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Outline of the Course

This course will be concerned with applications of recent work - tech-
niques concerning the boundary behavior of positive p harmonic functions
vanishing on a portion of the boundary of Lipschitz, chord arc, and Reifen-
berg flat domains. An optimistic outline follows:

1. Fundamental properties of p harmonic functions and elliptic measure.

2. The dimension of p harmonic measure.

3. Boundary Harnack inequalities and the Martin boundary problem in
Reifenberg flat and Lipschitz domains.

4. Uniqueness and regularity in free boundary - inverse type problems.

The lectures concerning 2 will be drawn from [BL], [L1], [LNP], [BLNV].
Lectures involving 3 will be based on [LN1] - [LN3], [LLN]. Lectures on 4
will be concerned with [LV 1-6] and [LN 4-6].

ODE TO THE P LAPLACIAN

I used to be in love with the Laplacian so worked hard to please her with
beautiful theorems. However she often scorned me for the likes of Albert
Baernstein, Björn Dahlberg, Carlos Kenig, and Thomas Wolff. Gradually I
became interested in her sister the p Laplacian, 1 < p < ∞, p 6= 2. I did
not find her as pretty as the Laplacian and she was often difficult to handle
because of her nonlinearity. However over many years I took a shine to her
and eventually developed an understanding of her disposition. Today she is
my girl and the Laplacian pales in comparison to her.

My Intoduction to p Harmonic Functions

I was trained in function theory - subharmonic functions by my advisor,
Maurice Heins and postdoctoral advisor Matts Essén. My first paper on
elliptic PDE and p harmonic functions (see [L]) was entitled ‘ Capacitary
Functions in Convex Rings. ’ The catalyst for this paper was a problem in
[H] which read as follows:
‘If D is a convex domain in space of 3 or more dimensions can we assert
any inequalities for the Green’s function g(P,Q) which generalize the results
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for two dimensions, that follow from the classical inequalities for schlicht
functions. Gabriel [G] has shown that the level surfaces of g(P,Q) = λ are
convex but his proof is long. It would be interesting to find a simpler proof.’

I tried to find a simpler proof of Gabriel’s result but failed so eventually
read his paper. In contrast to the author of the problem, I found Gabriel’s
proof easy to follow and quite ingenious. Thus instead of finding a different
proof I found a different PDE, the p Laplacian, to use Gabriel’s technique
on. Moreover in writing the above paper I was forced to learn some classical
PDE techniques (Möser iteration, Schauder techniques) in order to deal with
this degenerate nonlinear divergence form elliptic PDE.

1 Basic Estimates for the p Laplacian

We shall be working in Euclidean n space Rn. Points will be denoted by
x = (x1, . . . , xn) or (x′, xn) where x′ = (x1, . . . , xn−1) ∈ Rn−1. Let Ē, ∂E, be
the usual closure, boundary, of the set E and d(y, E) = the distance from
y to E. 〈·, ·〉 denotes the standard inner product on Rn and |x| = 〈x, x〉1/2

is the Euclidean norm of x. B(x, r) = {y ∈ Rn : |x − y| < r} and dx
denotes Lebesgue n measure on Rn. Let ei be the i unit coordinate vector.
If O ⊂ Rn is open and 1 ≤ q ≤ ∞, let W 1,q(O), denote the usual Sobolev
space of equivalence classes of functions f with distributional gradient ∇f =
(fx1 , . . . , fxn), both of which are q th power integrable on O with Sobolev
norm, ‖f‖1,q = ‖f‖q + ‖ |∇f | ‖q. Next let C∞

0 (O) be infinitely differentiable
functions with compact support inO and letW 1,q

0 (O) be the closure of C∞
0 (O)

in the norm of W 1,q(O).
Given G a bounded domain (i.e, a connected open set) and 1 < p <∞,

we say that u is p harmonic in G provided u ∈ W 1,p(G) and∫
|∇u|p−2 〈∇u,∇θ〉 dx = 0 (1.1)

whenever θ ∈ W 1,p
0 (G) . Observe that if u is smooth and ∇u 6= 0 in G, then

∇ · (|∇u|p−2∇u) ≡ 0 in G (1.2)

so u is a classical solution in G to the p Laplace partial differential equa-
tion. (1.1) arises in the study of the following Dirichlet problem: Given
g ∈ W 1,p(Rn) let F = {h : h− g ∈ W 1,p

0 (G)}. Find

inf
h∈F

∫
G

|∇h|p dx. (1.3)
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it is well known that the infimum in (1.3) occurs for a unique function u with
u− g ∈ W 1,p

0 (G). Moreover u satisfies (1.1) as follows from the fact that u is
a minimum and the usual calculus of variations type argument.

v is said to be subpharmonic (superpharmonic) in G if v ∈ W 1,p(G) and
whenever θ ≥ 0 ∈ W 1,p

0 (G),∫
|∇v|p−2 〈∇v,∇θ〉 dx ≤ 0 (≥ 0) (1.4)

Lemma 1.1 (Boundary Maximum Principle) If v is subpharmonic in G,
while w is superpharmonic in G with min{v − w, 0} ∈ W 1,p

0 (G), then
v − w ≤ 0 a.e in G.

Lemma 1.2. (Interior Estimates for u) Given p, 1 < p < ∞, let u be a
positive p harmonic function in B(w, 2r). Then

(i) Caccioppoli Inequality:

rp−n

∫
B(w,r/2)

|∇u|p dx ≤ c ( max
B(w,r)

u)p,

(ii) Harnack’s Inequality:

max
B(w,r)

u ≤ c min
B(w,r)

u.

Furthermore, there exists α = α(p, n) ∈ (0, 1) such that if x, y ∈ B(w, r/2)
then

(iii) Hölder Continuity:

|u(x)− u(y)| ≤ c

(
|x−y|

r

)α

max
B(w,r)

u.

Lemma 1.3.(Interior Estimates for ∇u) Let 1 < p < ∞ and suppose u is
p harmonic in B(w, 2r). Then u has a representative in W 1,p(B(w, 2r)) with
Hölder continuous partial derivatives in B(w, 2r). In particular there exists
σ ∈ (0, 1], depending only on p, n, such that if x, y ∈ B(w, r/2), then for
some c = c(p, n),

c−1 |∇u(x)−∇u(y)| ≤ (|x− y|/r)σ max
B(w,r)

|∇u|

≤ c r−1 (|x− y|/r)σ max
B(w,2r)

|u|.
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Also if ∇u(x) 6= 0, then u is C∞ near x.

For a proof of Lemmas 1.1 and 1.2, see [S]. Numerous proofs have been
given of Hölder continuity of ∇u in Lemma 1.3. Perhaps the first was due to
Ural’tseva for p > 2 while DiBenedetto, myself, and Tolksdorff all gave proofs
independently and nearly at the same time (1983, 1984) for 1 < p < ∞. A
proof which even applies to the parabolic p Laplacian and systems can be
found in [D].

If p > 2 it is known that u (as above) need not be C2 locally. For
1 < p < 2 this question is still open in Rn, n ≥ 3. In two dimensions, Iwaniec
and Manfredi [IM] showed that solutions are Ck where k = k(p) ≥ 2 when
1 < p < 2 and k→∞ as p→1.

1.1 p Harmonic Functions in NTA Domains

Definition A. A domain Ω is called non tangentially accessible (NTA), if
there exist M ≥ 2 and 0 < r0 ≤ ∞ such that the following are fulfilled,

(i) corkscrew condition: for any w ∈ ∂Ω,
0 < r < r0, there exists ar(w) ∈ Ω satisfying
M−1r < |ar(w)− w| < r, d(ar(w), ∂Ω) > M−1r,

(ii) Rn \ Ω̄ satisfies the corkscrew condition,

(iii) uniform condition: If w ∈ ∂Ω, and
w1, w2 ∈ B(w, r0) ∩ Ω, then there is a
rectifiable curve γ : [0, 1]→Ω with
γ(0) = w1, γ(1) = w2, and

(a) H1(γ) ≤ M |w1 − w2|,
(b) min{H1(γ([0, t])), H1(γ([t, 1])) } ≤ M d(γ(t), ∂Ω).

In Definition A, H1 denotes length or Hausdorff one measure. Often in
our applications Ω will at least be an NTA domain with constants M, r0 while
p is fixed, 1 < p < ∞. Also, c ≥ 1 will be a positive constant which may
only depend on p, n,M unless otherwise stated. Let w ∈ ∂Ω, 0 < r < r0, and
suppose u > 0 is p harmonic in Ω ∩ B(w, 2r) with u = 0 on ∂Ω ∩ B(w, 2r)
in the usual Sobolev sense. We extend u to B(w, 2r) by putting u = 0 on
B(w, 2r) \ Ω. Under this scenario we state
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Lemma 1.4. Let u, p, w,Ω be as above. Then u ∈ W 1,p(B(w, 2r)) and

rp−n

∫
B(w,r/2)

|∇u|p dx ≤ c ( max
B(w,r)

u)p.

Moreover there exists β = β(p, n,M) ∈ (0, 1) such that u has a Hölder
continuous representative in B(w, 2r) with

|u(x)− u(y)| ≤ c (|x− y|/r)β max
B(w,r)

u

whenever x, y ∈ B(w, r).

Lemma 1.5. Let u, p, w,Ω, r, be as in Lemma 1.4. There exists c such that
if r̂ = r/c, then

max
B(w,r̂)

u ≤ cu(ar̂(w)).

Outline of Proofs: The first display in Lemma 1.4 is a standard subsolution
type inequality (use u times a cutoff as a test function in (1.1)). As for the
last display in Lemma 1.4. if p > n, this display is a consequence of Morrey’s
Theorem and the first display. If 1 < p ≤ n, then from the interior estimates
in Lemma 1.2, we deduce that it suffices to consider only the case when
y ∈ ∂Ω ∩B(w, r). One then shows for some θ = θ(p, n,M), 0 < θ < 1, that

max
B(z,ρ/2)

u ≤ θ max
B(z,ρ)

u (1.5)

whenever 0 < ρ < r/4 and z ∈ ∂Ω∩B(w, r). (1.5) can then be iterated to get
Hölder continuity in Lemma 1.4 for x, y as above. To prove (1.5) one uses the
fact that (Rn \ Ω) ∩ B(z, ρ/2) and B(z, ρ/2) have comparable p capacities,
as well as estimates for subsolutions to elliptic partial differential equations
of p Laplacian type. These estimates are due to [Maz] for the p Laplacian
(see also [GZ]). Lemma 1.5 for harmonic functions is often called Carleson’s
lemma although apparently it could be due to Domar. This lemma for uni-
formly elliptic PDE in divergence form is usually attributed to [CFMS]. All
proofs use only Harnack’s inequality and Hólder continuity near the bound-
ary. Thus Lemma 1.5 is also valid for solutions to many PDE’s including the
p Laplacian. 2

In our study of p harmonic measure we shall outline a proof of a similar
inequality when the geometry is considerably more complicated. That is
when Ω ⊂ R2 is only a bounded simply connected domain.
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1.2 The p Laplacian and Elliptic PDE

Let u be a solution to the p Laplace equation in (1.2) and suppose ∇u is
nonzero as well as sufficiently smooth in a neighborhood of x ∈ Ω. Let η ∈ Rn

with |η| = 1 and put ζ = 〈∇u, η 〉 . Then differentiating ∇·(|∇u|p−2∇u) = 0
with respect to η one gets that ζ is a strong solution at x to

Lζ = ∇ · [(p− 2)|∇u|p−4〈∇u,∇ζ〉∇u+ |∇u|p−2∇ζ] = 0. (1.6)

Clearly,
Lu = (p− 1)∇ ·

[
|∇u|p−2∇u

]
= 0 at x. (1.7)

(1.6) can be rewritten in the form

Lζ =
n∑

i,j=1

∂

∂xi

[ bij(x)ζxj
(x) ] = 0, (1.8)

where bij(x) = |∇u|p−4[(p− 2)uxi
uxj

+ δij|∇u|2](x), (1.9)

for 1 ≤ i, j ≤ n, and δij is the Kronecker δ. In many of our applications it
is of fundamental importance that u, derivatives of u, both satisfy the same
divergence form PDE in (1.6), (1.7). For example, in several of our papers
we integrate by parts functions of u,∇u and the bad terms drop out because
both functions satisfy the same PDE. Thus we study (1.8), (1.9). We note
that if ξ ∈ Rn, then

min{p− 1, 1}|ξ|2 |∇u(x)|p−2 ≤
n∑

i,k=1

bik ξiξk

≤ max{1, p− 1}|∇u(x)|p−2 |ξ|2 .

(1.10)

Observe from (1.10) that L can be degenerate elliptic if ∇u = 0. Thus in
many of our papers we also prove the fundamental inequality:

c−1u(x)/d(x, ∂Ω) ≤ |∇u(x)| ≤ cu(x)/d(x, ∂Ω), (1.11)

for some constant c and x near ∂Ω. Note that (1.10), (1.11), and Harnack’s
inequality for u imply that (bik(x)) are locally uniformly elliptic in Ω.

Behaviour near the boundary, such as boundary Harnack inequalities,
are more involved. The easiest case for our methods to work is when ∂Ω is
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sufficiently flat in the sense of Reifenberg (to be defined later). In this case we
will be able to show that |∇u|p−2 is an A2 weight (also to be defined). Thus
we list some theorems on degenerate elliptic equations whose degeneracy is
given in terms of an A2 weight.

1.3 Degenerate Elliptic Equations

Let w ∈ Rn, 0 < r and let λ be a real valued Lebesgue measurable function
defined almost everywhere on B(w, 2r). λ is said to belong to the class
A2(B(w, r)) if there exists a constant γ such that

r̃−2n

∫
B(w̃,r̃)

λ dx ·
∫

B(w̃,r̃)

λ−1dx ≤ γ

whenever w̃ ∈ B(w, r) and 0 < r̃ ≤ r. If λ(x) belongs to the class A2(B(w, r))
then λ is referred to as an A2(B(w, r))-weight. The smallest γ such that the
above display holds is referred to as the constant of the weight.

Once again let Ω ⊂ Rn be a NTA domain with NTA-constants M, r0. Let
w ∈ ∂Ω, 0 < r < r0, and consider the operator

L̂ =
n∑

i,j=1

∂

∂xi

(
b̂ij(x)

∂

∂xj

)
(1.12)

in Ω ∩ B(w, 2r). We assume that the coefficients {b̂ij(x)} are bounded,
Lebesgue measurable functions defined almost everywhere onB(w, 2r). More-
over, b̂ij = b̂ji for all i, j ∈ {1, .., n}, and

c−1λ(x)|ξ|2 ≤
n∑

i,j=1

b̂ij(x)ξiξj ≤ c|ξ|2λ(x) (1.13)

for almost every x ∈ B(w, r), where λ ∈ A2(B(w, r)). If O ⊂ B(w, 2r) is
open let W̃ 1,2(O) be the weighted Sobolev space of equivalence classes of
functions v with distributional gradient ∇v and norm

‖v‖̃2
1,2 =

∫
O

v2λdx+

∫
O

|∇v|2λdx <∞.
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Let W̃ 1,2
0 (O) be the closure of C∞

0 (O) in the norm W̃ 1,2(O). We say that v
is a weak solution to L̂v = 0 in O provided v ∈ W̃ 1,2(O) and∫

O

∑
i,j

b̂ijvxi
φxj

dx = 0 (1.14)

whenever φ ∈ C∞
0 (O).

The following three lemmas, Lemmas 1.6 - 1.8 , are tailored to our situation
and based on the results in [FKS] [FJK], [FJK1].

Lemma 1.6. Let Ω ⊂ Rn be a NTA-domain with constant M , w ∈ ∂Ω,
0 < r < r0, and let λ be an A2(B(w, r))-weight with constant γ. Suppose
that v is a positive weak solution to L̂v = 0 in Ω ∩ B(w, 2r). Then there
exists a constant c, 1 ≤ c < ∞, depending only on n,M and γ, such that if
w̃ ∈ Ω and B(w̃, 2r̃) ⊂ Ω ∩B(w, r), then

(i) c−1r̃2

∫
B(w̃,r̃)

|∇v|2λdx ≤ c

∫
B(w̃,2r̃)

|v|2λdx,

(ii) max
B(w̃,r̃)

v ≤ c min
B(w̃,r̃)

v.

Furthermore, there exists α = α(n,M, γ) ∈ (0, 1) such that if x, y ∈ B(w̃, r̃)
then

(iii) |v(x)− v(y)| ≤ c

(
|x−y|

r̃

)α

max
B(w̃,2r̃)

v.

Lemma 1.7. Let Ω ⊂ Rn be a NTA-domain with constant M , w ∈ ∂Ω,
0 < r < r0, and let λ be an A2(B(w, r))-weight with constant γ. Suppose
that v is a positive weak solution to L̂v = 0 in Ω ∩ B(w, 2r) and that v = 0
on ∂Ω ∩ B(w, 2r) in the weighted Sobolev sense. Extend v to B(w, 2r) by
setting v ≡ 0 in B(w, 2r) \ Ω̄. Then v ∈ W̃ 1,2(B(w, 2r)) and there exists
c̃ = c̃(n,M, γ), 1 ≤ c̃ <∞, such that the following holds with r̃ = r/c̃.

(i) r2

∫
Ω∩B(w,r/2)

|∇v|2λdx ≤ c̃

∫
Ω∩B(w,r)

|v|2λdx,

(ii) max
Ω∩B(w,r̃)

v ≤ c̃v(ar̃(w)).
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Furthermore, there exists α = α(n,M, γ) ∈ (0, 1) such that if x, y ∈ Ω ∩
B(w, r̃), then

(iii) |v(x)− v(y)| ≤ c

(
|x−y|

r

)α

max
Ω∩B(w,2r̃)

v.

Lemma 1.8. Let Ω ⊂ Rn be a NTA-domain with constant M , w ∈ ∂Ω,
0 < r < r0, and let λ be an A2(B(w, r))-weight with constant γ. Suppose
that v1 and v2 are two positive weak solutions to L̂v = 0 in Ω∩B(w, 2r) and
v1 = 0 = v2 on ∂Ω∩B(w, 2r) in the weighted Sobolev sense. Then there exist
c = c(n,M, γ), 1 ≤ c <∞, and α = α(n,M, γ) ∈ (0, 1) such that if r̃ = r/c,
and y1, y2 ∈ Ω ∩B(w, r/c), then∣∣∣∣v1(y1)

v2(y1)
− v1(y2)

v2(y2)

∣∣∣∣ ≤ c
v1(y1)

v2(y1)

(
|y1 − y2|

r

)α

.

Note: The last display implies v1/v2 is Hölder continuous, as well as
bounded above and below by its value at any one point in Ω∩B(w, r/c). We
refer to the last display as a boundary Harnack inequality.

2 p Harmonic Measure

If γ > 0 is a positive function on (0, r0) with lim
r→0

γ(r) = 0 defineHγ Hausdorff

measure on Rn as follows: For fixed 0 < δ < r0 and E ⊆ R2, let L(δ) =
{B(zi, ri)} be such that E ⊆

⋃
B(zi, ri) and 0 < ri < δ, i = 1, 2, ... Set

φγ
δ (E) = inf

L(δ)

∑
γ(ri).

Then
Hγ(E) = lim

δ→0
φγ

δ (E).

In case γ(r) = rk we write Hk for Hγ.
Next let Ω ⊂ Rn, n ≥ 2, be a bounded domain, p fixed, 1 < p <∞, and

N an open neighborhood of ∂Ω. Let v be p harmonic in Ω ∩N and suppose
that v is positive on Ω ∩ N with boundary value zero on ∂Ω, in the W 1,p

Sobolev sense. Extend v to a function in W 1,p(N) by setting v ≡ 0 on N \Ω.
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Then there exists (see [HKM]) a unique positive Borel measure ν on Rn

with support ⊂ ∂Ω, for which∫
|∇v|p−2〈∇v,∇φ〉 dx = −

∫
φ dν (2.1)

whenever φ ∈ C∞
0 (N). In fact if ∂Ω, |∇v|, are smooth

dν = |∇v|p−1dHn−1 on ∂Ω.

Existence of ν follows if one can show for φ ≥ 0 as above,∫
|∇v|p−2〈∇v,∇φ〉 dx ≤ 0. (2.2)

Indeed, assuming (2.2) one can define a positive operator on the space of
continuous functions and using basic Caccioppoli inequalities - the Riesz
representation theorem, get the existence of ν. If v has continuous boundary
value zero one can get (2.2) as follows. Let θ = [(η + max[v − ε, 0])ε − ηε ] φ.
Then one can show that θ may be used as a test function in (1.1). Doing
this we deduce ∫

{v≥ε}∩N
[(η + max[v − ε, 0])ε − ηε]

× |∇v|p−2 〈∇v, ∇φ 〉dx ≤ 0.

Using dominated convergence, letting η and then ε→0, we get (2.2).
If p = 2 and v is the Green’s function with pole at x0 ∈ Ω, then

ν = ω(·, x0) is harmonic measure with respect to x0 ∈ Ω. Green’s func-
tions can be defined for the p Laplacian when 1 < p < ∞, but are not very
useful due to the nonlinearity of the p Laplacian when p 6= 2. Instead we
often study the measure, µ, associated with a p capacitary function, say u,
in Ω \ B̄(x0, r), where B(x0, 4r) ⊂ Ω. That is, u is p harmonic in Ω \ B̄(x0, r)
with continuous boundary values, u ≡ 1 on ∂B(x0, r) and u ≡ 0 on ∂Ω.

