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ABSTRACT

In this memoir we consider the Dirichlet problem for parabolic operators in a
half space with singular drift terms. In chapter I we begin the study of a parabolic
PDE modeled on the pullback of the heat equation in certain time varying domains
considered by Lewis - Murray and Hofmann - Lewis. In chapter II we obtain mutual
absolute continuity of parabolic measure and Lebesgue measure on the boundary
of this halfspace and also that the Lq(IRn) Dirichlet problem for these PDE’s has a
solution when q is large enough. In chapter III we prove an analogue of a theorem of
Fefferman, Kenig, and Pipher for certain parabolic PDE’s with singular drift terms.
Each of the chapters that comprise this memoir has its own numbering system and
list of references.
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CHAPTER I
THE DIRICHLET PROBLEM AND PARABOLIC MEASURE

1. Introduction

. The study of parabolic pde’s has a long history and closely parallels the study
of elliptic pde’s. To mention a few highlights, the modern theory of weak solu-
tions of elliptic and parabolic pde’s in divergence form was developed in the late
1950’s and early 1960’s by Nash [N], DiGiorgi [DG], Moser [M], [M1], and oth-
ers. These authors obtained interior estimates (boundedness, Harnack’s inequality,
Hölder continuity) for weak solutions which initially were assumed to lie only in a
certain Sobolev space and satisfy a certain integral identity. The classical problem
of whether solutions to Laplace’s equation in Lipschitz domains had nontangential
limits almost everywhere with respect to surface area and the corresponding Lp

Dirichlet problem was not resolved until the late 70’s when Dahlberg [D] showed
that in a Lipschitz domain harmonic measure and surface measure, dσ, are mutually
absolutely continuous, and furthermore, that the Dirichlet problem is solvable with
data in L2(dσ). R. Hunt proposed the problem of finding an analogue of Dahlberg’s
result for the heat equation in domains whose boundaries are given locally as graphs
of functions ψ(x, t) which are Lipschitz in the space variable. It was conjectured at
one time that ψ should be Lip 1

2
in the time variable, but subsequent counterexam-

ples of Kaufmann and Wu [KW] showed that this condition does not suffice. Lewis
and Murray [LM], made significant progress toward a solution of Hunt’s question,
by establishing mutual absolute continuity of caloric measure and a certain para-
bolic analogue of surface measure in the case that ψ has 1

2 of a time derivative in
BMO(IRn) on rectangles, a condition only slightly stronger than Lip 1

2
. Further-

more these authors obtained solvability of the Dirichlet problem with data in Lp,
for p sufficiently large, but unspecified. Hofmann and Lewis [HL] obtained, among
other results, the direct analogue of Dahlberg’s theorem (i.e, L2 solvability of the
Dirichlet problem for the heat equation) in graph domains of the type considered
by [LM] but only under the assumption that the above BMO norm was sufficiently
small. They also provided examples to show that this smallness assumption was
necessary for L2 solvability of the Dirichlet problem.

In this memoir we study the Dirichlet problem and absolute continuity of para-
bolic measure for weak solutions to parabolic pde’s of the form,

(1.1) Lu = ut −∇ · (A∇u)−B∇u = 0.

Here A = (Ai,j(X, t)), B = (Bi(X, t)) are n by n and 1 by n matrices, respectively,
satisfying standard ellipticity conditions with X = (x0, x1, . . . , xn−1) = (x0, x) ∈
IRn, t ∈ IR. Also ∇u denotes the gradient of u in the space variable X only, written
as an n by 1 matrix, while∇· denotes divergence in the space variable. This problem
in the elliptic case has been studied in [JK], [FJK], [D1] and [FKP]. As a starting
point for these investigations we note that Jerison and Kenig in [JK] gave another
proof of Dahlberg’s results (mentioned above). To outline their proof let

0Research of both authors was supported in part by NSF grants
0Received by the editor June 16, 1997

1



2 STEVE HOFMANN AND JOHN L. LEWIS

Ω̂ = {X = (x0, x) : x0 > ψ̂(x), x ∈ IRn−1}, where ψ̂ is a Lipschitz function on
IRn−1 (i.e. |ψ̂(x)− ψ̂(y)| ≤ c|x−y|, for some positive c, whenever x, y ∈ IRn−1). Let

ρ̂(x0, x) = (x0 + ψ̂(x), x), x ∈ IRn−1.

