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Abstract. In this paper, we define boundary single and double layer potentials
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1. Introduction

In this note we study layer potentials for Laplace’s equation on the boundaries

of certain bounded d Ahlfors regular domains in Rn, n ≥ 3. As an application of

our results, we obtain layer potential solutions to the Regularity, Neumann, and

Dirichlet problems for the Laplacian with boundary data in certain Besov spaces. We

remark that in Lipschitz domains, there is an extensive literature concerning solution

of the Regularity, Neumann, and Dirichlet problems by way of layer potentials (with

boundary data in Lp) for classical linear elliptic PDE arising in mathematical physics,

e.g., Laplace’s equation, Maxwell’s equation, Stokes and Láme systems of equations

(see , [2], [3], [4], [13]). More recently layer potential solutions to these problems

have been studied for Laplace’s equation in domains beyond Lipschitz domains and

in Lipschitz domains with boundary data in certain Besov spaces (see [7] and [14]

for references). To compare our results with those cited above, we shall need some

notation. Let X = (X1, . . . , Xn) denote a point in Rn, let |X| be the standard

Euclidean norm of X and for given r > 0, set B(X, r) = {Y ∈ Rn :: |Y −X| < r}.
Let d(E,F ) = inf{|X − Y |, X ∈ E, Y ∈ F} denote the Euclidean distance between,
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E,F ⊂ Rn and let diam E = sup{|X − Y | : X, Y ∈ E} be the diameter of E.

Given k > 0, define Hausdorff k measure on Rn, denoted Hk, as follows: For fixed

0 < δ < r0 and E ⊆ Rn, let L(δ) = {B(Zi, ri)} be such that E ⊆
⋃
B(Zi, ri) and

0 < ri < δ, i = 1, 2, ... Set

φδ(E) = inf
L(δ)

∑
αkr

k
i

where αk is the volume of the unit ball in Rk. Then

Hk(E) = lim
δ→0

φδ(E).

If 1 ≤ q ≤ ∞, let Lq be the usual Lebesgue space of q th power integrable functions

h on Rn with norm denoted, ‖h‖Lq . Let W 1,q be the Sobolev space of functions

f : Rn→R with distributional gradient ∇f = (fx1 , . . . , fxn), both of which are q th

power integrable on Rn. Let

‖f‖W 1,q = ‖f‖Lq + ‖|∇f |‖Lq

be the norm of f in W 1,q. Lq(O) and W 1,q(O) are defined similarly whenever O is an

open set. Let ‖·‖Lq(O), ‖·‖W 1,q(O), denote the norms in these spaces and let C∞
0 (O) be

the class of infinitely differentiable functions with compact support in O. Let W 1,q
0 (O)

be the closure of C∞
0 (O) in the W 1,q(O) norm. If 1 ≤ q < n and q∗ = nq/(n− q), we

let R1,q be the Riesz potential space consisting of real valued functions f on Rn with

distributional gradients and norm

‖f‖R1,q = ‖f‖Lq∗ + ‖|∇f |‖Lq <∞.

Recall that a measurable function ω : Rn→[0,∞] is an A2 weight provided there is a

number C, 0 < C <∞, such that∫
B(Z,ρ)

ωdX ·
∫

B(Z,ρ)

ω−1dX ≤ C [Hn(B(Z, ρ))]2 .

The least such C for which the above display holds is denoted by ‖ω‖̂ and is called

the A2 constant for ω. Let L2
ω be the space of Lebesgue measurable functions that

are square integrable with respect to ω dX and with norm denoted by ‖ · ‖L2
ω
.



BOUNDARY INTEGRAL OPERATORS 3

Throughout this paper we assume that Ω is an open set and ∂Ω ⊂ Rn is a bounded

d = (d1, . . . , dN) Ahlfors regular set. That is,

A1 :

(a) ∂Ω =
N⋃

i=1

Ei where Ei ⊂ Rn, 1 ≤ i ≤ N <∞, is compact.

(b) There is an r1 > 0 with d(Ei, Ej) > r1 whenever i 6= j and 1 ≤ i, j ≤ N.

(c) There exist c1 < 1 ≤ c2 and di, 1 ≤ i ≤ N, with n− 2 < di < n and
c1r

di ≤ Hdi(B(X, r) ∩ Ei) ≤ c2r
di whenever X ∈ Ei, 0 < r < r1.

We note that if N = 1, then our definition agrees with the definition of a d set in

[10]. In our theorems involving double layer potentials we also require A2,A3 :

A2:
Let G be either Ω or Rn \ Ω̄. There exists σ0 > 0 such that if
q ∈ [2− σ0, 2 + σ0] and v ∈ W 1,q with v = a = constant in G, then
v(X) = a for Hdi almost every X ∈ Ei, 1 ≤ i ≤ N.

A3:

Let G be either Ω or Rn \ Ω̄. There exists c3, c4, 0 < c3, c4 <∞, such that

the following is true whenever ω is an A2 weight with ||ω‖̂ ≤ c3. Let f be
in W 1,1(O) whenever O ⊂ G is a bounded open set. Then f has a locally

integrable extension f̂ to Rn with distributional derivative ∇f̂ . Moreover,

‖∇f̂‖2
L2

ω
≤ c4

∫
G

|∇f |2 ω dX .

Note that the above inequality holds trivially if the righthand side is infinite. Also

if G is bounded, then f ∈ W 1,1(G). Next given p, 1 < p <∞, let Lp(Ei), 1 ≤ i ≤ N,

be the Lebesgue space of p th power integrable functions g on Ei with

‖g‖p
Lp(Ei)

=

∫
Ei

|g|pdHdi <∞.

If f : ∂Ω→R and f |Ei
∈ Lp(Ei), 1 ≤ i ≤ N, set

‖f‖Lp(∂Ω) =
N∑

i=1

‖f |Ei
‖Lp(Ei).

If 1 < p < ∞, 0 < si < 1, and 1 ≤ i ≤ N, let B̃p,si(Ei) be the Besov space of Hdi

measurable functions f on Ei with ‖f‖B̃p,si (Ei)
<∞, where

‖f‖B̃p,si (Ei)
=

(∫
Ei

∫
Ei

|f(P )− f(Q)|p

|P −Q|sip+di
dHdi(P )dHdi(Q)

)1/p

+ ‖f‖Lp(Ei).
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If f : ∂Ω→R and f |Ei
∈ B̃p,si(Ei) for 1 ≤ i ≤ N we put s = (s1, . . . , sN) and write,

‖f‖Bp,s(∂Ω) =
N∑

i=1

‖f |Ei
‖B̃p,si (Ei)

.

We note that Bp,s(∂Ω) is a Banach space. Let Bp,s
∗ (∂Ω) denote the space of bounded

linear functionals on Bp,s(∂Ω). Given θ ∈ Bp,s
∗ (∂Ω) and f ∈ Bp,s(∂Ω) let 〈θ, f〉 be the

duality pairing between a Besov space and its dual (see [11] for further descriptions

of this pairing).

We now introduce the layer potentials we shall consider. Fix p, 1 < p < ∞, let

p′ = p/(p − 1), αi = 1 − (n − di)/p, βi = 1 − (n − di)/p
′ for 1 ≤ i ≤ N. Put

α = (α1, . . . , αN), β = (β1, . . . , βN). If φ ∈ Bp′,β
∗ (∂Ω) and ∂Ω satisfies A1 set

(1.1) Sφ(X) =< φ,Γ(X − ·) >, X ∈ Rn \ ∂Ω,

where Γ(X) = −1
(n−2)ωn

1
|X|n−2 is the fundamental solution of Laplace’s equation in Rn.

If Ω is a bounded connected open set (i.e, a domain) for which ∂Ω satisfies A1, we

put Ω+ = Ω, Ω− = Rn \ Ω̄, and for f ∈ Bp,α(∂Ω), set

(1.2) K±f(X) =

∫
Ω∓

∇Y Γ(Y −X) · ∇F (Y )dY, X ∈ Rn,

where F ∈ W 1,p is an extension of f . We remark that K±f does not depend on the

particular extension of f, as will follow from Lemma 2.3 and Proposition 2.2. Also, we

observe that Sφ is harmonic in Rn \∂Ω and K±f are harmonic in Ω±. Our boundary

layer potentials are defined by

(1.3)
Sφ = Sφ|∂Ω,

T±f = K±f |∂Ω.

We refer to Sφ as the single layer potential of φ in Rn. Also, K±f are called the double

layer potentials of f in Rn. Finally define T ∗± : Bp,α
∗ (∂Ω)→Bp,α

∗ (∂Ω) by 〈T ∗±ψ, f〉 =

〈ψ, T±f〉 whenever ψ ∈ Bp,α
∗ (∂Ω) and f ∈ Bp,α(∂Ω).

Our main results in this paper are stated as follows.

Theorem 1.1. Let ∂Ω satisfy A1. There exists ε0 > 0, depending only on d =

(d1, . . . , dn), c1, c2, r1, N, n, and diam ∂Ω, such that if 2 − ε0 ≤ p ≤ 2 + ε0, then

S : Bp′,β
∗ (∂Ω)→Bp,α(∂Ω) is one to one, bounded, and onto, so invertible.

Theorem 1.2. Let Ω ⊂ Rn be a bounded domain satisfying A1, and A2, A3 with

G = Rn \ Ω̄. There exists ε1 > 0 depending on the same quantities as ε0 in Theorem
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1.1 and also on σ0, c3, c4, such that if p ∈ [2−ε1, 2+ε1], then T+ : Bp,α(∂Ω) → Bp,α(∂Ω)

is one to one, bounded, and onto, so invertible.

Theorem 1.3. Let Ω ⊂ Rn be a bounded domain satisfying A1, and A2, A3 with

G = Ω. There exists ε2 > 0 depending on the same quantities as ε1 in Theorem 1.2

such that for p ∈ [2 − ε2, 2 + ε2], T
∗
− : B̂p,α

∗ (∂Ω)→B̂p,α
∗ (∂Ω) is one to one, bounded,

and onto, so invertible.

In Theorem 1.3, B̂p,α
∗ (∂Ω) = {φ ∈ Bp,α

∗ (∂Ω) : 〈φ, 1〉 = 0}. We note that in

Remark 5.5 at the end of section 5 we shall define the weak normal derivative, ∂u
∂n
∈

B̂p,α
∗ (∂Ω), respectively, of a harmonic functions u defined on Ω, with |∇u| ∈ Lp′(Ω).

If φ ∈ B̂p,α
∗ (∂Ω) and u = Sφ|Ω, then it turns out that φ→ ∂u

∂n
= T ∗−φ.

Using this remark and Theorems 1.1 - 1.3 we easily obtain,

Theorem 1.4. Let ∂Ω satisfy A1. If 2− ε0 ≤ p ≤ 2 + ε0, then given f ∈ Bp,α(∂Ω),

there is a unique φ ∈ Bp′,β
∗ (∂Ω) with ‖φ‖

Bp′,β
∗ (∂Ω)

≤ c‖f‖Bp,α(∂Ω) and the property that

if u = Sφ, then {
∆u = 0 in Rn \ ∂Ω,

u = f on ∂Ω,

where c > 0 has the same dependence as ε0.

Theorem 1.5. Let G,Ω, ε1 be as in Theorem 1.2. If 2− ε1 ≤ p ≤ 2 + ε1, then given

f ∈ Bp,α(∂Ω), there is a unique h ∈ Bp,α(∂Ω), for which u = K+h satisfies ∆u = 0 in Ω,
u = f on ∂Ω
‖h‖Bp,α(∂Ω) ≤ c‖f‖Bp,α(∂Ω)

where c > 0 has the same dependence as ε2.

