, we collect a number of results from [LN1, LN2, LLN, LN6] concerning p-
harmonic functions in Lipschitz domains. In section 3 we construct appropriate p-subsolutions
to the free boundary problem under consideration using results from [C2], [LN6], and [W]. We
also prove that if u is as in Theorem 1, then u satisfies

c−1 u(y)

d(y, ∂Ω)
≤ |∇u(y)| ≤ c

u(y)

d(y, ∂Ω)
(1.7)

where c = c(p, n), at points sufficiently far away from ∂Q1(0) ∪ F (u). Finally, in section 3 we
use (1.7) to show that u is monotone in the directions Γ(en, θ̄) at points sufficiently far away
from ∂Q1(0)∪ F (u). In section 4 we then prove Theorem 1 leaving the proofs of Theorem 2 and
Corollary 1 for section 5. At the end of section 5 we mention possible generalizations of Theorem
1, Theorem 2 and Corollary 1.

Concerning our proofs of Theorem 1, Theorem 2 and Corollary 1 we note that our argument
combines the geometric approach developed in [C1, C2, W1] with the analytic techniques for
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p-harmonic functions in Lipschitz domains, and in domains which are well approximated by
Lipschitz graph domains in the Hausdorff distance sense, developed in [LN1, LN2, LN3, LN5,
LN6]. In particular, based on the results in our previous papers, we are able to proceed along the
lines of [C2] and [W1] to complete the proofs. The most tricky part of the argument, as compared
to the harmonic case in [C2], is to obtain a contradiction when the graph of the solution u and
the graph of the carefully constructed subsolution vt touch. In [LN6] we obtained a contradiction,
and thus proved Theorem FA, by using a boundary Harnack inequality - Hopf type maximum
principle (see Theorem 2.9 below) as well as the fact that in [LN6] u satisfied the fundamental
inequality (1.7) up to F (u). In the proof of Theorem 1, we can no longer assume (1.7) up to
F (u). Instead we have to introduce several other comparison functions and prove these functions
can be used to get the desired contradiction.

We emphasize that on the one hand this paper is not user friendly, as it relies heavily on
previous rather technical work of the authors mentioned above. On the other hand we state
and give references for results which are used in this paper. In general our strategy in writing
this paper has been to refer to previous work whenever possible, as well as, to provide details
whenever our arguments differ from previous arguments. Thus as a minimum the interested
reader should first be familiar with [C2], [LN6], and to have these papers at hand.

Finally the authors would like to thank the referee for some helpful comments.

2 Estimates for p-Harmonic functions

We say that Ω ⊂ Rn is a bounded Lipschitz domain if there exists a finite set of balls {B(xi, ri)},
with xi ∈ ∂Ω and ri > 0, such that {B(xi, ri)} constitutes a covering of an open neighborhood
of ∂Ω and such that, for each i,

Ω ∩B(xi, 4ri) = {x = (x′, xn) ∈ Rn : xn > φi(x
′)} ∩B(xi, 4ri),

∂Ω ∩B(xi, 4ri) = {x = (x′, xn) ∈ Rn : xn = φi(x
′)} ∩B(xi, 4ri), (2.1)

in an appropriate coordinate system and for a Lipschitz function φi on Rn−1. The Lipschitz
constant of Ω is defined to be M = maxi ‖φi‖Lip (Rn−1). If w ∈ ∂Ω, 0 < r < r0, we let ∆(w, r) =
∂Ω ∩ B(w, r) be the naturally defined surface ball and we let ei, 1 ≤ i ≤ n, denote the point
in Rn with one in the i-th coordinate position and zeroes elsewhere. Moreover, throughout the
paper c will denote, unless otherwise stated, a positive constant ≥ 1, not necessarily the same
at each occurrence, which only depends on p, n, and M . In general, c(a1, . . . , an) denotes a
positive constant ≥ 1, not necessarily the same at each occurrence, which depends on p, n, M
and a1, . . . , an. If A ≈ B then A/B is bounded from above and below by constants which, unless
otherwise stated, depend on p, n and M at most. Moreover, we let max

B(z,s)
û, min

B(z,s)
û be the essential

supremum and infimum of û on B(z, s) whenever B(z, s) ⊂ Rn and û is defined on B(z, s).
We first state a number of basic lemmas in Lipschitz domains. As a general reference for

proofs of the following lemmas we refer to [LN1]. Lemmas 2.2, 2.3, 2.5, are classical interior type
estimates for nonlinear partial differential equations in divergence form. Lemma 2.4 is well known
for harmonic functions while Theorems 2.6, 2.7, are recent results of the authors. Their proofs
use deformations of û into v̂, similar to the one in (2.13), as well as uniform ellipticity estimates,
similar to those in (2.14)-(2.17), and classical boundary Harnack inequalities for nondivergence
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uniformly elliptic partial differential equations.

Lemma 2.2. Given p, 1 < p <∞, let û be a positive p-harmonic function in B(w, 2r). Then

(i) max
B(w,r)

û ≤ c min
B(w,r)

û.

Furthermore, there exists α = α(p, n) ∈ (0, 1) such that if x, y ∈ B(w, r), then

(ii) |û(x)− û(y)| ≤ c

(
|x−y|
r

)α
max
B(w,2r)

û.

Lemma 2.3. Let Ω ⊂ Rn be a bounded Lipschitz domain and p given, 1 < p <∞. Let w ∈ ∂Ω,
0 < r < r0, and suppose that û is a non-negative p-harmonic function in Ω ∩ B(w, 2r). Assume
also that û is continuous on Ω̄ ∩ B(w, 2r) with û ≡ 0 on ∆(w, 2r). There exist c = c(p, n,M)
≥ 1 and α = α(p, n,M) ∈ (0, 1) such that if x, y ∈ Ω ∩B(w, r), then

|û(x)− û(y)| ≤ c

(
|x−y|
r

)α
max

Ω∩B(w,2r)
û.

Lemma 2.4. Let Ω ⊂ Rn be a bounded Lipschitz domain and p given, 1 < p <∞. Let w ∈ ∂Ω,
0 < r < r0, and suppose that û is a non-negative p-harmonic function in Ω ∩ B(w, 2r). Assume
also that û is continuous in Ω̄ ∩ B(w, 2r) with û ≡ 0 on ∆(w, 2r). There exists c = c(p, n,M),
1 ≤ c <∞, such that if r̃ = r/c, then

max
Ω∩B(w,r̃)

û ≤ c û(ar̃(w)),

where ar̃(w) is any point in Ω ∩B(w, r̃) with d(ar̃(w), ∂Ω) ≥ r̃/c.

Lemma 2.5. Let Ω ⊂ Rn be a bounded Lipschitz domain and p given, 1 < p <∞. Let w ∈ ∂Ω,
0 < r < r0 and suppose that û is a nonnegative p-harmonic function in Ω∩B(w, 2r). Assume also
that û is continuous in Ω̄ ∩ B(w, 2r) with û ≡ 0 on ∆(w, 2r). Extend û to B(w, 2r) by defining
û ≡ 0 on B(w, 2r) \ Ω. Then û has a representative in W 1,p(B(w, 2r)) with Hölder continuous
partial derivatives in Ω∩B(w, 2r). In particular, there exists σ ∈ (0, 1], depending only on p and
n, such that if x, y ∈ B(w̃, r̃/2), B(w̃, 4r̃) ⊂ Ω ∩B(w, 2r), then

c−1 |∇û(x)−∇û(y)| ≤ (|x− y|/r̃)σ max
B(w̃,r̃)

|∇û| ≤ c r̃−1 (|x− y|/r̃)σ û(w̃).

Moreover, if for some β ∈ (1,∞),

û(y)

d(y, ∂Ω)
≤ β |∇û(y)| for all y ∈ B(w̃, 2r̃),

then û ∈ C∞(B(w̃, 2r̃)) and given a positive integer k there exists c̄ ≥ 1, depending only on
p, n, β, k, such that

max
B(w̃, r̃

2
)
|Dkû| ≤ c̄

û(w̃)

d(w̃, ∂Ω)k
where Dkû denotes an arbitrary k-th order derivative of û.
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Next we state two theorems proved in [LN1, LN2].

Theorem 2.6. Let Ω ⊂ Rn be a bounded Lipschitz domain with constants M, r0. Given p, 1 <
p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that û and v̂ are positive p-harmonic functions in Ω ∩
B(w, 2r). Assume also that û, v̂ are continuous in Ω̄∩B(w, 2r) and that û ≡ 0 ≡ v̂ on ∆(w, 2r).
Under these assumptions there exists c1, 1 ≤ c1 <∞, γ > 0, depending only on p, n, and M , such
that if x, y ∈ Ω ∩B(w, r/c1), then∣∣∣∣log

(
û(y)

v̂(y)

)
− log

(
û(x)

v̂(x)

)∣∣∣∣ ≤ c1

(
|x− y|
r

)γ
.

Theorem 2.7. Let Ω ⊂ Rn be a bounded Lipschitz domain with constants M, r0. Let w ∈ ∂Ω, 0 <
r < r0, and suppose that (2.1) holds with xi, ri, φi, replaced by w, r, φ. Given p, 1 < p <∞, let û be
a positive p-harmonic function in Ω∩B(w, 2r). Assume also that û is continuous in Ω̄∩B(w, 2r)
with û ≡ 0 on ∆(w, 2r). Then there exists θ0 ∈ (0, π/2] and 1 ≤ c2 <∞, both depending only on
p, n,M, such that

c−1
2

û(y)

d(y, ∂Ω)
≤ 〈∇û(y), ξ〉 ≤ |∇û(y)| ≤ c2

û(y)

d(y, ∂Ω)

whenever y ∈ Ω ∩B(w, r/c2) and ξ ∈ Γ(en, θ0).

We note that in [LN1] we proved, under the assumptions stated in Theorem 2.6, that∣∣∣∣log

(
û(y)

v̂(y)

)
− log

(
û(x)

v̂(x)

)∣∣∣∣ ≤ c whenever x, y ∈ Ω ∩B(w, r/c). (2.8)

Here c = c(p, n,M). Using (2.8) we then obtained, essentially simultaneously, Theorem 2.6 and
Theorem 2.7 in [LN2]. Furthermore, in [LN6] we also proved the following theorem.

Theorem 2.9. Let Ω ⊂ Rn be a bounded Lipschitz domain with constants M, r0. Let w ∈ ∂Ω, 0 <
r < r0, 1 < p <∞, and suppose that û, v̂ are positive p-harmonic functions in Ω ∩B(w, 2r) with
v̂ ≤ û. Assume also that û, v̂ are continuous in Ω̄ ∩ B(w, 2r) with û ≡ v̂ ≡ 0 on ∆(w, 2r). Then
there exists c3, 1 < c3 <∞, such that

û(y)− v̂(y)

v̂(y)
≤ c3

û(x)− v̂(x)

v̂(x)
whenever x, y ∈ Ω ∩B(w, r/c3).

We note that Theorem 2.9 implies (2.8), as follows easily from the fact that the p-Laplacian
is invariant under multiplication by a constant. Thus replacing v̂ by δv̂ in the above display,
multiplying both sides by δ, and then letting δ→0, we get (2.8). A slightly more involved
argument (see section 6 of [LLN]) also gives Theorem 2.6. Also for later use we observe from
Theorem 2.6 that v can be replaced by u in the denominator of the display in Theorem 2.9.

Next we state Lemma 2.10 which gives a useful criteria for determining when a positive p-
harmonic function satisfies the last inequality in Theorem 2.7 at a point. Note that Lemma 2.10
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is similar to Lemmas 4.3 and 5.4 in [LN2], Lemma 3.1 in [LN5], and Lemma 3.18 in [LLN]. Hence
we do not include a proof of this lemma here.

Lemma 2.10. Let O be an open set, and suppose that û, v̂ are positive p-harmonic functions in
O. Let a ≥ 1, y ∈ O, |ξ| = 1, and assume that

1

a

v̂(y)

d(y, ∂O)
≤ 〈∇v̂(y), ξ〉 ≤ |∇v̂(y)| ≤ a

v̂(y)

d(y, ∂O)
.