Then clearly ρ̂ maps Û = {(x0, x) : x0 > 0, x ∈ IRn−1} onto Ω̂ and ∂Û onto ∂Ω̂ in a
one to one way. If ũ is a solution to Laplace’s equation in Ω̂, then it is easily seen
that u = ũ ◦ ρ̂ satisfies weakly in Û a pde of the form

(1.2) ∇ · (A∇u) = 0

where A = A(x) is symmetric, satisfies standard ellipticity conditions, and has
coefficients independent of x0 (depending only on x). From this fact one can see
that at least in spirit the pde involving A, can be differentiated with respect to x0

to get that ux0 also satisfies this pde. Using this idea and a Rellich identity, Jerison
and Kenig were able to show that the Radon Nikodym derivative of harmonic
measure (defined relative to (1.2) and with respect to some point in Û) is in a
certain L2 reverse Hölder class with respect to Lebesgue measure on ∂Û , whenever
A is symmetric, satisfies standard ellipticity conditions and is independent of x0.

Next we consider the analogue of this result for the heat equation in a time
varying graph domain of the type considered by Lewis-Murray[LM] and Hofmann-
Lewis[HL]. To this end suppose that ψ = ψ(x, t) : IRn−1 × IR→IR has compact
support and satisfies

(1.3) |ψ(x, t)−ψ(y, t)| ≤ a1|x− y|, for some a1 <∞, and all x, y ∈ IRn−1, t ∈ IR.

Also let Dt
1/2ψ(x, t) denote the 1/2 derivative in t of ψ(x, ·), x fixed. This half

derivative in time can be defined by way of the Fourier transform or by

Dt
1/2ψ(x, t) ≡ c

∫
IR

ψ(x, s)− ψ(x, t)
|s− t|3/2

ds

for properly chosen c. Assume that this half derivative exists for a.e (x, t) ∈ IRn and
Dt

1/2ψ ∈ BMO(IRn) with norm,

(1.4) ‖Dt
1/2ψ‖∗ ≤ a2 <∞.

Here BMO(IRn) (parabolic BMO) is defined as follows: Let Q = Qd(x, t) = {(y, s) ∈
IRn : |yi − xi| < d, 1 ≤ i ≤ n − 1, |s − t|1/2 < d } be a rectangle in IRn and given
f : IRn→IR, locally integrable with respect to Lebesgue n measure, let

fQ = |Q|−1

∫
Q

f(x, t) dxdt

where dxdt denotes integration with respect to Lebesgue n measure and |E| denotes
the Lebesgue measure of the measurable set E. Then f ∈BMO(IRn) with norm ‖f‖∗
if and only if

‖f‖∗ = sup
Q
{|Q|−1

∫
Q

|f − fQ| dx } < ∞.

We note that (1.3), (1.4) imply and are only slightly stronger than (1.3) and
(1.5)
|ψ(x, t)− ψ(x, s)| ≤ c(a1 + a2) |s− t|1/2 for some c > 0 and all x ∈ IRn−1, s, t ∈ IR
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(see also [HL, section 8] for the equivalence of (1.1) and (1.4) to another condition).
Let Ω = {(x0, x, t) : x0 > ψ(x, t), (x, t) ∈ IRn} and suppose that ũ is a solution to
the heat equation in Ω (i.e, ũt = ∆ũ). Let