Remark 1. µ is different from the so called p harmonic measure introduced
by Martio, which in fact is not a measure (see [LMW]).

Define the Hausdorff dimension of µ by

H-dim µ = inf{k : there exists E Borel ⊂ ∂Ω
with Hk(E) = 0 and µ(E) = µ(∂Ω)}.
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Remark 2. We discuss for a fixed p, 1 < p < ∞, what is known about
H-dim µ when µ corresponds to a positive p harmonic function u in Ω ∩ N
with boundary value 0 in theW 1,p Sobolev sense. It turns out that H-dim µ is
independent of u as above. Thus we often refer to H-dim µ as the dimension of
p harmonic measure in Ω. For p = 2, n = 2, and harmonic measure, Carleson
[C] used ideas from ergodic theory and boundary Harnack inequalities for
harmonic functions to deduce H-dim ω = 1 when Ω ⊂ R2 is a ‘snowflake’
type domain and H-dim ω ≤ 1 when Ω ⊂ R2 is the complement of a self
similar Cantor set. He was also the first to recognize the importance of∫

∂Ωn

|∇gn| log |∇gn| dH1

(gn is Green’s function for Ωn with pole at zero and (Ωn) is an increasing
sequence of domains whose union is Ω). Wolff [W] used Carleson’s ideas and
brilliant ideas of his own to study the dimension of harmonic measure, ω,
with respect to a point in domains bounded by ‘Wolff snowflakes’ ⊂ R3.
He constructed snowflakes for which H-dim ω > 2 and snowflakes for which
H-dim ω < 2.

In [LVV] we constructed Wolff Snowflakes, for which the harmonic mea-
sures on both sides of the snowflake were of H-dim < n − 1 and also a
snowflake for which the harmonic measures on both sides were of H-dim >
n − 1. Soon after we finished this paper, Björn Bennewitz became my PhD
student. We began studying the dimension of the measure µ as in (2.1) for
fixed p, 1 < p <∞, p 6= 2. We tried to imitate the Carleson - Wolff construc-
tion in order to produce examples of snowflakes where we could estimate
H-dim µ, when Ω ⊂ R2 is a snowflake. To indicate the difficulties involved
we note that Wolff showed Carleson’s integral over ∂Ωn can be estimated at
the n th step in the construction of certain snowflakes ⊂ R3. His calcula-
tions make key use of a boundary Harnack inequality for positive harmonic
functions vanishing on a portion of the boundary of a NTA domain. Thus
we proved u1/u2 ≤ c on B(z, r/2) ∩ Ω whenever z ∈ ∂Ω and 0 < r ≤ r0.
Here u1, u2 > 0 are p harmonic in B(z, r) ∩ Ω and vanish continuously on
B(z, r)∩∂Ω. Using our boundary Harnack inequality, we were able to deduce
that µ had a certain weak mixing property and consequently, arguing as in
Carleson - Wolff, we obtained an ergodic measure ≈ µ on ∂Ω. Applying the
ergodic theorem of Birkhoff and entropy theorem of Shannon - McMillan -
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Breiman it followed that

lim
r→0

log µ[B(x, r)]

log r
= H-dim µ for µ almost every x ∈ ∂Ω. (2.3)

Wolff uses Hölder continuity of the ratio and other arguments in order to
make effective use of (2.3) in his estimates of H-dim µ. We first tried to
avoid many of these estimates by a finess type argument. However, later this
argument fell through because of a calculus mistake. Finally we decided that
instead of Wolff’s argument we should use the divergence theorem and try
to find a partial differential equation for which u is a solution and log |∇u| is
a subsolution (supersolution) when p > 2 (1 < p < 2). We succeeded, in fact
the PDE is given in (1.8), (1.9):

Lζ(x) =
n∑

i,j=1

∂

∂xi

(bijζxj
)(x)

bij(x) = |∇u|p−4[(p− 2)uxi
uxj

+ δij|∇u|2](x), 1 ≤ i, j ≤ n.

Moreover for domains ⊂ R2 whose boundary is a quasi circle. we were
able to prove the fundamental inequality in (1.11):

c−1u(x)/d(x, ∂Ω) ≤ |∇u(x)| ≤ cu(x)/d(x, ∂Ω),

for some constant c and x near ∂Ω. Thus interior estimates for uniformly
elliptic non divergence form PDE could be applied to solutions of L. Armed
with this knowledge we eventually proved in [BL]:

Theorem 2.1. Fix p, 1 < p <∞, and let u > 0 be p harmonic in Ω∩N ⊂ R2

with u = 0 continuously on ∂Ω. If ∂Ω is a snowflake and 1 < p < 2, then
H-dim µ > 1 while if 2 < p <∞, then H-dim µ < 1.

Theorem 2.2. Let p, u, µ be as in Theorem 2.1. If ∂Ω ⊂ R2 is a self similar
Cantor set and 2 < p <∞, then H-dim µ < 1.

Theorem 2.3. Let p, u, µ be as in Theorem 2.2. If ∂Ω ⊂ R2 is a k quasi-
circle, then H-dim µ ≤ 1 for 2 < p <∞, while H-dim µ ≥ 1 for 1 < p < 2.

To outline the proof of Theorem 2.1 we note that the boundary Har-
nack inequality mentioned earlier implies that all measures associated with
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functions in Theorems 2.1 − 2.3, have the same Hausdorff dimension. Also,
since the p Laplacian is translation, dilation, and rotation invariant we may
assume that u is the p capacitary function for Ω\ B̄(0, 1) where d(0, ∂Ω) = 4.

That is u is p harmonic in Ω \ B̄(0, 1) with continuous boundary values,
u ≡ 1 on ∂B(0, 1) and u ≡ 0 on ∂Ω. Let µ be the measure associated with
u as in (2.1). Let Ωn ⊂ Ω be a sequence of approximating domains con-
structed in the usual way and for large n let un be the p capacitary function
for Ωn \ B̄(0, 1). Then one first proves:

Lemma 2.4. For fixed p, 1 < p <∞,

η = lim
n→∞

n−1

∫
∂Ωn

|∇un|p−1 log |∇un| dH1 x

exists. If η > 0 then H-dim µ < 1 while if η < 0, then H-dim µ > 1.

To prove Lemma 2.4 we followed Carleson - Wolff but our argument was
necessarily more complicated, due to the non-linearity of the p Laplacian. 2

To prove Theorem 2.1 let un,Ωn be as in Lemma 2.4. We note that one can
show ∇un 6= 0 in Ωn \ B̄(0, 1) and if v = log |∇un|, p 6= 2, 1 < p <∞, that

Lv

p− 2
≥ min(1, p− 1)

2∑
i,j=1

|∇u|p−4(uxixj
)2. (2.4)

where L is as in (1.8), (1.9).
Next we apply the divergence theorem for large n in On = Ωn \ B̄(0, 1)

to the vector field whose i th component, i = 1, 2, is

un

2∑
k=1

bik vxk
− v

2∑
k=1

bik (un)xk
.

We get∫
On

un Lv dx =

∫
∂Ωn

2∑
i,k=1

bikξi[un vxk
− v (un)xk

] dH1x + O(1) (2.5)

where ξ denotes the outer unit normal to ∂Ωn. Using the fact that ξ =
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−∇un/|∇un| and the definition of (bik), we find that∫
∂Ωn

2∑
i,k=1

bikξi [un vxk
− v (un)xk

] dH1x

= (p− 1)

∫
∂Ωn

|∇un|p−1 log |∇un| dH1x + O(1).

(2.6)

From (2.4) - (2.6), and Lemma 2.4 we conclude that in order to prove
Theorem 2.1 it suffices to show

lim inf
n→∞

(
n−1

∫
On

un |∇un|p−4
∑
i,j=1

(un)2
xixj

dx dx

)
> 0. (2.7)

To prove (2.7) we showed the existence of λ ∈ (0, 1) such that if x ∈
Ωn \B(0, 2) and d(x, ∂Ωn) ≥ 3−n, then

c

∫
On∩B(x,λd(x,∂Ωn))

un|∇un|p−4 (un)2
yiyj

dy ≥ µn(B(x, 2d(x, ∂Ωn)) (2.8)

where c depends on p and the k quasi-conformality of Ω. Covering {3−m−1 ≤
d(x, ∂Ωn) ≤ 3−m} by balls and summing over 1 ≤ m ≤ n− 1 we obtain first
(2.7) and then Theorem 2.1. 2

To prove Theorem 2.3 let w(x) = max(v − c, 0) when 1 < p < 2 and
w(x) = max(−v − c, 0) when p > 2. Here c is chosen so large that |v| ≤ c on
B(0, 2). Following Makarov [M] we prove :

Lemma 2.5. Let m be a nonnegative integer There exists c+ = c+(k, p) ≥ 1
such that for 0 < t < 1,∫

{x:u(x)=t}
|∇u|p−1w2m dH1x ≤ cm+1

+ m! [log(2/t)]m .

To outline the proof of Lemma 2.5 let Ω(t) = Ω\{x : u(x) ≤ t}, whenever
0 < t < 1. Using the fact that Lw ≤ 0 for 1 < p < ∞ when w > 0, one
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computes,
L(w2m)(x) ≤

2m(2m− 1)p |∇u|p−2(x)w2m−2(x) |∇w|2(x).
(2.9)

Next we use (2.9) and apply the divergence theorem in Ω(t) to the vector
field whose i th component for i = 1, 2 is

(u− t)
2∑

j=1

bij(w
2m)xj

− w2m

2∑
j=1

bijuxj
.

We get

(p− 1)

∫
{x:u(x)=t}

|∇u|p−1w2m dH1x

≤ 2m(2m− 1)p

∫
Ω(t)

u |∇u|p−2w2m−2 |∇w|2 dx.

(2.10)

Using interior estimates for solutions to the p Laplace equation from section 1,
the coarea formula and once again and our fundamental inequality, |∇u(·)| ≥
u(·)/d(·, ∂Ω), we deduce from (2.10) that

Im(t) =

∫
{x:u(x)=t}

|∇u|p−1w2m dH1x ≤ 2m(2m− 1)c

∫ 1

t

Im−1(τ) τ
−1 dτ

where c = c(p, k). Lemma 2.5 then follows from an inductive type argument,
using I0 ≡ constant on (0,1). 2

Dividing the display in Lemma 2.5 by (2c+)mm! logm(2/t) and summing
we see for 0 < t < 1 that∫

{x:u(x)=t}
|∇u|p−1 exp

[
w2

2c+ log(2/t)

]
dH1x ≤ 2 c+. (2.11)

Using (2.11) and weak type estimates it follows that if

λ(t) =
√

4 c+ log(2/t)
√

log(− log t) for 0 < t < e−2,

F (t) = {x : u(x) = t and w(x) ≥ λ(t)}
(2.12)
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then ∫
F (t)

|∇u|p−1 dH1x ≤ 2c+

log2(1/t)
(2.13)

One can use (2.13) to show that if Hausdorff measure (denoted Hγ) is defined
with respect to

γ(r) =

{
r eaλ(r) when 1 < p < 2
r e−aλ(r) when p > 2.

(2.14)

and a is sufficiently large then

µ is absolutely continuous with respect to Hγ when 1 < p < 2 (2.15)

µ is concentrated on a set of σ finite Hγ measure when p > 2. (2.16)

Clearly (2.15), (2.16) imply Theorem 2.3. 2

2.1 p Harmonic Measure in Simply Connected Do-
mains

Recently in [LNP] we have managed to prove the following theorem.

Theorem 2.6. Fix p, 1 < p < ∞, and let u > 0 be p harmonic in Ω ∩ N,
where Ω is simply connected, ∂Ω is compact, and N is a neighborhood of ∂Ω.
Suppose u has continuous boundary value 0 on ∂Ω and let µ be the measure
associated with u as in (2.1). If λ, γ, are as in (2.12), (2.14), then (2.15),
(2.16) are valid for a = a(p) sufficiently large. Hence Theorem 2.3 remains
valid in simply connected domains.

We note that Makarov in [M] proved for harmonic measure (i.e, p = 2) the
stronger theorem:

Theorem 2.7. Let ω be harmonic measure with respect to a point in the
simply connected domain Ω. Then

(a) ω is concentrated on a set of σ finite H1 measure

(b) ω is absolutely continuous with respect to H γ̂ measure

defined relative to γ̂(r) = r exp[A
√

log 1/r log log log 1/r]
for A sufficiently large.
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The best known value of A in the definition of γ̂ appears to be A = 6
√√

24−3
5

given in [HK]

2.2 Preliminary Reductions for Theorem 2.6

To outline the proof of Theorem 2.6 we first claim, as in the proof of Theorem
2.5, that all measures associated with functions satisfying the hypotheses of
Theorem 2.6, will have the same Hausdorff dimension. Indeed let u1, u2 >
0 be p harmonic functions in Ω ∩ N and let µ1, µ2, be the corresponding
measures as in (2.1). Observe from the maximum principle for p harmonic
functions and continuity of u1, u2, that there is a neighborhood N1 ⊂ N of
∂Ω with

M−1u1 ≤ u2 ≤Mu1 in N1 ∩ Ω. (2.17)

One can also show there exists r0 > 0, c = c(p) < ∞, such that whenever
w ∈ ∂Ω, 0 < r ≤ r0, and i = 1, 2,

c−1 rp−2 µi[B(w, r/2)] ≤ max
B(w,r)

up−1
i ≤ c rp−2 µi[B(w, 2r)]. (2.18)

Using (2.17), (2.18), and a covering argument it follows that µ1, µ2 are mutu-
ally absolutely continuous. Mutual absolute continuity is easily seen to imply
H-dim µ1 = H-dim µ2. Thus we may assume, as in the proof of Theorem 2.3,
that u is the p capacitary function for D = Ω \ B̄(0, 1) and d(0, ∂Ω) = 4.
The major obstacle to proving Theorem 2.6 in our earlier paper was that we
could not prove the fundamental inequality in (1.11). That is, in our new
paper, we prove

Theorem 2.8. If u is the p capacitary function for D, then there exists
c = c(p) ≥ 1, such that

c|∇u|(z) ≥ u(z)

d(z, ∂Ω)
whenever z ∈ D.

Given Theorem 2.8 we can copy the argument leading to (2.13) in the
proof of Theorem 2.3. However one has to work harder in order to deduce
(2.15), (2.16) from (2.13) as previously we used the doubling property of µ
in (2.18) and this property is not available in the simply connected case.
Still we omit the additional measure theoretic argument and shall regard the
proof of Theorem 2.6 as complete once we sketch the proof of Theorem 2.8.
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2.3 Proof of Theorem 2.8

To prove Theorem 2.8 we assume, as we may, that ∂Ω is a Jordan curve, since
otherwise we can approximate Ω in the Hausdorff distance sense by Jordan
domains and use the fact that the constant in Theorem 2.8 depends only on
p to eventually get this theorem for Ω. We continue under this assumption
and shall use complex notation. Let z = x + iy, where i =

√
−1 and for

a, b ∈ D, let ρ(a, b) denote the hyperbolic distance from a, b ∈ D to ∂Ω.

Fact A. u is real analytic in D,∇u 6= 0 in D, and uz = (1/2)(ux − iuy), is
k = k(p) quasi-regular in D. Consequently, log |∇u| is a weak solution to a
divergence form PDE for which a Harnack inequality holds. That is, if h ≥ 0
is a weak solution to this PDE in B(ζ, r) ⊂ D, then max

B(ζ,r/2)
h ≤ c̃ min

B(ζ,r/2)
h,

where c̃ = c̃(p).

From Fact A and Lemma 1.3 one can show that

|∇u(z)| ≤ cu(z)/d(z, ∂Ω) in D (2.19)

and that Theorem 2.8 is valid in B(0, 2) \ B̄(0, 1). Next we use Fact A and
(2.19) to show that Theorem 2.8 for x ∈ D \ B(0, 2) is a consequence of the
following lemma.

Lemma 2.9. There is a constant c = c(p) ≥ 1 such that for any point
z1 ∈ D \ B(0, 2), there exists z? ∈ D \ B(0, 2) with u(z?) = u(z1)/2 and
ρ(z1, z

?) ≤ c.

Assuming Lemma 2.9 one gets Theorem 2.8 from the following argument. Let
Γ be the hyperbolic geodesic connecting z1 to z∗ and suppose that Γ ⊂ D.
From properties of ρ one sees for some c = c(p) that

H1(Γ) ≤ cd(z1, ∂Ω) and d(Γ, ∂Ω) ≥ c−1d(z1, ∂Ω). (2.20)

Thus
1

2
u(z1) ≤ u(z1)− u(z?) ≤

∫
Γ

|∇u(z)||dz|

≤ cH1(Γ) max
Γ
|∇u| ≤ cd(z1, ∂Ω) max

Γ
|∇u|.

So for some ζ ∈ Γ and c∗ = c∗(p) ≥ 1,

c?|∇u(ζ)| ≥ u(z1)

d(z1, ∂Ω)
. (2.21)
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Also from (2.21), we deduce the existence of Whitney balls {B(wj, rj}, with
wj ∈ Γ, rj ≈ d(z1, ∂Ω), connecting ζ to z1 and

|∇u(z)| ≤ cu(z1)/d(z1, ∂Ω) when z ∈
⋃
j

B(wj, rj) . (2.22)

From (2.21), (2.22), we see that if c = c(p) is large enough and

h(z) = log

(
c u(z1)

d(z1, ∂Ω) |∇u(z)|

)
for z ∈

⋃
j

B(wi, ri)

then h > 0 in ∪iB(wi, ri) and h(ζ) ≤ c. From Fact A we see that Harnack’s
inequality can be applied to h in successive balls of the form B(wi, ri/2).
Doing this we obtain h(z1) ≤ c′ where c′ = c′(p). Clearly, this inequality
implies Theorem 2.8.

We note that if ∂Ω is a quasicircle one can choose z∗ to be a point on
the line segment connecting z1 to w ∈ ∂Ω where |w − z1| = d(z1, ∂Ω) The
proof uses Hölder continuity of u near ∂Ω and the fact that for some c =
c(p, k), cu(z1) ≥ max

B(z1,2d(z1,∂Ω))
u. (see Lemmas 1.4, 1.5). This inequality need

not hold in a Jordan domain and so we have to give a more complicated
argument to get Lemma 2.9. To this end, we construct a Jordan arc

σ : (−1, 1)→D with σ(0) = z1, σ(±1) = lim
t→±1

σ(t) ∈ ∂Ω, and σ(1) 6=
σ(−1). Moreover, for some c = c(p),

(α) H1(σ) ≤ cd(z1, ∂Ω)

(β) u ≤ cu(z1) on σ.
(2.23)

Let Ω1 be the component of Ω \ σ not containing B(0, 1). Then we also
require that there is a point w0 on ∂Ω ∩ ∂Ω1 with

|wo − z1| ≤ cd(z1, ∂Ω) and d(w0, σ) ≥ c−1d(z1, ∂Ω). (2.24)

Finally we shall show the existence of a Lipschitz curve τ : (0, 1)→Ω1 with
τ(0) = z1, τ(1) = w0, satisfying the cigar condition:

min{H1(τ [0, t]), H1(τ [t, 1])} ≤ ĉd(τ(t), ∂Ω), (2.25)

for 0 < t < 1 and some absolute constant ĉ.
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To get Lemma 2.9 from (2.23) - (2.25) let u1 = u in Ω1 and u1 ≡ 0 outside
of Ω1. From PDE estimates, (2.23) (β), and (2.24) one finds θ > 0, c < ∞
such that

max
B(w0,t)

u1 ≤ cu(z1)

(
t

d(z1, ∂Ω)

)θ

for 0 < t < d(w0, σ). (2.26)

From (2.26), (2.25) we conclude the existence of z∗ with ρ(z1, z
∗) ≤ c and

u(z∗) = 1/2, which is Lemma 2.9. To construct σ, τ let f be the Riemann
mapping function from the upper half plane, H, onto Ω with f(i) = 0 and
f(a) = z1, where a = is for some s, 0 < s < 1. Note that f has a continuous
extension to H̄, since ∂Ω is a Jordan curve. Let I(b) = [ Re b− Im b, Re b+
Im b] whenever b ∈ H. We need the following lemmas.

Lemma 2.10. There is a set E(b) ⊂ I(b) such that for x ∈ E(b)∫ Im b

0

|f ′(x+ iy)|dy ≤ c?d(f(b), ∂Ω)

for some absolute constant c?, and also

H1(E(b)) ≥ (1− 10−100)H1(I(b)).

Lemma 2.11. Given 0 < δ < 10−1000, there is an absolute constant ĉ such
that if δ? = e−ĉ/δ then, whenever x ∈ E(b) there is an interval J = J(x)
centered at x with

2δ? Im b ≤ H1(J) ≤ cδ1/2 Im b ≤ Im b

10000

(for some absolute constant c) and a subset F = F (x) ⊂ J with H1(F ) ≥
(1− 10−100)H1(J) so that∫ δ? Im b

0

|f ′(t+ iy)|dy ≤ δd(f(b), ∂Ω) for every t ∈ F.

Lemma 2.12. Let F̂ =
⋃

x∈E(b) F (x). If L ⊂ I(b) is an interval with

H1(L) ≥ Im b

100
, then

H1(E(b) ∩ F̂ ∩ L) ≥ Im b

1000
.
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Moreover, if {τ1, τ2, . . . , τm} is a subset of I(b), then there exists τm+1 in
E(b) ∩ F̂ ∩ L with

|f(τm+1)− f(τj)| ≥
d(f(b), ∂Ω)

1010 m2
whenever 1 ≤ j ≤ m.