Let ε̃−1 = (ca)(1+σ)/σ, where σ is as in Lemma 2.5 and c = c(p, n). Then the following statement
is true for c = c(p, n) suitably large. If

(1− ε̃)L̃ ≤ v̂

û
≤ (1 + ε̃)L̃

in B(y, 1
4
d(y, ∂O)) for some L̃, 0 < L̃ <∞, then

1

ca

û(y)

d(y, ∂O)
≤ 〈∇û(y), ξ〉 ≤ |∇û(y)| ≤ ca

û(y)

d(y, ∂O)
.

To continue our basic estimates, we list some results for the difference of two p-harmonic
functions. To this end, let û, v̂ be positive p-harmonic functions in an open set O, satisfying
1 ≤ û/v̂ ≤ c4. Suppose also that v̂ satisfies, for some δ̂ > 1, the fundamental inequality

δ̂−1 v̂(x)

d(x, ∂O)
≤ |∇v̂(x)| ≤ δ̂

v̂(x)

d(x, ∂O)
, whenever x ∈ B(w, r), (2.11)

where B̄(w, 2r) ⊂ O. Define

e(x) = û(x)− v̂(x) whenever x ∈ B(w, r). (2.12)

and put

u(x, τ) = τ û(x) + (1− τ)v̂(x) whenever x ∈ B(w, r). and τ ∈ [0, 1]. (2.13)

Clearly, e(x) = u(x, 1)− u(x, 0). Using p-harmonicity of û, v̂ and that

|ξ|p−2ξ − |η|p−2η =

∫ 1

0

d{|tξ + (1− t)η|p−2[tξ + (1− t)η]}
dt

dt

whenever ξ, η ∈ Rn \ {0}, it follows that e is a weak solution to

L̂e :=
n∑

i,j=1

∂

∂yi
( b̂ij(y)eyj(y) ) = 0 whenever y ∈ B(w, r) (2.14)

where

b̂ij(y) =

1∫
0

bij(y, τ)dτ,

bij(y, τ) = |∇u(y, τ)|p−4((p− 2)uyi(y, τ)uyj(y, τ) + δij|∇u(y, τ)|2). (2.15)
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Here i, j ∈ {1, ..., n} and δij is the Kronecker δ. If y ∈ B(w, r), then from (2.14) we observe that
e = û− v̂ is the solution in to a symmetric divergence form PDE with ellipticity constants at y
estimated by

min{p− 1, 1}|ξ|2λ̂(y) ≤
n∑

i,j=1

b̂ij(y)ξiξj ≤ max{p− 1, 1}|ξ|2λ̂(y), (2.16)

whenever ξ ∈ Rn, and where

λ̂(y) =

1∫
0

|∇u(y, τ)|p−2dτ ≈
(
|∇û(y)|+ |∇v̂(y)|

)p−2

≈ (v̂(y)/d(y, ∂O))p−2. (2.17)

The right-hand side inequality in (2.17) was obtained by using Lemma 2.5 to estimate |∇û(·)|
in terms of û(·)/d(·, ∂O), the assumption that û ≤ c4v̂, (2.11), and the fact that

1/2 ≤ d(x, ∂O)

d(z, ∂O)
≤ 2 for x, z ∈ B(w, r)

since B̄(w, 2r) ⊂ O. In (2.17) the constants of proportionality depend only on p, n, δ̂, and c4. In
sections 4 and 5 we will need the following interior Harnack inequality.

Lemma 2.18. Let û, v̂, be positive p-harmonic functions in O with 1 ≤ û/v̂ ≤ c4 and suppose
that v̂ satisfies (2.11) with r = 2r̃, w = w̃, where B̄(w̃, 4r̃) ⊂ O. If e = û− v̂, then there exists a
constant c = c(p, n, δ̂, c4) > 1 such that

max
B(w̃,r̃)

e ≤ c min
B(w̃,r̃)

e.

Proof. From (2.16), (2.17), and (2.11), we see that L̂ is uniformly elliptic in B(w̃, 2r̃) with
bounded measurable coefficients. Constants depend only on p, n, δ̂, c4. The stated Harnack in-
equality now follows from classical arguments, see [LSW]. 2

Finally in this section we prove a lemma concerning properties of a positive minimal p-
harmonic function in a cone. More specifically, if 0 < θ0 < π, recall the definition of the cone
C(en, θ0) in ( 1.5). We write C(θ0) for C(en, θ0). Given p, 1 < p <∞, we say that û is a minimal
positive p-harmonic function in C(θ0), relative to∞, provided û is a positive p-harmonic function
in C(θ0) with continuous boundary value zero on ∂C(θ0).

Lemma 2.19. Given θ0 ∈ (0, π], and 1 < p < ∞, there exists a unique minimal positive p-
harmonic function, û = û(·, θ0), in C(θ0) with û(en) = 1. Moreover, if r = |x|, xn = r cos θ, 0 ≤
θ < θ0, are spherical coordinates of x, then there exist ψ ∈ C∞(cos θ0, 1) and γ > 0 such that

û(x) = û(r, θ) = rγψ(cos θ), 0 ≤ θ < θ0.

Also, γ is a decreasing positive continuous function of θ0 ∈ (0, π) with γ(π/2) = 1.
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Proof. We note that in [K], homogeneous p-harmonic functions of the above form are constructed
in cones. To begin the proof of Lemma 2.19, existence of a minimal positive p-harmonic function û
relative to∞ in C(θ0) is easily shown. For example one can take û to be the limit of a subsequence
of (um)∞1 where um is a positive p-harmonic function in C(θ0)∩B(0,m) with continuous boundary
value 0 on ∂C(θ0)∩B(0,m) and um(en) = 1. Existence of um,m = 1, 2, . . . , follows from a calculus
of variations argument. Applying Lemmas 2.2 - 2.5 to um,m = 1, 2, . . . , and using Ascoli’s
theorem we get û. To prove uniqueness of û, let v̂ be another minimal positive p-harmonic
function in C(θ0) with v̂(en) = 1. Using Theorem 2.6 with Ω = C(θ0) ∩ B(0, 2r), w = 0, we get,
upon letting r→∞, that v̂ = û. Thus û is the unique minimal positive p-harmonic function in
C(θ0) with û(en) = 1. To obtain the desired form for û we first note that uniqueness of û and
invariance of the p-Laplace equation under rotations imply that û is symmetric about the xn
axis. Thus we write û(r, θ) for û(x) when x ∈ C̄(θ0) and r = |x|, xn = r cos θ, 0 ≤ θ ≤ θ0. Also
since the p-Laplacian is invariant under dilations it follows from uniqueness of û that

û(λx) = û(λen)û(x) whenever λ > 0 and x ∈ C(θ0). (2.20)

Differentiating (2.20) with respect to λ and evaluating at λ = 1 we find that

rûr(r, θ) = 〈x,∇û(x)〉 = 〈∇û(en), en〉û(r, θ).

Dividing this equality by rû(r, θ), integrating, and then exponentiating, we get û(r, θ) = rγψ(cos θ)
where γ = 〈en,∇û(en)〉. Continuity of γ once again follows from uniqueness of û(·, θ0) and Lem-
mas 2.2 - 2.5. Also, γ(θ0) is decreasing for θ0 ∈ (0, π), as follows easily from comparing so-
lutions in different cones and using the maximum principle for p-harmonic functions. Finally
û(x) = xn = r cos θ when θ0 = π/2, so γ(π/2) = 1. 2

3 Preliminary reductions for Theorem 1

Recall that given a bounded domain D and 1 < p < ∞, we say that u is p-subharmonic in D
provided u ∈ W 1,p(Ω) whenever Ω is an open set with Ω̄ ⊂ D and∫

|∇u|p−2 〈∇u,∇θ〉 dx ≤ 0 (3.1)

whenever θ ∈ C∞0 (D) and θ ≥ 0 on D. We say that u is p-superharmonic provided −u is p-
subharmonic. Moreover, we let C2(D) denote the set of functions which have continuous second
partial derivatives in D. For φ ∈ C2(D) we let ∇2φ(x) denote the Hessian matrix of φ at x ∈ D.

Let S(n) denote the set of all symmetric n×n matrices and let P be the Pucci type extremal
operator (see [CC]) defined, for M ∈ S(n), as

P (M) = inf
A∈Ap

n∑
i,j=1

aijMij . (3.2)

Here Ap denotes the set of all symmetric n× n matrices A = {aij} which satisfy

min{p− 1, 1} |ξ|2 ≤
n∑

i,j=1

aijξiξj ≤ max{p− 1, 1} |ξ|2 whenever ξ ∈ Rn. (3.3)
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For the proof of the following lemma we refer to [LN6, Lemma 3.5].

Lemma 3.4. Let φ > 0 be in C2(D), ‖∇φ||L∞(D) ≤ 1/2, p fixed, 1 < p <∞, and suppose that

φ(x)P (∇2φ(x)) ≥ 50pn |∇φ(x)|2 whenever x ∈ D.

Let u be continuous in an open set O containing the closure of
⋃
x∈D B(x, φ(x)) and define

v(x) = max
B̄(x,φ(x))

u

whenever x ∈ D. If u is p-harmonic in O \ {u = 0}, then v is continuous and p-subharmonic in
{v 6= 0} ∩D.

Next we consider the asymptotic development, near F (v), of the p-subharmonic function
constructed in Lemma 3.4.

Lemma 3.5. Let D, u, φ,O, and v = vφ be as in the statement of Lemma 3.4 and let G be
as in Theorem 1. Suppose also that (i), (ii) of Definition 1.4 hold for some α, β, whenever
w ∈ O ∩ ∂{u > 0} and there exists B(ŵ, ρ̂) ⊂ O \ ∂{u > 0} with w ∈ ∂B(ŵ, ρ̂). If w̃ ∈ F (v),
then there exist w∗ ∈ D+(v) and ρ∗ > 0 such that B(w∗, ρ∗) ⊂ D+(v) and w̃ ∈ ∂B(w∗, ρ∗). Also,
there exist α̃, β̃ ∈ [0,∞), such that the following holds, as x→ w̃, with ν̃ = (w∗ − w̃)/|w∗ − w̃|,

(a) v(x) ≥ α̃〈x− w̃, ν̃〉+ − β̃〈x− w̃, ν̃〉− + o(|x− w̃|),

(b)
α̃

1− |∇φ(w̃)|
≥ G

(
β̃

1 + |∇φ(w̃)|

)
.

Proof. The proof of Lemma 3.5 for p = 2 can be found in Lemmas 10, 11 of [C1]. The proof is
based on a purely geometric argument using smoothness of φ, and the asymptotic expansion of
u in balls tangent to F (u). Hence it is also valid here. 2

We will also use the following lemma.

Lemma 3.6. Let D,φ, be as in Lemma 3.4. Assume ε > 0 small, p fixed, 1 < p < ∞,
θ0 ∈ (π/4, π/2) and let Õ be an open set containing

{y : |y − z| ≤ 2ε for some z in the closure of
⋃
x∈D

B(x, φ(x))}.

Assume that u is continuous, and ε-monotone in Õ with respect to the directions in Γ(en, θ0).
Assume also that u is p-harmonic in Õ \ ∂{u > 0} and satisfies (as in Lemma 3.5) (i), (ii) of
Definition 1.4 at points of Õ ∩ ∂{u > 0}. Let G be as in Theorem 1 and define v relative to u, φ
as in Lemma 3.5. If 0 < θ′ ≤ θ0,

1
2
ε sin θ0 < φ(x) < ε, and

sin θ′ ≤ 1

1 + |∇φ|(x)

(
sin θ0 −

ε

2φ(x)
(cos θ0)2 − |∇φ|(x)

)

12



for all x ∈ D, then v is monotone in D with respect to the directions in Γ(en, θ
′) and F (v) ∩D

is the graph of a Lipschitz function with constant M ′, M ′ ≤ cot θ′.