ρ̃(x0, x, t) = (x0 + ψ(x, t), x, t), (x, t) ∈ IRn,

when (x0, x, t) ∈ U = {(y0, y, s) : y0 > 0, (y, s) ∈ IRn}. Again it is easily checked
that ρ̃ maps U onto Ω and ∂U onto ∂Ω in a 1-1 way. In this case u = ũ ◦ ρ̃ satisfies
weakly an equation of the form (1.1) where

B∇u(X, t) = ψt(x, t)ux0(X, t), (X, t) ∈ U,

and A = A(x, t) is independent of x0 as well as satisfies standard ellipticity con-
ditions. Unfortunately though, ψt(x, t) may not exist anywhere (see the remark
before (1.5)). To overcome this difficulty we consider as in [HL] a transformation
originally due to Dahlberg - Kenig - Stein. To this end let α ≡ (1, . . . , 1, 2) be an
n dimensional multi-index so that if z = (x, t), then

λαz ≡ (λx, λ2t)

λ−αz ≡ (xλ ,
t
λ2 ).

Let P (z) ∈ C∞0 (Q1(0, 0)) and set

Pλ(z) ≡ λ−(n+1)P (λ−αz).

In addition choose P (z) to be an even non-negative function, with
∫

IRn P (z) dz ≡ 1.
Next let Pλψ be the convolution operator

Pλψ(z) ≡
∫

IRn

Pλ(z − v)ψ(v) dv.

and put

(1.6) ρ(x0, x, t) = (x0 + Pγx0ψ(x, t), x, t), when (x0, x, t) ∈ U.

From properties of parabolic approximate identities and (1.3), (1.5), it is easily
checked that lim

(y0,y,s)→(x,t)
Pγy0ψ(y, s) = ψ(x, t). Thus ρ extends continuously to

∂U. Also if γ is small enough (depending on a1, a2), it is easily shown that ρ maps
U onto Ω and ∂U onto ∂Ω in a one to one way. Next observe that if ũ is a solution to
the heat equation in Ω, then u = ũ◦ρ is a weak solution to an equation of the form
(1.1) where A satisfies standard ellipticity estimates. Before proceeding further
we note that parabolic measure on ∂U, defined with respect to this pullback pde
and a point in U , is absolutely continuous with respect to Lebesgue measure on ∂U,
thanks to [LM, ch.3] (in fact parabolic measure defined with respect to a given point
is an A∞ weight with respect to Lebesgue measure on a certain rectangle). Thus
the pullback pde should be a good model for proving mutual absolute continuity of
parabolic and Lebesgue measure.

In chapters I and II of this memoir we study the remarkable structure of this
pullback pde. In chapter I we establish certain basic estimates for parabolic pde’s
with singular drift terms and establish L2 solvability of the Dirichlet problem for
pde’s which are near a constant coefficient pde in a certain Carleson measure sense.
In chapter II we remove the nearness assumption on the Carleson measures con-
sidered in chapter I and thus obtain our first main theorem on absolute continuity
of parabolic measure and the corresponding Lq Dirichlet problem. As a corollary
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we obtain the results of [LM] mentioned above. In chapter III we obtain parabolic
analogues for pde’s with singular drift terms of theorems in [FKP].

We emphasize that our results are not straight forward generalizations of theo-
rems for elliptic equations. For example we do not know if the pde’s we consider
in chapter 2 have parabolic measures which are doubling, as is well known for the
corresponding elliptic measures. Also we cannot prove certain basic estimates such
as Hölder continuity for the adjoint Green’s function of our pde’s. In this respect
our work is more akin to results of [VV] and [KKPT] in two dimensions. Finally
we mention that the possible lack of doubling for our parabolic measures forces us
in chapter III to give alternative arguments in place of the usual square function -
nontangential maximum arguments.

The first author would like to thank Carlos Kenig for helpful discussions con-
cerning necessary conditions on A,B to prove Theorem 2.13. The second author
would like to thank Russell Brown and Wei Hu for useful discussions concerning
basic estimates for pde’s with drift terms.