Theorem 1.6. Let G,Ω, ε2 be as in Theorem 1.3. If 2− ε2 ≤ p ≤ 2 + ε2, then given

ψ ∈ B̂p,α
∗ (∂Ω), there is a unique harmonic û in Rn \ ∂Ω, satisfying û = Sφ for some φ ∈ B̂p,α

∗ (∂Ω)
If u = û|Ω, then ∂u

∂n
= ψ,

‖φ‖Bp,α
∗ (∂Ω) ≤ c‖ψ‖Bp,α

∗ (∂Ω).

c > 0 has the same dependence as ε2.

Remark 1.7. Theorems 1.4 - 1.6 can be thought of as weak versions for Besov spaces

of the Regularity, Neumann, and Dirichlet problems with boundary data in a Besov

space. For Lipschitz domains it follows from the results in [14] that analogues of

Theorems 1.4 - 1.6, hold for boundary data in a variety of other Besov and Hardy
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spaces. On the other hand, as mentioned earlier, the domains we consider are con-

siderably more general than Lipschitz domains or even those considered in [7]. For

example Theorem 1.4 holds when ∂Ω is a finite union of Cantor sets (with the proper

dimension) and fractal surfaces. Theorems 1.5 and 1.6 are less general. For example

it follows easily from Propositions 2.1, 2.2 that necessarily ∂Ω = ∂(Rn \ Ω̄) when A2

holds and G = Rn \ Ω̄. Thus in this case N = 1 and n > d1 ≥ n− 1. A3 further re-

stricts the class of admissible domains. Still there are numerous non Lipschitz fractal

type surfaces satisfying these requirements, as we point out in section 6.

As for the plan of this paper, in section 2, we prove a trace lemma which together

with theorems from [9] enables us to define our single layer potentials on Rn \ ∂Ω

under assumption A1. In this section we also study harmonic functions with Lipschitz

boundary values on a portion of a d Ahlfors regular domain and state a Whitney type

extension theorem. In section 3 we prove Theorem 1.1. In section 4 we prove Theorem

1.2. In section 5 we prove Theorem 1.3. In section 6 we discuss A2,A3 and indicate

some domains for which Theorems 1.1 - 1.3 are valid.

2. Preliminary Reductions.

In the sequel we let c ≥ 1 denote a positive constant ‘ depending , only on the data,’

not necessarily the same at each occurrence. By this phrase we include dependence on

c1, c2, d = (d1, . . . , dN), N, r1, diam ∂Ω, and if explicity stated, p, throughout sections

2 and 3. In sections 4 and 5 we also allow dependence on c3, c4, and Hn(Ω). In

the proof of Theorems 1.1 - 1.3 we shall need the following extension and restriction

theorems.

Proposition 2.1 (Extension Theorem). Let Ω be a bounded domain satisfying A1

and p fixed, n − min{d1, . . . , dN} < p < ∞. Then for all f ∈ Bp,α(∂Ω) there exists

F ∈ W 1,p such that F |∂Ω = f and

‖F‖W 1,p ≤ c‖f‖Bp,α(∂Ω)

where c depends on the data (including p).

Proposition 2.2 (Restriction Theorem). Let Ω be a bounded domain satisfying

A1 and p as in Proposition 2.1. Then the operator R : W 1,p → Bp,α(∂Ω) defined by

R(F ) = F |∂Ω is bounded. That is, there is a positive constant c ≥ 1, having the same

dependence as in Proposition 2.1, such that

‖R(F )‖Bp,α(∂Ω) ≤ c‖F‖W 1,p .
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Propositions 2.1 and 2.2 are proved in [9] when N = 1. It is easily seen that

Propositions 2.1, 2.2, follow from the just cited N = 1 case. Indeed to get Proposition

2.1 we extend f |Ei
to fi ∈ W 1,p for 1 ≤ i ≤ n where ‖fi‖W 1,p ≤ c‖f |Ei‖Bp,αi (Ei). Let

0 ≤ ψi ∈ C∞
0 (Rn) with support ⊂ {X : d(X,Ei) < r1}, |∇ψi| ≤ cr−1

1 , and ψi ≡ 1 on

Ei for 1 ≤ i ≤ n. If F =
∑N

i=1fiψi, it is easily checked that Proposition 2.1 holds for

this F. Proposition 2.2 follows from applying the N = 1 case to each Ei, 1 ≤ i ≤ N.

We note that since ∂Ω is bounded, we may assume F in Propositions 2.1, 2.2 has

compact support. We shall also need

Lemma 2.3. Let ∂Ω satisfy A1 and p be fixed, n−min{d1, . . . , dn} < p <∞. Suppose

that F ∈ W 1,p with F = a = constant Hdi almost everywhere on Ei for 1 ≤ i ≤ N.

Then given ε > 0 there exists g ∈ W 1,p with compact support, g = a in a neighborhood

of ∂Ω, and ‖g − F‖W 1,p < ε.

Proof. We remark that Lemma 2.3 is perhaps implied by the results in [9] or [10],

although we could not find any direct reference. Also if we knew that F ≡ 0 almost

everywhere with respect to a certain Riesz p capacity (defined below), then Lemma

2.3 would follow from [1], section 9.2. Since this also is not apparent to the authors

we give a proof of Lemma 2.3. In the proof c may also depend on p. To begin, given

a bounded set Ê ⊂ Rn and 1 < p <∞ define the outer Riesz capacity of Ê, denoted

γp(Ê), by γp(Ê) = inf
∫
Rn |∇θ|pdX where the infimum is taken over all θ ∈ C∞

0 (Rn)

with θ ≡ 1 on Ê. It is well known (see [1], ch.5) that for 1 < p ≤ n,

(2.1) γp(Ê) = 0 −→ Hn−p+ε(Ê) = 0 whenever ε > 0.

If p > n, then nonempty sets have positive capacity. Let F be as in Lemma 2.3 for

fixed p, n−min{d1, . . . , dN} < p <∞, and let FB(X,r) be the average of F on B(X, r).

Then F can be defined almost everywhere on Rn, with respect to γp capacity (see [1]

or [17]) by F (X) = lim
X→0

FB(X,r). If E denotes the set where this limit does not exist,

then from (2.1) it follows that Hdi(E ∩ Ei) = 0 for p ≤ n, while E = ∅ when p > n.

Let X ∈ Ei, 0 < r ≤ r1/100, and

I1(χ|∇F |)(Y ) =

∫
B(X,r)

|∇F (Z)| |Z − Y |1−n dZ, Y ∈ B(X, r),

where χ denotes the characteristic function of B(X, r). Approximating F by C∞

functions and taking limits it follows once again from Sobolev type estimates and

arguments involving γp that

(2.2) |F (Y )− FB(X,r)| ≤ c I1(χ|∇F |)(Y )
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for Hdi almost every Y ∈ B(X, r/2). Let µ be r−di times Hdi measure on ∂Ω ∩
B(X, r/2) and set

I1µ(Y ) =

∫
Rn

|Y − Z|1−ndµ(Z).

Using F ≡ a, Hdi almost everywhere on ∂Ei, as well as A1, and integrating (2.2)

with respect to µ we deduce from Hölder’s inequality that

(2.3)

|(F − a)B(X,r)| ≤ c

∫
B(X,r)

|∇F (Z)|I1µ(Z)dZ

≤ c2‖χ|∇F |‖Lp ‖χI1µ‖Lp′ ≤ c3‖χ|∇F |‖Lp r1−n/p

For p ≥ n, (2.3), is a consequence of Theorems of Sobolev and Morrey. (2.3) for p < n

follows from Hölder’s inequality and the fact that (see [AH], section 4.5)

(2.4) ‖I1µ‖p′

Lp′ ≈
∫

Rn

W (Y ) dµ(Y )

where W is the Wolff potential defined by

W (X) =

∫ ∞

0

[tp−nµ(B(X, t))]1/(p−1)dt/t.

Indeed from A1 and the definition of µ we find that W (X) ≤ cr(p−n)/(p−1). whenever

X ∈ Rn. Using this inequality in (2.4) we deduce first that

‖I1µ‖Lp′ ≤ cr1−n/p

and thereupon that (2.3) is true.

From (2.3) we get upon raising both sides to the p th power and then dividing by

r−p that

(2.5) r−p|(F − a)B(X,r)|p ≤ c (|∇F |p)B(X,r).

Next given η, 0 < η << r1, let O1 = {X ∈ Rn : d(X, ∂Ω) < η} while O2 = {X ∈
Rn : d(X, ∂Ω) < 2η}. Let ζ ∈ C∞

0 (O2) with ζ ≡ 1 on O1 and |∇ζ| ≤ cη−1. Put

ĝ = F − (F − a)ζ. We shall show that if η = η(ε) > 0 is small enough then

(2.6) ‖ĝ − F‖W 1,p ≤ ε/2.

Indeed, from the definition of ĝ and our choice of ζ, we have

(2.7) ‖ĝ − F‖p
W 1,p ≤ c

∫
O2

(|∇F |p + η−p|F − a|p)dX.

To estimate the righthand side of this equation we first use a well known covering

lemma to get a covering {B(Xi, 10η)} of O2 with centers in O2 and the property that
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the balls {B(Xi, η)} are pairwise disjoint. Let Zi be a point in ∂Ω with |Xi − Zi| =

d(Xi, ∂Ω) and let O3 = {X : d(X, ∂Ω) < 12η}. Then

(2.8)∫
O2

|F (X)− a|pdX ≤
∑

i

∫
B(Zi,12η)

|F (X)− a|pdX

≤ c
∑

i

∫
B(Zi,12η)

|F (X)− FB(Zi,12η)|pdX + c ηn
∑

i

|(F − a)B(Zi,12η)|p = J1 + J2.

J1 can be estimated using Poincaré’s inequality. We get

(2.9) J1 ≤ c
∑

i

ηp

∫
B(Zi,12η)

|∇F |pdX ≤ c2ηp

∫
O3

|∇F |pdX.

where to get the last inequality we observed that each point in
⋃

iB(Zi, 12η) lies

in at most c of the balls {B(Zi, 12η)}, as follows from a ‘ volume ’ argument using

disjointness of {B(Xi, η)}. To estimate J2 we use (2.5) to get

(2.10)

ηn
∑

i

|(F − a)B(Zi,12η)|p ≤ cηp
∑

i

∫
B(Zi,12η)

|∇F (X)|pdX ≤ c2 ηp

∫
O3

|∇F (X)|pdX.

Using (2.8)- (2.10) in (2.7), we get (2.6) for η = η(ε) sufficiently small, since F ∈ W 1,p.

Finally let ψ ∈ C∞
0 (B(0, 2R)) with ψ ≡ 1 on B(0, R) and |∇ψ| ≤ c/R. Let g = (ĝψ)δ

denote convolution of ĝψ with an approximate identity whose support is contained

in B(0, δ). If R is large enough and δ > 0 small enough we obtain from standard

properties of mollifiers that ‖g − ĝ‖W 1,p < ε/2. Using this inequality in (2.6) we

conclude the validity of Lemma 2.3. �

Next we prove

Lemma 2.4. Suppose that v is harmonic in B(X̂, 4ρ) \ ∂Ω where X̂ ∈ ∂Ω, 0 <

ρ < r1/100, and r1 is as in A1. Let ζ ∈ C∞
0 (B(X̂, 3ρ)) with ζ ≡ 1 on B(X̂, 2ρ) and

‖|∇ζ|‖L∞ ≤ 1000ρ−1. Assume that (v−F )ζ ∈ W 1,2
0 (B(X̂, 3ρ)\∂Ω), where F : Rn→R

is in W 1,q. There exists δ > 0, depending only on the data, such that if 2 < q ≤ 2 + δ,

then ‖v‖W q
1 (B(X̂,ρ)\∂Ω) <∞. Moreover,∫

B(X̂,ρ)

|∇v|qdX ≤ cρn(1−q/2)

(∫
B(X̂,2ρ)

|∇v|2dX
)q/2

+ c

∫
B(X̂,2ρ)

|∇F |qdX.