To construct σ, τ from Lemma 2.12 we put b = a = is, and deduce for
given δ, 0 < δ < 10−1000, the existence of x1, x2, x3 ∈ E(a) with −s < x1 <
−s/2,−1

8
s < x3 <

1
8
s, and 1

2
s < x2 < s. Moreover,∫ δ∗s

0

|f ′(xj + iy| dy ≤ δd(z1, ∂Ω) for 1 ≤ j ≤ 3, (2.27)

min{|f(x1)− f(x3)|, |f(x2)− f(x3)|} ≥ 10−11d(z1, ∂Ω) (2.28)

Let Q̃(a) be the rectangle whose boundary in H, ξ, consists of the hori-
zontal line segment from x1 + is to x2 + is, and the vertical line segments
from xj to xj + is, for j = 1, 2. Put σ = f(ξ) and note from (2.27) that
(2.23) (α) is valid. To construct τ we put t0 = 0, s0 = s, a0 = t0 + is0. Let
s1 = δ∗s0, t1 = x3, and a1 = t1+is1. By induction, suppose am = sm+itm has
been defined for 1 ≤ m ≤ k−1. We then choose tk ∈ E(ak−1) so that the last
display in Lemma 2.11 holds with t = tk. Set sk = δ∗sk−1 and ak = sk + itk.

Let λk be the curve consisting of the horizontal segment from ak−1 to
tk + isk−1 and the vertical line segment from ak−1 to ak. Put λ =

⋃
λk

and τ = f(λ). From our construction we deduce that τ satisfies the cigar
condition in (2.25) for δ > 0 small. Also x0 = limt→1 λ(t) exists, |x0| < 1/4,
and (2.24) holds for w0 = f(x0), thanks to (2.28) and our construction.

2.4 The Final Proof

It remains to prove u ≤ cu(z1) on σ which is (2.23) (β). The proof is by
contradiction. Suppose u > Au(z1) on σ. We shall obtain a contradiction if
A = A(p) is suitably large. Our argument is based on the recurrence type
scheme mentioned after Lemma 1.5 (often attributed to Carleson - Domar in
the complex world and Caffarelli et al in the PDE world) Given the rectangle
Q̃(a) we let bj,1 = xj+iδ∗ Im a, j = 1, 2, and note that bj,1, j = 1, 2, are points
on the vertical sides of Q̃(a). These points will spawn two new boxes Q̃(bj,1),
j = 1, 2, which in turn will each spawn two more new boxes, and so on.
Without loss of generality, we focus on Q̃(b1,1).
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This box is constructed in the same way as Q̃(a) and we also construct,
using Lemma 2.12 once again, a polygonal path λ1,1 from b1,1 to some point
x0,1 ∈ I(b1,1). λ11 is defined relative to b1,1 in the same way that λ was
defined relative to a. Also in view of Lemma 2.12 we can require that λ1,1 ⊂
{ Re z < Re b1,1}. λ2,1 with endpoints, b2,1, x0,2 is constructed similarly to
lie in { Re z > Re b2,1}. Next let Λ be a Harnack constant such that

max{u(f(b1,1)), u(f(b2,1))} ≤ Λu(z1). (2.29)

From Harnack’s inequality for u and Lemma 2.12 with δ fixed, it is clear
that Λ in (2.29) can be chosen to depend only on p, so can also be used in
further iterations.

Let U = u ◦ f. By the maximum principle, since A > Λ and λ1,1, λ2,1

lie outside of Q̃(a), there will be a point z ∈ λ1,1 ∪ λ2,1 such that U(z) >
AU(a) = Au(z1). Suppose z ∈ λ1,1. The larger the constant A, the closer
z will be to R. More precisely, if A > Λk then Im z ≤ δk

? Im a, as follows
from Harnack’s inequality for u, and the construction of λ1,1. In fact we can
show that

|f(z)− f(x0,1)| ≤ Cδk−1d(f(b1,1), ∂Ω).

The argument now is similar to the argument showing the existence of z∗

given σ, τ. Let ξ1,1 be the boundary of Q̃(b1,1) which is in H and let σ1,1 =
f(ξ1,1). Set w0,1 = f(x0,1). Then

B(w0,1, d(w0,1, σ1,1)) ⊂ f(Q̃(b1,1)).

and since d(w0,1, σ1,1) ≈ d(f(b1,1), ∂Ω) it follows from Hölder continuity of u
that

U(z) ≤ Cδθk max
Q̃(b1,1)

U.

Choose k, depending only on p, to be the least positive integer such that

Cδθk < Λ−1.

This choice of k determines A (say A = 2Λk) which therefore also depends
only on p. With this choice of A we have

max
ξ1,1

U > ΛU(z) > ΛAU(a). (2.30)

Since U(b1,1) ≤ ΛU(a) we see from (2.30) that we can now repeat the above
argument with Q̃(b1,1) playing the role of Q̃(a). That is, we find b1,2 on
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the vertical sides of Q̃(b1,1) with Im b1,2 = δ2
? Im a and a box Q̃(b1,2) with

boundary ξ1,2 such that

max
ξ1,2

U > Λ2AU(a) ≥ AU(b1,2).

Continuing by induction we get a contradiction because U = 0 continuously
on ∂Ω. The proof of (2.23) (β), Theorem 2.8, and Theorem 2.6 is now
complete. 2

2.5 p Harmonic Measure in Space

In [L1] we proved

Theorem 2.13. Let p, u, µ, be as in Theorem 2.3. There exists k0(p) > 0
such that if ∂Ω is a k quasicircle, 0 < k < k0(p), then

(a)µ is concentrated on a set of σ finite H1

measure when p > 2.

(b) There exists A = A(p), 0 < A(p) <∞, such that if
1 < p < 2, then µ is absolutely continuous with respect to

H λ̂ where λ̂(r) = r exp[A
√

log 1/r log log log 1/r].

In [BLNV] we prove an analogue of Theorem 2.13 when p ≥ n. To be more
specific we need a definition.

Definition B. Let Ω ⊂ Rn be a (δ, r0) NTA domain and 0 < r ≤ r0. Then Ω
and ∂Ω are said to be (δ, r0), Reifenberg flat provided that whenever w ∈ ∂Ω,
there exists a hyperplane, P = P (w, r), containing w such that

(a) Ψ(∂Ω ∩B(w, r), P ∩B(w, r)) ≤ δr

(b) {x ∈ Ω ∩B(w, r) : d(x, ∂Ω) ≥ 2δr} ⊂ one component of Rn \ P.

In Definition B, Ψ(E,F ) denotes the Hausdorff distance between the sets E
and F defined by

Ψ(E,F ) = max(sup{d(y, E) : y ∈ F}, sup{d(y, F ) : y ∈ E})
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Theorem 2.14. Let Ω ⊂ Rn, n ≥ 3, be a (δ, r0) Reifenberg flat domain,
w ∈ ∂Ω, and p fixed, n ≤ p < ∞. Let u > 0 be p harmonic in Ω with u = 0
continuously on ∂Ω. Let µ be the measure associated with u as in (2.1). There
exists, δ̂ = δ̂(p, n) > 0, such that if 0 < δ ≤ δ̂, then µ is concentrated on a
set of σ finite Hn−1 measure.

To outline the proof of Theorem 2.14, we shall need the following result from
[LN3] :

Theorem 2.15. Let Ω be (δ, r0) Reifenberg flat, 1 < p <∞, and u > 0, a p
harmonic function in Ω with u ≡ 0 on ∂Ω. Then there exists, δ0 > 0, c1 ≥ 1,
depending only on p, n, such that if 0 < δ ≤ δ0 and x ∈ Ω, then u ∈ C∞(Ω)
and

(a) c−1
1 |∇u(x)| ≤ u(x)/d(x, ∂Ω) ≤ c1|∇u(x)|, x ∈ Ω,

(b) |∇u|p−2 extends to an A2 weight on Rn with constant ≤ c1.

An outline of the proof of Theorem 2.15 will be given in the next lecture.
From Theorem 2.15 we see that (bik(x)) in (1.8), (1.9) are locally uniformly
elliptic in Ω with ellipticity constants given in terms of an A2 weight on Rn.
Thus Lemmas 1.6 - 1.8 can be used. To prove Theorem 2.14 we need a key
lemma :

Lemma 2.16. Let u,Ω, be as in Theorem 2.14 and p ≥ n. Then Lv ≥ 0
where L is as in (1.8), (1.9), and v = log |∇u|.

Using Lemma 2.16 and Theorem 2.15 we can essentially repeat the proof
in [L1] which in turn was based on the a proof in [M]. The main difficulty
involves showing that if

Θ = {y ∈ ∂Ω : v(x)→−∞ as x→y nontangentially }

then µ(Θ) = 0. To accomplish this we use some results on elliptic PDE whose
degeneracy is given in terms of an A2 weight. 2
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2.6 Open Problems for p Harmonic Measure

Note. In problems 1) - 8) the surrounding space is R2.

1) Can Theorem 2.6 for simply connected domains be generalized to:

(a) µ is concentrated on a set of σ finite H1 measure
whenever p > 2.

(b) If a = a(p) > 1 is large enough and 1 < p < 2, then µ
is absolutely continuous with respect to H γ̂ measure
where γ̂ is defined in Theorem 2.7

2) Is H-dim µ concentrated on a set of σ finite H1 measure when p > 2 and
Ω is any planar domain. For harmonic measure this result is in [JW], [W1].

3) What is the exact value of H-dim µ for a given p when ∂Ω is the Van Koch
snowflake and p 6= 2?

4) For a given p, what is the supremum (p < 2) or infimum (p > 2) of H-dim µ
taken over the class of quasi-circles and/or simply connected domains?.

5) Is H-dim µ continuous and/or decreasing as a function of p when ∂Ω is
the Van Koch snowflake?

Regarding this question, the proof of Theorem 2.1 gives that H-dim µ =
1 +O(|p− 2|) as p→2 for a snowflake domain.

6) Are the p harmonic measures defined on each side of a snowflake mutually
singular? The answer is yes when p = 2 as shown in [BCGJ].

7) Is it always true for 1 < p < ∞ that H-dim µ < Hausdorff dimension of
∂Ω when ∂Ω is a snowflake or a self similar Cantor set? The anwer is yes
when p = 2 for the snowflake as shown in [KW] The answer is also yes for
self similar Cantor sets when p = 2. This question and continuity questions
for H-dim ω on certain four cornered Cantor sets are answered by Batakis in
[B1-3]

8) We noted in Remark 2 that H-dim µ was independent of the choice of u
vanishing on ∂Ω. However in more general scenarios we do not know whether
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H-dim µ is independent of u. For example, suppose x0 ∈ ∂Ω and u > 0 is p
harmonic in Ω ∩ B(x0, r) with u = 0 on ∂Ω ∩ B(x0, r) in the W 1,p sense. If
∂Ω∩B(x0, r) has positive p capacity, then there exists a measure µ satisfying
(2.1) with φ ∈ C∞

0 (N) replaced by φ ∈ C∞
0 (B(x0, r)). Is H-dim µ|B(x0,r/2)

independent of u? If Ω is simply connected and p = 2, then I believe the
answer to this question is yes. In general this problem appears to be linked
with boundary Harnack inequalities.

9) Is it true for p ≥ n that H-dim µ ≤ 1 whenever Ω ⊂ Rn? If not is there
a more general class of domains than Reifenberg flat domains (see Theorem
2.14) for which this inequality holds? Compare with problem 2.

10) What can be said about the dimension of Wolff snowflakes? Regarding
this question it appears that we can perturb off the p = 2 case (see [LVV])
in order to construct Wolff snowflakes for 0 < |p − 2| < ε, ε > 0 small, for
which the H-dim of the corresponding p harmonic measures on both sides of
the snowflake are < n − 1 and also examples for which the H-dim of these
measures are > n− 1.

11) What can be said for the dimension of p harmonic measure, p > 3 −
log 4/ log 3, or even just harmonic measure in Ω = R3 \J where J is the Van
Koch snowflake?

12) The existence of a measure µ, corresponding to a weak solution u with
vanishing boundary values, as in (1.2), exists for a large class of divergence
form partial differential equations. What can be said about analogues of
Theorems 2.1 − 2.3 or Theorems 2.6, 2.8, 2.14, 2.15 for the measures corre-
sponding to these solutions? What can be said about analogues of problems
1) - 11)?

3 Boundary Harnack Inequalities and the Mar-

tin Boundary Problem for p Harmonic Func-

tions

Recall from section 2 the definition of nontangentially accessible and Reifen-
berg flat domains. We note that a Lipschitz domain (i.e a domain which is
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locally the graph of a Lipschitz function) is NTA. Also a Reifenberg flat do-
main need not have a rectifiable boundary or tangent planes in the geometric
measure sense anywhere (eg, the Van Koch snowflake, in two dimensions).
In [LN3] we prove

Theorem 3.1 Let Ω ⊂ Rn be a (δ, r0)-Reifenberg flat domain. Suppose
that u, v are positive p-harmonic functions in Ω ∩ B(w, 4r), that u, v are
continuous in Ω̄ ∩ B(w, 4r) and u = 0 = v on ∂Ω ∩ B(w, 4r). There exists
δ̃, σ > 0 and c1 ≥ 1, all depending only on p, n, such that∣∣∣∣log

u(y1)

v(y1)
− log

u(y2)

v(y2)

∣∣∣∣ ≤ c1

(
|y1 − y2|

r

)σ

whenever y1, y2 ∈ Ω ∩B(w, r/c1). Here w ∈ ∂Ω, 0 < r < r0, and 0 < δ < δ̃.

Observe that the last display in Theorem 3.1 is equivalent to :∣∣∣∣u(y1)

v(y1)
− u(y2)

v(y2)

∣∣∣∣ ≤ c1
u(y1)

v(y1)

(
|y1 − y2|

r

)σ

whenever y1, y2 ∈ Ω ∩ B(w, r/c1) so Theorem 3.1 is a boundary Harnack
inequality for positive p harmonic functions vanishing on a portion of a suf-
ficiently flat Reifenberg domain.

3.1 History of Theorem 3.1

The term boundary Harnack inequality for harmonic functions was first intro-
duced by Kemper in [K]. He attempted to show the ratio of two positive har-
monic functions vanishing on a portion of a Lipschitz domain was bounded.
Unfortunately Kemper’s proof was not correct, as Brelot later pointed out.
This inequality for harmonic functions in Lipschitz domains was later proved
independently and at about the same time in [A], [Da], [Wu]. Jerison and
Kenig in [JK] proved Theorem 3.1 for NTA domains. Moreover boundary
Harnack inequalities for solutions to linear divergence form uniformly ellip-
tic PDE are proved in [CFMS] while these inequalities for degenerate linear
divergence form elliptic PDE whose degeneracy is specified in terms of an A2

weight were proved by [FKS], [FJK], [FJK1], as mentioned earlier. Theorem
3.1 will be proved in the following steps:
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Step 1: We prove Theorem 3.1 for

Q = {x : |xi| < 1, 1 ≤ i ≤ n− 1, 0 < xn < 2}.

Step 2. (The ‘fundamental inequality’ for |∇u| ) In this step, for u as in
Theorem 3.1, we show there exist ĉ = ĉ(p, n) and λ̄ = λ̄(p, n), such that if
0 < δ ≤ δ1, then

λ̄−1 u(y)

d(y, ∂Ω)
≤ |∇u(y)| ≤ λ̄

u(y)

d(y, ∂Ω)
(3.1)

whenever y ∈ Ω ∩B(w, r/ĉ).

Step 3: In this step we show that |∇u|p−2 extends to an A2-weight locally
with constants depending only on p, n (provided δ is small enough).

Step 4: ( Deformation of p harmonic functions). Let u, v be as in Theorem
3.1, r∗ = r/c′, c′ large and for 0 ≤ τ ≤ 1, let ũ(·, τ) be the p harmonic
function in Ω ∩B(w, 4r∗) with continuous boundary values,

ũ(y, τ) = τv(y) + (1− τ)u(y)

whenever y ∈ ∂(Ω ∩ B(w, 4r∗)) and τ ∈ [0, 1]. To simplify matters assume
that

0 ≤ u ≤ v/2 and v ≤ c in Ω̄ ∩B(w, 4r∗), (3.2)

where c, as in the rest of this lecture, may depend only on p, n. Then from
the maximum principle for p harmonic functions (Lemma 1.1) we have

0 ≤ ũ(·, τ2)− ũ(·, τ1)
τ2 − τ1

≤ c (3.3)

whenever 0 ≤ τ1, τ2 ≤ 1. Proceeding operationally we note that if ũ(·, τ) has
partial derivatives with respect to τ on B(w, 4r∗), then differentiating the p
Laplace equation: ∇ · (|∇ũ(x)|p−2∇ũ(x, τ)) = 0 with respect to τ one finds
that ũτ (x, τ) is a solution for x ∈ Ω ∩B(w, 4r∗) to the PDE

L̃ζ =
n∑

i,j=1

∂

∂xi

( b̃ij(x, τ)ζxj
(x, τ) ) = 0 (3.4)
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where (b̃ij)(·, τ) are defined as in (1.9) relative to ũ(·, τ). Thus, ũ(·, τ) and
ũτ (·, τ), both satisfy the same PDE. Now

log
v(x)

u(x)
= log

ũ(x, 1)

ũ(x, 0)
=

∫ 1

0

ũτ (x, τ)

ũ(x, τ)
dτ (3.5)

when x ∈ Ω∩B(w, 4r∗). Observe also from (3.3) that ũτ ≥ 0 with continuous
boundary value zero on ∂Ω∩B(w, 4r∗). From this fact, (3.5), we see that to
prove Theorem 3.1 it suffices to prove boundary Harnack inequalities for the
PDE in (3.4) with constants independent of τ ∈ [0, 1]. Moreover, From Steps
1 - 2 , we see that u(·, τ) is a solution to a unifromly elliptic PDE whose
degeneracy is given in terms of an A2 weight with A2 constant independent
of τ. Thus Lemma 1.8 can be applied to ũτ , ũ in order to conclude Theorem
3.1.

3.2 Proof of Step 1.

Step 1 is stated formally as

Lemma 3.2. Let

Q = {x : |xi| < 1, 1 ≤ i ≤ n− 1, 0 < xn < 2}.

Given p, 1 < p < ∞, let u, v > 0 be p harmonic in Q, continuous in Q̄ with
u ≡ v ≡ 0 on ∂Q ∩ {x : xn = 0}. Then for some c = c(p, n) ≥ 1,∣∣∣∣log

(
u(z)

v(z)

)
− log

(
u(y)

v(y)

)∣∣∣∣ ≤ c|z − y|σ

whenever z, y ∈ Q ∩B(0, 1/16), where σ is the exponent in Lemma 1.3.

Proof: To begin the proof of Lemma 3.2, observe that xn is p harmonic and
vanishes when xn = 0. Thus from the triangle inequality, it suffices to prove
Lemma 3.2 when v = xn. To prove that u/v is bounded in Q ∩B(0, 1/2) we
use barrier estimates. Given x ∈ B(0, 1/2) with xn ≤ 1/100 let x̂ = (x′, 1/8)
and let f be p harmonic in D = B(x̂, 1/8) \ B̄(x̂, 1/100) with continuous
boundary values, f = u(en/4) on ∂B(x̂, 1/100) while f ≡ 0 on ∂B(x̂, 1/8).
From Lemma 1.1 we see that for some a, b,

f(x) =

{
a|x− x̂|(p−n)/(p−1) + b, p 6= n,
a ln |x− x̂|+ b, p = n,

(3.6)
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Also f ≤ cu in D thanks to Harnack’s inequality in Lemma 1.2. Using
these facts and (3.6) it follows from direct calculation that

cu(en/4) ≤ u(x)

xn

(3.7)

for some c = c(p, n) when xn ∈ Q∩B(0, 1/2) and xn ≤ 1/100. From Harnack’s
inequality we see that this inequality holds on Q∩B(0, 1/2). Next we extend
u to

Q′ = {x : |xi| < 1, 1 ≤ i ≤ n− 1, |xn| < 2}
by putting u(x′, xn) = −u(x′,−xn) when xn < 0 (Schwarz Reflection). It is
easily shown that u is p harmonic in Q’ . We can now use Lemmas 1.3 and
1.5 for u to deduce for x ∈ Q ∩B(0, 1/8), that

|∇u(x)| ≤ c max
B(0,1/4)

u. ≤ c2u(en/4). (3.8)

From (3.8) and the mean value theorem we get

cu(en/4) ≥ u(x)

xn

(3.9)

when x ∈ Q ∩B(0, 1/8). Combining (3.9), (3.7), we obtain

c−1u(en/4) ≤ u(x)/xn ≤ cu(en/4). (3.10)

Hölder continuity of the above ratio follows from (3.10) and Lemma 1.3. We
omit the details. 2

3.3 Proof of Step 2.

In the proof of (3.1) we shall need the following comparison lemma.

Lemma 3.3. Let O be an open set, w ∈ ∂O, r > 0, and suppose that û, v̂
are positive p harmonic functions in O ∩ B(w, 4r). Let a ≥ 1, x ∈ O, and
suppose that

a−1 v̂(x)

d(x, ∂Ω)
≤ |∇v̂(x)| ≤ a

v̂(x)

d(x, ∂Ω)
.