2. Statement of Results

As rationale for the structure assumptions on our pde’s, we shall briefly outline
the structure of the pullback pde under the mapping given in (1.6). To this end
recall that a positive measure µ is said to be a Carleson measure on U if for some
positive c <∞

µ[(0, d)×Qd(x, t)] ≤ c|Qd(x, t)| for all d > 0, (x, t) ∈ IRn.
The infimum over all c for which the above inequality holds is called the Carleson
norm of µ and denoted ‖µ‖. The following lemma is proved in [HL, Lemma 2.8].

Lemma A. Let σ, θ be nonnegative integers and φ = (φ1, . . . , φn−1), a multi-index,
with l = σ+ |φ|+θ. If ψ satisfies (1.3), (1.4) for some a1, a2 <∞, then the measure
ν defined at (x0, x, t) by

dν =
(

∂lPγx0ψ

∂xσ
0 ∂x

φ∂tθ

)2

x
(2l+2θ−3)
0 dxdtdx0

is a Carleson measure whenever either σ + θ ≥ 1 or |φ| ≥ 2, with

ν[(0, d)×Qd(x, t)] ≤ c |Qd(x, t)| .
Moreover, if l ≥ 1, then at (x0, x, t)

| ∂lPγx0ψ

∂xσ
0 ∂x

φ∂tθ
| ≤ c′ (a1 + a2)x1−l−θ

0

where c′ = c′(n) and c = c(a1, a2, γ, l, n) ≥ 1.

Remark. The last inequality in Lemma A remains true under the weaker assump-
tions (1.3), (1.5). We shall use this remark in chapters II and III.

Recall that in section 1 we introduced the pullback function, u = ũ◦ρ, where ρ is
as in (1.6). Also u satisfied a certain pullback pde of the form (1.1). We note that
a typical term in the pullback drag term B∇u, evaluated at (X, t), is ∂

∂tPγx0ψ ux0 .
From Lemma A with σ = 0 = |φ|, θ = 1, we see that

dµ(X, t) = x0[ ∂∂tPγx0ψ(x, t)]2 dXdt
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is a Carleson measure on U . Thus a natural assumption on B is that

dµ1(X, t) = x0 |B|2(X, t) dXdt,

is a Carleson measure on U with

(2.1) ‖µ1‖ ≤ β1 <∞.

Next observe from the above lemma with θ = |φ| = 0, σ = 1, that

x−1
0 [ ∂

∂x0
Pγx0ψ(x, t)]2 dXdt

is a Carleson measure on U. Unfortunately a typical term in A∇u evaluated at
(X, t) is [ ∂

∂xi
Pγx0ψ]2 ux0 , 1 ≤ i ≤ n − 1, and for each such i, the measure with

density
x−1

0 [ ∂
∂xi

Pγx0ψ]2 dXdt
need not give rise to a Carleson measure. The failure of this measure to be Carleson
makes the structure of A for the pullback pde complicated and causes us to make
an abundance of assumptions on A (all are needed in the estimates and all are
satisfied by our model term, as can be deduced from Lemma A). First assume that

(2.2) (x0 |∇A| + x2
0 |At| )(X, t) < Λ <∞

for a.e (X, t) ∈ U and if

dµ2(X, t) = (x0 |∇A|2 + x3
0 |At|2 )(X, t) dXdt,

then µ2 is a Carleson measure on U with

(2.3) ‖µ2‖ ≤ β2 < ∞ .