Proof. A proof for p = 2 is given in [C2, Lemma 2]. The proof involves a purely geometric
argument so can be repeated here. However for p 6= 2, 1 < p < ∞, certain issues should be
clarified. Indeed, let x̂ ∈ D and suppose ŷ ∈ ∂B(x̂, φ(x̂)) with u(ŷ) = v(x̂). We consider several
cases. If ŷ ∈ Õ \ ∂{x : u(x) > 0} and ∇u(ŷ) 6= 0, then u is p-harmonic, consequently infinitely
differentiable in a neighborhood of ŷ, so we can argue as in Lemma 2 of [C2] to get that v is
increasing at x̂ in the directions given by Γ(en, θ

′). If ŷ ∈ Õ∩∂{x : u(x) > 0} and α̃ 6= 0 in Lemma
3.5 (a), we can once again use the geometric argument in [C2] to conclude that v is increasing
at x̂ in the directions given by Γ(en, θ

′) ∩ {x : |x| = 1}. Hence it remains to consider the cases
when (a) ŷ ∈ Õ \ ∂{x : u(x) > 0}, ∇u(ŷ) = 0, and (b) ŷ ∈ Õ ∩ ∂{x : u(x) > 0}, α̃ = 0. In case
(a) it follows from the Hopf boundary maximum principle and the fact that u(ŷ) = max{u(z) :
z ∈ B̄(x̂, φ(x̂))} that u ≡ u(ŷ) in B̄(x̂, φ(x̂)). In this case we note that

2φ(x̂) ≥ ε sin θ0 ≥ ε(1− sin θ0) + (
√

2− 1)ε.

Thus
B(x̂+ (φ(x̂)− ε)en, ε sin θ0) ∩B(x̂, φ(x̂)) 6= ∅

and so it follows from the definition of ε-monotonicity, that u ≥ u(x̂) in an open neighborhood of
x̂+φ(x̂)en. Since v(x) ≥ u(x+φ(x)en) we conclude that v ≥ v(x̂) in an open neighborhood of x̂.
In case (b) it follows from Definition 1.4 applied to u, and the Hopf boundary maximum principle,
that u ≡ 0 in B̄(x̂, φ(x̂)). Hence, once again using ε-monotonicity we have that v ≥ 0 = v(x̂) in
an open neighborhood of x̂. Thus v is monotone in D with respect to the directions in Γ(en, θ

′).
Lipschitzness of F (v)∩D follows from an easy geometric argument using monotonicity of v and
the definition of F (v). The proof of Lemma 3.6 is now complete. 2

Finally, we will use the following set of functions {φt}, 0 ≤ t ≤ 1, to construct appropriate
p-subharmonic functions to be used in the proof of Theorem 1 and Theorem 2.

Lemma 3.7. Let Λ = {(x′, xn) ∈ Rn : xn = λ(x′)} where λ : Rn−1→R, λ(0) = 0, and
‖λ‖Lip (Rn−1) ≤ M < ∞ for some M ≥ 1. Given h, 0 < h < 10−3, let Λ(h) = {(x′, xn) :
|xn−λ(x′)| < h}∩ Q̄2,8M(0). If β ∈ (0, 1), then there exists a family of functions {φt}, 0 ≤ t ≤ 1,
C2-regular in Λ(h), and c = c(p, n,M, β) ≥ 1, h0 = h0(p, n,M, β) > 0, such that the following
holds. There exists µ = µ(p, n), 0 < µ ≤ 2, such that for x ∈ Λ(h), t ∈ [0, 1], and h ∈ (0, h0], we
have

(i) 1 ≤ φt(x) ≤ 1 + µt,

(ii) |∇φt(x)| ≤ cthβ−1,

(iii) φt(x)P (∇2φt(x)) ≥ 50pn|∇φt(x)|2,
(iv) φt(x) ≡ 1 whenever x ∈ Λ(h) \Q1−2h1−β ,4M(0),

(v) 1 + µt− φt(x) ≤ cthβ whenever x ∈ Λ(h) ∩Q1−100h1−β ,4M(0).
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Proof. We could prove Lemma 3.7 by arguing as in [FS] however we prefer to use a covering
argument and the construction in [LN6]. This construction in turn was based on a construction
in [W] (the construction in [W1] appears incorrect). To begin the argument let {aij} ∈ Ap and

let L be the operator
n∑

i,j=1

∂

∂xi

(
aij

∂

∂xj

)
. Given x̂ ∈ Rn, ρ ∈ (0, 10−2), we claim there exists

0 ≤ f̂ ∈ C2(Rn \ B̄(x̂, ρ/2)) satisfying

Lf̂ ≥ 0 in Rn \B(x̂, ρ) and f̂ ≡ 0 in Rn \B(x̂, 10). (3.8)

Also, for some k+ = k+(ρ, p, n) ≥ 1, we have

(i) k−1
+ ≤ min(f̂ , Lf̂) on B(x̂, 6) \ B̄(x̂, ρ)

(ii) |∇f̂ | ≤ Lf̂ ≤ k+ in Rn \B(x̂, ρ).

(3.9)

For example, let N be a non-negative integer and let

f̃(x) = |x̂− x|−2N whenever x ∈ Rn \B(x̂, ρ/2).

It is easily checked that f̃ satisfies (3.8), (3.9) on B(x, 10) \ B(x, ρ), for N = N(ρ, p, n) > 0
large enough, except that f̃ does not have support in B(x̂, 10). To remedy this let f̂ = [max(f̃ −
10−2N , 0)]4. Then f̂ is C2 on Rn \ B̄(x̂, ρ/2) and f̂ ≡ 0 in Rn \ B(x̂, 10). From the definition of
L and (3.9)(ii) we find that

Lf̂ ≥ 4f̃ 3 Lf̃ ≥ 4f̃ 3 |∇f̃ | = |∇f̂ | whenever ρ ≤ |x− x̂| < 10.

Thus (3.8), (3.9) are valid.
Next we choose ρ = (100M)−1 and use a well known covering lemma to get {B(wi, ρh)} with

{B(wi, ρh/10)} pairwise disjoint, and

(a) wi ∈ Λ(3h) \ Λ(2h), i = 1, 2, . . . ,

(b)
⋃
B(wi, ρh) ∩ Λ(h) = ∅,

(c) Λ(h) ∩Q1−50h1−β ,4M(0) ⊂
⋃
B(wi, 6h),

(d)
(
Λ(h) \Q1−2h1−β ,4M(0)

)
∩
⋃
B(wi, 10h) = ∅.

(3.10)

Existence of {wi} satisfying (a), (c), (d) is easily seen. Note that (b) follows from (a) our choice
of ρ, and the fact that λ has Lipschitz norm ≤M. Next given wi we take x̂ = wi in the definition
of f̂ and set

f̂i(x) = f̂(wi + x−wi
h

), x ∈ Rn \B(wi, ρh), i = 1, 2, . . .

Let
ψ(x) = hβ

∑
f̂i(x), when x ∈ Rn \

⋃
B(wi, ρh).

Observe from (3.8) that f̂i has support in B̄(wi, 10h). Using this fact, as well as the disjoint-
ness of {B(wi, ρh/10)}, we deduce that if x ∈ Rn \

⋃
B(wi, ρh), then {i : f̂i(x) 6= 0} has
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cardinality at most c̃ where c̃ = c̃(p, n,M) ≥ 1. Using these facts (3.8)-(3.10) we see for some
c− = c−(p, n,M, β) ≥ 1 that

(α) Lψ(x) ≥ c−1
− h

β−2 when x ∈ Λ(h) ∩Q1−50h1−β ,4M(0),

(β) Lψ ≥ h−1|∇ψ| on Λ(h),

(γ) max(ψ, h|∇ψ|) ≤ c− h
β on Λ(h),

(δ) ψ ≡ 0 on Λ(h) \Q1−2h1−β ,4M(0).

(3.11)

Let θ ∈ C∞0 (Rn−1) with 0 ≤ θ ≤ 1 and

(α) θ ≡ 1 on {x′ ∈ Rn−1 : |x′| ≤ 1− 100h1−β},

(β) θ ≡ 0 on {x′ ∈ Rn−1 : |x′| ≥ 1− 50h1−β }.

(γ) h1−β
n−1∑
i,j=1

∣∣∣∣ ∂2θ

∂xi∂xj

∣∣∣∣+
n−1∑
i=1

∣∣∣∣ ∂θ∂xi
∣∣∣∣ ≤ chβ−1 on Rn−1,

(3.12)

where c = c(p, n,M, β). Finally put

φt(x) = 1 + t[θ(x′) + ψ(x)], when x = (x′, xn) ∈ Λ(h).

Then (i), (v) of Lemma 3.7 are easily deduced from (3.11)(γ) and (3.12)(α), (β). (ii) of Lemma
3.7 is implied by (3.11)(γ) and (3.12)(γ) while (iv) of this lemma is a consequence of (3.11)(δ),
(3.12)(β). (iii) for x ∈ Λ(h) ∩ Q1−50h1−β(0) with P replaced by L follows from (3.11)(α),
(3.12)(γ), and Lemma 3.7 (ii). (iii) for x ∈ Λ(h) \Q1−50h1−β(0) with P replaced by L follows for
h0 = h0(p, n,M, β) > 0 small enough from (3.11)(β), (γ) and (3.12)(β). Taking the infimum over
all {aij} ∈ Ap, we get (iii) for P. The proof of Lemma 3.7 is now complete. 2

Next we prove

Lemma 3.13. Let u,D,G, θ̄, be as in Theorem 1. Assume x̂ ∈ F (u) and Q̄r(x̂) ⊂ D. Then there
exist ε∗ = ε∗(p, n) > 0, c∗ = c∗(p, n) ≥ 1, and θ∗ = θ∗(p, n) ∈ (0, π/2), such that if 0 < ε ≤ ε∗,
then

c−1
∗ |u|(x)/d(x, F (u)) ≤ 〈∇u(x), ξ〉 ≤ |∇u(x)| ≤ c∗|u|(x)/d(x, F (u))

whenever r ≥ c3
∗ ε, x ∈ Qr/c∗(x̂), ξ ∈ Γ(en, θ

∗), and c∗ε ≤ d(x, F (u)).

Proof. To begin the proof of Lemma 3.13 assume r ≥ 1010ε, and let Q = Qr−100ε,r−50ε(x̂), z ∈
F (u) ∩ Q̄. We first show that

(i) 0 = u(z) < u(w) whenever w ∈ Qr(x̂) ∩B(z + ρen, ρ sin θ̄), ε ≤ ρ, and d(w, ∂Qr(x̂)) ≥ 20ε,

(ii) Either u(w) ≡ 0 or u(w) < 0 for all w ∈ Qr(x̂) ∩B(z − ρen, ρ sin θ̄) with

ε ≤ ρ and d(w, ∂Qr(x̂)) ≥ 20ε. (3.14)
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Indeed first assume ε ≤ ρ ≤ 20ε. Then replacing < in (i), (ii) by ≤, we deduce easily that the
amended (i), (ii), follow from ε-monotonicity of u in the directions given by Γ(en, θ̄). Moreover if
u(w) = 0 for some w as in (3.14) (i), then u ≤ 0 in an open neighborhood of z which contradicts
z ∈ F (u). Also, if u(w) = 0 for some w as in (3.14) (ii), then u ≡ 0 in Qr(x̂)∩B(z− ρen, ρ sin θ)
follows from the maximum principle for p-harmonic functions. If ρ > 20ε, then to prove (i), we
can use convexity of Qr(x̂) and choose successive points wj, 1 ≤ j ≤ k, on the ray from z to w
with w1 = z, wk = w, and ε < |wj+1−wj| ≤ 5ε, 1 ≤ j ≤ k− 1. Using ‘ε-monotonicity’ once again
it follows that u(wj) ≤ u(wj+1) and thereupon from the case ρ ≤ 20ε that u(w) > u(z). Hence
(i) is true. (ii) is proved similarly when ρ > 20ε, we omit the details.

Let C(en, θ̄) be the cone with axis parallel to en and of angle opening θ̄ (as in (1.5)). Put

Σ(x) = x+ C(en, θ̄) = {x+ ζ : ζ ∈ C(en, θ̄)}

Ω̆ =
⋃

x∈F (u)∩Q̄

Σ(x).