If ε̃−1 = (ca)(1+σ)/σ, where σ is as in Lemma 1.3, then for c = c(p, n) suitably
large, the following statement is true. If

(1− ε̃)L̂ ≤ v̂

û
≤ (1 + ε̃)L̂
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in B(x, 1
4
d(x, ∂O)) for some L̂, 0 < L̂ <∞, then

1

ca

û(x)

d(x, ∂O)
≤ |∇û(x)| ≤ ca

û(x)

d(x, ∂O)

Proof: Using Lemmas 1.2, 1.3, we see that if z1, z2,∈ B(x, td(x, ∂O)) and
0 < t ≤ 1/100,

|∇û(z1)−∇û(z2)| ≤ ctσ max
B(x,td(x,∂O))

|∇û(·)|

≤ c2tσ û(x)/d(x, ∂O).

(3.11)

Here c depends only on p, n. From (3.11) we conclude that we only have to
prove bounds from below for the gradient of û at x. To do this, suppose for
some small ζ > 0 (to be chosen) that,

|∇û(x)| ≤ ζ û(x)/d(x, ∂O). (3.12)

From (3.11) with z = z1, x = z2 and (3.12) we deduce

|∇û(z)| ≤ [ζ + c2tσ] û(x)/d(x, ∂O) (3.13)

for z ∈ B(x, td(x, ∂O)). Integrating, it follows that if y ∈ ∂B(x, td(x, ∂O)),
with |x− y| = td(x, ∂O), t = ζ1/σ, then

|û(y)− û(x)| ≤ c′ζ1+1/σ û(x). (3.14)

Constants in (3.13),(3.14) depend only on p, n. On the other hand (3.11) also

holds with û replaced by v̂. Let λ = ∇v̂(x)
|∇v̂(x)| . Then from (3.11) for v̂ and the

non-degeneracy assumption on |∇v̂| in Lemma 3.3, we find

〈∇v̂(z), λ〉 ≥ (1− c aζ)|∇v̂(x)| in B̄(x, ζ1/σd(x, ∂O)),

where c = c(p, n). If ζ ≤ (2ca)−1, where c is the constant in the above display,
then we can integrate, to get for y = x+ ζ1/σd(x, ∂O)λ, that

c∗(v̂(y)− v̂(x)) ≥ a−1ζ1/σv̂(x) (3.15)
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with a constant c∗ depending only on p, n. From (3.15), (3.14), we see that
if ε̃ is as in Lemma 3.3, then

(1− ε̃)L̂ ≤ û(y)

v̂(y)
≤
(

1 + c′ζ1+1/σ

1 + ζ1/σ/(ac∗)

)
û(x)

v̂(x)

≤ (1 + ε̃)

(
1 + c′ζ1+1/σ

1 + ζ1/σ/(ac∗)

)
L̂ < (1− ε̃)L̂

(3.16)

provided 1/(ac̃)1/σ ≥ ζ1/σ ≥ ac̃ ε̃ for some large c̃ = c̃(p, n). This inequality
and (3.15) are satisfied if ε̃−1 = (c̃a)(1+σ)/σ and ζ−1 = c̃a. Moreover, if the
hypotheses of Lemma 3.3 hold for this ε̃, then in order to avoid the contra-
diction in (3.16) it must be true that (3.12) is false for this choice of ζ. Hence
Lemma 3.3 is true. 2

As an application of Lemmas 3.2 and 3.3 we note that if û is p harmonic
in D = B(ζ, ρ)∩ {y : yn > ζn} and û has continuous boundary value zero on
∂D ∩ {y : yn = ζn}, then there exists c = c(p, n) ≥ 1 such that

c−1 û(x)

d(x, ∂D)
≤ |∇û(x)| ≤ c

û(x)

d(x, ∂D)
(3.17)

in D ∩ B(ζ, ρ/c). Indeed, let v̂ = xn − ζn and put L̃ = û(z)/v̂(z) where z is
a fixed point in D ∩B(ζ, ρ/c+). Using Lemma 3.2 we see that∣∣∣∣L̃− û(y)

v̂(y)

∣∣∣∣ ≤ c′ c−σ
+ L̃, when y ∈ D ∩B(ζ, ρ/c+). (3.18)

Choosing c+ large enough we deduce that Lemma 3.2 applys, so (3.17) is true.
(3.17) could also be proved more or less directly using barrier arguments,
Schwarz reflection, and Lemma 1.3.

Next we use Lemma 3.3 to get the nondegeneracy property in (3.1). We
restate this property as,

Lemma 3.4. Let Ω be (δ, r0) Reifenberg flat. Let u > 0 be p harmonic in
Ω∩B(w, 2r), continuous in B(w, 2r) with u ≡ 0 in B(w, 2r)\Ω. There exists
δ∗ = δ∗(p, n), c1 = c1(p, n), such that if 0 < δ ≤ δ∗ and y ∈ Ω ∩ B(w, r/c1),
then

c−1
1

u(y)

d(y, ∂Ω)
≤ |∇u(y)| ≤ c1

u(y)

d(y, ∂Ω)
.
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Proof: Let c∗ be the constant in (3.17) and choose c′ ≥ 1000c∗ so that if
x ∈ Ω ∩ B(w, r/c′), s = 4c∗d(x, ∂Ω), and z ∈ ∂Ω with !x − z| = d(x, ∂Ω),
then

max
B(z,4s)

u ≤ cu(x) (3.19)

for some c = c(p, n), which is possible thanks to Lemma 1.5. From
Definition B with w, r replaced by z, 4s, there exists a plane P = P (z, 4s)
with

Ψ(∂Ω ∩B(z, 4s), P ∩B(z, 4s)) ≤ 4δs.

Since the p Laplacian is invariant under rotations, and translations, we may
assume that z = 0 and P = {y : yn = 0}, Also, if

G = {y ∈ B(0, 2s) : yn > 8δs}

then we may assume
G ⊂ Ω ∩B(0, 2s).

Let v be the p harmonic function in G with boundary values in the Sobolev
sense as follows: v ≤ u on ∂G and

v(y) = u(y) when y ∈ ∂G and yn > 32δs,
v(y) = ( yn

16δs
− 1)u(y) when y ∈ ∂G and 16δs < yn ≤ 32δs .

v(y) = 0 when y ∈ ∂G and yn < 16δs .

From Lemma 1.1 (i.e, the maximum principle for p harmonic functions) we
have v ≤ u in G. Also, since each point of ∂G where u(x) 6= v(x) lies within
100δs of a point where u is zero, it follows from (3.19) and Lemma 1.4 that
u ≤ v + cδβu(x) on ∂G. Using Lemma 1.1 we conclude that

v ≤ u ≤ v + cδαu(x) in G.

Thus,

1 ≤ u(y)

v(y)
≤ (1− cδα)−1, y ∈ B(x, d(x, ∂G)/4). (3.20)

From (3.20) and (3.17) with û replaced by v, we conclude that the hypotheses
of Lemma 3.3 are satisfied with O = G. Applying Lemma 3.3 and using
d(x, ∂G) ≈ d(x, ∂Ω), we obtain Lemma 3.4. 2
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3.4 Proof of Step 3

In the proof of Step 3 we shall need the following lemma.

Lemma 3.5. Let Ω ⊂ Rn be (δ, r0) Reifenberg flat. Let w ∈ ∂Ω, 0 < r < r0,
and suppose u > 0 is p harmonic in Ω ∩ B(w, 2r), continuous in B(w, 2r),
with u ≡ 0 on B(w, 2r) \ Ω. Given ε > 0, there exist δ̂ = δ̂(p, n, ε) > 0 and
c = c(p, n, ε), 1 ≤ c <∞, such that

c−1

(
r̂

r

)1+ε

≤ u(ar̂(w))

u(ar(w))
≤ c

(
r̂

r

)1−ε

whenever 0 < δ ≤ δ̂ and 0 < r̂ < r/4.

Proof: Lemma 3.5 can be proved by a barrier type argument, using barriers
which vanish on the boundary of certain cones or by an iterative type argu-
ment using Reifenberg flatness of ∂Ω. We omit the details. 2

Lemma 3.6. Let Ω be (δ, r0) Reifenberg flat. Let w ∈ ∂Ω, 0 < r < r0, and
let u > 0 be p harmonic in Ω∩B(w, 2r), continuous in B(w, 2r), with u ≡ 0
on B(w, 2r) \ Ω. There exists δ′ = δ′(p, n), c = c(p, n,M) ≥ 1 such that if
0 < δ < δ′, and r̂ = r/c, then |∇u|p−2 extends to an A2(B(w, r̂)) weight with
constant depending only on p, n.

Proof: We use Lemma 3.5 to prove Lemma 3.6. Let {Qj(xj, rj)} be a
Whitney decomposition of Rn \ Ω̄ into open cubes with center at xj and
sidelength rj. Then

∪jQ̄(xj, rj) = Rn \ Ω̄

Q(xj, rj) ∩Q(xi, ri) = ∅ i 6= j

10−4nd(Qj, ∂Ω) ≤ rj ≤ 10−2nd(Qj, ∂Ω).

Let r̂ = r/c2, where c is so large that

c−1 u(x)

d(x, ∂Ω)
≤ |∇u(x)| ≤ c

u(x)

d(x, ∂Ω)
(3.21)
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whenever x ∈ Ω∩B(w, cr̂). Existence of c follows from Lemma 3.4. We also
assume c is so large that if Qj ∩B(w, 4r̂) 6= ∅, then Q̄j ⊂ B(w, cr̂) and there
exists wj ∈ Ω ∩B(w, cr̂) with

|xj − wj| ≈ d(xj, ∂Ω) ≈ d(wj, ∂Ω). (3.22)

Existence follows from the fact that Ω is an NTA domain.
Let

λ(x) = |∇u(x)|p−2, x ∈ Ω ∩B(w, 4r̂)

λ(x) = |∇u(wj)|p−2, x ∈ Qj ∩B(w, 4r̂).

From (3.22) we see that

λ(x) = λ(wj) ≈ λ(z) (3.23)

whenever x ∈ Qj and z ∈ B(wj, d(wj, ∂Ω)/2).
To complete the proof of Lemma 3.6 we prove that λ satisfes the A2

condition given in subsection 1.2. Let w̃ ∈ B(w, r̂) and 0 < r̃ < r̂. We
consider several cases. If r̃ < d(w̃, ∂Ω)/2, then the A2 condition follows from
(3.21) and Harnack’s inequality. On the other hand, if r̃ ≥ d(w̃, ∂Ω)/2 then
we choose z ∈ ∂Ω with d(w̃, ∂Ω) = |w̃ − z| and thus

B(w̃, r̃) ⊂ B(z, 3r̃) ⊂ B(w̃, 8r̃).

First suppose p > 2. From Hölder’s inequality, Lemmas 1.2, 1.3, and
(3.23) we see that∫

B(w̃,r̃)

λdx ≤
∫

B(z,3r̃)

λdx ≤ c

∫
Ω∩B(z,c∗r̃)

|∇u|p−2dx

≤ c

 ∫
Ω∩B(z,c∗r̃)

|∇u|pdx


(1−2/p)

r̃2n/p

≤ cu(ar̃(z))
p−2r̃n+2−p.

(3.24)

Let η = min{1, |p − 2|−1}/20. To estimate the integral in involving λ−1

observe from Lemma 3.5 and once again Harnack’s inequality, that if y ∈
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Ω ∩B(z, c∗r̃), and δ′ is small, then

cu(y) ≥ u(ar̃(z))

(
d(y, ∂Ω)

r̃

)1+η

. (3.25)

Therefore, using (3.23) and (3.25) we obtain∫
B(w̃,r̃)

λ−1dx ≤ c r̃(1+η)(p−2)u(ar̃(z))
2−p

×
∫

Ω∩B(z,c∗r̃)

d(y, ∂Ω)−η(p−2)dy.
(3.26)

To estimate the integral involving the distance function in (3.26) set

I(z, s) =

∫
Ω∩B(z,s)

d(y, ∂Ω)−η(p−2)dy

whenever z ∈ ∂Ω ∩B(w, r), 0 < s < r. Let

Ek = Ω ∩B(z, s) ∩ {y : d(y, ∂Ω) ≤ δks}

for k = 1, 2, . . . We claim that∫
Ek

dy ≤ ck+δ
ksn for k = 1, 2, . . . (3.27)

where c+ = c+(p, n). Indeed, from δ Reifenberg flatness it is easily seen that
this statement holds for E1. Moreover, E1 can be covered by at most c/δn−1

balls of radius 100δs with centers in ∂Ω ∩ B(z, s). We can then repeat the
argument in each ball to get that (3.27) holds for E2. Continuing in this way
we get (3.27) for all positive integers k. Using (3.27) and writing I(z, s) as a
sum over Ek \ Ek+1, k = 1, 2, . . . we get

I(z, s) ≤ csn−η(p−2) +

δη(p−2)−n
∑∞

k=1 (ck+δ
ks)n−η(p−2) < c̃sn−η(p−2),

where c̃ = c̃(p, n), provided δ′ is small enough. Using this estimate with
s = r̃, we can continue our calculation in (3.26) and conclude that∫

B(w̃,r̃)

λ−1dx ≤ c r̃n+p−2 u(ar̃(z))
(2−p) (3.28)
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To complete the proof of Lemma 3.6 in the case p > 2, we simply combine
(3.24) and (3.28). Note that the case p = 2 is trivial and in case p < 2 the
argument above can be repeated with p − 2 replaced by 2 − p < p. Hence
Lemma 3.6 and Step 3 are complete 2

3.5 Proof of Step 4 and Theorem 3.1

To justify the claims in Step 4, first choose c′ = c′(p, n) so large that if
r∗ = r/c′, then

max
Ω∩B(w,4r∗)

h ≤ ch(ar∗(w)) (3.29)

for some c = c(p, n) whenever h > 0 is p harmonic in Ω ∩ B(w, 2r). This
choice is possible as we see from Lemma 1.5 and Harnack’s inequality in
Lemma 1.2. We also suppose c′ > 1000c1, where c1 is the constant in Lemma
3.4. Hence from Lemma 3.4 we have

c−1 k(y)

d(y, ∂Ω)
≤ |∇k(y)| ≤ c

k(y)

d(y, ∂Ω)
. (3.30)

whenever y ∈ Ω ∩ B(w, r∗/c′) and k > 0 is p harmonic in Ω ∩ B(w, 2r∗),
continuous in B(w, 2r∗), with k ≡ 0 on B(w, 2r∗)\Ω. We temporarily assume
that

0 < u ≤ v/2 ≤ c on Ω ∩B(w, 4r∗). (3.31)

and also that
c−1 ≤ u(ar∗(w)) . (3.32)

Next if t ∈ [0, 1], let ũ(·, t) be the p harmonic function in Ω∩B(w, 2r∗) with
continuous boundary values,

ũ(·, t) = (1− t)u+ tv (3.33)

on ∂[Ω ∩ B(w, 2r∗)]. Extend ũ(·, t), t ∈ (0, 1), to be Hölder continuous in
B(w, 2r∗) by putting ũ(·, t) ≡ 0 on B(w, 2r∗) \Ω. Let r′ = r∗/c′ and observe
that (3.30) holds whenever k = u(·, t), t ∈ [0, 1], on Ω ∩ B(w, r′). Thus from
Lemma 1.3, we see that ũ(·, t) is infinitely differentiable in B(w, r′) and so

∇
(
·|∇ũ(·, t)|p−2∇ũ(·, t)

)
= 0 (3.34)

in Ω ∩B(w, r′). Set

U(x) = U(x, t, τ) =
ũ(x, t)− ũ(x, τ)

t− τ
.
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and note from (3.31), (3.32), for fixed t, τ ∈ [0, 1], t 6= τ, that

0 ≤ v/2 ≤ U(x) = v − u ≤ v ≤ c(p, n) (3.35)

on ∂(Ω ∩B(w, 2r∗)), so by Lemma 1.1 we have

0 ≤ U ≤ c in Ω ∩B(w, r′), U ≡ 0 on ∂Ω ∩B(w, r′). (3.36)

From (3.36) we see for fixed x ∈ Ω ∩ B(w, 2r∗) that t→ũ(x, t), is Lipschitz
with norm ≤ c. Thus ũτ (x, ·) exists almost everywhere in [0,1]. Let (xν) be a
dense sequence of Ω∩B(w, 2r∗) and let W be the set of all t ∈ [0, 1] for which
ũt(xm, ·) exists, in the sense of difference quotients, whenever xm ∈ (xν). We
note that H1([0, 1]\W ) = 0 where H1 is one-dimensional Hausdorff measure.
Next we note from (3.35) that for t ∈ (0, 1]

ũ(·, t)/2 ≤ U(·, t, τ) ≤ t−1ũ(·, t) (3.37)

on ∂Ω ∩ B(w, 2r∗), so by Lemma 1.1, this inequality also holds in Ω ∩
B(w, 2r∗). To find a divergence form PDE that U satisfies let ξ = (ξ1, . . . , ξn),
w = (w1, . . . , wn) ∈ Rn \ {0}, and 1 ≤ i ≤ n. Then

|ξ|p−2 ξi − |w|p−2wi

=

∫ 1

0

d
dλ
{|λξ + (1− λ)w|p−2 [λξi + (1− λ)wi]}dλ

=
n∑

j=1

(ξ − w)j

(∫ 1

0

aij[λξ + (1− λ)w]dλ

)
,

where for 1 ≤ i, j ≤ n, η ∈ Rn \ {0},

aij(η) = |η|p−4 [(p− 2)ηi ηj + δij |η|2]. (3.38)

In this display δij, once again, denotes the Kronecker delta. Using (3.34),
(3.36) - (3.38) we find for fixed t, τ that if

Aij(x) = Aij(x, t, τ)

=

∫ 1

0

aij[λ∇ũ(x, t) + (1− λ)∇ũ(x, τ)] dλ,
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then, for x ∈ Ω ∩B(w, r′), t, τ ∈ [0, 1],

L̃U(x) =
n∑

i,j=1

∂

∂xi

[Aij(x)Uxj
] = 0. (3.39)

Moreover, if x ∈ Ω ∩B(w, r′), then

c−1|ξ|2||∇ũ(x, t)|+ |∇ũ(x, τ)||p−2

≤
n∑

i,j=1

Aij(x)ξiξj whenever ξ ∈ Rn \ {0}.
(3.40)

Also,
n∑

i,j=1

|Aij(x)| ≤ c||∇ũ(x, t)|+ |∇ũ(x, τ)||p−2, (3.41)

where c depends only on p, n. From Lemma 1.3, (3.38) - (3.41), and (3.30) for
ũ(·, t), ũ(·, τ), we see that U is a solution on Ω∩B(w, r′) to a locally uniformly
elliptic divergence form PDE with C∞ coefficients. Since ũ(x, t)− ũ(x, τ) =
(t−τ)(v(x)−u(x)) on ∂(Ω∩B(w, 2r)) it follows from the maximum principle
for p harmonic functions that ũ(x, τ)→ũ(x, t) uniformly in the closure of
Ω∩B(x, 2r∗) as τ→t. Also from Lemma 1.2 we deduce that∇ũ(·, τ)→∇ũ(·, t)
on compact subsets of Ω∩B(w, 2r∗). Using these facts and (3.30) we see for
1 ≤ i, j ≤ n,

Ai,j(x, t, τ)→b̃ij(x) (3.42)

as τ→t uniformly on compact subsets of Ω ∩ B(w, r′), where b̃ij are defined
as in (1.9) relative to ũ(·, t). Finally we note from linear elliptic PDE theory
that U(·, t, τ) is locally in W 1,2 and locally Hölder continuous on Ω∩B(w, r′)
with norms independent of τ. From (3.37) we see that U(·, t, τ), t ∈ (0, 1],
has a Hölder continuous extension to B(w, r′) obtained by putting U ≡ 0
in B(w, r′) \ Ω. Also Hölder constants can be chosen independent of τ for τ
near t. Using these facts we see for fixed t ∈ (0, 1], that there is a sequence
U(·, t, τk)→f(·, t) on Ω ∩B(w, r′) as τk→t. Put f ≡ 0 on B(w, r′) \ Ω. Then
from (3.36) - (3.42), Lemma 1.2, and Schauder estimates, we conclude that
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f has the following properties.

(a) L̃f = 0 in Ω ∩B(w, r′) where L̃ is as in (3.4),

(b) f is continuous in B(w, r′) with f ≡ 0 on B(w, r′) \ Ω,

(c) f(xm, t) = ũt(xm, t) when xm ∈ (xν), t ∈ W,

(d) u/2 ≤ ũ(·, t)/2 ≤ f(·, t) ≤ c in Ω ∩B(w, r′),

(e) f ∈ C∞[Ω ∩B(w, r′)].