Second assume that whenever 0 ≤ i, j ≤ n− 1, we have

∂Aij

∂x0
=

n−1∑
l=0

〈 eijl ,
∂
∂xl

f ijl 〉 + gij

in the distributional sense. Here
eijl = ( eijl1, e

ij
l2, . . . , e

ij
lnl

),

f ijl = ( f ijl1 , f
ij
l2 , . . . , f

ij
lnl

),

are measurable functions from U→IRnl for 0 ≤ l ≤ n − 1 and 〈 eijl , f
ij
l 〉 denotes

the inner product of these functions as vectors in IRnl . Third assume that

(2.4) [
n−1∑
l=0

|eijl |+ |f ijl | ] (X, t) ≤ Λ <∞

and that eijl has distributional first partials in X whenever 0 ≤ i, j ≤ n − 1. In
(2.4), |eijl |, |f

ij
l | denote the norm of these functions considered as vectors in IRnl .

Let ∇eijl denote the gradient of eijl taken componentwise. Fourth assume that

dµ3(X, t) = [
n−1∑
i,j=0

(
n−1∑
l=0

x0 |∇eijl |
2 + x−1

0 |f ijl |
2 ) + |gij | ](X, t) dXdt

is a Carleson measure on U with

(2.5) ‖µ3‖ ≤ β3 < ∞.
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Under these conditions and standard ellipticity assumptions, we shall show the
Radon-Nikodym derivative of parabolic measure on rectangles is in a certain reverse
Hölder class when βi, 1 ≤ i ≤ 3, are small.

In order to state the main theorem in chapter I precisely we introduce some
notation which will be used throughout this memoir. For completeness we restate
some of the notation used earlier. Let G, ∂G, |G|, denote the closure, boundary, and
Lebesgue n, n+ 1 measure of the set G, whenever G ⊂ IRn or IRn+1 and there is no
chance of confusion. If G ⊂ IRn, let Lp(G), 1 ≤ p ≤ ∞, be the space of equivalence
classes of Lebesgue measurable functions f on G which are p th power integrable
with norm denoted by ‖f‖Lp(G). If G is open let C∞0 (G) be infinitely differentiable
functions with compact support in G. For k a positive integer let Hk(G) be the
Sobolev space of equivalence classes f whose distributional partial derivatives Dβf
( β = (β0, β1, . . . , βn−1) = multi - index) of order ≤ k are square integrable. Let

‖f‖Hk(G) =

∥∥∥∥∥∥(
∑
|β|≤k

|Dβf |2 )1/2

∥∥∥∥∥∥
L2(G)

and putHk
0 (U) equal to the closure in C∞0 (U) ofHk(U).We say that f ∈ Hk

loc (G),
Lploc (G), if f ∈ Hk(G1), Lp(G1), respectively, whenever G1 is open with Ḡ1 ⊂ G.

Let Lp(T1, T2,H
k
loc (G)), 1 ≤ p ≤ ∞, k a positive integer, be equivalence classes

of Lebesgue measurable functions f : G × (T1, T2)→IR with f(·, t) ∈ Hk
loc (G) for

almost every t ∈ (T1, T2) and∫ T2

T1

‖f(·, t)‖p
Hk(G1)

dt < ∞,

whenever G1 is open with Ḡ1 ⊂ G.Lp(T1, T2, L
p

loc (G)) is defined similarly with
Hk

loc (G) replaced by Lploc (G).

As introduced earlier, ∇ = ( ∂
∂x0

, . . . , ∂
∂xn−1

) while ∇· =
n−1∑
i=0

∂
∂xi

. Unless oth-

erwise stated c will denote a positive constant depending only on the dimension,
not necessarily the same at each occurence, while c(β, µ, ν) will denote a constant
depending only on β, µ, ν. Also points in IRn+1 will be denoted by (X, t) or (x0, x, t)
while Qd(x, t) ⊂ IRn will denote the rectangle with center (x, t), side length 2d in
the space variables, and side length 2d2 in the time variable. We write

Qd(X, t) = (x0 − d, x0 + d)×Qd(x, t) ⊂ IRn+1

when there is no chance of confusion. Let βp(Qd(x, t)) be the reverse Hölder class
of functions f : IRn→IR with ‖f‖Lp(Qd(x,t)) <∞ and