Proof. To prove Lemma 2.4, we show that if Y ∈ B(X̂, ρ) and 0 < r ≤ ρ/100, then

(2.11)∫
B(Y,r)

|∇v|2dX ≤ 100−n

∫
B(Y,12r)

|∇v|2dX + crn(b−2)/b

(∫
B(Y,12r)

|∇v|bdX
)2/b

+ cM
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where b = 6/5 for n = 3, 4 and b = 2− 4/n for n ≥ 5. Also, M =

∫
B(Y,12r)

|∇F |2dX.

Lemma 2.4, then follows from this reverse Hölder type inequality and an argument

originally due to Gehring ( see [5]). Thus we prove only (2.11).

We consider two cases. If 0 < r ≤ d(Y, ∂Ω)/2, then (2.11) follows from standard

estimates for harmonic functions in balls. If d(Y, ∂Ω) ≤ 2r, Ŷ ∈ ∂Ω, and |Ŷ − Y | =

d(Y, ∂Ω), then

B(Y, t) ⊂ B(Ŷ , 3t) ⊂ B(Y, 6t) whenever t ≥ r.

Hence it suffices to prove that (2.11) holds with Y, r, 12r, replaced by Ŷ , 3r, 6r, re-

spectively. To this end, let 0 ≤ ψ ∈ C∞
0 (B(Ŷ , 6r)) with ψ ≡ 1 on B(Ŷ , 3r) and

|∇ψ| ≤ cr−1. If w = (v − F )ψ2, then from the hypotheses of Lemma 2.4 we see that

(2.12)

∫
B(Ŷ ,6r)

∇v · ∇w dX = 0

where · denotes the standard inner product on Rn. Using (2.12) and Cauchy’s in-

equality with ε’ s, we obtain

(2.13)

∫
B(Ŷ ,3r)

|∇v|2dX ≤ c M + cr−2

∫
B(Ŷ ,6r)

G2dX,

where we have put G = v − F. From (2.5) with a = 0, p = b, and r,X, F replaced by

6r, Ŷ , G, we get

(2.14) |GB(Ŷ ,6r)| ≤ c r1−n/b‖χ̃|∇G|‖Lb

where χ̃ denote the characteristic function of B(Ŷ , 6r). From (2.14) and Poincaré’s

inequality, we deduce

(2.15)

r−2

∫
B(Ŷ ,6r)

|G|2dX ≤ 4r−2

∫
B(Ŷ ,6r)

|G−GB(Ŷ ,6r)|
2dX + crn−2 (GB(Ŷ ,6r))

2

≤ c′r−2

∫
B(Ŷ ,6r)

|v − vB(Ŷ ,6r)|
2dX + c′M + c′rn−2n/b‖χ̃|∇v|‖2

Lb

where c′ depends only on the data. Putting (2.15) in (2.13) we find that

(2.16)∫
B(Ŷ ,3r)

|∇v|2dX ≤ cr−2

∫
B(Ŷ ,6r)

|v − vB(Ŷ ,6r)|
2dX + cM + crn−2n/b‖χ̃|∇v|‖2

Lb .

Next we note from (2.2) with F = v and r, Y,X replaced by 4r,X, Ŷ , respectively,

that

(2.17) |v(X)− vB(Ŷ ,6r)| ≤ c I1(χ̃|∇v|)(X) whenever X ∈ B(Ŷ , 6r).
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Also (see [1], Proposition 3.1.2), we have

(2.18) I1(χ̃|∇v|)(X) ≤ c ‖χ̃|∇v|‖2/n

L2 [M̂(χ̃|∇v|)(X)]1−2/n for X ∈ B(Ŷ , 6r)

where

(2.19) M̂k(X) = sup
r>0

[Hn(B(X, r))]−1

∫
B(X,r)

|k|dX

denotes the Hardy Littlewood Maximal function of a locally integrable function k

on Rn. Squaring both sides of (2.17) and integrating over B(Ŷ , 4r), we deduce from

(2.18) and the Hardy Littlewood Maximal Theorem (see [15]) that

(2.20)

r−2

∫
B(Ŷ ,6r)

|v − vB(Ŷ ,6r)|
2dX ≤ cr−2‖χ̃|∇v|‖4/n

L2

∫
B(Ŷ ,6r)

[M̂(χ̃|∇v|)(X)]2−4/n dX

≤ c rλ‖χ̃|∇v|‖4/n

L2

(∫
B(Ŷ ,6r)

|∇v|bdX
) 2n−4

nb

where λ = (n−2)(b−2)
b

. The right hand side of (2.20) can be estimated using Young’s

inequality with η’s. Doing this we find,

(2.21)

rλ‖χ̃|∇v|‖4/n

L2

(∫
B(Ŷ ,6r)

|∇v|bdX
) 2n−4

nb

≤ cηn/2‖χ̃|∇v|‖2
L2 + cη−n/(n−2)rn−2n/b‖χ̃|∇v|‖2

Lb .

Combining (2.20), (2.21), and using the resulting inequality in (2.16) we conclude for

η > 0 sufficiently small that

(2.22)

∫
B(Ŷ ,3r)

|∇v|2dX ≤ 100−n

∫
B(Ŷ ,6r)

|∇v|2dX + crn−2n/b‖χ̃|∇v|‖2
Lb + cM.

In view of our earlier remarks we now conclude the validity of Lemma 2.4. �

Finally in this section we state

Lemma 2.5. Given k ∈ W 1,p ∪R1,p and λ > 0 there exists a Lipschitz function θ on

Rn with θ(x) = k(x) for Hn almost every x of L(λ) = {y : M̂(|∇k|)(y) ≤ λ} and

‖|∇θ|‖L∞ ≤ cλ.

Proof. Note from the definition of M̂(|∇k|) in (2.19) that L(λ) is closed. Also, L(λ) 6=
∅ since M(|∇k|) ∈ Lp by the Hardy Littlewood Maximal theorem. Now for almost

every X, Y ∈ L(λ) if r = 2|X − Y |, then

(2.23) |k(X)− k(Y )| ≤ cI1(χ|∇k|)(X) + cI1(χ|∇k|)(Y )
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where we have used (2.2) with F replaced by k. Now one can write the integral

involving I1 as a sum and make simple estimates to show (see [1]) ‘

(2.24)

I1(χ|∇k|)(X)+I1(χ|∇k|)(Y ) ≤ c|X−Y |(M̂(|∇k|)(X)+M̂(|∇k|)(Y )) ≤ c2 λ |X−Y |,

since X, Y ∈ L(λ). From (2.23), (2.24) we conclude that k agrees Hn almost every-

where on L(λ) with a Lipschitz function on L(λ) having norm ≤ cλ. Existence of θ

now follows from applying the Whitney extension theorem to the Lipschitz function

on L(λ) (see [15], chapter VI). �

3. Proof of Theorem 1.1

In the proof of Theorem 1.1 we assume that p > n − min{d1, . . . , dN} and that

|p− 2| ≤ δ. Initially we allow δ > 0 to vary but shall later fix δ to be a small positive

number satisfying several conditions. We then put ε0 = δ. Since the Laplacian is

invariant under translations we assume, as we may, that 0 ∈ ∂Ω. Let p′ = p/(p −
1), αi = 1−(n−di)/p, βi = 1−(n−di)/p

′ for 1 ≤ i ≤ N, and set α = (α1, . . . , αN), β =

(β1, β2, . . . , βN). As in (1.1), (1.3), we put

Sφ(X) =< φ,Γ(X − ·) >, X ∈ Rn,

and Sφ = Sφ|∂Ω whenever φ ∈ Bp′,β
∗ (∂Ω). We first prove

Lemma 3.1. If φ ∈ Bp′,β
∗ (∂Ω), then Sφ ∈ R1,p and Sφ ∈ Bp,α(∂Ω) with

‖Sφ‖R1,p + ‖Sφ‖Bp,α(∂Ω) ≤ c ‖φ‖
Bp′,β
∗ (∂Ω)

.

Proof. If X ∈ Rn \ Ω̄, then it follows easily from linearity of φ, Taylor’s theorem with

remainder, and a difference quotient argument that

(3.1) DλSφ(X) = 〈φ,Dλ
XΓ(X − ·)〉 where Dλ

X =
∂|λ|

∂Xλ1
1 . . . ∂Xλn

n

and λ is a multi-index. Since Γ is harmonic in Rn\{0}, it follows that Sφ is harmonic

in Rn \ ∂Ω. Let F ∈ C∞
0 (Rn) and set Oε = {x ∈ Rn : d(x, ∂Ω) > ε} for ε > 0 while

O0 = Rn. We note that if χε is the characteristic function of Oε and

I2(χεF )(X) =

∫
χε(Y )F (Y )Γ(X − Y )dY for ε ≥ 0,
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then from well known properties of Riesz potentials (see [1], section 1) we have

(3.2) ‖I2(χεF )‖Lq̃ + ‖|∇I2(χεF )|‖Lp′ ≤ c‖F‖Lq

where 1/q̃ = 1/q − 2/n and 1/q = 1/p′ + 1/n. We also note for ε > 0 that

(3.3)

∫
Oε

Sφ FdX =

∫
Oε

〈φ,Γ(X − ·)〉F (X)dX = 〈φ, I2(χεF )|∂Ω〉

as follows from writing the left hand integral as a limit of Riemann sums and using

linearity of φ. To estimate the right hand term in (3.3) let R0 be the smallest positive

number ≥ 1 such that ∂Ω ⊂ B̄(0, R0) and let ζ ∈ C∞
0 [B(0, 4R0)] with ζ ≡ 1 on

B(0, 2R0) and |∇ζ| ≤ 1000R−1
0 . Then ζI2(χεF ) ∈ W 1,p′ and from Proposition 2.2 we

have

(3.4)

|〈φ, I2(χεF )|∂Ω〉| ≤ ‖φ‖
Bβ,p′
∗ (∂Ω)

‖I2(χεF )|∂Ω‖Bβ,p′ (∂Ω) ≤ c‖φ‖
Bβ,p′
∗ (∂Ω)

‖ζI2(χεF )‖W 1,p′ .

Using (3.2) and Hölder’s inequality we deduce first that

‖ζI2(χεF )‖W 1,p′ ≤ c‖F‖Lq

and thereupon from (3.3), (3.4) that for ε > 0,

(3.5)

∣∣∣∣∫
Oε

SφFdX
∣∣∣∣ ≤ c‖φ‖

Bβ,p′
∗ (∂Ω)

‖F‖Lq .

Since C∞
0 (Rn) is dense in Lq it follows from a duality argument that

(3.6) ‖Sφ‖Lp∗ (Oε) ≤ c‖φ‖
Bβ,p′
∗ (∂Ω)

where p∗ = np/(n− p). Since c is independent of ε we conclude that (3.6) holds with

ε = 0. We now take limits in (3.3). Using (3.6), Proposition 2.2, and the fact that

ζI2(χεF )→ζI2F pointwise and in W 1,p′ we deduce that

(3.7)

∫
Rn

SφFdX = 〈φ, I2F |∂Ω〉 .

Similarly for F,Oε, ζ, as above we find for 1 ≤ i ≤ n and ε > 0 that

(3.8)

∫
Oε

∂Sφ
∂Xi

FdX = −
〈
φ,
∂I2(χεF )

∂Xi

|∂Ω

〉
.

From Calderón - Zygmund singular integral estimates we have,

(3.9)

∥∥∥∥ζ ∂I2(χεF )

∂Xi

∥∥∥∥
W 1,p′

≤ c‖F‖Lp′

where c is independent of ε ≥ 0. Using Proposition 2.2 once again it follows that

(3.10)

∣∣∣∣∫
Oε

∂Sφ
∂Xi

FdX

∣∣∣∣ ≤ c‖φ‖
Bβ,p′
∗ (∂Ω)

‖F‖Lp′ .
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From duality and (3.10) we conclude first that

(3.11)

∥∥∥∥χε
∂Sφ
∂Xi

∥∥∥∥
Lp

≤ c‖φ‖
Bβ,p′
∗ (∂Ω)

where c is independent of ε. Second, letting ε→0 we get (3.11) when ε = 0.