If y′ ∈ Rn−1 let τ(y′) = inf{yn : (y′, yn) ∈ Ω̆}. Then τ is Lipschitz with

‖τ‖Lip (Rn−1) ≤ tan(π/2− θ̄) < 1 and {(y′, τ(y′)) : y′ ∈ Rn−1} = ∂Ω̆. (3.15)

We claim that
h̆
(
F (u) ∩ Q̄, ∂Ω̆ ∩ Q̄

)
≤ ε. (3.16)

To prove claim (3.16) note from (3.14) with z = x̂ that for given y′ with |y′ − x̂′| ≤ r − 100ε,
we have E(y′) = F (u) ∩ {(y′, t) : |t − x̂n| ≤ r − 50ε} 6= ∅. If y = (y′, yn) ∈ E(y′), then from the
definition of τ, (3.14), and (3.15) we see that τ(y′) ≤ yn < r−100ε+x̂n. Next from a compactness
argument we find that (y′, τ(y′)) is in Σ̄(z) for some z ∈ F (u) ∩ Q̄. Now yn − τ(y′) ≤ ε since
otherwise y ∈ Q ∩ Σ(z), and yn − zn > ε which violates (3.14) (i). Since y ∈ E(y′) is arbitrary
we conclude the validity of (3.16) from this contradiction.

Let
Ω1 = {y ∈ Q : yn > τ(y′) + 2ε}

Ω2 = {y ∈ Q : yn > τ(y′)− 2ε}.
Then from (3.15), (3.16) we get

Ω1 ⊂ D+(u) ∩Q ⊂ Ω2. (3.17)

Let u1 be the p-harmonic function in Ω1 which is continuous in Ω̄1 with boundary values

(a) u1 ≡ 0 on ∂Ω1 ∩Q.

(b) u1(y) = u(y) when y ∈ ∂Ω1 ∩ ∂Q and yn ≥ τ(y′) + 3ε.

(c) u1(y) = (yn−2ε−τ(y′))
ε

u(y′, τ(y′) + 3ε) when y ∈ ∂Ω1 ∩ ∂Q
and τ(y′) + 2ε ≤ yn < τ(y′) + 3ε.

(3.18)

Let u2 be the p-harmonic function in Ω2 which is continuous in Ω̄2 with boundary values u2 = u+

on ∂Ω2. From the maximum principle for p-harmonic functions and (3.17) we deduce that

u1 ≤ u ≤ u2 in Ω1. (3.19)
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Let u3(x) = u2(x′, xn − 4ε) whenever x ∈ Ω1. Observe that u3 > 0 is p-harmonic in Ω1 with
u3 ≡ 0 on ∂Ω1 ∩Q. We claim that

u3 ≤ u1. (3.20)

The claim in (3.20) follows from the boundary maximum principle once we show that u3 ≤ u1

on ∂Ω1. In fact, if y ∈ ∂Ω1 ∩ ∂Q and yn ≥ τ(y′) + 3ε, then

u3(y) = u+(y′, yn − 4ε) ≤ u(y′, yn) = u1(y′, yn).

If y ∈ ∂Ω1 ∩ ∂Q and τ(y′) + 2ε ≤ yn < τ(y′) + 3ε or y ∈ ∂Ω1 ∩ Q, then u3(y) = 0 ≤ u1(y) as
we see from ε-monotonicity of u and the fact that F (u) is contained in the closure of Ω̆. Hence
(3.20) is valid. From (3.19), (3.20), we have

1 ≤ u/u1 ≤ u2/u3. (3.21)

Next we note from Lemma 2.2 that if x ∈ Ω1 ∩Qr/2(x̂) and d(x, F (u)) ≥ Aε, for some A ≥ 100,
then

0 ≤ u2(x)− u3(x) = u2(x′, xn)− u2(x′, xn − 4ε) ≤ cA−αu3(x) (3.22)

where c ≥ 1 and α > 0 depend only on p, n. Putting (3.21), (3.22) together we have

1 ≤ u/u1 ≤ 1 + cA−α. (3.23)

Finally we observe from Theorem 2.7 that there exist c = c(p, n) ≥ 1 and θ′ = θ′(p, n) ∈ (0, π/2)
such that

c−1 u1(x)/d(x, ∂Ω1) ≤ 〈∇u1(x), ξ〉 ≤ |∇u1(x)| ≤ c u1(x)/d(x, ∂Ω1) (3.24)

whenever x ∈ Ω1 ∩ Qr/c(x̂) and ξ ∈ Γ(en, θ
′). From (3.23), (3.24), we see that Lemma 2.10 can

be applied for A = A(p, n) large enough with v̂ = u1, û = u. Doing this we get Lemma 3.13 when
u(x) > 0.

Similarly, to prove Lemma 3.13 when u(x) ≤ 0, let

Σ̃(w) = w + C(−en, θ̄),

Ω̃ =
⋃

w∈Q̄∩F (u)

Σ̃(w)

and for y′ ∈ Rn−1 let τ̃(y′) = sup{yn : (y′, yn) ∈ Ω̃}. Then (3.15) holds with τ replaced by τ̃ .
Also (3.16) is true with Ω̆ replaced by Ω̃, as follows from an argument similar to the one used
earlier for (3.16). Let

Ω̃1 = {y ∈ Q : yn < τ̃(y′) + 2ε}

Ω̃2 = {y ∈ Q : yn < τ̃(y′)− 2ε}.
Then from the new versions of (3.15), (3.16), we see that

Ω̃2 ⊂ Q \ D̄+(u) ⊂ Ω̃1.

From this relationship and (3.14) we see that either u ≡ 0 on Ω̃2 or u(x) < 0 whenever x ∈ Ω̃2. If
u ≡ 0 on Ω̃2, then Lemma 3.13 is trivially true. Otherwise we can repeat the argument following
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(3.17) to (3.24) with u,Ω1,Ω2, replaced by −u, Ω̃2, Ω̃1, respectively. The proof of Lemma 3.13 is
now complete. 2

Finally in this section we prove the following lemma.

Lemma 3.25. Let u,D,G, θ̄, be as in Theorem 1. Assume x̂ ∈ F (u) and Q̄r(x̂) ⊂ D. Then there
exist ε̆ = ε̆(p, n) > 0 and c̆ = c̆(p, n) ≥ 1, such that if 0 < ε ≤ ε̆, then 〈∇u(x), ξ〉 ≥ 0 whenever
r ≥ c̆3 ε, x ∈ Qr/c̆(x̂), ξ ∈ Γ(en, θ̄), and c̆ε ≤ d(x, F (u)).

Proof. Fix ξ ∈ Γ(en, θ̄), suppose r ≥ c4
∗ε, and w ∈ Qr/c2∗(x̂) with c2

∗ε ≤ d(w,F (u)) where c∗
is the constant in Lemma 3.13. Put d(w,F (u)) = 5Aε and note from Lemma 3.13, as well as
Harnack’s inequality for p-harmonic functions, that

(cAε)−1u(w) ≤ c|∇u(y)| ≤ c2uyn(y) ≤ c3(Aε)−1u(w) (3.26)

for some c = c(p, n) whenever y ∈ B(w, 4Aε). If η ∈ [1, A) is fixed and ξ ∈ Γ(en, θ̄), set

eη(x) = u(x+ ηεξ + w)− u(x+ w) whenever x ∈ B(0, 3Aε).

From (3.26), (2.11) - (2.15), as well as Lemma 2.5, we see that

0 = L̂e(y) =
n∑

i,j=1

∂

∂yi
( b̂ij(y)(eη)yj(y) ) = 0 whenever y ∈ B(0, 3Aε), (3.27)

where, if u(y, τ) = τu(y + ηεξ + w) + (1− τ)u(y + w), for τ ∈ [0, 1] and y ∈ B(0, 3Aε), then

b̂ij(y) =

1∫
0

bij(y, τ)dτ, where

bij(y, τ) = |∇u(y, τ)|p−4((p− 2)uyi(y, τ)uyj(y, τ) + δij|∇u(y, τ)|2). (3.28)

Let b̃ij = (Aε/u(w))p−2b̂ij. Then as in (2.16), (2.17), we see from (3.26) that (b̃ij) are uniformly
elliptic and bounded with constants depending only on p, n. Also from Lemma 2.5 and (3.26) we
see, for a given positive integer k, that

|Dkb̃ij(y)| ≤ c(Aε)−k for y ∈ B(0, 2Aε), 1 ≤ i, j ≤ n, (3.29)

where c = c(p, n, k) and Dk denotes an arbitrary k-th order derivative. Next observe from ‘ε-
monotonicity’ that eη ≥ 0 in B(0, 3Aε). To continue, using (3.26) - (3.29), the above observations,
basic Schauder type estimates, and Harnack’s inequality for uniformly elliptic PDE in divergence
form we get, for some c = c(p, n) ≥ 1 and η ∈ [2, 3], that

|∇eη(0)| ≤ ceη(0)/(Aε) ≤ c2e1(0)/(Aε) . (3.30)

Moreover,

c−1e1(0) ≤ e1(2εξ) = u(3εξ + w)− u(2εξ + w) = ε

3∫
2

〈∇u(ηεξ + w), ξ〉dη. (3.31)
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(3.31) can be rewritten using that 〈∇eη(0), ξ〉 = 〈∇u(ηεξ + w), ξ〉 − 〈∇u(w), ξ〉. Doing this we
find that

c̃−1e1(0) ≤ ε

3∫
2

〈∇eη(0), ξ〉dη + 〈∇u(w), ξ〉. (3.32)

where c̃ ≥ 1 depends only on p, n. Using (3.30) to make simple estimates in (3.32) we can conclude
that

c̄−1e1(0) ≤ c2

A
e1(0) + 〈∇u(w), ξ〉. (3.33)

In particular, if A = A(p, n) is large enough, and 0 < ε ≤ ε̆ small enough, then 〈∇u(w), ξ〉 ≥ 0
whenever ξ ∈ Γ(en, θ̄). This completes the proof of Lemma 3.25. 2

4 Proof of Theorem 1

In this section we prove Theorem 1. To begin the proof, recall that u is p-harmonic, for some
fixed p, 1 < p < ∞, and that u is ε-monotone in D ⊃ Q̄1(0), in the spherical cap of directions,
Γ(en, θ̄), for some fixed θ̄ ∈ (π/4, π/2). Also u is a weak solution to the free boundary problem
in (1.3), as defined in Definition 1.4. In view of Lemmas 3.13, 3.25, we may assume, without loss
of generality, that for some constants A ≥ 1000, θ′ ∈ (0, π/2) , ε0 > 0, depending only on p, n,
that

A−1|u|(x)/d(x, F (u)) ≤ |∇u(x)| ≤ A〈∇u(x), ξ〉 ≤ A2|u|(x)/d(x, F (u)) (4.1)

whenever x ∈ Q1(0), ξ ∈ Γ(en, θ
′), and d(x, F (u)) ≥ Aε, 0 < ε ≤ ε0. Also,

〈∇u(x), ξ〉 ≥ 0 whenever ξ ∈ Γ(en, θ̄) and x ∈ Q1(0) with d(x, F (u)) ≥ Aε. (4.2)

Indeed, otherwise we consider u∗(x) = u(x̂ + x/c), x ∈ Q1(0), for fixed x̂ ∈ F (u) ∩ Q1/2(0)
and c ≥ 1 large. Then u∗ is p-harmonic in Q1(0) \ F (u∗) as we see from translation and
dilation invariance of the p-Laplacian. Also for c = c(p, n) large enough, u∗ satisfies (4.1), (4.2)
with u replaced by u∗ thanks to Lemmas 3.13, 3.25 (provided ε0, 1/A are sufficiently small).
Finally u∗ is a weak solution to the free boundary problem in (1.3), as stated in Definition
1.4, with G replaced by G∗ where G∗(s) = c−1G(cs), s ∈ [0,∞). Proving Theorem 1 for u∗

and translating back we get that F (u) ∩ Q1/(2c)(x̂) is the graph of a Lipschitz function. Using
this result and covering Q̄1/2(0) by cylinders of the form Q1/(2c)(x̂), x̂ ∈ F (u) ∩ Q1/2(0) we
get Theorem 1. Hence throughout the proof of Theorem 1 we assume that (4.1), (4.2) hold.
Let O = OA = {x ∈ Q1(0) : d(x, F (u)) > 2Aε} for A large and note that (4.2) implies, for
A = A(p, n) large enough, that

u is monotone in O = OA in the spherical cap of directions Γ(en, θ̄). (4.3)

Thus we may also assume that (4.3) holds. From (3.15), (3.16) with Q = Q1−100ε,1−50ε(0), we see
that there exists a Lipschitz function τ : Rn−1→R with

‖τ‖Lip (Rn−1) < 1 and h̆(F (u) ∩Q, {(y′, τ(y′) : y′ ∈ Rn−1} ∩Q) ≤ ε.
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Convoluting τ with a suitable approximate identity on Rn−1 we get τ̃ ∈ C∞(Rn−1) with

h̆(F (u) ∩Q, {(y′, τ̃(y′)) : y′ ∈ Rn−1} ∩Q) ≤ 2ε while

‖τ̃‖Lip (Rn−1) < 1 and ‖Dkτ̃‖L∞(Rn−1) ≤ (cε)1−k for k ≥ 2.