(2.6) |Qr(y, s)|−1

∫
Qr(y,s)

fp dxdt ≤ λp (|Qr(y, s)|−1

∫
Qr(y,s)

f dxdt)p

for some λ, 0 < λ <∞, and all rectangles withQr(y, s) ⊂ Qd(x, t). Let ‖f‖βp(Qd(x,t))

be the infimum of the set of all λ such that (2.6) holds. Similarly, let αp(Qd(x, t))
be the weak reverse Hölder class of functions f defined as above except

(2.7) |Qr(y, s)|−1

∫
Qr(y,s)

fp dxdt ≤ λp (|Q2r(y, s)|−1

∫
Q2r(y,s)

f dxdt)p
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for some λ, 0 < λ <∞, and all rectangles withQ2r(y, s) ⊂ Qd(x, t). Let ‖f‖αp(Qd(x,t))

be the infimum of the set of all λ such that (2.7) holds.
Next let A = (Aij(X, t)), 0 ≤ i, j ≤ n− 1, B = (Bi(X, t)), 0 ≤ i ≤ n− 1, be the

n× n and 1× n matrices defined in section 1. We assume that Aij , Bi : U→IR are
Lebesgue measurable and that A satisfies the standard ellipticity condition,

(2.8) 〈A(X, t)ξ, ξ 〉 ≥ γ1|ξ|2

for some γ1 > 0, almost every (X, t) ∈ U and all n×1 matrices ξ. Here 〈·, ·〉 denotes
the usual inner product on IRn. We also assume that

(2.9)

n−1∑
i=0

x0 |Bi| +
n−1∑
i,j=0

|Aij |

 (X, t) < M <∞

for almost every (X, t) ∈ U. To simplify matters we shall assume for some large
ρ > 0, that

(2.10) A ≡ constant matrix in U \Qρ(0, 0) .

Following Aronsson [A] we say that u is a weak solution to (1.1) in U if for Û =
{(x0, x) : x ∈ IRn−1, x0 > 0}, −∞ < T <∞, we have

(2.11) u ∈ L2(−T, T,H1
loc (Û)) ∩ L∞(−T, T, L2

loc (Û))

and

(2.12)
∫
U

−uφt +
n−1∑
i,j=0

Aijuxj
φxi

−
n−1∑
i=0

Bi uxi
φ

 dXdt = 0

for all φ ∈ C∞0 (U).
In the sequel we shall identify ∂U with IRn. The continuous Dirichlet problem

for U can be stated as follows: Given g : IRn→IR, continuous, and bounded, find u
a bounded weak solution to (1.1) in U with u continuous on Ū and u = g on ∂U.
Assume that the Dirichlet problem for a given A,B always has a unique solution.
Under this asumption we define parabolic measure ω at (X, t) ∈ U of the Borel
measurable set E ⊂ IRn by

ω(X, t, E) = inf {v(X, t) : v ∈ F}

where F denotes the family of all nonnegative solutions to the Dirichlet problem
in U with v ≥ 1 on E. Finally let dω

dyds denote the Radon-Nikodym derivative of ω
with respect to Lebesgue measure on IRn. With this notation we are now ready to
state the main theorem in chapter I.

Theorem 2.13. Let A,B, satisfy (2.1)-(2.5) and (2.8)-(2.11). Suppose for some
ε0 > 0 and A0 an n× n matrix that

‖|x0B|‖2L∞(U) + ‖|A−A0|‖2L∞(U) + ‖µ1‖+ ‖µ2‖+ ‖µ3‖ ≤ ε20.

If ε0 > 0 is small enough, then the continuous Dirichlet problem corresponding to
(1.1), A,B, always has a unique solution. If ω denotes the corresponding parabolic
measure, then ω(d, x, t + 2d2, ·) is mutually absolutely continuous with respect to
Lebesgue measure on Qd(x, t) and dω

dyds (d, x, t+ 2d2, ·) ∈ β2(Qd(x, t)) with

‖ dω
dyds (d, x, t+ 2d2, ·)‖β2(Qd(x,t)) < c∗ <∞,
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for all (x, t) ∈ IRn, d > 0. Here c∗ = c∗(ε0, γ1,M,Λ, n).