It remains to show that ∂Sφ
∂Xi

is the distributional derivative of Sφ. To this end we

note again from Calderón - Zygmund singular integral theory that ζ ∂I2(χεF )
∂Xi

converges

to ζ ∂I2F
∂Xi

in W 1,p′ . Using this fact, Proposition 2.2, and (3.10) in (3.8) we obtain

(3.12)

∫
Rn

∂Sφ
∂Xi

FdX = −
〈
φ,
∂I2F

∂Xi

|∂Ω

〉
= −

〈
φ, I2

(
∂F

∂Xi

)
|∂Ω

〉
where the last equality follows from integration by parts. Finally from (3.7) with F

replaced by ∂F/∂Xi for 1 ≤ i ≤ n we see that

(3.13)

∫
Rn

Sφ ∂F
∂Xi

dX =

〈
φ, I2

(
∂F

∂Xi

)
|∂Ω

〉
Hence ∂Sφ/∂Xi, 1 ≤ i ≤ n, is the distributional derivative of Sφ. This fact, Proposi-

tion 2.2 applied to ζSφ, and (3.6), (3.11) with ε = 0, imply Lemma 3.1. �

To begin the proof of Theorem 1.1 we observe from Lemma 3.1 and Proposition

2.2 that S is a bounded linear operator from Bp′,β
∗ (∂Ω) into Bp,α(∂Ω). To show that

S is 1 - 1 we prove

Lemma 3.2. There exists δ > 0 such that if |p − 2| ≤ δ and φ ∈ Bp′,β
∗ (∂Ω), with

Sφ = 0, then φ = 0.

Proof. As in Lemma 3.1 we assume that 0 ∈ ∂Ω and ∂Ω ⊂ B̄(0, R0). We first prove

Lemma 3.2 when p′ ≤ 2. In this case given ρ > 2R0, choose σ ∈ C∞
0 (B(0, 2ρ)) with

σ ≡ 1 on B(0, ρ) and ‖|∇σ|‖L∞ ≤ cρ−1. Then from Lemma 3.1, the hypotheses of

Lemma 3.2, and Hölder’s inequality we see that σSφ ∈ W 1,p with trace 0 on ∂Ω. In

view of Lemma 2.3 it follows that we can approximate this function in the W 1,p norm

by functions in C∞
0 (Rn \ ∂Ω). This fact, the fact that p > 2, and harmonicity of Sφ

in Rn \ ∂Ω imply that

(3.14)

∫
Rn

∇Sφ · ∇(σSφ) dX = 0.

(3.14) and the usual estimates involving Cauchy’s inequality with ε’s yield

(3.15)

∫
B(0,ρ)

|∇Sφ|2dX ≤ cρ−2

∫
B(0,2ρ)\B(0,ρ)

|Sφ|2dX.
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Now from linearity of φ we see there exists ρ∗ with

(3.16) |Sφ(X)| ≤ c|X|2−n‖φ‖
Bp′,β
∗

for |X| > ρ∗.

Using (3.16) to estimate the right hand side in (3.15) and letting ρ→∞, we conclude

first from (3.15) that ∫
Rn

|∇Sφ|2dX = 0

and thereupon from (3.16) that ∇Sφ ≡ 0 in Rn \ ∂Ω. Finally replacing F by ∂F
∂Xi

in

(3.12) and summing the resulting expression, we get

(3.17)

∫
Rn

∇Sφ · ∇FdX = −〈φ, I2(∆F )〉 = −〈φ, F |∂Ω〉

where we have used the fact that F = I2(∆F ) when F ∈ C∞
0 (Rn) (see [15]). From

Proposition 2.2 and an approximation argument we see that (3.17) holds whenever

F ∈ W 1,p′ with compact support. From Proposition 2.1, (3.17), and ∇Sφ ≡ 0 in

Rn \ ∂Ω, we conclude that φ = 0. Hence Lemma 3.2 is valid when p′ ≤ 2.

If p′ > 2, and λ > 0 is fixed, we use Lemma 2.5 with k = Sφ to get θ ∈ W 1,∞ with

‖|∇θ|‖L∞ ≤ cλ and θ = Sφ for Hn almost every X ∈ L(λ) = {X : M̂(|∇Sφ|)(X) ≤
λ}. For fixed ρ > R0 let û = û(·, ρ) be the unique harmonic function in B(0, 2ρ) \ ∂Ω

with û − σθ ∈ W 1,2
0 (B(0, 2ρ) \ ∂Ω). Here σ is as in (3.14). Existence of û follows

from the usual minimizing argument involving the Dirichlet integral and the fact

that γ2(∂Ω) > 0 (see [1]). From the maximum principle for harmonic functions we

see that

(3.18) û(X) ≤ C|X|2−n in B(0, 2ρ) \B(0, 2R0)

where C is independent of ρ. Using (3.18), properties of harmonic functions, and the

fact that W 1,2
0 (B(0, 2ρ)) is reflexive, we deduce that û(·, ρ)→u as ρ→∞, where u

satisfies :

(3.19)

(a) u is harmonic in Rn \ ∂Ω,

(b) (u− θ)σ ∈ W 1,2
0 (B(0, 2ρ) \ ∂Ω) whenever ρ > R0,

(c) u(X) ≤ C|X|2−n in Rn \B(0, 2R0).

From (3.19), Lemma 2.4, compactness of ∂Ω, and Sobolev’s theorem we see that

σu ∈ W 1,q for some q > 2 depending only on the data. Also from (3.19) (b) and

Proposition 2.2 we see that (u − θ)σ = 0 on ∂Ω in the sense of Lemma 2.3. From

these facts and Lemma 2.3, we conclude that there exists a sequence of C∞
0 (Rn \ ∂Ω)
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functions converging to (u − θ)σ in the norm of W 1,q. Using these functions as test

functions and taking a limit, we see from Hölder’s inequality, Lemma 3.1, that

(3.20)

∫
Rn

∇Sφ · ∇(σ(u− θ))dX = 0

provided δ > 0 is small enough and 2− δ ≤ p < 2. Thus,

(3.21)

∫
Rn

∇Sφ · [∇(u− θ)]σdX = −
∫

Rn\B(0,ρ)

(∇Sφ · ∇σ)(u− θ)dX.

From (3.16), (3.19) (c), and properties of harmonic functions it also follows that there

exists ρ∗ with

(3.22) |∇Sφ(X)|+ |∇u(X)| ≤ c(‖φ‖
Bp′,β
∗

+ C)|X|1−n in Rn \B(0, 2ρ∗).

Next note from (3.16) that for ρ∗ large enough

(3.23) θ(X) = Sφ(X) in Rn \B(0, 2ρ∗).

From (3.16), (3.19) (c), (3.23), it is easily seen that the righthand side of (3.21) →0

as ρ→∞. Likewise from (3.22), (3.23) the lefthand side of (3.21) converges in L1 to

(3.24)

∫
Rn

∇Sφ · [∇(u− θ)]dX.

Since |∇u|, |∇θ| ∈ Lq for some q > 2, it follows that

(3.25)

∫
Rn

∇Sφ · ∇u dX =

∫
Rn

∇Sφ · ∇θ dX.

Now we can use Lemma 2.3 applied to F = Sφ, harmonicity of u in Rn \ ∂Ω, and

(3.16), (3.19) (c), (3.22), to conclude that the lefthand side of (3.25) is zero. Hence

(3.26)

∫
Rn

∇Sφ · ∇θdX = 0.

From (3.26) and Lemma 2.5 it follows that

(3.27) T1(λ) =

∫
L(λ)

|∇Sφ|2 dX ≤ cλ

∫
Rn\L(λ)

|∇Sφ| dX = T2(λ).

Multiplying both sides of (3.27) by λp−3 and integrating the resulting inequality over

λ ∈ (0,∞) we have

(3.28)∫ ∞

0

λp−3T1(λ)dλ =

∫
Rn

|∇Sφ|2
(∫ ∞

M̂(|∇Sφ|)
λp−3dλ

)
dX = (2−p)−1

∫
Rn

M̂(|∇Sφ|)p−2|∇Sφ|2dX.
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Similarly,

(3.29)∫ ∞

0

λp−3T2(λ)dλ = c

∫
Rn

|∇Sφ|

(∫ M̂(|∇Sφ|)

0

λp−2dλ

)
= (p−1)−1

∫
Rn

M̂(|∇Sφ|)p−1|∇Sφ|dX.

From (3.27) - (3.29) we see that

(3.30) I =

∫
Rn

M̂(|∇Sφ|)p−2|∇Sφ|2dX ≤ cδ

∫
Rn

M̂(|∇Sφ|)p−1|∇Sφ|dX = cδJ.

We note that if |2−p| ≤ 1/4, then M̂(|∇Sφ|)p−2 is an A2 weight (see [16], chapter V)

with A2 constant depending only on n. Using this fact and properties of A2 weights

we find that

(3.31) K =

∫
Rn

M̂(∇Sφ|)pdX ≤ cI.

Also, trivially J ≤ K. In view of (3.30) it follows that K ≤ cδK where c depends only

on the data. Hence K ≡ 0 for δ > 0 small enough, depending only on the data, which

implies as earlier that Sφ ≡ 0. Thus Lemma 3.2 is valid if δ > 0 is small enough. �

Next we prove

Lemma 3.3. There exists δ > 0 such that if |p− 2| ≤ δ, then S(Bp′,β
∗ (∂Ω)) is closed.

Proof. Since S is continuous it is easily seen that Lemma 3.3 follows from

(3.32) ‖Sφ‖Bp,α(∂Ω) ≥ η‖φ‖
Bp′,β
∗ (∂Ω)

for some η > 0 and all φ ∈ Bp′,β
∗ (∂Ω). The proof of (3.32) is by contradiction.

Otherwise, there exists φm ∈ Bp′,β
∗ (∂Ω), m = 1, 2, . . . , with

(3.33) ‖φm‖Bp′,β
∗ (∂Ω)

= 1 and Sφm→0 as m→∞ in Bp,α(∂Ω).

Again we consider two cases. If p ≥ 2, we can put φ = φm, and F = σSφm in

(3.17). Here σ ∈ C∞
0 (B(0, 2ρ)) is as in (3.14). Using (3.16), (3.22) and letting ρ→∞

it follows as earlier that

(3.34)

∫
Rn

|∇Sφm|2dX = −〈φm, Sφm〉 ≤ c‖Sφm‖Bp,α(∂Ω)→0 as m→∞.

Here we have used the fact that

(3.35) Bp,α(∂Ω) ⊂ Bp′,β(∂Ω) when p ≥ 2 with ‖ · ‖Bp′,β(∂Ω) ≤ c‖ · ‖Bp,α(∂Ω).

If p > 2 we note that (3.34) and (3.16) yield

(3.36) Sφm→0 uniformly in Oε
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where Oε was define below (3.1). From Proposition 2.1, Lemma 3.1, we deduce for

p > 2 the existence of Fm ∈ W 1,p,m = 1, 2, . . . with compact support, Fm|∂Ω = Sφm,

and

(3.37) ‖Fm‖W 1,p ≤ c‖Sφm‖Bp,α(∂Ω)→0 as m→∞.

Given X̂ ∈ ∂Ω, let ρ, ζ, be as in Lemma 2.4 and note from Lemma 2.3 that (Sφm −
Fm)ζ ∈ W 1,p

0 [B(X̂, 3ρ) \ ∂Ω] whenever X̂ ∈ ∂Ω. Thus we can apply Lemma 2.4 with

v = Sφm, p = q, to conclude for δ > 0 small enough that

(3.38)∫
B(X̂,ρ)

|∇Sφm|pdX ≤ cρn(1−p/2)

(∫
B(X̂,2ρ)

|∇Sφm|2dX
)p/2

+ c

∫
B(X̂,2ρ)

|∇Fm|pdX.