(3.43)

From (3.43) (c) we get

ln

(
v(xm)

u(xm)

)
= ln

(
ũ(xm, 1)

ũ(xm, 0)

)
=

∫ 1

0

f(xm, t)

ũ(xm, t)
dt (3.44)

whenever xm ∈ (xν). Since this sequence is dense in Ω∩B(w, r′), we conclude
from (3.43), (3.44) that Claims (3.4), (3.5) are true. From (3.4) and Lemmas
3.4, 3.6 we see that ũτ (·, τ), ũ(·, τ) are solutions to a degenerate divergence
form elliptic PDE whose degeneracy is given in terms of an A2 weight. Thus
Lemma 1.8 can be used with r replaced by r̃ = min(r′, r̂), v1 = f(·, t), v2 =
ũ(·, t), where f is as in (3.43), (3.44). Let r′′ = r̃/c where c is the constant
in Lemma 1.8. From (3.43) (d), (3.32), and Harnack’s inequality we get

c−1 ≤ f(ar′′(w), t)

ũ(ar′′(w), t)
≤ c (3.45)

where c depends only on p, n. Using this fact and Lemma 1.8, we find that

f(y, t)

ũ(y, t)
≤ c.

whenever y ∈ Ω ∩B(w, r′′) and thereupon∣∣∣∣f(z, t)

ũ(z, t)
− f(y, t)

ũ(y, t)

∣∣∣∣ ≤ c′
(
|z − y|
r

)α

(3.46)

whenever y, z ∈ Ω ∩B(w, r′′). Hence,∣∣∣∣log

(
v(y)

u(y)

)
− log

(
v(z)

u(z)

)∣∣∣∣
≤
∫ 1

0

∣∣∣∣f(z, t)

ũ(z, t)
− f(y, t)

ũ(y, t)

∣∣∣∣ dt ≤ c′
(
|z − y|
r

)α

.

(3.47)
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From (3.47) we conclude that Theorem 3.1 is valid under assumptions (3.31),
(3.32). To remove (3.31), (3.32), suppose u, v are as in Theorem 1.3. We
assume as we may that

1 = u(ar∗(w)) = v(ar∗(w)) (3.48)

since otherwise we divide u, v by their values at this point and use invariance
of the p Laplacian under scaling. Let ũ, ṽ be p harmonic functions in Ω ∩
B(w, 2r∗), continuous in B̄(w, 2r∗) with

ũ = min(u, v), ṽ = 2 max(u, v) on ∂[B(w, 2r∗) \ Ω].

Let r∗∗ = r∗/c. From Lemmas 1.1, 1.5, and (3.48) we see that

ũ ≤ min(u, v) ≤ max(u, v) ≤ ṽ/2 ≤ c in Ω ∩B(w, 2r∗∗).

Also, using (3.48), Harnack’s inequality, and Lemmas 1.4, 1.5 we see that
(3.32) is valid with r∗ replaced by r∗∗. Hence (3.31), (3.32), are valid with
r∗, replaced by r∗∗ so Theorem 3.1 can be applied to get

max[v/u, u/v] ≤ ṽ/ũ ≤ c (3.49)

in Ω∩B(w, r′′). It follows for suitably chosen c, that u, cv satisfy (3.31), (3.32)
in Ω ∩ B(w, r′′). Consequently Theorem 3.1 is valid without assumptions
(3.31), (3.32). 2

3.6 More on Boundary Harnack Inequalities

In [LlN] we generalize Theorem 3.1 to weak solutions u of∇·A(x,∇u(x)) = 0,
where A = (A1, ..., An) : Rn ×Rn → Rn. Also A = A(x, η) is continuous in
Rn × (Rn \ {0}) and A(x, η), for fixed x ∈ Rn, is continuously differentiable
in ηk, for every k ∈ {1, ..., n}, whenever η ∈ Rn \ {0}. Moreover,

(i) α−1|η|p−2|ξ|2 ≤
n∑

i,j=1

∂Ai

∂ηj

(x, η)ξiξj,

(ii)

∣∣∣∣∂Ai

∂ηj

(x, η)

∣∣∣∣ ≤ α|η|p−2, 1 ≤ i, j ≤ n,

(iii) |A(x, η)− A(y, η)| ≤ β|x− y|γ|η|p−1,

(iv) A(x, η) = |η|p−1A(x, η/|η|).
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Under these assumptions, we prove

Theorem 3.7. Let Ω ⊂ Rn be a (δ, r0)-Reifenberg flat domain. Suppose
that u, v are positive A-harmonic functions in Ω ∩ B(w, 4r), that u, v are
continuous in B(w, 4r) and u = 0 = v on B(w, 4r) \ Ω. For fixed p, α, β, γ,
there exist δ̃, σ > 0 and c1 ≥ 1, all depending only on p, n, α, β, γ such that∣∣∣∣log

u(y1)

v(y1)
− log

u(y2)

v(y2)

∣∣∣∣ ≤ c1

(
|y1 − y2|

r

)σ

whenever y1, y2 ∈ Ω ∩B(w, r/c1). Here w ∈ ∂Ω, 0 < r < r0, and 0 < δ < δ̃.

For completeness we now give the definition of a Lipschitz domain.

Definition C. Ω ⊂ Rn is said to be a bounded Lipschitz domain provided
there exists a finite set of balls {B(xi, ri)}, with xi ∈ ∂Ω and ri > 0, such
that {B(xi, ri)} constitutes a covering of an open neighbourhood of ∂Ω and
such that, for each i,

Ω ∩B(xi, 4ri) = {y = (y′, yn) ∈ Rn : yn > φi(y
′)} ∩B(xi, 4ri),

∂Ω ∩B(xi, 4ri) = {y = (y′, yn) ∈ Rn : yn = φi(y
′)} ∩B(xi, 4ri),

in an appropriate coordinate system and for a Lipschitz function φi. The Lip-
schitz constants of Ω are defined to be M = maxi ‖|∇φi|‖∞ and r0 = min ri,

In [LN2] we prove

Theorem 3.8 Let Ω ⊂ Rn be a bounded Lipschitz domain with constant M .
Given p, 1 < p <∞, w ∈ ∂Ω, 0 < r < r0, suppose that u and v are positive p
harmonic functions in Ω∩B(w, 2r). Assume also that u and v are continuous
in B(w, 2r) and u = 0 = v on B(w, 2r) \ Ω. Under these assumptions there
exist c1, 1 ≤ c1 <∞, and α, α ∈ (0, 1), both depending only on p, n, and M ,
such that if y1, y2 ∈ Ω ∩B(w, r/c2) then∣∣∣∣log

u(y1)

v(y1)
− log

u(y2)

v(y2)

∣∣∣∣ ≤ c1

(
|y1 − y2|

r

)α

.
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Remark: To prove Theorem 3.7 we argue as in Steps 1-4. The techniques
and arguments are similar to the proof of Theorem 3.1.

In the proof of Theorem 3.8 we follow a somewhat similar game plan
although in this case the techniques are necessarily more sophisticated. For
example there is no readily available comparison function ( xn in Theorems
3.1 or 3.7) from which we can extrapolate the fundamental inequality in
Step 2. Thus we study p harmonic capacitary functions in starlike Lipschitz
ring domains and show these functions satisfy the fundamental inequality
near boundary points where they vanish. Also, in the Lipschitz case simple
examples show |∇u|p−2 need not extend to an A2 weight locally, so that
Lemma 1.8 cannot be applied. Instead for given w, r ∈ ∂Ω we show that
|∇u|p−2 satisfies a Carleson measure condition in a certain starlike Lipschitz
subdomain Ω̃ ⊂ Ω. This fact and a theorem in [KP] (see also [HL]) can then
be used to conclude that a boundary Harnack inequality (as in Lemma 1.8)
holds for solutions to (1.8), (1.9) in the Lipschitz case.

Finally we note that Theorems 3.7, 3.8 are weaker than the corresponding
results for p = 2. Thus for example does Theorem 3.8 hold in an NTA
domain? Can the assumptions on A in Theorem 3.7 be weakened?

3.7 The Martin Boundary Problem

The Martin boundary for harmonic functions was first introduced by R.S.
Martin [M]. Over the years, it has been of considerable interest to researchers
in potential theory. Unfortunately Martin did not receive many accolades for
his contribution, as according to math. sci. net, the above is the only paper
he ever wrote. In order to define the p Martin boundary of a NTA domain,
we need to first define a minimal positive p harmonic function.

Definition D. Fix p, 1 < p <∞. Then û is said to be a minimal positive p
harmonic function in the NTA domain Ω relative to w ∈ ∂Ω, provided û > 0
is p harmonic in Ω and û has continuous boundary value 0 on ∂Ω \ {w}. û
is said to be unique up to constant multiples if v̂ = λû, for some constant λ,
whenever v̂ is a minimal positive p harmonic function relative to w ∈ ∂Ω.
The p Martin boundary of Ω is equivalence classes of all minimal positive
p harmonic functions defined relative to boundary points of Ω. Two mini-
mal positive p harmonic functions are in the same equivalence class if and
only if they are constant multiples of each other. We say that the p Martin
boundary of Ω can be identified with ∂Ω provided each w ∈ ∂Ω corresponds
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to a unique (up to constant multiples) minimal positive p harmonic function.

Theorem 3.9. Let Ω, δ, p, r0, be as in Theorem 3.1. There exists δ+ =
δ+(p, n) such that if 0 < δ < δ+, then the p Martin boundary of Ω can be
identified with ∂Ω.

Remark. Theorem 3.9 for p = 2, i.e harmonic functions, in an NTA domain
G is an easy consequence of the boundary Harnack inequality for harmonic
functions in NTA domains. Indeed, if w ∈ ∂G and if u, v are minimal har-
monic functions corresponding to w, one first uses the boundary Harnack
inequality for harmonic functions to show that γ = infG u/v > 0. Next one
applies this result to u − γv, v in order to conclude that u = γv. Note how-
ever that this argument depends heavily on linearity of the Laplacian and
thus the argument fails for the p Laplacian when p 6= 2. We also note that if
r0 = ∞ in Theorem 3.1, i.e, Ω is an unbounded Reifenberg flat NTA domain,
and u, v are minimal positive p harmonic functions relative to ∞, then we
can let r→∞ in the conclusion of Theorem 3.1, to get u = λv, λ = constant.
To make this idea work when w ∈ ∂Ω\{∞}, we need to prove an analogue of
Theorem 3.1 for positive p harmonic functions in Ω\B(w, r′), (r′ small) van-
ishing on ∂Ω\B(w, r′). We could get this analogue, by arguing as in the proof
of Theorem 3.1, except we do not know apriori, that our functions have the
fundamental nondegeneracy property (3.1) in an appropriate domain. We
overcome this deficiency, using arguments from the proof of Theorem 3.1, as
well as an induction - bootstrap type argument. We start by showing that if
one such p harmonic function has the fundamental nondegeneracy property
then all such functions have this property.

Lemma 3.10. Let Ω be (δ, r0) Reifenberg flat. Let û, v̂ > 0 be p harmonic
in Ω \B(w, r′), continuous in Rn \B(w, r′), with û ≡ v̂ ≡ 0 on
Rn \ [Ω ∪B(w, r′)]. Suppose for some
r1, r

′ < r1 < r0, and A ≥ 1, that

A−1 û(x)

d(x, ∂Ω)
≤ |∇û(x)| ≤ A

û(x)

d(x, ∂Ω)
.

whenever x ∈ Ω∩[B(w, r1)\B(w, r′)]. There exists α > 0, λ, c ≥ 1, depending
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on p, n,A, such that if 0 < δ < δ̂ (δ̂ as in Theorem 3.1),

λ−1 v̂(x)

d(x, ∂Ω)
≤ |∇v̂(x)| ≤ λ

v̂(x)

d(x, ∂Ω)
.

for x ∈ Ω ∩ [B(w, r1/c) \B(w, cr′)]. Moreover,∣∣∣∣log

(
û(z)

v̂(z)

)
− log

(
û(y)

v̂(y)

)∣∣∣∣ ≤ c

(
r′

min(r1, |z − w|, |z − y|)

)α

whenever z, y ∈ Ω \B(w, cr′).

Proof: We assume that r′/r1 << 1, since otherwise there is nothing to
prove. Let r̃ = ĉr′. If ĉ = ĉ(p, n) is large enough, we may assume

û ≤ v̂/2 ≤ ĉu in Ω \B(w, r̃), (3.50)

as we see from Theorem 3.1, Harnack’s inequality, and the maximum princi-
ple. As in Step 4 of section 1, let u(·, t), t ∈ [0, 1], be p harmonic in Ω\B(w, r̃),
with continuous boundary values,

u(·, t) = (1− t)û+ tv̂ on ∂[Ω \B(w, r̃)]. (3.51)

Extend u(·, t), t ∈ [0, 1], to be continuous on Rn \ [Ω ∪ B(w, r̃)] by setting
u(·, t) ≡ 0 on this set. Next we note from Lemma 3.3 that there exists
ε0 = ε0(p, n,M,A) such that if r̃ ≤ s1 < ρ1/4 ≤ r1/16, τ ∈ (0, 1], and

(1− ε0)L̃ ≤ u(·, τ)/û ≤ (1 + ε0)L̃, (3.52)

in Ω ∩ [B(w, 2ρ1) \B(w, s1)], for some L̃, then

λ̂−1 u(x, τ)

d(x, ∂Ω)
≤ |∇u(x, τ)| ≤ λ̂

u(x, τ)

d(x, ∂Ω)
(3.53)

in Ω∩[B(w, ρ1)\B(w, 2s1)] where λ̂ = λ̂(p, n,A). Observe from (3.50), (3.51),
that if τ1, τ2 ∈ [0, 1],

c−1u(·, τ1) ≤ U(·, τ1, τ2) =
u(·, τ2)− u(·, τ1)

τ2 − τ1
= v − u ≤ c u(·, τ1)

(3.54)
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on ∂[Ω \ B(w, r̃)], so from the maximum principle this inequality also holds
in Ω \ B(w, r̃). Thus for ε0 as in (3.52), there exists ε′0, 0 < ε′0 ≤ ε0, with the
same dependence as ε0, such that if |τ2 − τ1| ≤ ε′0, then

1− ε0/2 ≤
u(·, τ2)
u(·, τ1)

≤ 1 + ε0/2 in Ω \B(w, r̃). (3.55)

Divide [0,1] into closed intervals, disjoint except for endpoints, of length ε′0/2
except possibly for the interval containing 1 which is of length ≤ ε′0/2. Let
ξ1 = 0 < ξ2 < ... < ξm = 1 be the endpoints of these intervals. Thus [0,1]
is divided into {[ξk, ξk+1]}m

1 . Next suppose for some l, 1 ≤ l ≤ m − 1, that
(3.53) is valid whenever τ ∈ [ξl, ξl+1] and x ∈ Ω ∩ [B(w, ρ1) \ B(w, 2s1)].
Under this assumption we claim for some ĉ1, ĉ2, α, depending only on p, n,A
that∣∣∣∣log

u(z, ξl+1)

u(z, ξl)
− log

u(y, ξl+1)

u(y, ξl)

∣∣∣∣ ≤ ĉ1

(
s1

min{|z − w|, |w − y|}

)α

(3.56)

whenever z, y ∈ Ω ∩ [B(w, ρ1/ĉ2) \B(w, ĉ2s1)].
Indeed we can retrace the argument in Theorem 3.1 to get for
z, y ∈ Ω ∩ [B(w, ρ1/c) \B(w, cs1)], that there exists f as in (3.43) with∣∣∣∣log

u(z, ξl+1)

u(z, ξl)
− log

u(y, ξl+1)

u(y, ξl)

∣∣∣∣
≤
∫ ξl+1

ξl

∣∣∣∣f(z, τ)

u(z, τ)
− f(y, τ)

u(y, τ)

∣∣∣∣ dτ ≤ c

(
s1

min{|z − w|, |y − w|}

)α

.

(3.57)

The last inequality in (3.57) follows from a slightly more general version of
Lemma 1.8.

We now proceed by induction. Observe from (3.55) as well as u(·, ξ1) = û
that (3.52) holds whenever τ ∈ [ξ1, ξ2]. Thus (3.53) and consequently (3.56)
are true for l = 1 with s1 = r̃, ρ1 = r1/4. Let s2 = ĉ2s1, ρ2 = ρ1/ĉ2. By
induction, suppose for some 2 ≤ k < m,∣∣∣∣log

u(z, ξk)

û(z)
− log

u(y, ξk)

û(y)

∣∣∣∣ ≤ (k − 1)ĉ1

(
sk

min{|z − w|, |y − w|}

)α

(3.58)
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whenever z, y ∈ Ω ∩ [B(w, ρk) \ B(w, sk)], where α, ĉ1 are the constants in
(3.56). Choose s′k ≥ 2sk, so that∣∣∣∣u(z, ξk)û(z)

− u(y, ξk)

û(y)

∣∣∣∣ ≤ η
u(z, ξk)

û(z)

whenever z, y ∈ Ω ∩ [B(w, ρk) \ B(w, s′k)]. Fix z as above and choose η > 0
so small that

(1− ε0)
u(z, ξk)

û(z)
≤ u(y, τ)

û(y)
≤ (1 + ε0)

u(z, ξk)

û(z)
(3.59)

whenever y ∈ Ω ∩ [B(w, ρk) \ B(w, s′k)] and τ ∈ [ξk, ξk+1]. To see the size of
η observe for τ ∈ [ξk, ξk+1] that

u(y, τ)

û(y)
=

u(y, τ)

u(y, ξk)
· u(y, ξk)
û(y)

≤ (1 + ε0/2)(1 + η)
u(z, ξk)

û(z)
.

Thus if η = ε0/4 (ε0 small), then the right hand inequality in (3.59) is valid. A
similar argument gives the left hand inequality in (3.59) when η = ε0/4. Also
since k ≤ 2/ε′0, and ε′0, α depend only on p, n,M,A, we deduce from (3.58)
that one can take s′k = ĉ3sk for ĉ3 = ĉ(p, n,M,A) large enough. From (3.59)

we find that (3.52) holds with L̃ = u(z,ξk)
û(z)

in Ω ∩ [B(w, ρk) \ B(w, s′k)]. From

(3.53) we now get that (3.56) is valid for l = k in Ω∩ [B(w, ρk

2ĉ2
)\B(w, ĉ2s

′
k)].

Let sk+1 = ĉ3ĉ2sk and ρk+1 = ρk

2ĉ2
. Using (3.56) and the induction hypothesis

we have∣∣∣∣log
u(z, ξk+1)

û(z)
− log

u(y, ξk+1)

û(y)

∣∣∣∣ ≤ ∣∣∣∣log
u(z, ξk+1)

u(z, ξk)
− log

u(y, ξk+1)

u(y, ξk)

∣∣∣∣
+

∣∣∣∣log
u(z, ξk)

û(z)
− log

u(y, ξk)

û(y)

∣∣∣∣ ≤ kĉ1

(
sk+1

min{|z − w|, |w − y|

)α

(3.60)
whenever z, y ∈ Ω ∩ [B(w, ρk+1) \ B(w, sk+1)]. Thus by induction we get
(3.58) with k = m. Since u(·, ξm) = v̂ and sm ≤ cr′, ρm ≥ r1/c, for some
large c = c(p, n,A), we can now argue as in (3.59) to first get (3.52) with
u(·, τ) replaced by v̂ and then (3.53) for v̂. We conclude that Lemma 3.10 is
valid for z, y ∈ Ω∩ [B(w, r1/c) \B(w, cr′)] provided c is large enough. Using
the maximum principle it follows that the last display in Lemma 3.49 is also
valid for z, y ∈ Ω \B(w, r1/c). 2
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3.8 Proof of Theorem 3.9

Note that if û is a minimal p harmonic function satisfying (3.1) in Ω∩B(w, r1),
then one can let r′→0 in Lemma 3.10 to get Theorem 3.9. Thus to complete
the proof of Theorem 3.9 it suffices to show the existence of a minimal posi-
tive p harmonic function û relative to w ∈ ∂Ω and 0 < r1 < r0 for which the
fundamental nondegeneracy property in (3.1) holds in Ω ∩ B(w, r1). To this
end we introduce,

Definition E. We call Ω̃ ⊂ Ω a non tangential approach region at w ∈ ∂Ω
if for some η̃ > 0, d(x, ∂Ω) ≥ η̃|x− w| for all x ∈ Ω̃.

If we wish to emphasize w, η̃ in Definition E we write Ω̃(w, η̃). Now let û be a
minimal positive p harmonic function in Ω relative to w ∈ ∂Ω and 0 < δ < δ∗.
Then we can apply Lemma 3.3 to conclude for each x̂ ∈ ∂Ω \ {w} that for
some c̃ = c̃(p, n) ≥ 1,

c̃−1 û(x)

d(x, ∂Ω)
≤ |∇û(x)| ≤ c̃

û(x)

d(x, ∂Ω)
(3.61)

whenever x ∈ ∂Ω ∩B(x̂, |x̂− w|/c̃) ∩B(w, r0). Using this fact we see that if
0 < δ+ < δ∗ in Theorem 3.9 then there exists η̃ depending only on p, n, such
that

û satisfies (3.61) in [Ω \ Ω̃(w, η̃)] ∩B(w, r0). (3.62)

From (3.62) we see that if (3.61) holds in Ω(w, η̃) ∩ B(w, r1), then û can
be used in Lemma 3.10 for each small r′ > 0 so Theorem 3.9 is true. To
prove the above statement, we first extend û continuously to Rn \ {w} by
letting û = 0 in Rn \Ω. Let 0 < r < r0/n and σ = 100nδ. Using translation,
rotation invariance of the p Laplacian and Reifenberg flatness in Definition
B, we assume as we may that w = 0 and for given σ > 0 (sufficiently small)
that

B(0, nr) ∩ {y : yn ≥ σr} ⊂ Ω

B(0, nr) ∩ {y : yn ≤ −σr} ⊂ Rn \ Ω
(3.63)

Extend û to a continuous function in Rn \{0} by putting û ≡ 0 on Rn \ (Ω∪
{0}). Let

Q = {y : |yi| < r, 1 ≤ i ≤ n− 1} ∩ {y : σr < yn < r} \B(0,
√
σ r )
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and let v1 be the p harmonic function in Q with the following continuous
boundary values,

v1(y) = û(y) if y ∈ ∂Q ∩ {y : 2σr ≤ yn},

v1(y) =
(yn − σr)

σr
û(y) if y ∈ ∂Q ∩ {y : σr ≤ yn < 2σr} .