(4.4)

Here c = c(p, n, k) and Dk denotes an arbitrary k-th order derivative of τ̃ . As in Lemma 3.7 set

Λ(h) = {(x′, xn) ∈ Rn : |xn − τ̃(x′)| < h} ∩ Q̄2,8(0).

Using Lemma 3.7 with λ = τ̃ ,M = 1, β = 1/2, and h = 100Aε, we get {φt(x), x ∈ Λ(h), 0 ≤ t ≤
1} satisfying (i)− (v) of this lemma. Next let µ = µ(p, n) > 0 be the constant in Lemma 3.7 (i)
and let γ ∈ [7/8, 1) be the smallest number such that

k(γ) =
γ sin θ̄

sin θ̄ − 1 + γ
≤ 1 + µ. (4.5)

Since k is decreasing on [7/8, 1] with k(1) = 1 it is easily seen that 1 < k(γ) = min(k(7/8), 1+µ).
Also using θ̄ ∈ (π/4, π/2), one deduces

1/2 < sin θ̄ + γ − 1 < 1. (4.6)

Let ε′ ∈ (ε, 2ε) and put σ = ε′(sin θ̄ + γ − 1). Observe from (4.6) that σ ∈ (ε′/2, ε′). Also set

vt(x) = max
y∈B(x,σφt(x))

u(y − γε′en) whenever B̄(x, σφt(x)) ⊂ Q1(0), t ∈ [0, 1].

From (i)− (iii) of Lemma 3.7 and Lemma 3.4 we deduce that vt is p-subharmonic in (Λ(h/2) ∩
Q1−8ε(0)) \ F (vt) for 0 ≤ t ≤ 1. Also note from Lemma 3.7, with β = 1/2, h = 100Aε, and the
above observation, that

ε′/2 ≤ σφt ≤ cε and σ|∇φt| ≤ cε1/2 on Λ(h), (4.7)

for some c = c(p, n) ≥ 1. Using (4.7) we first see that

1

1 + σ|∇φt|(x)

(
sin θ̄ − ε′

2σφt(x)
(cos θ̄)2 − σ|∇φt|(x)

)
≥ 1

1 + cε1/2
(sin θ̄ − (cos θ̄)2 − cε1/2) > 0, (4.8)

for ε0 sufficiently small, 0 < ε ≤ ε0, whenever x ∈ Λ(h) ∩Q2,8(0). Hence, using Lemma 3.6 with
ε replaced by ε′, we deduce the existence of θ′, 0 < θ′ ≤ θ̄, such that

vt is monotone in Λ(h/2) ∩Q1−8ε(0) in the set of directions Γ(en, θ
′) while

F (v) ∩ Λ(h/2) ∩Q1−8ε(0) is the graph of a Lipschitz function with norm ≤ c cot θ′.
(4.9)

Let Ω = Λ(h/2) ∩Q1−h(0) where once again h = 100Aε. From Lemmas 3.4 and 3.7 we see that
vt is p-subharmonic in Ω \ F (vt). Next we prove the following lemma.
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Lemma 4.10. If ε0 > 0 is small enough, then there exists c′ ≥ 1, depending only on p, n, θ̄, such
that if

1 + µt̄ =
γ(sin θ̄ − c′ε1/4)

sin θ̄ − 1 + γ
,

then t̄ ∈ (0, 1), and for t ∈ [0, t̄],

(+) vt ≤ u on ∂Ω and vt ≤ (1− ε1/4)u on Ω̄ \ Λ̄(h/16),

(++) u > 0 on F (vt) ∩ Ω̄ \Q1−h1/2(0) = F (v0) ∩ Ω̄ \Q1−h1/2(0).

Proof. From basic geometry and the definition of σ we note that

B(x− γε′en, ε′(sin θ̄ + γ − 1)) = B(x− γε′en, σ) ⊂ B(x− ε′en, ε′ sin θ̄). (4.11)

From (4.11), Lemma 3.7 (i), (iv), and ε-monotonicity of u in the spherical cap of directions Γ(en, θ̄)
we have v0 ≤ u in Ω̄ and vt ≡ v0 in Ω̄ \Q1−h1/2(0). Also u(x) > 0 whenever x ∈ F (v0) ∩ Ω̄, since
otherwise we could use ε′ ∈ (ε, 2ε) and argue as in the proof of (3.14) (i) to get a contradiction.
Using these facts it is easily seen that (++) of Lemma 4.10 is valid and vt ≤ u on Ω̄ \Q1−h1/2(0).
To complete the proof of Lemma 4.10 suppose x ∈ Ω̄ \ Λ̄(h/16). Then from (4.3) we see that

a = max
y∈B̄(x,γε′ sin θ̄)

u(y − γε′en) ≤ u(x). (4.12)

From (4.12), Lemma (3.7) (i), and our choice of t̄, we deduce that

vt(x) ≤ vt̄(x) ≤ max
y∈B̄(x,σ(1+µt̄))

u(y − γε′en) = max
y∈B̄(x,γε′(sin θ̄−c′ε1/4))

u(y − γε′en) = b. (4.13)

Finally from (4.12), (4.13), and (4.1) we get, for some c = c(p, n), that

b ≤ a− c′ε5/4u(x)

cε
≤ (1− ε1/4)u(x) whenever x ∈ Ω̄ \ Λ̄(h/16),

provided c′ is large enough. The proof of Lemma 4.10 is now complete. 2

To complete the proof of Theorem 1 we use, as in [C1, C2], a method of continuity type
argument. In particular, let

Θ = {t : t ∈ [0, t̄], vt ≤ u on Ω}

where t̄ is as stated in Lemma 4.10. We will prove that

Θ = [0, t̄]. (4.14)

To proceed we first note that 0 ∈ Θ as we pointed out after (4.11). Moreover, the continuity of u
and vt imply that Θ is closed. Thus to prove (4.14) it suffices to prove that Θ is relatively open.
Note that if t ∈ Θ, then D+(vt) = {x ∈ Ω : vt(x) > 0} ⊆ D+(u). Also from Lemma 4.10 (++)
we see, for 0 ≤ t ≤ t̄, that F (vt) ∩ Ω \ Q1−h1/2(0) lies strictly above F (u) ∩ Ω \ Q1−h1/2(0) and
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hence the two sets have an empty intersection. Also vt ≤ u on ∂Ω and F (v0) ∩ F (u) = ∅. Since
vt is p-subharmonic in Ω \ F (vt) it follows that either (4.14) is true or there exists t ∈ Θ with

F (u) ∩ F (vt) ∩ Ω ∩ Q̄1−h1/2(0) 6= ∅. (4.15)

To get a contradiction to (4.15) suppose w̃ ∈ F (u)∩F (vt)∩ Q̄1−h1/2(0). From Lemma 3.5 we
see that there exists w∗ ∈ D+(vt), and ρ∗ > 0 such that B(w∗, ρ∗) ⊂ D+(vt) with w̃ ∈ ∂B(w∗, ρ∗).
Moreover if ν̃ = (w∗ − w̃)/|w∗ − w̃|, then there exist ᾱ, β̄,∈ [0,∞), such that

vt(x) ≥ ᾱ〈x− w̃, ν̃〉+ − β̄〈x− w̃, ν̃〉− + o(|x− w̃|), (4.16)

near w̃. Furthermore,

ᾱ

1− σ|∇φt(w̃)|
≥ G

(
β̄

1 + σ|∇φt(w̃)|

)
. (4.17)

Since D+(vt)∩Ω ⊂ D+(u)∩Ω, we see that B(w∗, ρ∗) is also a tangent ball for D+(u). Using the
fact that u is a weak solution to the free boundary problem in (1.3), as defined in Definition 1.4,
we obtain

u(x) = α〈x− w̃, ν̃〉+ − β〈x− w̃, ν̃〉− + o(|x− w̃|), (4.18)

as x→w̃, for some α, β ∈ [0,∞) with α = G(β).
We claim that

0 ≤ ᾱ ≤ α(1− ε1/4/c) (4.19)

for some c = c(p, n, θ̄) ≥ 1. (4.16)-(4.19) easily lead to a contradiction. In fact, from (4.16),
(4.18), and t ∈ Θ we see that ᾱ ≤ α while β ≤ β̄. Using the assumptions on G in Theorem 1,
(4.17), (4.19), and Lemma 3.7 (ii) we find that if β̄ 6= 0, then

G(β) ≤ G(β̄) ≤ β̄N
(

β̄
1+σ|∇φt(w̃)|

)−N
G

(
β̄

1+σ|∇φt(w̃)|

)

≤ (1 + σ|∇φt(w̃)|)N

1− σ|∇φt(w̃)|
ᾱ ≤ (1 + cε1/2)N

1− cε1/2
ᾱ < α,

(4.20)

provided ε0 is small enough, thanks to (4.19). If β̄ = 0, we can omit the second inequality in
(4.20) and still get G(0) = G(β) < α. Since α = G(β), we have reached a contradiction in either
case. Thus (4.14) follows from (4.19).

As for claim (4.19) we first observe from (4.9) that there exists λ : Rn−1→R, with ‖λ‖Lip (Rn−1) ≤
tan(π/2− θ′), such that

F (vt) ∩ Ω = {(x′, xn) : xn = λ(x′)}. (4.21)

Also, from the definition of vt, and ε-monotonicity of u in the cap of directions Γ(en, θ̄), we
deduce that

h̆(F (vt) ∩ Ω̄, F (u) ∩ Ω̄) ≤ 8ε and hence F (vt) ∩ Ω̄ ⊂ Λ(h/100). (4.22)
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Let U = Ω∩D+(vt) and let f1 be the p-harmonic function in U with continuous boundary values

(a) f1(x′, λ(x′)) ≡ 0 when x = (x′, xn) ∈ F (vt) ∩ ∂U,

(b) f1(x) ≡ vt(x) for x ∈ ∂U ∩ ∂Q1−h(0) ∩ {x = (x′, xn) : xn ≤ λ(x′) + h/8},

(c) f1(x) = min{max(vt(x), α1(x)), (1− ε1/4)u(x)} for x = (x′, xn) ∈ ∂U ∩ ∂Q1−h(0)
and h/8 < xn − λ(x′) ≤ h/4, where α1(x′, xn) = vt(x

′, λ(x′) + h/8)

+ 8(xn−λ(x′)−h/8)
h

[
(1− ε1/4)u(x′, λ(x′) + h/4)− vt(x′, λ(x′) + h/8)

]
(d) f1(x′, xn) = (1− ε1/4)u(x′, xn) when x ∈ ∂U and xn > λ(x′) + h/4.

(4.23)

Next let f2 be the p-harmonic function in U with continuous boundary values,

(a) f2(x′, λ(x′)) ≡ 0 when x = (x′, xn) ∈ F (vt) ∩ ∂U,

(b) f2(x) ≡ vt(x) for x ∈ ∂U ∩ ∂Q1−h(0) ∩ {x = (x′, xn) : xn ≤ λ(x′) + h/8},

(c) f2(x) = min{max(vt(x), α2(x)), u(x)} for x = (x′, xn) ∈ ∂U ∩ ∂Q1−h(0)
and h/8 < xn − λ(x′) ≤ h/4, where α2(x′, xn) = vt(x

′, λ(x′) + h/8)

+ 8(xn−λ(x′)−h/8)
h

[u(x′, λ(x′) + h/4)− vt(x′, λ(x′) + h/8)]

(d) f2(x′, xn) = u(x′, xn) when x ∈ ∂U and xn > λ(x′) + h/4.