In view of (3.38), (3.34), (3.37) it follows that

∫
B(X̂,ρ)

|∇Sm|pdX→0 as m→∞. Next

from arbitrariness of X̂ ∈ ∂Ω and compactness of ∂Ω, we see for ε > 0 small enough

that

∫
Ω\Oε

|∇Sm|pdX→0 as m→∞. Finally, this limit, (3.36), properties of harmonic

functions, and (3.22) imply for 2 < p ≤ 2 + δ that

(3.39) ‖|∇Sφm|‖Lp→0 as m→∞.

If p = 2, then (3.39) follows from (3.34). From (3.39) we can easily get a contradiction

to (3.33) when 2 ≤ p ≤ 2 + δ. In fact if g ∈ Bβ,p′(∂Ω) and G ∈ W 1,p′ are as in

Proposition 2.1 with compact support and G = g on ∂Ω, then from (3.17) we see

that

(3.40)

〈φm, g〉 = −
∫

Rn

∇Sφm · ∇GdX ≤ c‖|∇Sφm|‖Lp ‖g‖Bp′,β(∂Ω) ≤ (1/2)‖g‖Bp′,β(∂Ω)

for m large enough independent of g ∈ Bβ,p′(∂Ω). We have reached a contradiction

since ‖φm‖Bp′,β
∗ (∂Ω)

= 1. From this contradiction we obtain first (3.32) and after that

Lemma 3.3 when 2 ≤ p ≤ 2 + δ.

If 2 − δ ≤ p < 2, suppose φ ∈ Bp′,β
∗ (∂Ω), ψ ∈ Bp,α

∗ (∂Ω), and σ is as in (3.14).

Putting F = σSψ in (3.17), using Lemma 3.1, (3.16), (3.22), and letting ρ→∞ it

follows from now standard arguments that

(3.41)

∫
Rn

∇Sφ · ∇Sψ dX = −〈φ, Sψ〉 = −〈ψ, Sφ〉
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where the last equality follows from interchanging the roles of φ, ψ. We now also

interchange the roles of p, p′ in the earlier case proved of Lemma 3.3. Thus

(3.42) ‖ψ‖Bp,α
∗ (∂Ω) ≤ c‖Sψ‖Bp′,β(∂Ω)

From (3.41), (3.42) we find that

(3.43) |〈φm, Sψ〉| = |〈ψ, Sφm〉| ≤ c‖Sφm‖Bp,α(∂Ω)‖Sψ‖Bp′,β(∂Ω)→0 as m→∞.

We conclude from (3.43) (as in (3.40)), that if S(Bp,α
∗ (∂Ω)) is dense in Bp′,β(∂Ω)

with respect to the norm of this space, then again we have reached a contradiction

to (3.33). Otherwise, it follows from the Hahn Banach theorem and (3.41) that there

exists φ ∈ Bp′,β
∗ , φ 6≡ 0, with

(3.44) 0 = 〈φ, Sψ〉 =

∫
Rn

∇Sφ · ∇Sψ dX whenever ψ ∈ Bp,α
∗ (∂Ω).

To get a contradiction, we essentially repeat the argument after (3.15) with a few

twists. Given λ > 0 construct θ relative to k = Sφ, λ, as in Lemma 2.5. This

construction is permissible thanks to Lemma 3.1. Next construct u relative to θ,

satisfying (3.19). Then |∇u|, |∇θ| in Lp′ provided 2 < p′ ≤ 2 + δ. Using this fact,

(3.19), (3.22), and harmonicity of Sφ in Rn \ ∂Ω, we get as in (3.25),

(3.45)

∫
Rn

∇Sφ · ∇u dX =

∫
Rn

∇Sφ · ∇θ dX.

Now if h ∈ Bp,α(∂Ω) then from Proposition 2.1 there is an extension H of h with

compact support and ‖H‖W 1,p ≤ c‖h‖Bp,α(∂Ω). Hence

(3.46)

∣∣∣∣∫
Rn

∇u · ∇H dX

∣∣∣∣ ≤ c‖∇u‖Lp′‖h‖Bp,α(∂Ω).

Since |∇u| ∈ Lp′ it follows from (3.46), (3.17), that if ψ is defined by

(3.47) 〈ψ, h〉 =

∫
Rn

∇u · ∇HdX for all h ∈ Bp,α(∂Ω),

then ψ ∈ Bp,α
∗ (∂Ω) and

(3.48)

∫
Rn

∇u · ∇HdX = −
∫

Rn

∇Sψ · ∇HdX.

Also, if h = Sφ then we can argue as earlier using Lemmas 2.3, 3.1, (3.48), (3.44),and

(3.45) to deduce that

(3.49) 0 =

∫
Rn

∇Sψ · ∇Sφ dX = −
∫

Rn

∇u · ∇Sφ dX = −
∫

Rn

∇θ · ∇Sφ dX.
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Armed with (3.49) we can now repeat verbatim the argument after (3.26) to get

Sφ ≡ 0. From Lemma 3.2 it follows that φ ≡ 0. We have reached a contradiction to

our assumption that φ 6≡ 0. The proof of Lemma 3.3 is now complete. �

We complete the proof of Theorem 1.1 with

Lemma 3.4. If |p − 2| ≤ δ and δ > 0 is small enough, depending only on the data,

then S : Bp′,β
∗ (∂Ω) onto Bp,α(∂Ω).

Proof. The proof of Lemma 3.4 is by contradiction. Otherwise it follows from Lemma

3.3 and the Hahn Banach theorem that there exists ψ ∈ Bp,α
∗ (∂Ω), ψ 6≡ 0, with

〈ψ, Sφ〉 = 0 whenever φ ∈ Bβ,p′
∗ (∂Ω). For 2 < p ≤ 2 + δ the argument from (3.44)

to the end of Lemma 3.3 gives a contradiction. If 2 − δ ≤ p ≤ 2, we can use (3.35)

with p, p′ interchanged and argue as in (3.34) to get first that
∫
Rn |∇Sψ|2dX = 0 and

second that ψ ≡ 0. In either case we have reached a contradiction. Thus Lemma 3.4

is true. Finally, invertibility follows from Lemmas 3.2-3.4 and (3.32). In fact it is well

known that a 1 - 1, onto linear operator is invertible. �

4. Proof of Theorem 1.2.

In the proof of Theorems 1.2, 1.3 we assume that Ω = Ω+ is a bounded domain

with 0 ∈ Ω ⊂ B(0, R0) and Ω− = Rn \ Ω̄+.

Recall from (1.2), (1.3), that the double layer and boundary double layer potentials

are defined for f ∈ Bp,α(∂Ω) by

(4.1)

K±f(X) =
∫

Ω∓
∇Y Γ(Y −X) · ∇F (Y )dY, X ∈ Rn,

T±f = K±f |∂Ω.

where F ∈ W 1,p with compact support in Rn and F |∂Ω = f. Existence of one such F

is a consequence of Proposition 2.1. Using Calderón - Zygmund theory and properties

of Riesz potentials we also deduce that K±f ∈ R1,p with

(4.2) ‖K±f‖R1,p ≤ c‖∇F‖Lp

We now show that T±f is independent of the choice of F. Indeed, suppose F, F̃ ∈ W 1,p,

and f = F̃ |∂Ω = F |∂Ω ∈ Bp,α(∂Ω). Then G = F − F̃ has trace 0 so by Lemma 2.3,

given ε > 0 there exists g ∈ W 1,p(Rn) ∩ C∞
0 (Rn \ ∂Ω) with ‖g − G‖W 1,p < ε. Let

ζ ∈ C∞
0 (B(0, 2R0)) with ζ ≡ 1 on B(0, R0) and |∇ζ| ≤ cR−1

0 . We note that T±g ≡ 0
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on ∂Ω as follows easily from integration by parts in the integral defining K±g. Using

this fact, (4.2), and Proposition 2.2, we deduce that

(4.3)
‖T±G‖Bp,α(∂Ω) = ‖T±(g −G)‖Bp,α(∂Ω) ≤ c‖ζK±(g −G)‖W 1,p

≤ c2 ‖K±(g −G)‖R1,p ≤ c3 ‖∇g −∇G‖Lp ≤ c3 ε.

Letting ε→0 we get T±G = 0 in Bp,α(∂Ω). Hence T±F = T±F̃ and T± is well defined

on Bp,α(∂Ω). Next for given f ∈ Bp,α(∂Ω) we choose F as in Proposition 2.1 with

support in B(0, 2R0) and use the same argument as in (4.3) to get

(4.4) ‖T±f‖Bp,α(∂Ω) ≤ c ‖ζK±f‖W 1,p ≤ c2 ‖∇F‖Lp ≤ c3‖f‖Bp,α(∂Ω).

From (4.4) we see that T± is a bounded linear operator from Bp,α(∂Ω)→Bp,α(∂Ω).

Now let f ∈ Bp,α(∂Ω) and ψ ∈ Bp,α
∗ (∂Ω). From Theorem 1.1 we see for δ > 0 small

enough, that there exists φ ∈ Bp′,β(∂Ω) with Sφ = f. Arguing as in the proof of

Theorem 1.1 we find as in (3.41) that

(4.5) 〈ψ, T±(Sφ)〉 =

∫
Ω∓

∇Sψ · ∇Sφ dX = 〈φ, T±(Sψ)〉.

Now assume that A3 holds with G = Ω− or G = Ω+. Given p with |p− 2| ≤ 1/4,

let v be as in A3 with v = f. Assume also that |∇v| ∈ Lp(G). Let v̂ be the extension

of v to Rn guaranteed by A3. Put h = |∇v̂| when G = Ω− and h = |∇v̂|χ when

G = Ω+ where χ is the characteristic function of B(0, ρ) for some ρ > R0. Once again

we observe that (M̂h)p−2 is an A2 weight when |p− 2| ≤ 1/4. Using this observation,

properties of A2 weights, A3, and either Young’s inequality with ε ’ s or M̂h ≥ h, we

see that

(4.6)

∫
Rn

(M̂h)pdX ≤ c

∫
Rn

(M̂h)p−2|∇v|2dX ≤ c2
∫

G

(M̂h)p−2|∇v̂|2dX

≤ (1/2)

∫
Rn

(M̂h)pdX + c′
∫

G

|∇v|pdX

where c′ depends only on the data. Subtracting the first term on the lower righthand

side of (4.6) from the lefthand side we get∫
Rn

(M̂h)pdX ≤ c

∫
G

|∇v|pdX.

This equality and (4.6) imply for G = Ω− that

(4.7)

∫
Rn

|∇v̂|pdX ≈
∫

Rn

M̂(|∇v̂|)p−2|∇v̂|2dX ≈
∫

G

|∇v|pdX
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where ≈ means the ratio of any two quantities is bounded above and below by con-

stants depending only on the data. If G = Ω+, then (4.7) is also valid as we deduce

from letting ρ→∞ in the above inequalities and using the monotone convergence

theorem.

We now begin the proof of Theorem 1.2. Fix p, |p− 2| ≤ 1/4, and let V 1,p(Ω−) be

the space of all locally integrable functions v on Ω− with distributional gradient ∇v
satisfying lim

ρ→∞
vB(0,ρ) = 0 and ‖v‖V 1,p(Ω−) = ‖|∇v|‖Lp(Ω−). Recall that vB(0,ρ) is the

average of v on B(0, ρ). Let v̂ be the extension of v to Rn given by A3. From (4.7)

and Sobolev type estimates we see that v̂ ∈ R1,p with

c−1‖v‖V 1,p(Ω−) ≤ ‖v̂‖R1,p ≤ c‖v‖V 1,p(Ω−).