Comparing boundary values and using the maximum principle for p harmonic
functions, we deduce

v1 ≤ û in Q. (3.64)

Let σ(ε) = exp(−1/ε). To complete the proof of Theorem 3.9 we will make
use of the following lemmas.

Lemma 3.11. Let 0 < ε ≤ ε̂, let σ = σ(ε) be as above and let η̃ be as in
(3.62). If ε̂ is small enough, then there exists θ̂ = θ̂(p, n), 0 < θ̂ ≤ 1/4, such

that if ρ̂ = σ1/2−θ̂r, then

1 ≤ û(y)/v1(y) ≤ 1 + ε

whenever y ∈ Ω̃(0, η̃/16) ∩ [B(0, ρ̂) \B(0, 4
√
σr)].

Lemma 3.12. Let v1, ε, ε̂, θ̂, r, σ, be as in Lemma 3.11 and let η̃ be as in
(3.62). If ε̂ is small enough, then there exist θ = θ(p, n), 0 < θ ≤ θ̂/10, and
c = c(p, n) > 1 such that if ρ = σ1/2−4θr, b = σ−θ, then

c−1 v1(x)

d(x, ∂Ω)
≤ |∇v1(x)| ≤ c

v1(x)

d(x, ∂Ω)

whenever x ∈ Ω̃(0, η̃/4) ∩ [B(0, bρ) \B(0, ρ/b)] and 0 < ε ≤ ε̂.

Before proving Lemmas 3.11 and 3.12 we indicate how the proof of The-
orem 3.9 follows from these lemmas. Indeed, using Lemmas 3.3, 3.11, 3.12
we see for ε̂ sufficiently small and fixed, 0 < ε ≤ ε̂, that there exists c̃ > 1,
depending only on p, n, such that

c̃−1 û(x)

d(x, ∂Ω)
≤ |∇û(x)| ≤ c̃

û(x)

d(x, ∂Ω)
(3.65)

in Ω̃(0, η̃/2)∩ [B(0, b1/2ρ)\B(0, ρ/b1/2)]. With ε > 0 now fixed it follows from
(3.65), (3.62), and arbitrariness of ρ < r0/c that û can be used in Lemma
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3.10. As mentioned earlier, Theorem 3.9 follows from Lemma 3.10.

Proof of Lemma 3.11. From (3.64) we observe that it suffices to prove
the righthand inequality in Lemma 3.11. We note that if y ∈ ∂Q and
û(y) 6= v1(y), then y lies within 4σr of a point in ∂Ω. Also, max∂B(0,t) u
is nonincreasing as a function of t > 0 as we see from the maximum principle
for p harmonic functions. Using these notes and Lemmas 1.2 - 1.5 we see
that

û ≤ v1 + cσα/2 u(
√
σen) (3.66)

on ∂Q. By Lemma 1.1 this inequality also holds in Q. Using Lemmas 1.2 -
1.5 we also find that there exist β = β(p, n) ≥ 1 and c = c(p, n) > 1 such
that

max{ψ(z), ψ(y)} ≤ c (d(z, ∂Q)/d(y, ∂Q))β min{ψ(z), ψ(y)} (3.67)

whenever z ∈ Q, y ∈ Q∩B(z, 4d(z, ∂Q)) and ψ = û or v1. Also from Lemmas
1.2. - 1.5 applied to v1 we deduce

v1(2
√
σ ren) ≥ c−1 û(

√
σ ren). (3.68)

Let ρ̂, θ̂ be as in Lemma 3.11. From (3.66) - (3.68) we see that if y ∈
Ω̃(0, η̃/16) ∩ [B(0, ρ̂) \B(0, 4

√
σ r)], then

û(y) ≤ v1(y) + cσα/2u(
√
σen) ≤ (1 + c2σα/2−θ̂β)v1(y) ≤ (1 + ε)v1(y) (3.69)

provided ε̂ is small enough and θ̂β = α/4. Thus Lemma 3.11 is true. 2

Proof of Lemma 3.12. Using Lemmas 1.2-1.5 we note that there exist
γ = γ(p, n) > 0, 0 < γ ≤ 1/2, and c = c(p, n) > 1 such that

û(x) ≤ c(s/t)γû(sen) (3.70)

provided x ∈ Rn \ B(0, t), t ≥ s, and sen ∈ Ω with d(sen, ∂Ω) ≥ c−1s. Using
(3.70) with t = r, s =

√
σr, we find that

v1 ≤ c σγ/2 û(
√
σren) on ∂Q \ B̄(0,

√
σ r ), (3.71)

where c depends only on p, n. Let ṽ be the p harmonic function in Q with
continuous boundary values ṽ = 0 on ∂Q \ B̄(0,

√
σ r) and ṽ = v1 on ∂Q ∩

∂B(0,
√
σr). From Lemma 1.1 and (3.71) it follows that

0 ≤ ṽ ≤ v1 ≤ ṽ + cσγ/2u(
√
σren) in Q. (3.72)
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From Lemmas 1.2 - 1.5 we observe that

ṽ(2
√
σren) ≥ c−1 v1(

√
σren) = c−1u(

√
σren). (3.73)

Using (3.72), (3.73), and (3.67) applied to ψ = ṽ we obtain for ρ = σ1/2−4θr, θ
small, b = σ−θ, and b̂ = 8b2, that

ṽ ≤ v1 ≤ (1 + cσγ/2−6θβ)ṽ ≤ (1 + ε)ṽ (3.74)

on Ω̃(0, η̃/8) ∩ [B(0, b̂ρ) \ B(0, ρ/b̂)], provided ε̂ is small enough and θ =
min{γ/(24β), θ̂/10}.

Next let v be the p harmonic function in

Q′ = {y : |yi| < r, 1 ≤ i ≤ n− 1} ∩ {y : σr < yn < r} \ B̄(2
√
σ ren,

√
σ r )

with continuous boundary values v = 0 on ∂Q′\B̄(2
√
σen,

√
σ r) while v = 1

on ∂B(2
√
σ ren,

√
σ r ). One can show that

v(x) ≤ c〈2
√
σ ren − x,∇v(x)〉 (3.75)

when x ∈ Q′ where c = c(p, n). Clearly this inequality implies that there
exists c = c(p, n, η) ≥ 1, for given η, 0 < η ≤ 1/2, such that

c−1 v(x)

d(x, ∂Q′)
≤ |∇v(x)| ≤ c

v(x)

d(x, ∂Q′)
(3.76)

in Q̃′(0, η)\B(0, 10
√
σ r ) where Q̃′(0, η) is the non-tangential approach region

defined relative to 0, η, Q′. Using Theorem 1.3 and (3.76) for suitable η =
η(p, n) we conclude that (3.76) actually holds in Q′ \ B(0, 10

√
σr). We now

use Lemma 3.10 applied to v, ṽ with Ω, r′, replaced by Q′, 10
√
σr, in order to

get, for some a = a(p, n) > 0 and c = c(p, n) > 1, that

c−1 ṽ(x)

d(x, ∂Ω)
≤ |∇ṽ(x)| ≤ c

ṽ(x)

d(x, ∂Ω)
(3.77)

in [B(0, r/c)\B(0, c) r)]. Finally, note that if 0 ≤ ε ≤ ε̂ and if ε̂ is sufficiently
small, then r/c > b2ρ > ρ/b2 > c

√
σ r. Hence, if ε̂ is small enough then we

can use (3.77), (3.74), and Lemma 3.3 to conclude that Lemma 3.12 is valid.
The proof of Theorem 3.9 is now complete. 2

51



3.9 Further Remarks.

We note that Theorem 3.9 has been generalized in [LLN] to weak solutiosn of
∇ ·A(x,∇u) = 0 where A is as in Theorem 3.7. Also in [LN2] we show that
the conclusion of Theorem 3.9holds when Ω is convex or the complement of a
convex domain. Finally the conclusion of Theorem 3.9 is valid when Ω ⊂ R2

is a Lipschitz domain. This problem for Lipschitz domains remains open
when n ≥ 3. However the same argument as in Theorem 3.9 yields that a p
Martin function in a Lipschitz domain is unique (up to constant multiples)
at each boundary point where a tangent plane exists.

4 Uniqueness and Regularity in Free Bound-

ary - Inverse Type Problems

We begin this section by outlining the proof of

Theorem 4.1. Let E be a compact convex set, a > 0, and p fixed, 1 < p <∞.
If Hn−p(E) > 0, then there is a unique solution to the following free boundary
problem: Find a bounded domain D with E ⊂ D and u,
p harmonic in D \ E, satisfying

(a)u has continuous boundary values 1 on E and 0 on ∂D,

(b)u is p harmonic in D \ E,

(c)µ = ap−1Hn−1|∂D where µ is the measure associated
with u as in (2.1),

(d)For some positive c, r0, and all x ∈ ∂D
µ(B(x, r)) ≤ crn−1, 0 < r ≤ r0.

4.1 History of Theorem 4.1

My interest in free boundary problems of the above type started in ≈ 1989
when Andrew Vogel (my former PhD student) was a graduate student at the
University of Kentucky. He went to a conference where the following problem
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was proposed:

The Ball Problem: Let g be the Green’s function for a domain D with
smooth boundary and pole at 0 ∈ D. If |∇g| = a = constant on ∂D, show
that D is a ball with center at 0. We came up with the following proof: From
the above assumption and properties of g one has

ω(∂D) = 1 = aHn−1(∂D)

where ω is harmonic measure on ∂D relative to 0. Thus

Hn−1(∂D) = 1/a. (4.1)

Choose B(0, R) ⊂ D so that y ∈ ∂B(0, R) ∩ ∂D. Let G be the Green’s
function for B(0, R) with pole at 0. If b = |∇G|(y), then since |∇G| = b on
∂B(0, R) we have, as in (4.1),

Hn−1(B(0, R)) = 1/b. (4.2)

On the other hand from G ≤ g one gets b ≤ a or 1/a ≤ 1/b. Combining
this inequality with (4.1), (4.2), we deduce

Hn−1(∂D) ≤ Hn−1(∂B(0, R))

which in view of the isoperimetric inequality or the fact that Hn−1 decreases
under a projection implies that B(0, R) = D. Later we found out that nu-
merous other authors, including H. Shahgholian, had also obtained that D
is a ball, under various smoothness assumptions on g, ∂D.

In fact Henrot and Shahgholian in [HS], generalized this problem, by
proving

Theorem 4.2. Let E be a compact convex set, a > 0, and p fixed, 1 < p <∞.
If Hn−p(E) > 0, then there is a unique solution to the following free boundary
problem: Find a bounded domain D with E ⊂ D and u, p harmonic in D\E,
satisfying

(α)u has continuous boundary values 1 on E and 0 on ∂D,

(β)u is p harmonic in D \ E,

(γ) |∇u|(x)→a as x→∂D.
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Moreover D is convex and ∂D is C∞.

To prove uniqueness in Theorem 4.2, given existence, one can argue as in
the ball problem using the nearest point projection onto a convex set. In fact
if u′, D′ are solutions to the above problem for a given a, p, one can show there
exists a Henrot - Shahgholian domain D ⊂ D′ with ∂D∩∂D′ 6= ∅. Using the
nearest point projection onto a convex set as in the ball problem, it follows
that D = D′. We note that if E is a ball in Theorem 4.2, then necessarily
D is a ball, since radial solutions exist. Also, Henrot - Shahgholian domains
will play the same role in the proof of Theorem 4.1, as balls did in the ball
problem.

Andy and I considered other generalizations of the ball problem. We first
rephrased the problem as in (c) of Theorem 4.1 by

ω = aHn−1|∂D (4.3)

where ω is harmonic measure with respect to 0, ∂D. However some examples
of Keldysh and Larrentiev in two dimensions showed that this assumption
was not enough to guarantee that D was a ball, so we also assumed that

|∇g| ≤M <∞ near ∂D.

Using the Riesz representation formula for subharmonic functions one can
show that boundedness of |∇g| near ∂D, is equivalent to

ω(B(x, r)) ≤ crn−1 for all x ∈ ∂D and 0 < r ≤ r0 (4.4)

(i.e., condition (d) in Theorem 4.1). Given (4.3), (4.4), and the added as-
sumption that

Hn−1 almost every point of ∂D lies in the reduced boundary
of D in the sense of geometric measure theory,

(4.5)

we were able to show that

lim sup
x→∂D

|∇g| ≤ a (4.6)

which then allowed us to repeat the argument in the smooth case and get that
D is a ball. Our paper appeared in [LV1]. In this paper we listed a number
of symmetry problems including whether hypothesis (4.5) was needed for the
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ball theorem as well as analogues for the p Laplacian. During this period we
also wrote [LV2]. This paper used a technique in [W] to construct a bounded
domain D in Rn, n ≥ 3 for which ∂D is homeomorphic to a sphere and
(4.3),(4.5) hold, but D 6= ball (so necessarily (4.4) is false). We improved
this result in [LV4] where we showed that there exists quasi-spheres 6= ball
for which (4.3), (4.5), held.

Finally in [LV3] we were able to show that our generalization of the ball
theorem remained valid without (4.5). Thus we obtained an endpoint result
for harmonic functions. The key new idea in removing (4.5) was the following
square function - Carleson measure estimate:∫

D∩B(x,r)

g
n∑

i,j=1

(gyiyj
)2 dy ≤ c rn−1, 0 < r ≤ r1, (4.7)

for some positive c, r1, and all x ∈ ∂D. Let d(E,F ) denote the distance
between the sets E,F. Then (4.7) allowed us to conclude for given ε > 0 (in a
qualitative Hn−1 sense) that there were ‘lots ’ of tangent balls B(x, d(x, ∂D))
where∇g had oscillation≤ ε inB(x, (1−ε)d(x, ∂D)).Moreover using this fact
and subharmonicity of |∇g| we could also conclude that if Λ = lim sup

y→D
|∇g|,

then in a certain percentage of these balls,

Λ− ε ≤ |∇g|(x) ≤ Λ + ε (4.8)

Using (4.3), (4.8), and an asymptotic argument, we then concluded that
Λ ≤ a, which as earlier implies D = B(0, R).

4.2 Proof of Theorem 4.1

To prove Theorem 4.1 for fixed p, 1 < p < ∞, we first showed that (d) in
Theorem 4.1 implies,

|∇u| ≤M <∞ near ∂D. (4.9)

To prove (4.9) for x near ∂D we used the inequality

u(x) ≤ c

∫ c′d(x,∂D)

0

(
µ[B(w, t)]

tn−p

)1/(p−1)
dt

t
, (4.10)

(d) of Theorem 4.1, and the interior estimate,

|∇u(x)| ≤ ĉu(x)/d(x).
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(4.10) is proved in [KZ]. Armed with (4.9) we then proved a square function
estimate similar to (4.7) with g replaced by u. As in the p = 2 case, the
square function estimate enabled us to conclude that∇u had small oscillation
on ‘ lots ’ of tangent balls in the Hn−1 measure sense. In retrospect the
subharmonicity of |∇g| in the ball problem allowed us to use the Poisson
integral formula on certain level sets to get a boundary type integral for
which estimates could be made in terms of g, ω. To make this method work in
the proof of Theorem 4.1, it was first necessary to find a suitable divergence
form partial differential equation for which u is a solution and |∇u|2 is a
subsolution. For a long time we did not think there was any such PDE and
that the lack of such a PDE resulted in some rather deep questions involving
absolute continuity of µ with respect to Hn−1 measure. Finally we discovered
the PDE in (1.8), (1.9). It is easily checked that |∇u|2 is a subsolution to
(1.8), (1.9). Using this discovery, we were able to follow the general outline of
the proof in the harmonic case and after some delicate asymptotics eventually
get first (4.6) with g replaced by u and then Theorem 4.1. 2

4.3 Further Uniqueness Results

We note that the derivation of (1.8), (1.9) depends heavily on the fact that
the p Laplacian is homogeneous in ∇u so does not work for general PDE of p
Laplace type. Our earlier investigations before (1.8), (1.9) led to [LV6] where
we consider symmetry - uniqueness problems similar to those in Theorem 4.1
for non homogeneous PDE of p Laplace type. In this case u, |∇u|2, are not
a solution, subsolution, respectively of the same divergence form PDE. Thus
we were forced to tackle some rather difficult questions involving absolute
continuity of elliptic measure with respect toHn−1 measure on ∂Ω. To outline
our efforts, for these PDE’s we could still prove a square function estimate
for u similar to the one in (4.7). This estimate together with the stronger
assumption that

c−1 rn−1 ≤ µ(B(x, r)) ≤ crn−1, x ∈ ∂Ω, 0 < r ≤ r0 (4.11)

(where µ is the measure related to a solution u by way of an integral identity
similar to (2.1)), enabled us to conclude that ∂Ω is uniformly rectifiable in
the sense of [DS]. At one time we hoped that uniform rectifiability of ∂Ω
would imply absolute continuity of a certain elliptic measure with respect to
Hn−1 measure on ∂Ω. Eventually however we found an iluminating example
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in [BJ] The example showed that harmonic measure for Laplace’s equation
need not be absolutely continuous with respect to H1 measure in a uniformly
rectifiable domain. This example appeared to provide a negative end for our
efforts.

Later we observed that in order to obtain the desired analogue of (4.8)
it suffices to make absolute continuity type estimates for the above elliptic
measure on the boundary of a certain subdomain Ω1 ⊂ Ω, with ∂Ω1 uniformly
rectifiable. Here Ω1 is obtained by adding to Ω certain balls on which |∇u|
is ‘small’. With this intuition we finally were able to use a rather involved
stopping time argument in order to first establish the absolute continuity of
our elliptic measure with respect to Hn−1|∂Ω1 and second get an analogue of
(4.6).

From 2004 - 2006, Björn Bennewitz was my PhD student. In his thesis he
generalized the nonuniqueness results of Andy and I to p harmonic functions
when Ω ⊂ R2. More specifically for fixed p, 1 < p < ∞, he constructed an
Ω 6= a Henrot - Shahgholian domain with ∂Ω a quasi circle, E ⊂ Ω, and for
which the corresponding p harmonic u satisfied all the conditions of Theorem
4.1 except (d). His construction makes important use (as in section 2) of the
fact that in R2, v = log |∇u| is a subsolution to (1.8), (1.9), when p ≥ 2 and
a supersolution to (1.8), (1.9), when 1 < p ≤ 2. [B] is based on his thesis.

4.4 Boundary Regularity of p Harmonic Functions

Next we discuss boundary regularity and corresponding inverse problems for
positive p harmonic functions vanishing on a portion of a Lipschitz domain.
We first introduce some more or less standard notation for Lipschitz domains.
Let Ω ⊂ Rn be a bounded Lipschitz domain with w ∈ ∂Ω. If 0 < ρ < r0 let
∆(w, ρ) = ∂Ω ∩ B(w, ρ) and for given b, 0 < b < 1, 0 < r < r0, x ∈ ∆(w, r),
define the nontangential approach region Γ(x) relative to w, r, b by Γ(x) =
Γb(x) = {y ∈ Ω : d(y, ∂Ω) > b|x− y|} ∩B(w, 4r)}.

Given a measurable function k on ∪x∈∆(w,2r)Γ(x) we define the non tan-
gential maximal function N(k) : ∆(w, 2r)→R for k as

N(k)(x) = sup
y∈Γ(x)

|k|(y) whenever x ∈ ∆(w, 2r).

Let σ be Hn−1 measure on ∂Ω and let Lq(∆(w, 2r)), 1 ≤ q ≤ ∞, be the space
of functions which are q th power integrable, with respect to σ, on ∆(w, 2r).
Furthermore, given f : ∆(w, 2r)→R, we say that f is of bounded mean
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oscillation on ∆(w, r), f ∈ BMO(∆(w, r)), if there exists A, 0 < A < ∞,
such that ∫

∆(x,s)

|f − f∆|2dσ ≤ A2σ(∆(x, s)) (4.12)

whenever x ∈ ∆(w, r) and 0 < s ≤ r. Here f∆ denotes the average of f on
∆ = ∆(x, s) with respect to σ. The least A for which (4.12) holds is denoted
by ‖f‖BMO(∆(w,r)). Finally we say that f is of vanishing mean oscillation
on ∆(w, r), f ∈ VMO(∆(w, r)), provided for each ε > 0 there is a δ > 0
such that (4.12) holds with A replaced by ε whenever 0 < s < min(δ, r) and
x ∈ ∆(w, r).

Theorem 4.3. Let Ω ⊂ Rn be a bounded Lipschitz domain with Lipschitz
constant M . Given p, 1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that u is a
positive p harmonic function in Ω∩B(w, 4r) and u is continuous in B(w, 4r)
with u ≡ 0 on B(w, 4r) \ Ω. Then

lim
y∈Γ(x),y→x

∇u(y) = ∇u(x)

For σ almost every x ∈ ∆(w, 4r). Furthermore there exist q = q(p, n,M) > p
and a constant c = c(p, n,M) ≥ 1, such that

(i) N(|∇u|) ∈ Lq(∆(w, 2r))

(ii)

∫
∆(w,2r)

|∇u|qdσ ≤ cr(n−1)( p−1−q
p−1

)

( ∫
∆(w,2r)

|∇u|p−1dσ

)q/(p−1)

(iii) log |∇u| ∈ BMO(∆(w, r)), ‖ log |∇u|‖BMO(∆(w,r)) ≤ c.