(4.24)

From (4.22), (4.23) and (+) of Lemma 4.10 we see that vt ≤ f1 ≤ f2 ≤ u on ∂U. Since vt is
p-subharmonic it follows from the boundary maximum principle for p-harmonic functions that

vt ≤ f1 ≤ f2 ≤ u in U. (4.25)

From Theorem 2.6 we see that

χ = lim
x→w̃
x ∈ U

f1(x)

f2(x)
exists. (4.26)

Using (4.25), (4.26), (4.16), and (4.18) we deduce that

ᾱ ≤ lim inf
t→0

t−1vt(w̃ + tν̃) ≤ lim inf
t→0

t−1f1(w̃ + tν̃) ≤ χ lim inf
t→0

t−1f2(w̃ + tν̃) ≤ χα. (4.27)

From (4.27) we conclude that in order to prove (4.19), and thus complete the proof of (4.14), we
only need to prove that

χ ≤ 1− ε1/4/c̆ (4.28)

for some c̆ = c̆(p, n, θ̄). To prove (4.28) we note from Theorem 2.9, with r = Aε, û = f2, v̂ = f1,
and the observation following that theorem, that we have

f2(x)− f1(x)

f2(x)
≥ c−1f2(w̃ + Aεen/c)− f1(w̃ + Aεen/c)

f2(w + Aεen/c)
=: Ĉ
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whenever x ∈ B(w̃, Aεen/c
2). Letting x→w̃ in the last display it follows that 1 − χ ≥ Ĉ. Thus

to get (4.28) it suffices to show that
Ĉ ≥ c̃−1ε1/4 (4.29)

for some c̃ having the same dependence as c̆ in (4.28). To prove (4.29) we would like to use the fact
that f2−f1 = ε1/4u on ∂U ∩∂Λ(h/2) as well as an iterative argument using a Harnack inequality
for f2 − f1. Unfortunately however we do not know if the lefthand inequality in (2.11) holds for
either v̂ = f1 or v̂ = f2 in a Harnack chain of balls connecting points in U near ∂U ∩ ∂Λ(h/2) to
w̃+Aεen/c. Thus for some balls in our Harnack chain we are not able to control the ellipticity in
the PDE satisfied by f2−f1 (see (2.14)-(2.16)). To overcome this difficulty we introduce another
p-harmonic function f which is continuous in Ū and satisfies

(a) f(x′, λ(x′)) ≡ 0 when x = (x′, xn) ∈ F (vt) ∩ ∂U,
(b) f(x) ≡ 0 for x ∈ ∂U ∩ ∂Q1−h(0) ∩ {x = (x′, xn) : xn ≤ λ(x′) + h/8},

(c) f(x′, xn) = min

{
(1− ε1/4)u(x′, xn),

8(xn − λ(x′)− h/8)

h

[
(1− ε1/4)u(x′, λ(x′) + h/4)

]}
when x ∈ ∂U ∩ ∂Q1−h(0) and h/8 < xn − λ(x′) ≤ h/4,

(d) f(x′, xn) = (1− ε1/4)u(x′, xn) when x ∈ ∂U and xn > λ(x′) + h/4. (4.30)

Observe from (4.30) that
0 ≤ f ≤ min{(1− ε1/4)u, f1} (4.31)

on ∂U . Hence, by the maximum principle for p-harmonic functions (4.31) also holds in U. To
prove (4.29), and thus finally get (4.19), we prove that

f2(w̃ + Aεen/c)− f(w̃ + Aεen/c)

f2(w̃ + Aεen/c)
≥ ε1/4/c and

f1(w̃ + Aεen/c)− f(w̃ + Aεen/c)

f2(w̃ + Aεen/c)
≤ ε (4.32)

for some c = c(p, n, θ̄) ≥ 1. To do this we first assert that

|∇f(x)| ≥ ∂f

∂xn
(x) ≥ c−1f(x)/h whenever x ∈ U (4.33)

for some c = c(p, n) ≥ 1 is large enough. Indeed, for given 0 < δ < 10−3h, let

Dδf(x) =
f(x+ δen)− f(x)

δ
and Uδ = {x ∈ U : x+ δen ∈ U}.

To prove (4.33) we start by comparing the values of Dδf and f on ∂Uδ. Note from (4.31) that
Dδf ≥ 0 = f on F (vt) ∩ Q̄1−h(0). We observe from (4.22) and h = 100Aε, that (4.1) holds at
points x ∈ ∂U ∩ ∂Q1−h(0) with xn ≥ λ(x′) + h/16. Using this observation and (4.31) we see that
if x ∈ ∂Uδ ∩ ∂Λ(−δ + h/2), then

Dδf(x) =
(1− ε1/4)u(x+ δen)− f(x)

δ

≥ (1− ε1/4)[u(x+ δen)− u(x)]

δ
≥ c−1u(x)/h ≥ c−1f(x)/h.
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Moreover, if x ∈ ∂Uδ ∩ ∂Q1−h(0) and λ(x′) + h/8 < xn, then we deduce from (4.1) and the
definition of f that xn→f(x′, xn) is an increasing Lipschitz function, hence absolutely continuous,
and

∂f

∂xn
(x′, xn) ≥ c−1u(x)/h ≥ c−1f(x)/h,

almost everywhere with respect to one dimensional Lebesgue measure. Integrating this inequality
and using Harnack’s inequality we deduce that

Dδf(x) ≥ c−1f(x)/h (4.34)

whenever x = (x′, xn) ∈ ∂Uδ ∩ ∂Q1−h(0) and xn > λ(x′) + h/8. Finally, if x ∈ ∂Uδ ∩ ∂Q1−h(0),
and xn ≤ λ(x′) + h/8, then f(x) = 0, Dδf ≥ 0. We now conclude that (4.34) holds on ∂Uδ and
thereupon, by the maximum principle for p-harmonic functions, that (4.34) holds in Uδ. Letting
δ→0 we obtain from (4.34) that assertion (4.33) is true.

To continue our proof of (4.32) recall that ∂U ∩ ∂Λ(h/2) = {x : xn = τ̃(x′) +h/2} and that τ̃
satisfies (4.4). Given x̂ ∈ ∂U∩∂Λ(h/2)∩Q1−2h putG = {y ∈ B(0, 1) : x̂+(h/4)y ∈ U∩B(x̂, h/4)}
and Γ = {y ∈ B(0, 1) : x̂+(h/4)y ∈ ∂U∩B(x̂, h/4)}. If f ′ ∈ {f, f1, f2}, set f ′′(y) = f ′(x̂+(h/4)y)
and u′(y) = u(x̂ + (h/4)y), y ∈ G. From (4.4) we see that Γ ∩ B(0, 1) is C2 with C2-constants
depending only on p, n. Also, from (4.1) and Lemma 2.5 we see for k a positive integer that u′

has continuous k-th order derivatives in Ḡ, with L∞-norm bounded by cu(x̂) where c depends
only on p, n, k. Using these facts we deduce that Theorem 1 in [Li] can be applied to conclude
that f ′′ has a Hölder continuous extension to Ḡ ∩ B(0, 1/2). In particular, |∇f ′′| ≤ cu(x̂) in
G ∩B(0, 1/2). Transferring this inequality to f ′ we conclude that

|∇f ′| ≤ cu(x̂)/h in U ∩B(x̂, h/8) whenever f ′ ∈ {f, f1, f2}. (4.35)

We observe from the boundary values of f, (4.35), and the mean value theorem from elementary
calculus that, for some c̃ = c̃(p, n),

u(y)/c̃ ≤ u(x̂) ≤ c̃ f(y) whenever y ∈ U ∩B(x̂, h/c̃). (4.36)

Let x̄ ∈ F (vt) with x̄′ = x̂′. Then from Theorem 2.6, (4.25), and (4.31) we see, for some
c = c(p, n), that

1 ≤ f2

f
≤ c

u(x̄+ enh/c)

f(x̄+ enh/c)
on B(x̄, h/c).

Also from Harnack’s inequality and (4.36) we find that

u(x̄+ hen/c)

f(x̄+ hen/c)
≤ c+

where c+ = c+(p, n). Combining the above inequalities and using arbitrariness of x̂, it follows
that

1 ≤ f2(x)

f(x)
≤ c′ whenever x ∈ U ∩Q1−2h(0). (4.37)

Again c′ = c′(p, n). Similarly from (4.33), (4.35), (4.36), and Theorem 2.7 we deduce that

c−1 f(x)

d(x, F (vt))
≤ |∇f(x)| ≤ c

f(x)

d(x, F (vt))
whenever x ∈ U ∩Q1−2h(0). (4.38)

25



Now

|∇f2(x)| ≤ c
f2(x)

d(x, F (vt))
whenever x ∈ U ∩Q1−2h(0) (4.39)

as follows from (4.35) and Lemma 2.5. Let e = f2 − f. From (4.37)- (4.39) and (2.12) - (2.17)
with û = f2, v̂ = f we see that e satisfies a locally uniformly elliptic divergence form PDE in
U for which solutions satisfy a Harnack inequality as in Lemma 2.18. Moreover, this PDE is
uniformly elliptic in U ∩B(x̂, h/8) whenever x̂ ∈ ∂U ∩ ∂Λ(h/2). Using results for such solutions
similar to those in Lemma 2.3 (see [CFMS]), and examining the boundary values of e, we deduce
that c e ≥ ε1/4u(x̂) on U ∩ B(x̂, h/8). Let x̂ ∈ ∂U ∩ ∂Λ(h/2), with x̂′ = w̃′, where w̃ is as in
(4.32). Then from the above deduction, Harnack’s inequality for e, (4.36), and (4.37), we get for
A, c as in (4.32) that

e(w̃ + Aεen/c)/f2(w̃ + Aεen/c) ≥ c−1ε1/4 (4.40)

which is the lefthand inequality in (4.32).
To prove the righthand inequality in (4.32), let i be a positive integer and let Mi denote

the maximum of ē = f1 − f in Ū ∩ Q̄1−ih(0) for 1 ≤ i ≤ h−1/2. We next prove, for some
η = η(p, n), 0 < η < 1, that

M1 ≤ cu(en/2) and Mi+1 ≤ ηMi whenever 2 ≤ i+ 1 ≤ h−1/2. (4.41)

The lefthand inequality in (4.41) follows from (4.25), (4.31), and ε-monotonicity of u in the
directions Γ(en, θ̄). To prove the righthand inequality in (4.41) we note from (4.25) that (4.37)
holds with f2 replaced by f1. Also (4.39) is valid with f2 replaced by f1. Arguing as below (4.39)
we see that ē satisfies a locally uniformly elliptic PDE for which positive solutions satisfy a
Harnack inequality as in Lemma 2.18. Moreover, if x̂ ∈ Q̄1−(i+1)h(0)∩∂Λ(h/2), then this PDE is
uniformly elliptic in U ∩B(x̂, h/8) and ē ≡ 0 on ∂U ∩B(x̂, h/8). We can now conclude, arguing
as in [CFMS], that ē is Hölder continuous in a neighborhood of x̂. In particular, there exists
c = c(p, n) ≥ 1 such that

ē(x) ≤Mi/2 whenever x ∈ U ∩B(x̂, h/c). (4.42)

Let x̄ ∈ F (vt) with x̄′ = x̂′. Then from Theorem 2.9 applied to ē, f1 we have

c−1 ē(x)

f1(x)
≤ ē(x̄+ hen/c)

f1(x̄+ hen/c)
≤ cMi

f1(x̄+ hen/c)

for some c = c(p, n) and x ∈ B(x̄, h/c). From this display, and Lemma 2.3 and Lemma 2.4 for
f1, we deduce, for some c′ = c′(p, n) ≥ 1, that

ē(x) ≤Mi/2 whenever x ∈ U ∩B(x̄, h/c′). (4.43)

Let E = Mi− ē. Using (4.42), (4.43), and Harnack’s inequality for E we conclude that E ≥Mi/c
on U ∩ ∂Q1−(i+1)h(0) for some c = c(p, n) ≥ 1. Thus ē ≤ (1− 1/c)Mi holds on U ∩ ∂Q1−(i+1)h(0).
Since ē ≡ 0 on the rest of the boundary of U∩Q1−(i+1)h(0) it follows once again from the boundary
maximum principle for p-harmonic functions that the righthand inequality in (4.41) is true.
Finally we use (4.41) to prove the righthand inequality in (4.32). Recall that w̃ ∈ Ū ∩Q1−h1/2(0).
Using this fact and iterating (4.41) we see for some c∗ = c∗(p, n) ≥ 1 that

ē(w̃ + Aεen/c) = (f2 − f1)(w̃ + Aεen/c) ≤ exp [−1/(c∗h1/2)] u(en/2) (4.44)
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where c is the constant in (4.32). From Harnack’s inequality we deduce, for some c̃ = c̃(p, n),
that

u(en/2) ≤ ε−c̃u(w̃ + Aεen/c). (4.45)

Combining (4.44), (4.45) we get for ε0 sufficiently small that

ē(w̃ + Aεen/c) ≤ ε2u(w̃ + Aεen/c) ≤ εf2(w̃ + Aεen/c),

where the last inequality follows from the display above (4.37). Thus the righthand inequality
in (4.32) is valid for sufficiently small ε > 0. . From earlier work we can now conclude first the
validity of (4.32) and then that (4.19) is valid. Finally, we get (4.14) from (4.19) as we proved
after that display.