Thus V 1,p is a reflexive Banach space. The following lemma will play a key role in

our proof of Theorem 1.2.

Lemma 4.1. There is a δ > 0, c ≥ 1, depending only on the data such that if

|p − 2| ≤ δ and v ∈ V 1,p(Ω−), then there exists ũ ∈ C∞
0 (Rn) with ū = ũ|Ω− ,

‖ū‖V 1,p′ (Ω−) ≤ c, and

‖v‖V 1,p(Ω−) ≤
∫

Ω−

∇ū · ∇v dX.

Proof. If v = 0 set ũ = 0. Otherwise, from linearity we may assume that ‖v‖V 1,p(Ω−) =

1. Let v̂ denote the extension of v to Rn guaranteed by A3. Given η > 0 we claim

there exists ŵ ∈ C∞
0 (Rn) such that if w = ŵ|Ω− then

(4.8)
(a) ‖w − v‖V 1,p(Ω−) ≤ η.

(b) (4.7) is valid with v, v̂, G replaced by w, ŵ,Ω− .

To prove (4.8) we note that if σ, ρ are as in (3.14) and v∗ = (v̂ − v̂B(0,2ρ))σ then v∗

converges to v̂ in the norm of V 1,p as ρ→∞. To prove this note we could for example,

use (2.2) vith F = v,X = 0, r = 2ρ. Writing the resulting integral on the righthand

side of (2.2) as a sum one gets as in (2.24) that

|v̂(Y )− v̂B(0,2ρ)| ≤ cρM̂(|∇v̂|)(Y ) whenever Y ∈ B(0, 2ρ).

Our note follows easily from this display and the Hardy Littlewood maximal theorem.

Regularizing v∗ we see there exists a sequence, vj ∈ C∞
0 (Rn), j = 1, 2, . . . , converging

to v̂ pointwise and in the norm of V 1,p. Clearly (a) of (4.8) is valid if we take ŵ = vj

and j is large enough. Moreover, using (4.6) for v̂, v, the Fatou lemma, and the fact
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that

M(|∇(v′ − v′′)|) ≤M(|∇v′|) +M(|∇v′′|) whenever v′, v′′ ∈ {vj, v̂, j = 1, 2, . . . }

we get

lim sup
j→∞

∫
Rn

M̂(|∇vj|)pdX ≤ c lim inf
j→∞

∫
Ω−

M̂(|∇ vj|)p−2|∇vj|2dX

≤ (1/2) lim sup
j→∞

∫
Rn

M̂(|∇vj|)pdX + c′ lim inf
j→∞

∫
Ω−

|∇vj|pdX

It follows from this inequality and the Hardy Littlewood maximal theorem that we

can also choose ŵ = vj in (b) of (4.8) when j is large enough.

To continue the proof of Lemma 4.1 we suppose η is a small positive number and ŵ

has been chosen relative to η. First suppose that 0 < 2− p ≤ 1/4. Let λ0 > 0 be the

largest number such that M̂(|∇ŵ|) ≥ 2λ0 on the support of ŵ. Construct θ = θ(·, λ)

relative to ŵ, λ as in Lemma 2.5. Put

u = (2− p)
∞∑

m=m0

2m(p−2) θ(·, 2m)

where m0 is the largest integer such that 2m0 ≤ λ0. We note that since M(|∇ŵ|) is

bounded, we have θ(·, λ) = ŵ for large λ. Also, θ(·, λ) ≡ 0 in a neighborhood of ∞
independent of λ ≥ λ0/2. From these remarks it is easily seen that u is Lipschitz and

for almost every X

(4.9) ∇u(X) = ∇ŵ(X) (2− p)
∑

m∈Λ(X)

2m(p−2) + E(X)

where Λ(X) denotes the set of all integersm ≥ m0 with 2m ≥M(|∇ŵ|)(X).Moreover,

if Λ1(X) denotes all integers ≥ m0 that are not in Λ(X), then

(4.10) |E(X)| ≤ c(2− p)
∑

m∈Λ1

2m(p−1) ≤ c′(2− p)M(|∇ŵ|)(X)p−1.

Finally if h(X) = (2− p)
∑

m∈Λ(X)

2m(p−2) then

(4.11) h ≤ cM(|∇ŵ|)p−2 on Rn and h ≥ c−1M(|∇ŵ|)p−2 on the support of ŵ.

(4.11) is understood to hold in the almost every sense. This display can be proved

by comparing h(X) with
∫∞

M̂(|∇ŵ|)(X)
λp−3dλ. From (4.9)-(4.11), we conclude first that
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|∇u| ≤ cM(|∇ŵ|)p−1 so from the Hardy Littlewood maximal theorem and (a) of

(4.8),

(4.12) ‖u‖V 1,p′ (Ω−) ≤ c‖w‖p−1
V 1,p(Ω−) ≤ 2c.

Second from (4.9)-(4.11) we get

(4.13)

∫
Ω−

∇u·∇w dX ≥ c−1

∫
Ω−

|∇w|2M̂(|∇ŵ|)2−p dX−c(2−p)
∫

Rn

M(|∇ŵ|)p dX.

From (4.12), (4.13), and (4.8), we see first that the display in Lemma 4.1 holds with

ū, v replaced by u,w provided δ > 0 is small. Second choosing η small enough,

depending only on the data, we find that this display holds for u, v. Finally, as in the

approximation of v̂ by vj, we can approximate u by ũ ∈ C∞
0 (Rn) in such a way that

Lemma 4.1 is valid when 2− δ ≤ p < 2.

The case p = 2 of Lemma 4.1 is easily handled so we assume 2 < p ≤ 2 + δ. Let

V 1,p
∗ (Ω−) be the space of bounded linear functions on V 1,p(Ω−) and let Γ ⊂ V 1,p

∗ (Ω−)

be all linear functionals ψ which can be written in the form

(4.14) 〈ψ, v〉 =

∫
Ω−

∇u · ∇v dX, v ∈ V 1,p(Ω−), where u ∈ V 1,p′(Ω−).

We claim that

(4.15) Γ = V 1,p
∗ (Ω−).

Once (4.15) is proved we can use the Hahn Banach theorem to get for v ∈ V 1,p(Ω−)

with ‖v‖V 1,p(Ω−) = 1, a linear functional ψ as in (4.14) with ‖ψ‖V 1,p
∗ (Ω−) = 1 and

(4.16) 1 = 〈ψ, v〉 =

∫
Ω−

∇u · ∇v dX.

Also, since p′ < 2 we can apply the previous case with p, p′ interchanged to conclude

that ‖u‖V 1,p′ ≤ c. As in the case 2−δ ≤ p < 2, we can then extend u to û as in A3 and

after that approximate û by a C∞
0 (Rn) function in such a way that Lemma 4.1 holds.

Thus to complete the proof of Lemma 4.1 when 2 < p ≤ 2+δ, it suffices to prove (4.15).

To do this given u ∈ V 1,p′(Ω−) let Λ(u) be the bounded linear functional on V 1,p(Ω)

defined in (4.14). From Hölder’s inequality we see that Λ : V 1,p′(Ω−)→V 1,p
∗ (Ω−) is a

bounded linear operator with norm ≤ 1. From the 2− δ ≤ p < 2 case of Lemma 4.1

with p, p′ interchanged it is easily seen that

(4.17) c−1‖u‖V 1,p′ ≤ ‖Λ(u)‖V 1,p
∗

≤ ‖u‖V 1,p′ .
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Clearly (4.17) implies that Γ = Λ(V 1,p′(Ω−)) is closed in V 1,p
∗ (Ω−). If (4.15) is false,

it follows from an argument involving the Hahn Banach theorem and reflexivity of

V 1,p(Ω−) that there exists v ∈ V 1,p(Ω−), v 6≡ 0, with

(4.18)

∫
Ω−

∇u · ∇v dx = 0 for all u ∈ V 1,p′(Ω−).

It is easily seen that (4.18) implies v is harmonic in Ω−. Using subharmonicity of

|∇v|, v ∈ V 1,p, and Hölder’s inequality one sees for some constant C that

(4.19) |∇v(X)| ≤ C|X|−n/p

for |x| ≥ 2R0. Using (4.19), the mean value theorem, and lim
ρ→∞

vB(0,ρ) = 0, it follows

that v(X)→0 as |X|→∞. This fact and either the Kelvin transformation or the

Poisson integral formula for Rn \ B̄(0, 2R0) imply for some constant C ′ that

(4.20) |v(X)|+ |X||∇v(X)| ≤ C ′|X|2−n for |X| ≥ 2R0.

Armed with (4.20) we can now argue as earlier to get a contradiction. That is let σ, ρ

be as in (3.14) and set u = vσ. Then u ∈ V 1,p′(Ω−) and from (4.18), (4.20), it follows

that ∫
B(0,ρ)

|∇v|2dX ≤ cρ−2

∫
B(0,2ρ)\B̄(0,ρ)

v2dX→0 as ρ→∞.

Thus v ≡ 0 in Ω− which is a contradiction. We conclude that (4.15) and Lemma 4.1

are true when 2 < p ≤ 2 + δ provided δ > 0 is sufficiently small, depending only on

the data. �

We continue the proof of Theorem 1.2 with

Lemma 4.2. There exists δ > 0 such that if |p − 2| ≤ δ and f ∈ Bp,α(∂Ω) with

T+f = 0 then f = 0.

Proof. Let φ ∈ Bp′,β(∂Ω) with f = Sφ. From (4.5) we see that

(4.21) 〈ψ, T+f〉 =

∫
Ω−
∇Sφ · ∇Sψ dX = 0

whenever ψ ∈ Bp,α
∗ (∂Ω). Also, from Lemma 3.1 we find that v = Sφ ∈ V 1,p(Ω−) so

by Lemma 4.1 there exists ũ ∈ C∞
0 (Rn) with ũ|Ω− = ū, ‖ū‖V 1,p′ (Ω−) ≤ c, and

(4.22) ‖Sφ‖V 1,p(Ω−) ≤
∫

Ω−

∇Sφ · ∇ūdX.
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Choose ψ ∈ Bp,α(∂Ω) with Sψ = ũ|∂Ω. This choice is possible as we see from Proposi-

tion 2.2 and Theorem 1.1. Using once again Lemma 2.3, the fact that ũ has compact

support, and decay of Sψ near ∞ given by (3.16), (3.22), we conclude that

(4.23)

∫
Ω−
∇Sφ · (∇Sψ −∇ū) dX = 0.

Combining (4.21) - (4.23) we have∫
Ω−

|∇Sφ|pdX = 0

which in view of (3.16) implies Sφ = 0 in Ω−. Using A2 we see that f = Sφ = 0. �

Next we prove

Lemma 4.3. There exists δ > 0 such that if |p− 2| ≤ δ then T+(Bp,α(∂Ω)) is closed.

Proof. As in (3.32) it is easily seen that Lemma 4.3 follows once we show the existence

of η > 0 so that

(4.24) ‖T+f‖Bp,α(∂Ω) ≥ η‖f‖Bp,α(∂Ω).

To prove (4.24) we again argue by contradiction. Otherwise there exist fm ∈ Bp,α(∂Ω),m =

1, 2, . . . , with

(4.25) ‖fm‖Bp,α(∂Ω) = 1 and ‖T+fm‖Bp,α(∂Ω)→0 as m→∞.

Choose φm ∈ Bp′,β(∂Ω) with Sφm|∂Ω = fm,m = 1, 2, . . . , and note from (4.5), (4.25),

that

(4.26)

∫
Ω−
∇Sφm · ∇Sψ dX = 〈ψ,T+fm〉→0 as m→∞

whenever ψ ∈ Bp,α
∗ (∂Ω). As in Lemma 4.2 we set v = Sφm and choose ũ, ū as in

Lemma 4.1 relative to v. We then find ψ ∈ Bp,α(∂Ω) with Sψ = ũ|Ω− . Arguing as in

(4.21) - (4.23) it follows that

(4.27)

∫
Ω−

|∇Sφm|pdX ≤
∫

Ω−

∇Sφm · ∇ūdX

=

∫
Ω−

∇Sφm · ∇SψdX→0 as m→∞.