Next we state

Theorem 4.4. Let Ω,M, p, w, r and u be as in the statement of Theorem
4.3. If, in addition, ∂Ω is C1 regular then

log |∇u| ∈ VMO(∆(w, r)).

Theorem 4.5. Let Ω,M, p, w, r and u be as in the statement of Theorem
4.3. If log |∇u| ∈ VMO(∆(w, r)), then the outer unit normal to ∆(w, r) is
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in VMO(∆(w, r/2)).

To put these results into historical perspective, we note that for harmonic
functions, i.e, p = 2, Theorem 4.3 was proved in [Da]. Theorem 4.4 for har-
monic functions was proved by [JK]. This theorem for harmonic functions
was generalized to vanishing chord arc domains in [KT]. Also a version of
Theorem 4.5 in vanishing chord arc domains was proved in [KT1] An im-
proved version of this theorem in chord arc domains with small constants
was proved by these authors in [KT2].

Currently we are in the process of generalizing Theorems 4.4, 4.5 to the
more general setting of chord arc domains.

4.5 Proof of Theorem 4.3

To prove Theorem 4.3 we shall need several lemmas.

Lemma 4.6. Let Ω ⊂ Rn be a bounded Lipschitz domain with constant M.
Given p, 1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose u > 0 is p harmonic in
Ω ∩ B(w, 4r) and continuous in B(w, 4r) with u = 0 on B(w, 4r) \ Ω. Let
µ be the measure corresponding to u as in (2.1). There exists c = c(p, n,M)
such that

r̄p−nµ(∆(w, r̄)) ≈ u(ar̄(w))p−1 whenever 0 < r̄ ≤ r/c.

Proof: Lemma 4.6 was essentially proved in [EL]. 2

(ii) in Theorem 4.3 for smooth domains (i.e, the reverse Hölder inequality)
follows from Lemma 4.6 and a Rellich inequality for the p Laplacian (as in
the case p = 2). For example suppose

Ω ∩B(w, 4r) = {(x′, xn) : xn > ψ(x′)} ∩B(w, 4r) where ψ ∈ C∞
0 (Rn−1).

(4.13)
Then from results in [Li] and Schauder type theory it follows that u is smooth
near ∂Ω so we can apply the divergence theorem to |∇u|p φ en. Here φ ∈
C∞

0 (B(w, 2r)) with φ ≡ 1 on B(w, r) and |∇φ| ≤ cr−1. Using p harmonicity
of u - Lipschitzness of ∂Ω, we get

r1−n

∫
∂Ω∩B(w,r)

|∇u|p dσ ≤ cr−n

∫
Ω∩B(w,2r)

|∇u|pdx. (4.14)
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Also, using Lemma 1.4, Lemma 4.6, and the fact that dµ = |∇u|p−1dσ we
find that

r−n

∫
Ω∩B(w,2r)

|∇u|p dσ ≤ cr−pu(ar(w))p

≤ c2
(
r1−n

∫
∂Ω∩B(w,r)

|∇u|p−1 dσ

)p/(p−1)
(4.15)

where constants depend only on p, n,M. Combining (4.14), (4.15) we get (ii)
in Theorem 4.3 with q replaced by p. However this reverse Hölder inequality
has a self improving property so actually implies the higher integrability re-
sult in (ii), as follows from a theorem originally due to Gehring (see [CF]).
Approximating u by certain p harmonic functions in smooth domains, ap-
plying (ii), and taking weak limits it follows that dµ = kdσ where µ is the
measure corresponding to u as in (2.1). Moreover for some q′ > p/(p− 1)

∫
∆(w,r̄)

kq′dσ ≤ cr̄(n−1)( p−1−q′
p−1

)

 ∫
∆(w,r̄)

kdσ


1/q′

, 0 < r̄ ≤ r/c. (4.16)

Note that we still have to prove k = |∇u|p−1 on ∂Ω (σ a. e.).

Lemma 4.7. Let Ω,M, p, w, r and u be as in Theorem 4.3. Then there
exists a starlike Lipschitz domain Ω̃ ⊂ Ω ∩ B(w, 2r), with center at a point
w̃ ∈ Ω ∩B(w, r), d(w̃, ∂Ω) ≥ c−1r, such that

(a) c σ(∂Ω̃ ∩∆(w, r)) ≥ rn−1.

(b) c−1r−1u(w̃) ≤ |∇u(x)| ≤ cr−1u(w̃), for x ∈ Ω̃.

Proof: Using Lemma 4.6 and (4.16) one can show there exists Ω̃ as in Lemma
4.7 for which (a), (b) hold with |∇u(x)| replaced by u(x)/d(x, ∂Ω). To finish
off the proof of Lemma 4.7 we need to prove the fundamental inequality for
u. In fact, assuming (4.13), the following stronger version is available in Ω :
There exists c = c(p, n,M) ≥ 1, and z ∈ B(w, r/c) such that

|∇u(z)| ≈ uxn(z),≈ u(z)/d(z, ∂Ω). (4.17)
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(4.17) is a consequence of a boundary Harnack inequality that was stated in
Theorem 3.8. An improved version of Lemma 4.7 will be used in the proof
of Theorem 4.5 2

Next from (4.17), we see as in (1.6)-(1.9) that u, uxi
, 1 ≤ i ≤ n, both

satisfy

(α)Lζ =
n∑

i,j=1

∂

∂xi

(
bij

∂ζ

∂xj

)

(β) bij(x) = |∇u|p−4[(p− 2)uxi
uxj

+ δij|∇u|2](x)

(4.18)

and for ξ ∈ Rn,

c−1|∇u|p−2|ξ|2 ≤
n∑

i,j=1

bij(x)ξiξj ≤ c|∇u|p−2 |ξ|2 . (4.19)

From (4.17) - (4.19) we see once again that u, uxi
, 1 ≤ i ≤ n, are locally

solutions to a uniformly elliptic PDE in divergence form.

Lemma 4.8. Let Ω, Ω̃,M, p, w, r, u, be as in Lemma 4.7. Define, for y ∈ Ω̃,
the measure

dγ̃(y) = d(y, ∂Ω̃) max
B(y, 1

2
d(y,∂Ω̃))

{
n∑

i,j=1

|∇bij(x)|2
}
dy.

If z ∈ ∂Ω̃ and 0 < s < r, then

γ̃(Ω̃ ∩B(z, s)) ≤ csn−1(u(w̃)/r)2p−4.

Proof: We get Lemma 4.8 from Lemma 4.7 and integration by parts. 2

γ̃ in Lemma 4.8 is said to be a Carleson measure on Ω̃. To continue the
proof of Theorem 4.3, let ω̃(w̃, ·) be elliptic measure defined with respect to
L, Ω̃, and w̃ as above.

Lemma 4.9. Let u, Ω̃, w̃, be as in Lemma 4.7 and L as in (4.18), (4.19).
Then there exist c ≥ 1 and θ, 0 < θ ≤ 1, such that

ω̃(w̃, E)

ω̃(w̃, ∂Ω̃ ∩B(z, s))
≤ c

(
σ(w̃, E)

σ(w̃, ∂Ω̃ ∩B(z, s)

)θ
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for z ∈ ∂Ω̃, 0 < s < r, and E ⊂ ∂Ω̃ ∩B(z, s) a Borel set.

We say that ω̃ is an A∞ weight with respect to σ, on ∂Ω̃. Lemma 4.9 is a
direct consequence of Lemma 4.8 and a theorem in [KP]. 2

Next we prove by a contradiction argument that ∇u has non tangential
limits for σ almost every y ∈ ∆(w, 4r). To begin suppose there exists a
set F ⊂ ∆(w, 4r), σ(F ) > 0, such that if y ∈ F then the limit of ∇u(z),
as z → y with z ∈ Γ(y), does not exist. Let y ∈ F be a point of density
for F with respect to σ. Then t1−nσ(∆(y, t) \ F )→0 as t→0, so if t > 0 is
small enough, then cσ(∂Ω̃ ∩∆(y, t) ∩ F ) ≥ tn−1 where Ω̃ ⊂ Ω is the starlike
Lipschitz domain defined in Lemma 4.7 with w, w̃, r replaced by y, ỹ, t. From
(4.18), (4.19), we see that uxi

, 1 ≤ i ≤ n, is a weak solution to Lζ = 0 in Ω̃.
We now apply a theorem in [CFMS] to deduce that uxk

, 1 ≤ k ≤ n, has
nontangential limits in Ω̃, almost everywhere with respect to ω̃(·, w̃). Recall
from Lemma 4.9 that ω̃ and σ are mutually absolutely continuous. Thus
these limits also exist almost everywhere with respect to σ. Since nontangen-
tial limits in Ω̃ agree with those in Ω, for σ almost every point in F, we have
reached a contradiction. Thus ∇u has nontangential limits almost every-
where in Ω. (i) follows from (4.16), Lemma 4.6, and Lemma 1.3. Finally we
use nontangential limits of ∇u, the fact that for small t, {u = t} is Lipschitz,
the implicit function theorem, as well as (i) of Theorem 4.3, to take limits as
t→0 in order to conclude that k = |∇u| in (4.16). The proof of Theorem 4.3
is now complete. 2

4.6 Proof of Theorem 4.4

To prove Theorem 4.4 it suffices by way of an argument of Sarason to show
that there exist 0 < ε0 and r̃ = r̃(ε), for ε ∈ (0, ε0), such that whenever
y ∈ ∆(w, r) and 0 < s < r̃(ε) we have∫

∆(y,s)

− |∇u|pdσ ≤ (1 + ε)

( ∫
∆(y,s)

− |∇u|p−1dσ

)p/(p−1)

. (4.20)

Here

∫
E

− fdσ denotes the average of f on E with respect to σ. The

proof of (4.20) is by contradiction. Otherwise there exist two sequences
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{ym}∞1 , {sm}∞1 satisfying ym ∈ ∆(w, r) and sm→0 as m→∞ such that (4.20)
is false with y, s replaced by ym, sm for m = 1, 2, . . . . Let A = e1/ε and put
y′m = ym + Asmn(ym), where n(ym) is the inner unit normal to Ω at ym.
Since ∂Ω is C1 we see for ε > 0 small and m = m(ε) large that if Ω(y′m)
is constructed by drawing all line segments from points in B(y′m, Asm/4)
to points in ∆(ym, Asm), then Ω(y′m) is starlike Lipschitz with respect to
y′m. Let Dm = Ω(y′m) \ B̄(y′m, Asm/8). and let um be the p harmonic func-
tion in Dm that is continuous in Rn with um ≡ 1 on B(y′m, Asm/8) and
u ≡ 0 on Rn \ Ω(y′m). From the boundary Harnack inequality in The-
orem 3.8 with w, r, u, v replaced by ym, Asm/100, u, um we deduce that if
w1, w2 ∈ Ω ∩B(ym, 2sm) then∣∣∣∣log

(
um(w1)

u(w1)

)
− log

(
um(w2)

u(w2)

)∣∣∣∣ ≤ cA−α. (4.21)

Letting w1, w2→z1, z2 ∈ ∆(ym, 2sm) in (4.21) and using Theorem 4.3, we get,
σ almost everywhere, that∣∣∣∣log

(
|∇um(z1)|
|∇u(z1)|

)
− log

(
|∇um(z2)|
|∇u(z2)|

)∣∣∣∣ ≤ cA−α

or equivalently that

(1− c̃A−α)
|∇um(z1)|
|∇um(z2)|

≤ |∇u(z1)|
|∇u(z2)|

≤ (1 + c̃A−α)
|∇um(z1)|
|∇um(z2)|

. (4.22)

Using (4.22) and the fact that (4.20) is false we obtain

−
∫

∆(ym,sm)

|∇um|pdσ

(
−
∫

∆(ym,sm)

|∇um|p−1dσ

)p/(p−1)

≥ (1− cA−α)

−
∫

∆(ym,sm)

|∇u|pdσ

(
−
∫

∆(ym,sm)

|∇u|p−1dσ

)p/(p−1)
≥ (1− cA−α)(1 + ε) .

(4.23)
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Let Tm be a conformal affine mapping of Rn which maps the origin and en

onto ym and y′m respectively and which maps W = {x ∈ Rn : xn = 0} onto
the tangent plane to ∂Ω at ym. Let D′

m, u
′
m be such that Tm(D′

m) = Dm

and um(Tmx) = u′m(x) whenever x ∈ D′
m. Since the p Laplace equation

is invariant under translations, rotations, and dilations, we see that u′m is p
harmonic inD′

m. Lettingm→∞ one can show that u′m converges uniformly on
Rn to u′ where u′ is continuous on Rn and p harmonic in D′ = Ω′\B(en, 1/8)
with u ≡ 1 on B(en, 1/8) and u ≡ 0 on Rn\Ω′. Here Ω′ is obtained by drawing
all line segments connecting points in B(0, 1) ∩W to points in B(en, 1/4).
Changing variables in (4.23) and using Rellich type inequalities one gets

(1− cA−α)(1 + ε) ≤ lim sup
m→∞

−
∫

∂D′
m∩B(0,1/A)

|∇u′m|pdσ

(
−
∫

∂D′
m∩B(0,1/A)

|∇u′m|p−1dσ

)p/(p−1)

≤

−
∫

W∩B(0,1/A)

|∇u′|pdσ

(
−
∫

W∩B(0,1/A)

|∇u′|p−1dσ

)p/(p−1)

(4.24)

Finally from interior estimates for p harmonic functions and Schwarz reflec-
tion one finds for z ∈ B(0, 1/A) that

(1− cA−θ)|∇u′(0)| ≤ |∇u′(z)| ≤ (1 + cA−θ)|∇u′(0)|

which in view of (4.24) yields

(1 + cA−θ) ≥

−
∫

W∩B(0,1/A)

|∇u′|pdx′

(
−
∫

W∩B(0,1/A)

|∇u′|p−1dx′
)p/(p−1)

≥ (1− cA−α)(1 + ε).

Clearly this inequality cannot hold for ε small since A = e1/ε. The proof of
Theorem 4.4 is now complete.
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4.7 Proof of Theorem 4.5

In this subsection we prove Theorem 4.5. We shall need the following refined
version of Lemma 4.7.

Lemma 4.10. Given Ω, w, p, n,M, u as in Theorem 3. If log |∇u| ∈ VMO(∆(w, r)),
then for each ε > 0 there exists, 0 < r̃ = r̃(ε) < r and c = c(p, n,M), 1 ≤
c < ∞, such that if 0 < r′ ≤ r̃ then the following holds: There is a starlike
Lipschitz domain Ω̃ ⊂ Ω ∩B(w, r′), with center at a point ŵ ∈ Ω ∩B(w, r′),
d(ŵ, ∂Ω) ≥ r′/c, and Lipschitz constant ≤ c, satisfying

(a)
σ(∂Ω̃ ∩∆(w, r′))

σ(∆(w, r′))
≥ 1− ε.

(b) (1− ε)bp−1 ≤ µ(∆(y, s))

σ(∆(y, s))
≤ (1 + ε)bp−1

where 0 < s ≤ r′, y ∈ ∂Ω̃ ∩∆(w, r′), and log b is the average of log |∇u| on
∆(w, 4r′). Moreover,

(c) c−1u(ŵ)

r′
≤ |∇u(x)| ≤ c

u(ŵ)

r′
for all x ∈ Ω̃.

Proof: Lemma 4.10 is proved in [LN4] as Lemma 4.1. 2

To begin the proof of Theorem 4.5 let n denote the outer unit normal to
∂Ω and put

η = lim
r̃→0

sup
w̃∈∆(w,r/2)

‖n‖BMO(∆(w̃,r̃)). (4.25)

To prove Theorem 4.5 it is enough to prove that η = 0. To do this we argue by
contradiction and assume that (4.25) holds for some η > 0. This assumption
implies that there exist a sequence of points {wj}, wj ∈ ∆(w, r/2), and a
sequence of scales {rj}, rj → 0, such that ‖n‖BMO(∆(wj ,rj)) → η as j → ∞.
To get a contradiction we use a blow-up argument. In particular, let u be as
in the statement of Theorem 4.5 and extend u to B(w, 4r) by putting u = 0 in
B(w, 4r) \Ω. For {wj}, {rj} as above we define Ωj = {r−1

j (x−wj) : x ∈ Ω}
and

uj(z) = λju(wj + rjz) whenever z ∈ Ωj.
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Using properties of Lipschitz domains, one can show that subsequences of
{Ωj}, {∂Ωj} converge to Ω∞, ∂Ω∞, in the Hausdorff distance sense, where
Ω∞ is an unbounded Lipschitz domain with Lipschitz constant bounded by
M . Moreover, from (2.1), Lemmas 1.2 - 1.5, and Lemma 4.10 we deduce for
an appropriate choice of (λj), that a subsequence of (uj) converges uniformly
on compact subsets of Rn to u∞, a positive p harmonic function in Ω∞
vanishing continuously on ∂Ω∞. If dµj = |∇uj|p−1dσ|∂Ωj

, it also follows that
a subsequence of (µj) converges weakly as Radon measures to µ∞ where∫

Rn

|∇u∞|p−2〈∇u∞,∇φ〉dx = −
∫

∂Ω∞

φdµ∞ (4.26)

whenever φ ∈ C∞
0 (Rn−1) Moreover, using Lemma 4.10, one can show that

µ∞ and u∞, satisfy,

(a)µ∞ = σ on ∂Ω∞,

(b) c−1 ≤ |∇u∞(z)| ≤ 1 whenever z ∈ Ω∞.
(4.27)

Finally one shows that (4.26), (4.27) imply

Ω∞ is a halfspace (4.28)

which in turn implies that η = 0, a contradiction to (4.25). IfM is sufficiently
small, then (4.28) follows directly from a theorem in [ACF]. For large M we
needed to use our generalization in [LN5] of the work in [C1].

We discuss this work further in the next subsection.

4.8 Regularity in a Lipschitz Free Boundary Problem

We begin our discussion of two phase free boundary problems for p har-
monic functions with some notation. Let D ⊂ Rn be a bounded domain and
suppose that u is continuous on D. Put

D+(u) = {x ∈ D : u(x) > 0}

F (u) = ∂D+(u) ∩D

D−(u) = D \ [D+(u) ∪ F (u)].
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F (u) is called the free boundary of u in D. Let G > 0 be an increasing func-
tion on [0,∞) and suppose for some N > 0 that s−NG(s) is decreasing when
s ∈ (0,∞). Let u+ = max(u, 0) and u− = −min(u, 0).

Definition G. We say that u satisfies weakly the two sided boundary condi-
tion |∇u+| = G(|∇u−|) on F (u) provided the following holds. Assume that
w ∈ F (u) and there is a ball B(ŵ, ρ̂) = {y : |y − ŵ| < ρ̂} ⊂ D+(u) ∪D−(u)
with w ∈ ∂B(ŵ, ρ̂). If ν = (ŵ − w)/|ŵ − w| and B(ŵ, ρ̂) ⊂ D+(u), then

(∗) u(x) = α〈x− w, ν〉+ − β〈x− w, ν〉− + o(|x− w|),

as x → w non-tangentially while if B(ŵ, ρ̂) ⊂ D−(u), then (∗) holds with
x− w replaced by w − x, where, α, β ∈ [0,∞] and α = G(β).

We note that if If F (u), u are sufficiently smooth in D, then at w,

α = |∇u+| = G(β) = G(|∇u−|).

In [LN4] we prove,

Theorem 4.11. Let u be continuous in D, p harmonic in D \ F (u), 1 <
p < ∞, p 6= 2, and a weak solution to |∇u+| = G(|∇u−|) on F (u). Suppose
B(0, 2) ⊂ D, 0 ∈ F (u), and F (u) coincides in B (0, 2) with the graph of
a Lipschitz function. Then F (u) ∩ B(0, 1) is C1,σ where σ depends only on
p, n,N and the Lipschitz constant for the graph function.

4.9 History of Theorem 4.11

For p = 2, i.e, harmonic functions, Caffarelli developed a theory for general
two-phase free boundary problems in [C1-3] In [C1] Lipschitz free boundaries
were shown to be C1,σ-smooth for some σ ∈ (0, 1) and in [C2] it was shown
that free boundaries which are well approximated by Lipschitz graphs are in
fact Lipschitz. Finally, in [C3] the existence part of the theory was developed.
We also note that the work in [C1] was generalized in [Wa] to solutions of fully
nonlinear PDEs of the form F (∇2u) = 0, where F is homogeneous. Further
analogues of [C1] were obtained for a class of nonisotropic operators and for
fully nonlinear PDE’s of the form F (∇2u,∇u) = 0, where F is homogeneous
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in both arguments, in [F], [F1]. Extension of the results in [C1] were made
to non-divergence form linear PDE with variable coeficients in [CFS], and
generalized in [Fe] to fully nonlinear PDE’s of the form F (∇2u, x) = 0.
Finally generalizations of the work in [C1] (also [C2]) to linear divergence
form PDE’s with variable coefficients were obtained in [FS], [FS1].

4.10 Proof of Theorem 4.11

To outline the proof of Theorem 4.11 we need another definition.

Definition H. We say that a real valued function h is monotone on an open
set O in the direction of τ ∈ Rn, provided h(x− τ) ≤ h(x) whenever x ∈ O.