Proof of Theorem 1. The rest of the proof of Theorem 1 follows as in [C2, section 7]. More
specifically, from (4.14) we have vt̄ ≤ u whenever x ∈ U. In view of the definition of t̄, γ, and
Lemma 3.7 (v), we deduce the existence of θ∗, c∗ = c∗(p, n, θ̄) ≥ 1, such that 0 ≤ θ̄ − θ∗ ≤ c∗ε

1/4

and

max
B(x,γε′ sin θ∗)

u(y − γε′en) ≤ u(x) whenever x ∈ U ∩Q1−4h1/2(0) and ε′ ∈ (ε, 2ε). (4.46)

Clearly (4.46) and (4.2) imply, for ε0 = ε0(p, n, θ̄) > 0 sufficiently small, that u is (γε)-monotone
in Q1(0) in the directions Γ(en, θ

∗). We can now proceed by an iterative argument to obtain
Theorem 1. That is, we repeat the argument in section 4 with ε replaced by γε and Q1(0)
replaced by Q1−8h1/2(0) to get that u is (γ2ε)-monotone, in a certain cap of directions in Qρ(0)
where ρ = 1−8h1/2−8(γh)1/2, etcetera. On the surface each iteration may yield constants which
depend on the angle opening of the cap yielding the directions of monotonicity. However these
constants can also be chosen to depend only on θ̄ as we could have chosen the constants in each
iteration to depend only on θ̄1 = θ̄

2
+ π

8
(since Γ(en, θ̄1) ⊂ Γ(en, θ̄)) provided we first choose ε0 so

small that for the new c∗ above (4.46) we have

c∗ε
1/4

∞∑
m=0

γm/4 <
θ̄

2
− π

8
.

Since θ̄1 = θ̄1(θ̄) it follows that we can choose all constants to depend only on θ̄. Continuing the
induction or iterative process we eventually conclude that u is η monotone in the cap Γ(en, θ̄1)
in Q1/2(0) whenever η > 0. Clearly this conclusion implies that u is monotone in Q1/2(0). The
proof of Theorem 1 is now complete. 2

5 Proof of Theorem 2 and Corollary 1

To begin the proof of Theorem 2 we remark that much of the proof of Theorem 1 remains
valid (with modest changes) under the weaker assumption that u+ is ε-monotone in D. More
specifically Lemma 3.13 remains valid under the additional assumption that u(x) > 0. In fact,
arguing as in (3.14) - (3.16) we get τ : Rn−1→R such that if Ω̆ = {(x′, xn) : xn > τ(x′)}, then

(+) h̆
(
F (u) ∩ Q̄, ∂Ω̆ ∩ Q̄

)
≤ ε,

(++) ‖τ‖Lip (Rn−1) ≤ tan(π/2− θ̂) << 1,
(5.1)
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where Q = Q1−100ε,1−50ε(0). Using this fact and repeating the argument from (3.17) to (3.24) we
get Lemma 3.13 when u(x) > 0. Also, Lemma 3.25 holds (under the assumptions of Theorem
2) with θ̄ replaced by θ̂ when u(x) > 0. Using the amended form of these lemmas we can now
assume, as in section 4 (see the remark after (4.2)), that for some A ≥ 1000, θ′ ∈ (0, π/2), ε̂ > 0
that

A−1u(x)/d(x, F (u)) ≤ |∇u(x)| ≤ A〈∇u(x), ξ〉 ≤ A2u(x)/d(x, F (u)) (5.2)

whenever x ∈ D+(u) ∩Q1(0), ξ ∈ Γ(en, θ
′), and d(x, F (u)) ≥ Aε, 0 < ε ≤ ε̂. Furthermore,

〈∇u(x), ξ〉 ≥ 0 whenever ξ ∈ Γ(en, θ̂), and x ∈ D+(u) ∩Q1(0) with d(x, F (u)) ≥ Aε. (5.3)

We can now repeat, essentially verbatim, the argument leading to (4.19). Unfortunately however,
in this case, we cannot use (4.19) to obtain the contradiction in (4.20). In fact we only have
v+
t ≤ u+ so we do not know that β ≤ β̄. To overcome this obstacle we follow closely the proof

scheme in [C2], [W1]. Indeed, if M = max
Q̄1(0)

u−, then we first prove the following.

Lemma 5.4. Under the assumptions in Theorem 2, there exists ε̃ > 0, θ̃ ∈ (3π/8, π/2), a >
0, c ≥ 1, all depending only on p, n, such that if 0 < ε ≤ ε̃, θ̃ ≤ θ < π/2, and u−(−en/2) ≥Mε1/2,
then u is εa-monotone in Q3/4(0) ∩ {y : yn ≥ −1/c} in the cap of directions Γ(en, 5π/16).

Proof. Let τ be as in (5.1) and for z = (z′, τ(z′) + 2ε) ∈ D+(u) ∩Q7/8(0) let K(z) be the set of

all points in Q1(0) that are not in the closure of the cone z + C(en, θ̃). Observe from (5.1) that
D−(u) ∩ Q1(0) ⊂ K(z). Let h be the p-harmonic function in K(z) with continuous boundary
values u− on ∂K(z). If y = z − tεen ∈ D−(u) ∩ Q7/8(0), where −3 ≤ t ≤ 3, then from Lemma

2.19 and Theorem 2.6 we see, for some c = c(p, n), b = b(p, n, θ̃) ≥ 1, that

u−(y) ≤ cMεb where b→1 as θ̃→π/2. (5.5)

Let Ω′ = {w ∈ Q7/8(0) : wn < τ(w′)− 2ε}. Then from (5.1) we find that

Ω′ ⊂ D−(u) ∩Q7/8(0). (5.6)

Let û be the p-harmonic function in Ω′ which is continuous in Ω̄′ with boundary values

(a) û ≡ 0 on ∂Ω′ ∩Q7/8(0).

(b) û(y) = u−(y) when y ∈ ∂Ω′ ∩ ∂Q7/8(0) and yn ≤ τ(y′)− 3ε.

(c) û(y) = min
{
u−(y), (−yn+τ(y′)−2ε)

ε
u−(y′, τ(y′)− 3ε)

}
when y ∈ ∂Ω′ ∩ ∂Q7/8(0)

and τ(y′)− 3ε < yn ≤ τ(y′)− 2ε.

(5.7)

From the maximum principle for p-harmonic functions and (5.5) we deduce that

û ≤ u− ≤ û+ cMεb in Ω′. (5.8)

Next let σ ∈ Γ(en, 5π/16), w = x − sσ, where εa ≤ s ≤ c−1, 0 < ε ≤ ε̃, and set φ(x) =
u(x)− u(w) whenever x ∈ Q̄3/4(0). We show for c large enough that there exists a = a(p, n) > 0

28



with φ(x) ≥ 0 whenever x ∈ Q3/4(0) with xn ≥ −c−1, provided θ̃ = θ̃(p, n) is near enough
π/2 and ε̃ = ε̃(p, n) is small enough. From ε-monotonicity of u+ it is easily seen that we only
need to consider the case when x,w are in D−(u) ∩ Q3/4(0). From (5.1), (5.5), we see that if
−2ε+ τ(x′) ≤ xn, then

φ(x) ≥ −u(w)− c′Mεb ≥ û(w)− c′Mεb. (5.9)

Using Lemma 2.19 applied to cones within Ω′, and arguing as in the proof of (5.5), we deduce,
for small ε > 0, that there exists d = d(p, n) > 1 with

û(w) ≥ εadu−(−en/2) where d→1 as θ̃→π/2. (5.10)

Combining (5.9), (5.10), and using the hypotheses in Lemma 5.4 we find that

φ(x) ≥ (εad+1/2 − c′εb)M > 0 (5.11)

for small ε > 0 provided ad+ 1/2 < b. If xn < −2ε+ τ(x′) then x,w ∈ Ω′ and we find from (5.8)
that

φ ≥ û(w)− û(x)− cMεb. (5.12)

We note that Theorem 2.7 is valid for the current û with θ0 = 5π/16. From this note we deduce
that if xn ≥ −c−1, then û is increasing on the line segment from x to w. Let y be the point on
this line segment with |w − y| = 1

2
εa. Then from Theorem 2.7, the mean value theorem from

calculus, Harnack’s inequality, and the same estimate as in (5.10), we find that

û(w)− û(x) ≥ û(w)− û(y) ≥ c̃−1εa û(w)/d(w, ∂Ω′) ≥ εadu−(−en/2). (5.13)

Using (5.13) in (5.12) we see that (5.11) is valid.
From arbitrariness of x, σ, s, in (5.11), we now conclude Lemma 5.4. 2

From Lemma 5.4 we see that if u−(−en/2) ≥ ε1/2M, then u is εa-monotone in Q3/4 ∩ {w :
yn ≥ −1/c}. Hence we can essentially repeat the proof of Theorem 1 with ε replaced by εa and
Q1(0) by Q3/4(0) ∩ {w : yn ≥ −1/c} to prove Theorem 2. Thus throughout the rest of the proof
of Theorem 2 we assume that

u−(−en/2) ≤ ε1/2M. (5.14)

From (5.14) and Harnack’s inequality applied to u− we see, for ε̂ sufficiently small, that there
exists κ = κ(p, n), 0 < κ < 1/100, such that

u−(x) ≤ ε7/16M when x = (x′, xn) ∈ Q1−εκ(0) and xn ≤ τ(x′)− εκ. (5.15)

Next suppose that w ∈ F (u) ∩Q1−2εκ/2(0) and that there exists a ball B(ŵ, ρ), ŵ ∈ D+(u) with
w ∈ ∂B(ŵ, ρ) and ε/100 ≤ ρ ≤ 100ε. From Definition 1.4 we obtain for ν = (ŵ − w)/|ŵ − w|,
and some α, β ∈ [0,∞] with α = G(β), that

u(x) = α〈x− w, ν〉+ − β〈x− w, ν〉− + o(|x− w|)

as x→w. To proceed we prove the following lemma.
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Lemma 5.16. With the above notation and under the assumptions in Theorem 2, (5.14), there
exist θ+ = θ+(p, n) ∈ (5π/8, π/2) and ε+ = ε+(p, n,M) > 0, such that if θ+ ≤ θ < π/2, 0 < ε ≤
ε+, then β ≤ ε3/8.

Proof. Let ψ be the p-harmonic function in B(ŵ, 4ρ)\B(ŵ, ρ) with continuous boundary values
1 on ∂B(ŵ, 4ρ) and 0 on ∂B(ŵ, ρ). We note that ψ(x) = a1|x − ŵ|(p−n)/(p−1) + a2 for properly
chosen a1, a2 when p 6= n, and ψ(x) = a1 log |x− ŵ|+ a2 for p = n. From the maximum principle
for p-harmonic functions it follows that

t−1u−(w − tν) ≤ t−1ψ(w − tν) max
B(ŵ,4ρ)

u− .