Let Ŝφm be the extension of Sφm|Ω− to Rn guaranteed by A3. Then from (4.27) and

(4.7) we deduce that

(4.28) ‖|∇Ŝφm|‖Lp ≤ c‖|∇Sφm|‖Lp(Ω−)→0 as m→∞.
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From A2 applied to Ŝφm −Sφm with G = Ω−, we see that Ŝφm|∂Ω = fm. Using this

fact and applying Proposition 2.2 to σ Ŝφm (σ, ρ as in (3.14)) we get upon letting

ρ→∞,

(4.29) ‖fm‖Bp,α(∂Ω) ≤ c‖|∇Ŝφm|‖Lp→0 as m→∞.

(4.29) contradicts (4.25). Thus Lemma 4.3 is true. �

To complete the proof of Theorem 1.2 we prove

Lemma 4.4. If |p − 2| ≤ δ and δ > 0 is small enough, depending only on the data,

then T+ : Bp,α(∂Ω) onto Bp,α(∂Ω).

Proof. The proof of Lemma 4.4 is also by contradiction. Otherwise it follows from

Lemma 4.3, the Hahn Banach theorem, and Theorem 1.1 that there exists ψ ∈
Bp,α
∗ (∂Ω), ψ 6≡ 0, with 〈ψ, T+(Sφ)〉 = 0 whenever φ ∈ Bp′,β

∗ (∂Ω). From (4.5) we

see that

(4.30) 0 = 〈ψ, Sφ〉 =

∫
Ω−
∇Sψ · ∇Sφ dX whenever φ ∈ Bp′,β

∗ (∂Ω).

Also using Lemma 4.1 and arguing as in (4.21) - (4.23) we obtain for some φ ∈
Bp′,β
∗ (∂Ω) and c depending only on the data that

(4.31)

∫
Ω−
|∇Sψ|pdX ≤ c

∫
Ω−
∇Sψ · ∇SφdX.

(4.30), (4.31) yield first that
∫

Ω−
|∇Sψ|pdX = 0 and then from (3.16) that Sψ = 0

on Ω−. Using A2 we conclude that Sψ = 0 which in view of Theorem 1.1 is a

contradiction to our assumption that ψ 6≡ 0. �

5. Proof of Theorem 1.3

Recall from section 1, as well as Theorem 1.1, that if ψ ∈ Bp,α
∗ (∂Ω), φ ∈ Bp′,β

∗ (∂Ω),

then

(5.1) 〈T ∗− ψ, Sφ〉 = 〈ψ, T−(Sφ)〉

and that B̂p,α
∗ (∂Ω) = {ψ ∈ Bp,α

∗ (∂Ω) with 〈ψ, 1〉 = 0}. We first claim that

(5.2) T ∗− is a bounded linear operator from B̂p,α
∗ (∂Ω) into B̂p,α

∗ (∂Ω).

To prove claim (5.2) given f ∈ Bp,α(∂Ω) choose φ ∈ Bp′,β
∗ (∂Ω) with Sφ = f. Existence

of φ follows from Theorem 1.1. If f = 1, then from Lemma 2.3 we may approximate

σSφ (σ as in (3.14)), arbitrarily closely in the norm of W 1,p by C∞
0 (Rn) functions
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which are 1 in a neighborhood of ∂Ω. Using this fact, (5.1), (4.5), and Lemma 3.1,

we find that

(5.3) 〈T ∗− ψ, Sφ〉 =

∫
Ω+

∇Sφ · ∇SψdX = 0

whenever ψ ∈ B̂p,α
∗ (∂Ω). From (5.3) we conclude that T ∗− maps B̂p,α

∗ (∂Ω) into B̂p,α
∗ (∂Ω).

Boundedness of T ∗− follows from (5.1) and (4.4). Thus claim (5.2) is true.

We follow the same proof scheme as in Theorem 1.2.

Lemma 5.1. There is a δ > 0, c ≥ 1, depending only on the data, such that if |p−2| ≤
δ the following statement is true. Given v ∈ W 1,p(Ω+), there exists ũ ∈ C∞

0 (Rn) with

ū = ũ|Ω+ , ‖|∇ū|‖Lp′ (Ω+) ≤ c, and

‖|∇v|‖Lp(Ω+) ≤
∫

Ω+

∇ū · ∇v dX.

Proof. To prove Lemma 5.1 for 2 − δ ≤ p ≤ 2, we simply copy the proof of Lemma

4.1 with Ω− replaced by Ω+. To prove this lemma for 2 < p ≤ 2 + δ we introduce

for 2 − σ0 ≤ q ≤ 2 + σ0 the space, U1,q(Ω+), of integrable functions v on Ω+ with

distributional gradient, ∇v, satisfying

|∇v| ∈ Lq(Ω+) and

∫
Ω+

v dX = 0.

Given v ∈ U1,q(Ω+), let v̂ denoted the extension of v to Rn provided for in A3. From

(4.7) and Poincaré’s inequality we see that

(5.4)

|v̂B(0,R0)|q = |v̂B(0,R0) − vΩ+ |q ≤ c[Hn(Ω+)]−1
∫

Ω+
|v(Y )− vB(0,R0)|qdY

≤ c[Hn(Ω+)]−1Rq
0

∫
B(0,R0)

|∇v̂|q dX ≤ c′
∫

Ω+
|∇v|q dX.

Using (5.4), Poincaré’s inequality, and (4.7) we deduce that U1,q is a reflexive Banach

space with norm ‖v‖U1,q(Ω+) = ‖∇v‖Lq(Ω+) . In fact

c−1‖v‖U1,q(Ω+) ≤ ‖v‖W 1,q(Ω+) ≤ c‖v‖U1,q(Ω+).

Let U1,q
∗ (Ω+) denote bounded linear functionals on U1,q(Ω+). If 2 < p ≤ 2 + δ we let

Γ̃ ⊂ U1,p
∗ (Ω+) denote all linear functionals ψ which can be written in the form

〈ψ, v〉 =

∫
Ω+

∇u · ∇v dX, v ∈ U1,p(Ω+), where u ∈ U1,p′(Ω+).

We claim that

(5.5) Γ̃ = U1,p
∗ (Ω+).
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Once (5.5) is proved we can argue as in the discussion after (4.15) to get Lemma

5.1. Thus we shall only prove prove (5.5). To do this we argue by contradiction.

Repeating the argument after (4.15) we find that if (5.5) is false, then there exists

v ∈ U1,p(Ω+), v 6≡ 0, with

(5.6)

∫
Ω+

∇u · ∇v dX = 0 for all u ∈ U1,p′(Ω+).

Choosing u = v in (5.6) it follows that∫
Ω+

|∇v|2 dX = 0

so that v is constant in Ω+. Finally v ≡ 0 in Ω+ since vΩ+ = 0. From this contradiction

we conclude Lemma 5.1 when 2 < p ≤ 2 + δ. �

We continue the proof of Theorem 1.3 with

Lemma 5.2. There exists δ > 0 such that if |p − 2| ≤ δ and ψ ∈ B̂p,α
∗ (∂Ω) with

T ∗−ψ = 0 then ψ = 0.

Proof. Given f ∈ Bp,α(∂Ω) choose φ ∈ Bp′,β
∗ (∂Ω) with f = Sφ. From (4.5), (5.1), and

Theorem 1.1 we see that

(5.7) 0 = 〈T ∗−ψ, f〉 =

∫
Ω+

∇Sψ · ∇Sφ dX

whenever φ ∈ Bp′,β
∗ (∂Ω). Now from Lemma 5.1 with p, p′ interchanged and Lemma

3.1, there exists ũ ∈ C∞
0 (Rn) with ū = ũ|Ω+ , ‖|∇ū|‖Lp(Ω+) ≤ c, and

(5.8) ‖|∇Sψ|‖Lp′ (Ω+) ≤
∫

Ω+

∇Sψ · ∇ū dX.

Choose φ as above so that ũ|∂Ω = Sφ. Then from Lemma 2.3 we conclude that

(5.9)

∫
Ω+

∇Sψ · (∇ū−∇Sφ) dX = 0.

(5.7) - (5.9) imply that ∇Sψ ≡ 0 in Ω+. Thus Sψ = a = constant in Ω+ so by

A2, Sψ = a. If 2−δ ≤ p ≤ 2, it follows from (3.41) and (3.35) with p, p′ interchanged

that

(5.10) 0 = 〈ψ, Sψ〉 =

∫
Rn

|∇Sψ|2 dX

so from (3.16), Sψ ≡ 0. In view of Theorem 1.1 we have ψ ≡ 0. If 2 < p ≤ 2 + δ

we observe from Theorem 1.1 that there exists ψ̃ ∈ Bp′,α
∗ (∂Ω) with Sψ̃ = a. From

uniqueness in Theorem 1.1 and (3.35) it follows that ψ̃|Bp,α(∂Ω) = ψ. Moreover, Sψ =

Sψ̃ so (5.10) is also valid when 2 < p ≤ 2 + δ and once again, ψ ≡ 0. �
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To continue the proof of Theorem 1.3 we have

Lemma 5.3. There exists δ > 0 such that if |p− 2| ≤ δ then T ∗−(B̂p,α
∗ (∂Ω)) is closed.

Proof. As earlier it is easily seen that Lemma 5.3 follows once we show the existence

of η > 0 so that

(5.11) ‖T ∗−ψ‖Bp,α
∗ (∂Ω) ≥ η‖ψ‖Bp,α

∗ (∂Ω).

To prove (5.11) we again argue by contradiction. Otherwise there exist ψm ∈ B̂p,α
∗ (∂Ω),m =

1, 2, . . . , with

(5.12) ‖ψm‖Bp,α
∗ (∂Ω) = 1 and ‖T ∗−ψm‖Bp,α

∗ (∂Ω)→0 as m→∞.

Using (5.12), Lemma 5.1, Theorem 1.1, (4.5), and (5.1), as in Lemma 5.2, we find

that ∫
Ω+

|∇Sψm|p
′
dX→0

as m→∞. From (4.7) it follows that∫
Rn

|∇Ŝψm|p
′
dX→0

as m→∞ where Ŝψm denotes the extension of Sψm|Ω+ in A3. From Proposition 2.2

and A2 applied to Sψm − Ŝψm in Ω+, it follows that ‖Sψm‖Bp′,β(∂Ω)→0 as m→∞.

Since from Theorem 1.1,

‖ψm‖Bp,α
∗ (∂Ω) ≤ c ‖Sψm‖Bp′,β(∂Ω)

we have reached a contradiction to (5.12). Thus Lemma 5.3 is true. �

To complete the proof of Theorem 1.3 we prove

Lemma 5.4. If |p − 2| ≤ δ and δ > 0 is small enough, depending only on the data,

then T ∗− : B̂p,α
∗ (∂Ω) onto B̂p,α

∗ (∂Ω).

Proof. The proof of Lemma 5.4 is once again by contradiction. Otherwise it follows

from the Hahn Banach theorem and reflexivity of Bp,α(∂Ω) that there exists f ∈
Bp,α(∂Ω), f 6≡ constant with

(5.13) 〈T ∗−τ, f〉 = 〈τ, T−f〉 = 0

for all τ ∈ B̂p,α
∗ (∂Ω). Choose θ ∈ Bp,α

∗ (∂Ω) so that Sθ = 1. From Theorem 1.1 and a

uniqueness argument, as in Lemma 5.2, we see that Sθ ∈ R1,2 and

(5.14) 〈θ, 1〉 = 〈θ, Sθ〉 =

∫
Rn

|∇Sθ|2 dX 6= 0.