If x, y ∈ Rn, let θ(x, y) be the angle between x and y. Given θ0, 0 < θ0 <
π, ε0 > o, and ν with |ν| = 1, put

Γ(ν, θ0, ε0) = {y ∈ Rn : |θ(y, ν)| < θ0, 0 < |y| < ε0}.

We note from elementary geometry that if h is monotone on O with respect
to the directions in Γ(ν, θ0, ε0), then

(2) sup
B(x−τ,|τ | sin(θ0/2))

h ≤ h(x)

whenever x ∈ O and τ ∈ Γ(ν, θ0/2, ε0/2). To establish Theorem 4.11 we first
show the existence of a cone of monotonicity. To this end, we assume as we
may, that

Ω ∩B(0, 2) = {(x′, xn) : xn > ψ(x′)} ∩B(w, 4r), ψ Lipschitz on Rn−1.
(4.29)

If M is the Lipschitz norm of ψ, then as in (4.17) we see that Theorem
3.8 and (4.29) imply there exists c = c(p, n,M) ≥ 1, such that whenever
z ∈ B(0, r1), r1 = 1/c,

|∇u(z)| ≈ uxn(z),≈ u(z)/d(z, ∂Ω). (4.30)

Clearly (4.30) implies the existence of θ0 ∈ (0, π/2], ε0 > 0, and c > 1,
depending only on p, n,M, such that

u is monotone in B(0, r1) with respect to
the directions in the cone Γ(en, θ0, ε0).

(4.31)
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4.11 Enlargement of the Cone of Monotonicity in the
Interior

Let τ ∈ Γ(en, θ0/2, ε0) for θ0, ε0, as in (4.31), put ε = |τ | sin(θ0/2) and set

vε(x) = vε,τ (x) = sup
y∈B(x,ε)

u(y − τ)

We note from (4.31) that vε(x) ≤ u(x), when x ∈ B(0, r1). Next we show
that if ρ, µ > 0 are small enough, depending only on p, n, and the Lipschitz
constant for ∂Ω ∩B(0, 1), and ν = ∇u( r1en

8
))/|∇u( r1en

8
)|, then

(4.32) v(1+µλ)ε(x) ≤ (1− µλε)u(x) whenever x ∈ B( r1en

8
, ρr1).

where λ = cos(θ0/2 + θ(ν, τ)), and 0 < |τ | ≤ ε0ρr1. The proof of (4.32)
is essentially the same as in [C1], thanks to basic interior estimates for p
harmonic functions, Theorem 3.8, and (4.31).

4.12 Enlargement of the Cone of Monotonicity at the
Free Boundary

In this part of the proof we show there exists µ̄ > 0, depending only on p, n,
M , such that if τ, ε are as defined above (4.32), then

(4.33) v(1+µ̄λ)ε(x) ≤ u(x) whenever x ∈ B(0, r1/100),

It is shown in [C1] that (4.33) implies the existence of ω, |ω| = 1, θ̄ ∈ (0, π/2],
c−, c+ > 1, such that

(4.34) u is monotone in Γ(ω, θ̄, ε0/c+)

where π/2−θ̄ = c−1
− (π/2−θ0), Γ(en, θ0, ε0) ⊂ Γ(ω, θ̄, ε0/c+), and all constants

depend only on p, n,M.
Using (4.34) as well as invariance of the p Laplace equation under scalings

and translations, we can replace u(x) by u(x0+ηx)/η and then repeat our ar-
gument in (4.32), (4.33), in order to eventually conclude the C1,σ-smoothness
of F (u) ∩ B(0, 1/2). Hence to prove Theorem 4.11 we have to prove (4.33).
To do this, given an n× n symmetric matrix M let

P (M) = inf
A∈Ap

n∑
i,j=1

aijMij .
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where Ap denotes the set of all symmetric n × n matrices A = {aij} which
satisfy

min{p− 1, 1} |ξ|2 ≤
n∑

i,j=1

aijξiξj ≤ max{p− 1, 1} |ξ|2

whenever ξ ∈ Rn \ {0}. Next we state

Lemma 4.12. Let φ > 0 be in C2(D), ‖∇φ‖L∞(D) ≤ 1/2, p fixed, 1 < p <∞,
and suppose that

φ(x)P (∇2φ(x)) ≥ 50pn |∇φ(x)|2

whenever x ∈ D. Let u be continuous in an open set O containing the closure
of
⋃

x∈D B(x, φ(x)) and define

v(x) = max
B̄(x,φ(x))

u

whenever x ∈ D. If u is p-harmonic in O \ {u = 0}, then v is continuous
and a p-subsolution in {v 6= 0} ∩G whenever G is an open set with Ḡ ⊂ D.

Theorem 4.13. Let Ω ⊂ Rn be a Lipschitz graph domain with Lipschitz
constant M . Given p, 1 < p < ∞, w ∈ ∂Ω, r > 0, suppose that û and v̂ are
non-negative p-harmonic functions in Ω∩B(w, 2r) with v̂ ≤ û. Assume also
that û, v̂, are continuous in B(w, 2r) with û ≡ 0 ≡ v̂ on B(w, 2r) \ Ω. There
exists c ≥ 1, depending only on p, n,M, such that if y, z ∈ Ω ∩ B(w, r/c),
then

û(y)− v̂(y)

v̂(y)
≤ c

û(z)− v̂(z)

v̂(z)
.

Remark: Lemma 4.12 is not much more difficult than the corresponding
lemma in [C1], thanks to translation, dilation and rotational invariance of
the p Laplacian. Theorem 4.13 uses the full toolbox developed in [LN1-4] and
[LLN]. For p = 2 Theorem 4.13 is equivalent to a boundary Harnack inequal-
ity for harmonic functions while for p 6= 2, it is stronger than the boundary
Harnack inequality in Theorem 3.8. That is, Theorem 4.13 implies not only
boundedness of û/v̂, but also Hölder continuity of the ratio in Ω∩B(w, r/c∗),
for some c∗ − c∗(p, n,M) ≥ 1. Theorem 4.13 is our main contribution to the
proof of Theorem 4.11. To prove (4.33), using Lemma 4.12 and Theorem
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4.13, let
ṽt(x) := sup

y∈B(x,εφµλt(x))

u(y − τ) for t ∈ [0, 1]

and x ∈ B(0, r1) \ B(r1en/8, ρr1). Here {φt}, is a family of C2 functions,
each satisfying the hypotheses of Lemma 4.12 in B(0, r1) \ B(r1en/8, ρr1).
Moreover,

(a) φt ≡ 1 on B(0, r1) \B(0, r1/2)
(b) 1 ≤ φt ≤ 1 + tγ in B(0, r1) \B(r1en/8, ρr1)
(c) φt ≥ 1 + htγ in B(0, r1/100)
(d) |∇φt| ≤ γt.

In (c), h > 0 depends on ρ, p, n while γ > 0 is a parameter to be chosen
sufficiently small. From (c) one sees that (4.33) holds if

ṽt ≤ u in B(0, r1) \B(r1en/8, ρr1) whenever t ∈ [0, 1]. (4.35)

From Step 1 and (b) above, this inequality holds when t = 0. One can
now use a method of continuity type argument to show that if (4.35) is false
then there exist t ∈ [0, 1] for which ṽt ≤ u, w ∈ F (u) ∩ {ṽt = 0}, and ŵ,
ρ̂ > 0 with

B(ŵ, ρ̂) ⊂ {ṽt > 0} ⊂ D+(u) and w ∈ ∂B(ŵ, ρ̂).

One then uses in this tangent ball, the asymptotic free boundary condition
for u, similar asymptotics for ṽt, (4.32), Theorem 4.13, and a Hopf maximum
principle type argument to get a contradiction. Thus (4.35) and so (4.33)
are valid. This completes our outline of the proof of Theorem 4.11. 2

4.13 An Application of Theorem 4.11

Recall that the proof of Theorem 4.5 was by contradiction. Indeed assuming
that

η = lim
r̃→0

sup
w̃∈∆(w,r/2)

‖ν‖BMO(∆(w̃,r̃)) 6= 0 (4.36)

we obtained u∞, a positive p-harmonic function in a Lipschitz graph domain,
Ω∞, which is Hölder continuous in Rn with u∞ ≡ 0 on Rn \ Ω∞. We also
had ∫

Rn

|∇u∞|p−2〈∇u∞,∇ψ〉dx = −
∫

∂Ω∞

ψdσ∞ (4.37)
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whenever ψ ∈ C∞
0 (Rn) and

c−1 ≤ |∇u∞(z)| ≤ 1 whenever z ∈ Ω∞. (4.38)

where σ∞ is surface area on ∂Ω∞. To get a contradicition to (4.36) we needed
to show that (4.37), (4.38) imply Ω∞ is a halfspace. This conlusion follows
easily from applying the argument in Theorem 4.11 to u∞(Rx)/R and letting
R→∞, once it is shown that u∞ is a weak solution to the free boundary
problem in Theorem 4.11 with G(s) = 1 + s for s ∈ (0,∞). That is, u is a
weak solution to the ‘ one phase free boundary problem ’

|∇u+| ≡ 1 and |∇u−| ≡ 0 on F (u). (4.39)

To prove (4.39) assume w ∈ F (u∞) and that there exists a ball B(ŵ, ρ̂),
ŵ ∈ Rn \ ∂Ω∞ and ρ̂ > 0, such that w ∈ ∂B(ŵ, ρ̂). Let P be the plane
through w with normal ν = (ŵ − w)/|ŵ − w|. We claim that P is a tangent
plane to Ω∞ at w in the usual sense. That is given ε > 0 there exists r̂(ε) > 0
such that

Ψ(P ∩B(w, r), ∂Ω∞ ∩B(w, r)) ≤ εr (4.40)

whenever 0 < r ≤ r̂(ε). Once (4.40) is proved we can show that

(i) if B(ŵ, ρ̂) ⊂ Ω∞ then u+
∞(x) = 〈x− w, ν〉+ o(|x− w|) in Ω∞

(ii) if B(ŵ, ρ̂) ⊂ Rn \ Ω∞ then u+
∞(x) = 〈w − x, ν〉+ o(|x− w|) in Ω∞.

(4.41)
To prove (4.41) (given (4.40)) we assume that w = 0, ν = en, and ρ̂ = 1.

This assumption is permissible since linear functions and the p-Laplacian
are invariant under rotations, translations, and dilations. Then ŵ = en and
either B(en, 1) ⊂ Ω∞ or B(en, 1) ⊂ Rn\Ω̄∞. We assume that B(en, 1) ⊂ Ω∞,
since the other possibility, B(en, 1) ⊂ Rn \ Ω̄∞, is handled similarly. Let {rj}
be a sequence of positive numbers tending to 0 and let ûj(z) = u∞(rjz)/rj

whenever z ∈ Rn. Let Ω̂j = {z : rjz ∈ Ω∞} be the corresponding blow-up

regions. Then ûj is p-harmonic in Ω̂j and Hölder continuous in Rn with

ûj ≡ 0 on Rn \ Ω̂j. Moreover, (4.38) is valid for each j with u∞ replaced
by ûj. Using these facts, assumption (4.40), and Lemmas 1.2 - 1.5 we see
that a subsequence of {ûj}, denoted {u′j}, converges uniformly on compact
subsets of Rn, as j→∞, to a Hölder continuous function u′∞. Moreover, u′∞
is a nonnegative p-harmonic function in H = {x : xn > 0} with u′∞ ≡ 0 on
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Rn \H. Let {Ω′
j} be the subsequence of {Ω̂j} corresponding to {u′j}. From

(4.40) we see that Ω′
j ∩ B(0, R) converges to H ∩ B(0, R) whenever R > 0,

in the sense of Hausdorff distance as j→∞. Finally we note that ∇u′j→∇u′∞
uniformly on compact subsets of H and hence

c−1 ≤ |∇u′∞| ≤ 1 (4.42)

where c is the constant in (4.38). Next we apply the boundary Harnack
inequality in Theorem 3.1 with

Ω = H, û(x) = u′∞(x), and v̂(x) = xn.

Letting r→∞ in Theorem 3.1, it follows that

u′∞(x) = lxn (4.43)

for some nonnegative l. From (4.42) and the above discussion we conclude
that

c−1 ≤ l ≤ 1. (4.44)

Next using (4.37) we see that if σ′j is surface area on Ω′
j, σ surface area on

H, and φ ≥ 0 ∈ C∞
0 (Rn), then∫

∂{u′j>0}
φdσ′j = −

∫
Rn

|∇u′j|p−2〈∇u′j,∇φ〉dx

→−
∫

Rn

|∇u′∞|p−2〈∇u′∞,∇φ〉dx = lp−1
∫

{xn=0}
φdσ

(4.45)

as j →∞. Moreover, using the divergence theorem we find that∫
∂{u′j>0}

φdσ′j ≥ −
∫

{u′j>0}

∇ · (φen)dx→ −
∫

{u′∞>0}

∇ · (φen)dx =

∫
{xn=0}

φdσ

(4.46)
as j→∞. Combining (4.45), (4.46) we obtain first that l ≥ 1 and thereupon
from (4.44) that l = 1. Thus any blowup sequence of u∞, relative to zero,
tends to x+

n uniformly on compact subsets of Rn, and the corresponding
gradients tend uniformly to en on compact subsets of H. This conclusion is
easily seen to imply (4.41). Hence (4.40) implies (4.41).
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4.14 Proof of (4.40)

The proof of (4.40) is again by contradiction. We continue under the as-
sumption that w = 0, ν = ŵ = en, and ρ̂ = 1. First suppose that

B(en, 1) ⊂ Ω∞. (4.47)

If (4.40) is false, then there exists a sequence {sm} of positive numbers and
δ > 0 with lim

m→∞
sm = 0 and the property that

Ω∞ ∩ ∂B(0, sm) ∩ {x : xn ≤ −δsm} 6= ∅ (4.48)

for each m. To get a contradiction we show that (4.48) leads to

lim sup
t→0

t−1u∞(ten) = ∞ (4.49)

which in view of the mean value theorem from elementary calculus, contra-
dicts (4.38). For this purpose let f be the p-harmonic function in B(en, 1) \
B̄(en, 1/2) with continuous boundary values,

f ≡ 0 on ∂B(en, 1) and f ≡ min
B̄(en,1/2)

u∞ on ∂B(en, 1/2).

Recall that n f can be written explicitly in the form,

f(x) =

{
A|x− en|(p−n)/(p−1) +B when p 6= n,
−A log |x− en|+B when p = n,

where A,B are constants. Doing this we see that

lim
t→0

t−1f(ten) > 0. (4.50)

From the maximum principle for p-harmonic functions we also have

u∞ ≥ f in B(en, 1) \ B̄(en, 1/2). (4.51)

Next we show that if 0 < s < 1/4, and u∞ ≥ kf in B̄(0, s)∩B(en, 1), for
some k ≥ 1, then there exists ξ = ξ(p, n,M, δ) > 0 and s′, 0 < s′ < s/2, such
that

u∞ ≥ (1 + ξ)kf in B̄(0, s′) ∩B(en, 1). (4.52)
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Clearly (4.50) - (4.52) and an iterative argument yield (4.49). To prove (4.52)
we observe from a direct calculation that

|∇f(x)| ≈ f(x)/(1− |x− en|) when x ∈ B(en, 1) \ B̄(en, 1/2), (4.53)

where proportionality constants depend only on p, n. Also, we observe from
(4.48) and Lipschitzness of ∂Ω∞ that if m0 is large enough, then there exists
a sequence of points {tl}∞m0

in Ω∞ ∩ {x : xn = 0} and η = η(p, n,M, δ) > 0
such that for l ≥ m0,

ηsl ≤ |tl| ≤ η−1sl and d(tl, ∂Ω∞) ≥ η|tl|. (4.54)

Choose tm ∈ {tl}∞m0
such that η−1|tm| ≤ s/100. If ρ = d(tm, ∂Ω∞), then from

(4.54), and Lemmas 1.2 - 1.5 for u∞ we deduce for some C = C(p, n,M, δ) ≥
1 that

Cu∞(tm) ≥ max
B̄(0,4|tm|)

u∞. (4.55)

From (4.55), the assumption that kf ≤ u∞, Lemmas 1.2 - 1.5 for kf, and
the fact that tm lies in the tangent plane to B(en, 1) through 0, we see there
exists λ = λ(p, n,M, δ), 0 < λ ≤ 10−2, and m1 ≥ m0 such that if m ≥ m1

and t′m = tm + 3λρen, then

B(t′m, 2ρλ) ⊂ B(en, 1) and (1 + λ)kf ≤ u∞ on B̄(t′m, ρλ). (4.56)

Let f̃ be the p-harmonic function in G = B(0, 4|tm|) ∩ B(en, 1) \ B̄(t′m, ρλ)
with continuous boundary values f̃ = kf on ∂[B(en, 1) ∩ B(0, 4|tm|)] while
f̃ = (1 + λ)kf on ∂B(t′m, ρλ). Using (4.53), Theorem 1.13, and Harnack’s
inequality for f̃ − kf, kf as in the proof of (4.33), we deduce the existence of
τ > 0, c̄ ≥ 1, with

(1 + τλ)kf ≤ f̃ (4.57)

in B(en, 1) ∩ B̄(0, |tm|/c̄) where τ = τ(p, n,M, δ), 0 < τ < 1, and c̄ =
c̄(p, n,M) ≥ 1. Moreover, using the maximum principle for p-harmonic func-
tions we see from (4.56) that

f̃ ≤ u∞ in G. (4.58)

Combining (4.57), (4.58), we get (4.52) with ξ = τλ and s′ = |tm|/c̄. As
mentioned earlier, (4.52) leads to a contradiction. Hence (4.40) is true when
(4.47) holds. If B(en, 1) ⊂ Rn \ Ω̄∞ we proceed similarly. That is, if (4.40) is
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false, then there exists a sequence {sm} of positive numbers and δ > 0 with
lim

m→∞
sm = 0 and the property that

Rn \ Ω̄∞ ∩ ∂B(0, sm) ∩ {x : xn ≤ −δsm} 6= ∅ (4.59)

for each m. To get a contradiction one shows that (4.59) leads to

lim inf
t→0

t−1 max
B(0,t)

u∞ = 0 (4.60)

which in view of Lipschitzness of Ω∞ and the mean value theorem from
elementary calculus, again contradicts (4.38). We omit the details. 2

4.15 Closing Remarks

To state our likely results in [LN6] we need a definition.

Definition I. Given ε > 0 we say that u is ε-monotone in O ⊂ Rn, with re-
spect to the directions in the cone Γ̃(ν, θ0) = {y ∈ Rn : |y| = 1 and θ(ν, y) <
θ0}, if

sup
B(x,ε′ sin θ0)

u(y − ε′ν) ≤ u(x)

whenever ε′ ≥ ε and x ∈ O with B(x−ε′ν, ε′ sin θo) ⊂ O. Moreover, u is said
to be monotone or fully monotone in O ⊂ Rn, with respect to the directions
in the cone Γ(ν, θ0), provided the above inequality holds whenever ε′ > 0.

Plausible Theorem 4.14. Let D, u,D+(u), D−(u), F (u), G be as in Theo-
rem 4.11. If θ̄ ∈ (π/4, π/2), then there is a ε̄ = ε̄(θ̄, p, n,N) such that if u is
ε monotone on B(0, 2) with respect to the directions in the cone Γ(en, θ̄), for
some ε ∈ (0, ε̄), then u is monotone in B(0, 1/2) with respect to the directions
in the cone Γ(en, θ̄1), where θ̄1 has the same dependence as ε̄. Equivalently,
F (u) ∩ B(0, 1/2) is the graph of a Lipschitz function with Lipschitz norm
depending on θ̄, p, n,N.

We note that ne can use Theorem 4.14 and Theorem 4.11 to conclude
that ε monotonicity of u implies F (u) is C1,σ provided ε is small enough.

Plausible Theorem 4.15. Let D,F (u), D+(u), D−(u), G be as in Plau-
sible Theorem 4.14 except for the following changes:
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(a) Assume only that u+ is ε monotone in Γ(en, θ̄),
(b) Assume 0 < δ ≤ |∇u| ≤ δ−1 on D+(u) ∩B(0, 2),
(c) G is also Lipschitz continuous.
There exists ε̂ > 0 and θ̂ ∈ (π/4, π/2), both depending on p, n, δ,N, such
that if θ̂ < θ̄ ≤ π/2, and 0 < ε ≤ ε̂, then u+ is monotone in B(0, 2) with
respect to the directions in the cone Γ(en, θ1) for some θ1 > 0, depending on
p, n, δ,N, ε̂, θ̂.

As a corollary to Plausible Theorem 4.15 we also plan to show that

Plausible Corollary 4.16. Replace the ε monotonicity assumption in Plau-
sible Theorem 4.15 by

Ψ(F (u) ∩B(0, 2),Λ ∩B(0, 2)) ≤ ε,

where Λ is the graph of a Lipschitz function with Lipschitz norm ≤ tan(π/2−
θ̂). Then the same conclusion holds as in Plausible Theorem 4.15.
q
One can also ask if Theorem 4.11 generalizes to equations of p Laplace type,
as in the p = 2 case. In this case, the analogue of Lemma 4.12 may be difficult
since the proof of this lemma made important use of the invariance of the
p Laplace equation under rotations and translations. Also, the analogue of
Theorem 4.13 could be difficult.
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