Letting t→0 we get, for some c = c(p, n), that

β ≤ cε−1 max
B(ŵ,4ρ)

u− . (5.17)

Let 0 ≤ H ≤ 1 be p-harmonic in G = B(w, 2εκ)\{x : xn < τ(x′)+2ε} with continuous boundary
values and with H ≡ 1 on ∂G∩ ∂B(w, 2εκ) while H ≡ 0 on ∂G∩B(w, εκ). We claim, for ε+ > 0
sufficiently small, that

max
B(ŵ,4ρ)

u− ≤ cε7/16MH(w − 4εen) (5.18)

whenever 0 < ε ≤ ε+, where c = c(p, n). Once (5.18) is proved we get Lemma 5.16 from the
following argument. Using Lemma 2.19 for H, as in the proof of (5.5), we have,

H(w − 4εen) ≤ cεb(1−κ) where b→1 as θ+→π/2. (5.19)

Combining (5.17) - ( 5.19) we get β ≤ ε3/8 by first choosing θ+ near enough π/2, so that
b(1− κ) > 15/16, and then ε+ > 0 small enough (depending on p, n,M).

To prove (5.18) we let

Ω∗ = Q1−εκ(0) ∩ {x = (x′, xn) : τ(x′)− 2εκ < xn < τ(x′) + 2ε}.

Let F, 0 ≤ F ≤ M, be the p-harmonic function in Ω∗ with continuous boundary values, F ≡ 0
on ∂Ω∗∩Q1−εκ(0) and F ≡ u− on ∂Ω∗∩∂Q1−εκ(0)∩{x : xn ≥ τ(x′)− εκ}. Existence of F follows
easily from (5.1). Put u∗ = (−u− ε7/16M)+ and note from (5.15), as well as the definition of F,
that u∗ is p-subharmonic in Ω∗ with u∗ ≤ F on ∂Ω∗. Thus by the boundary maximum principle
for these functions, u∗ ≤ F in Ω∗. Using this fact, w ∈ Q1−2εκ/2(0), as well as Lemmas 2.2-2.4 for
F , we can now argue as in the proofs of (4.41), (4.44), to obtain, for some c = c(p, n) ≥ 1, that

u∗(x) ≤ F (x) ≤M exp [-1/(cεκ/2)] whenever x ∈ Q1−εκ/2(0).

From this inequality, the maximum principle for p-harmonic functions, and Lemma 2.4 applied
to H we first conclude (5.18) and then Lemma 5.16. 2

Next we prove the following lemma.

Lemma 5.20. Under the assumptions of Theorem 2 and (5.14) there exist γ ∈ [7/8, 1) and
c ≥ 1, both depending only on p, n, such that u+ is (γε)-monotone in Q1−cεκ/2(0) in the cap of

30



directions Γ(en, θ̂ − cε1/4).

Proof. Armed with Lemma 5.16 we are now in a position to prove this lemma by following
closely the proof of Theorem 1 in section 4. Let τ be as in (5.1), let h = 100Aε, and let Λ(h)
be as defined in section 4 relative to τ. Let φt, t ∈ [0, 1], be the family of functions defined in
Lemma 3.7 with β = 1− κ/2. As pointed out at the beginning of section 5, (4.1) - (4.4) remain
valid with θ̄ replaced by θ̂ and for x ∈ D+(u). We also define γ as in (4.5) to be the smallest
number in [7/8, 1) such that

γ sin θ̂

sin θ̂ − 1 + γ
≤ 1 + µ

where µ is as in Lemma 3.7. Put σ = ε′(sin θ̂+ γ − 1) whenever ε′ ∈ (ε, 2ε). From Lemma 3.7 we
see that

ε′/2 ≤ σφt ≤ cε and σ|∇φt| ≤ cε1−κ/2 on Λ(h) ∩Q2,8(0), (5.21)

some c = c(p, n) ≥ 1. Next set

vt(x) = max
y∈B(x,σφt(x))

u+(y − γε′en) whenever B̄(x, σφt(x)) ⊂ Q1(0), t ∈ [0, 1].

From (i) − (iii) of Lemma 3.7 and Lemma 3.4 we deduce that vt is p-subharmonic in Λ(h/2) ∩
Q1−8ε(0) \ F (vt) for 0 ≤ t ≤ 1. Using (5.21) we can also argue as in (4.7) and (4.8) to get
monotonicity of vt in a cap of directions (see (4.9)). Let Ω = Λ(h/2) ∩ Q1−h(0). Then as in
Lemma 4.10 we define t̄ by

1 + µt̄ =
γ(sin θ̂ − c′ε1/4)

sin θ̂ − 1 + γ

and we observe, for ε̂ > 0 sufficiently small, that t̄ ∈ (0, 1), and, for t ∈ [0, t̄],

(∗) vt ≤ u+ on ∂Ω and vt ≤ (1− ε1/4)u+ on Ω̄ \ Λ̄(h/16),

(∗∗) u > 0 on F (vt) \Q1−hκ/2(0) = F (v0) \Q1−hκ/2(0).
(5.22)

(5.22) follows from the argument after Lemma 4.10 (see (4.11) - (4.15)).
Next let

Θ = {t : t ∈ [0, t̄], vt ≤ u on D+(u) ∩ Ω}.
Once again we use a contradiction argument to prove that Θ = [0, t̄]. If not, then repeating the
argument after (4.14) we see that there exists, for some t ∈ [0, t̄), w̃ ∈ F (u)∩ F (vt)∩ Q̄1−hκ/2(0)
and w∗ ∈ D+(vt), ρ

∗ > 0, such that B(w∗, ρ∗) ⊂ D+(vt), w̃ ∈ ∂B(w∗, ρ∗). Moreover if ν̃ =
(w∗ − w̃)/|w∗ − w̃|, then there exist, ᾱ, β̄,∈ [0,∞), such that

vt(x) ≥ ᾱ〈x− w̃, ν̃〉+ − β̄〈x− w̃, ν̃〉− + o(|x− w̃|),

near w̃. Here,
ᾱ

1− σ|∇φt(w̃)|
≥ G

(
β̄

1 + σ|∇φt(w̃)|

)
.

Also,
u(x) = α〈x− w̃, ν̃〉+ − β〈x− w̃, ν̃〉− + o(|x− w̃|),
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as x→w̃, for some α, β ∈ [0,∞) with α = G(β).
As in (4.19) we claim that

0 ≤ ᾱ ≤ α(1− ε1/4/c), (5.23)

for some c = c(p, n) ≥ 1. To obtain a contradiction from (5.23), we first note that ε/100 ≤ ρ∗ ≤
100ε, as shown in [W1,p 1511]. Thus the hypotheses of Lemma 5.16 are satisfied so that β ≤ ε3/8.
Using this note and the assumptions on G in Theorem 2 it follows that

α = G(β) ≤ G(ε3/8) ≤ Cε3/8 +G(0) ≤ Cε3/8 +G(β̄)

≤ Cε3/8 + β̄N
(

β̄

1 + σ|∇φt(w̃)|

)−N
G

(
β̄

1 + σ|∇φt(w̃)|

)
≤ Cε3/8 +

(1 + σ|∇φt(w̃)|)N

1− σ|∇φt(w̃)|
ᾱ ≤ Cε3/8 +

(1 + cε1−κ/2)N

1− cε1−κ/2
ᾱ < α, (5.24)

thanks to (5.23), provided ε̂ is small enough (depending on p, n,M,G(0)). Here we have used the
fact that α ≥ G(0) > 0 and that κ < 1/100. From this contradiction we first get that Θ = [0, t̄]
and then Lemma 5.20 as in the discussion after (4.46). The proof of (5.23) is exactly the same
as the proof of (4.19). Therefore, we omit the details. 2

Proof of Theorem 2. As mentioned earlier, Theorem 2 is true if (5.14) is false. If (5.14) is true,
we can apply Lemma 5.20 to get that u+ is (γε)-monotone in Q1−cεκ/2(0) in the cap of directions
Γ(en, θ̄ − cε1/4). If now (5.14) is false with ε replaced by γε, we get Theorem 2 from Lemma 5.4
and the argument in Theorem 1. Otherwise we repeat the argument leading to Lemma 5.20 in
order to get that u+ is (γ2ε)-monotone in the directions Γ(en, θ̂− cε1/4− c(γε)1/4). Continuing in
this manner, we obtain Theorem 2. 2

Proof of Corollary 1. To avoid confusion we write ε̃, θ̃ for ε̂, θ̂ in Theorem 2. To prove Corollary
1 we show, that u+ is (cε)-monotone in Q3/4(0)∩{y : yn ≤ 1/c} for some c = c(p, n, η, θ̃) provided

θ̂ = θ̃/2 + π/4 and 0 < ε̂ << ε̃. The proof is essentially the same as in [W1], thanks to Theorem
2.7. For the readers convenience we include the details. Let f̃ , θ̂, ε̂ be as in Corollary 1 and
suppose that θ̃ is near enough π/2 so that if Ω+ = {x : xn > f̃(x′) + 2ε} ∩ Q3/4(0), then
Ω+ ⊂ D+(u) ∩ Q3/4(0). Let v be the p-harmonic function in Ω+ with continuous boundary
values,

(a) v ≡ 0 on ∂Ω+ ∩Q3/4(0).

(b) v(y) = u+(y) when y ∈ ∂Ω+ ∩ ∂Q3/4(0) and yn ≥ f̃(y′) + 3ε.

(c) v(y) = min
{
u+(y), (yn−f̃(y′)−2ε)

ε
u+(y′, τ(y′) + 3ε)

}
when y ∈ ∂Ω+ ∩ ∂Q3/4(0)

and f̃(y′) + 2ε < yn ≤ f̃(y′) + 3ε.

From the maximum principle for p-harmonic functions and the assumptions on u+ in Corollary
1 we deduce that

v ≤ u+ ≤ v + 8η−1ε (5.25)
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provided θ̃ is near enough π/2. From Theorem 2.7, (5.25), and our choice of θ̂, we deduce for all
ξ ∈ Γ(en, θ̃) and some c̃ = c̃(p, n, θ̃, η), c+ = c+(p, n) ≥ 1 that

c̃〈∇v(y), ξ〉 ≥ 1 in {y ∈ Ω+ : c̃ε ≤ d(y, ∂Ω+) ≤ 100c−1
+ } = K. (5.26)

Let c∗ >> c̃ and for given ξ ∈ Γ(en, θ̃), consider e(x) = u+(x) − u+(x − sξ), when x ∈ Q5/8(0)
and c∗ε ≤ s ≤ 2c−1

+ . If u+(x− sξ) = 0, then trivially e(x) ≥ 0. Also, if d(x− sξ, ∂Ω+) ≤ 4c̃ε we
can suppose c∗ large enough so that e(x) > 0 as we see from the assumptions on u in Corollary
1 and a geometric argument using Lipschitzness of f̃ . Otherwise if x, x − sξ ∈ K, we can use
(5.25), (5.26) to conclude that

e(x) ≥ v(x)− v(x− c∗εξ)− 8εη−1 ≥ c̃−1c∗ε− 8εη−1 > 0 (5.27)

provided c∗ = c∗(p, n, θ̃, η) is large enough. It follows that u+ is (c∗ε)-monotone in F (u) ∩
Q5/8(0) ∩ {y : yn ≤ c−1

+ }. We can now repeat the argument in Theorem 2 with Q1(0) replaced
by Q5/8(0)∩{y : yn ≤ c−1

+ } or essentially just apply Theorem 2 in order to conclude Corollary 1. 2

Closing Remarks. Theorem 2 remains valid when G in Theorem 2 is allowed to depend
Lipschitz continuously on x, ν uniformly on bounded subsets of uν and causes no new problems.
Also, one can state a version of Theorem 1 in [LN6], and Theorem 1 and Theorem 2 in the
present paper, when u is p-harmonic in D+(u) and q-harmonic in D−(u) where 1 < p, q < ∞.
These more general theorems also appear likely to be true with minor changes in the proofs of
the corresponding theorems.
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