BOUNDARY INTEGRAL OPERATORS 31

Also from Lemma 2.3 we see that∫
Ω+

|∇Sθ|2dX = 0

so Sθ ≡ 1 in Ω+. It follows from this fact and (4.5) that if f = Sφ, φ ∈ Bp′,β
∗ (∂Ω),

then

(5.15) 〈T ∗−θ, f〉 = 〈θ, T−f〉 =

∫
Ω+

∇Sθ · ∇Sφ dX = 0.

Finally we note from (5.14) that if ψ ∈ Bp,α
∗ (∂Ω), then

(5.16) ψ = τ +
〈ψ, 1〉
〈θ, 1〉

θ

where τ ∈ B̂p,α
∗ (∂Ω). Using (5.13), (5.15), (5.16), and (4.5) we see that

(5.17) 0 = 〈T ∗−ψ, f〉 = 〈ψ, T−f〉 =

∫
Ω+

∇Sψ · ∇Sφ dX = 0

for all ψ ∈ Bp,α
∗ (∂Ω). Thanks to (5.17) we can now apply the same argument as in

Lemma 5.2 with ψ, φ interchanged. Doing this, we conclude that f = Sφ ≡ constant.

From this contradiction we get first Lemma 5.4 and then Theorem 1.3. �

Remark 5.5. Given p, 1 < p < ∞, let u be harmonic in Ω with |∇u| ∈ Lp′(Ω).

Define a linear functional ∂u
∂n

on Bp,α(∂Ω) by〈
∂u

∂n
, f

〉
=

∫
Ω

∇u · ∇F dX

where f ∈ Bp,α(∂Ω) and F ∈ W 1,p is the extension of f in Proposition 2.1. Using

Hölder’s inequality and Proposition 2.1 we see that∥∥∥∥∂u∂n
∥∥∥∥

Bp,α
∗ (∂Ω)

≤ c‖|∇u|‖Lp′ (Ω).

If u = Sψ|Ω, then from (4.5), (5.1) we see that ∂u
∂n

= T ∗−ψ.

6. Domains which satisfy A1-A3

In this section we discuss conditions A1-A3. We begin with a class of domains

first considered in [8].

A connected open set G is said to be an (A, r0) uniform domain if given X1, X2 ∈ G
with |X1 −X2| < r0, there is a rectifiable curve γ : [0, 1]→G with γ(0) = X1, γ(1) =
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X2, and

(6.1)
(a) H1(γ) ≤ A |X1 −X2|.

(b) min{H1(γ([0, t])), H1(γ([t, 1])) } ≤ Ad(γ(t), ∂Ω) for t ∈ [0, 1].

We remark that our definition of a (A, r0) uniform domain is slightly different but

equivalent to the (1/A, r0) uniform domain defined in [8] (see [6]). For short we say

that G is a uniform domain if (6.1) holds for some (A, r0). We first prove,

Lemma 6.1. Let Ω be a bounded domain satisfying A1 and p > n − min{di : 1 ≤
i ≤ N}. If either G = Ω or G = Rn \ Ω̄ is a uniform domain, then A2 holds for G.

Proof. In this section we let c denote a positive constant which may depend on r0, A, n,

and Ω, not necessarily the same at each occurrence. We first prove A2 when Ω is

a uniform domain. Suppose v ∈ W 1,p and v = a = constant on Ω. Let X ∈ ∂Ω

and 0 < r < 1
2
min{r0, diam Ω}. Then it is easily seen that (6.1) and connectivity

of Ω imply the existence of W = W (X, r) and c ≥ 4 with W ∈ Ω ∩ B(X, r/2) and

d(W,∂Ω) ≥ r/c. Using this fact and integrating v = F in (2.2) over Y ∈ B(W, r/c)

we deduce that

|a− vB(X,r)| ≤ cr |∇v|B(X,r) ≤ cr(|∇v|pB(X,r))
1/p

or equivalently,

(6.2) rn−p |a− vB(X,r)|p ≤ c

∫
B(X,r)

|∇v|p dX .

Given ε > 0 let K(ε) ⊂ ∂Ω be the set of points X ∈ ∂Ω where

lim sup
r→0

|a− vB(X,r)| > ε.

Using a well known covering theorem, (6.2), and the definition of Hausdorff measure

it is easily seen that

Hn−p(K(ε)) ≤ cε−p

∫
Rn

|∇v|p dX.

From this inequality and p > n − min{di : 1 ≤ i ≤ N} we conclude that if K =

∪ε>0K(ε), then Hdi(K ∩ Ei) = 0 whenever 1 ≤ i ≤ N. Thus A2 holds with G = Ω

when Ω is a (A, r0) uniform domain. To prove (6.1) when Rn \ Ω̄ is a uniform

domain observe that our definition of uniform requires Rn \ Ω̄ to be connected. Thus

∂Ω = ∂[Rn \ Ω̄]. With this observation the proof is essentially unchanged. We omit

the details. �

We also prove,
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Lemma 6.2. Let Ω be a bounded domain. If G = Ω or G = Rn \ Ω̄ is a uniform

domain, then A3 holds for G.

Proof. Again we shall just prove Lemma 6.2 when G = Ω. We assume as we may that

0 ∈ Ω and R0 is the smallest positive number for which Ω ⊂ B(0, R0). We note that

since Ω is bounded, connected, and satisfies (6.1) for some (A, r0) it follows from a

compactness argument that in fact Ω is a (b,∞) uniform domain (see [6]) where b

now depends on A, n,Ω. Following Jones in [8] we let {Qj = Qj(Xj, , rj)}, j = 1, 2, ...

be a Whitney decomposition of Rn \ ∂Ω into open cubes with center at Xj and side

length rj satisfying

(6.3)

(α)
⋃

j Q̄j = Rn \ ∂Ω.

(β) Qj ∩Qi = ∅ when i 6= j.

(γ) 10−2nd(Qj, ∂Ω) ≤ rj ≤ 10−nd(Qj, ∂Ω).

Let L1 = {Qj : Q̄j ⊂ Ω} and let L2 = {Qj : Q̄j ⊂ Rn \ Ω̄}. The same argument as in

Lemma 6.1 shows that if Qi = Qi(Xi, ri) ∈ L2, and 0 < ri < 2R0, then we can choose

Q′
i = Qj(Xj, rj) ∈ L1 with

(6.4) max{ri, rj, |Xi −Xj|} ≤ cmin{ri, rj, |Xi −Xj|}.

We call Q′
i the reflection of Qi in ∂Ω. If ri ≥ 2R0 we set Q′

i = Q̃ where Q̃ is a fixed

cube in L1 with side length ≥ R0/c. Next given Qi ∈ L2 let Λ(i) = {j : Qj ∩ Q̄i 6= ∅}
and let Ki be the interior of

⋃
j∈Λ(i) Q̄j. Let {φi} be a partition of unity for Rn \ Ω̄,

with φi adapted to Qi ∈ L2. That is,

(6.5)

(i) 0 ≤ φi ∈ C∞
0 (Ki) with |∇φi| ≤ c/ri.

(ii) φi = constant ≥ c−1 on Qi.

(iii)
∑

i

φi(X) = 1 whenever X ∈ Rn \ Ω̄.

Let f ∈ W 1,1(Ω). Define f̂ on Rn \ ∂Ω by f̂ = f on Ω and

f̂(X) =
∑

i

φi(X)fQ′i
when X ∈ Rn \ Ω̄.

In this display Q′
i is the reflection of Qi ∈ L2 in ∂Ω and fQ′i

denotes the average of f

on Q′
i. From (6.3), (6.5), we see there exists ĉ ≥ 1 such that

(6.6) f̂ ≡ fQ̃ in Rn \ B̄(0, ĉR0).
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In [8] it is shown that Hn(∂Ω) = 0 and that f̂ ∈ W 1,1(B(0, ρ)) for each ρ > 0. It

remains to prove the inequality involving A2 weights in A3. To do this, we observe

as in [8], Lemma 2.8, that if Qi ∈ L2 and j ∈ Λ(i), then it follows from the uniform

condition in (6.1) that there is a chain of cubes Ci,j = {Q∗
1, Q

∗
2, . . . , Q

∗
m} in L1 with

m ≤ c such that Q∗
1 = Q′

i, Q
∗
m = Q′

j and Q∗
k ∩ Q∗

k+1 6= ∅ for 1 ≤ k ≤ m − 1. Using

(2.2) in balls containing successive cubes, (6.4), and the triangle inequality we find

that

(6.7) |fQ′i
− fQ′j

| ≤ c r1−n
i

∫
Oi,j

|∇f |dX

where Oi,j is an open set with Q′
i, Q

′
j ⊂ Oi,j and the property that

(6.8) c−1ri ≤ min{diam Oi,j, d(Oi,j, ∂Ω)} ≤ max{diam Oi,j, d(Oi,j, ∂Ω)} ≤ c ri.

Let Oi = ∪j∈Λ(i)Oi,j and let Θ be the set of all Oi ⊂ Ω corresponding to a Qi ∈ L2

with Qi ∩B(0, 2ĉR0) 6= ∅. From (6.3) and (6.8) we see for X ∈ Ω that

(6.9)
∑
Oi∈Θ

χOi
(X) ≤ c

where χOi
is the characteristic function of Oi. Finally we note from (6.5),(6.7), and

the definition of f̂ that for X ∈ Qi ∈ L2, Qi ∩B(0, 2ĉR0) 6= ∅, that we have

(6.10) c−1|∇f̂(X)| ≤ r−1
i

∑
j∈Λ(i)

|fQ′i
− fQ′j

| ≤ cr−n
i

∫
Oi

|∇f |dX

while ∇f̂ = 0 in Rn \ B̄(0, ĉR0) thanks to (6.6). Now suppose that ω is an A2 weight

on Rn. Then from (6.8) - (6.10), and Hölder’s inequality we conclude that

(6.11)∫
Rn\Ω̄

ω|∇f̂ |2dX =
∑

Qi∈L2

∫
Qi

ω|∇f̂ |2dX ≤ c
∑

Qi∈L2

ω(Qi)

(
r−n
i

∫
Oi

|∇f |dX
)2

≤ c2‖ω‖̂
∑

Qi∈L2

∫
Oi

|∇f |2ωdX ≤ c3‖ω‖̂
∫

Ω

|∇f |2ωdX.

In (6.11) we have used the doubling property of ω. From (6.11) we conclude the

validity of Lemma 6.2 when Ω is a uniform domain. �

Lemmas 6.1 and 6.2 are easily used to identify bounded domains Ω ⊂ R3 satisfying

the hypotheses of Theorems 1.1 - 1.3. These domains can have fractal boundaries of

Hausdorff dimension larger than n− 1. For example Wolff snowflakes constructed in

[19] have this property and satisfy the hypotheses of Theorems 1.1 - 1.3, as we see
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from Lemmas 6.1, 6.2.

Concluding Remarks. We remark that A2 is a stability property of Sobolev func-

tions defined in [1], Definition 11.1.7. Sufficient conditions for this stability property

to hold are also given in [1], Theorem 11.4.1. Based on these conditions our intuition

is that Lemma 6.1 remains valid for Ω without any uniform assumption. Also we be-

lieve that Lemma 6.1 is valid for Rn \ Ω̄, without any uniform assumption, provided

this set is connected. However, we have not been able to justify our intuition.

A3 implies a similar condition for Ap weights, 1 < p < ∞, as can be deduced

from Proposition 2.17 in [7]. The authors consider it an interesting question whether

Theorems 1.2, 1.3 remain valid under more general conditions than the uniform as-

sumption in Lemmas 6.1, 6.2. For example can this uniform condition be replaced by

a local John type condition as in Definition 3.4 of [7] or more generally by the visual

John boundary condition in Condition 4.1 of [12].
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