Remark. 1) In Theorem 2.13, x0B denotes the 1 by n matrix function,
(X, t)→x0B(X, t). We note that the smallness assumption in Theorem 2.13 can be
weakened. We do not prove this weakened version since its proof is more compli-
cated and since we are primarily interested in the case when ‖µ1‖ + ‖µ2‖ + ‖µ3‖
is large. We refer the reader to the remark at the end of section 5 for an exact
statement of a stronger form of Theorem 2.13.
2) To prove the above result for small ε0 > 0, we shall use local estimates in [A],
[M], [M1], and [FGS] for solutions to the pde in (1.1) and its adjoint pde, but we
will also need to show that if a solution to (1.1) or its adjoint pde has continuous
zero boundary value on Q2d(x, t) ⊂ ∂U, then this solution is Hölder continuous on
(0, d)×Qd(x, t). The proof of Hölder continuity cannot be deduced from the usual
arguments (such as reflection) since the drag term B evaluated at (X, t) can blow
up as x0→0 (almost like x−1

0 ) even under the above Carleson measure assumptions
on B. Using these basic estimates it is not difficult to show that the continuous
Dirichlet problem for the pde in (1.1) always has a unique solution. Moreover,
we can use these estimates to modify slightly an argument of Fabes and Safonov
[FS] to show first that the adjoint Green’s function corresponding to (1.1) satis-
fies a backward Harnack inequality in U when ε0 is sufficiently small and second
that parabolic measure corresponding to (1.1) is a doubling measure. To be more
precise, we show that

ω(d, x, t+ 2d2, Q2r(y, s)) ≤ c ω(d, x, t+ 2d2, Qr(y, s))

whenever (x, t) ∈ IRn, d > 0, and Q2r(y, s) ⊂ Qd(x, t) provided ε0 is sufficiently
small. We shall make our basic estimates and prove doubling for pde’s of the form
(1.1) in section 3.

In section 4 we begin the proof of Theorem 2.13. We first show that parabolic
measure is in the above reverse Hölder class when B ≡ 0 and all the above Carleson
norms are small. In this case we perturb our results off a constant coefficient pde
by making estimates of the form:∣∣∣∣∣
∫
Qx0 (X,t)

(A−A0)00Gy0hy0 dY ds

∣∣∣∣∣ ≤ δ ‖N(|∇G|)‖L2(Q2x0 (x,t)) ‖S(h)‖L2(IRn),

where δ→0 as ε0→0 while G is the Green’s function for (1.1) with B ≡ 0 and pole
at (x0, x, t+2x2

0). Also h is a weak solution to ∇·(A0∇h) = 0 while N,S are defined
below in (2.14), (2.15). We note that if

y−1
0 |(A−A0)00|2(Y, s) dY ds

were a Carleson measure on U, then the above estimate would be an easy con-
sequence of Cauchy’s inequality and (2.16) at the end of this section. Since this
measure need not be Carleson (compare with the prototype equation discussed in
section 1), we are forced to integrate by parts numerous times in x0, x, t and use all
of our Carleson measure assumptions on A, in order to obtain the above estimate.
The case when B 6≡ 0 and ε0 is small, follows easily from the above case using our
basic estimates and another perturbation type argument. The proof of Theorem
2.13 is given in sections 4 and 5.
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We close this section by defining the nontangential maximal and square functions
introduced above. Given a > 0 and (x, t) ∈ IRn, let

Γ(x, t) = Γa(x, t) = {(Y, s) ∈ U : (y, s) ∈ Qay0(x, t) }

and if g : U→IR, put

(2.14) Ng (x, t) = sup
(Y,s)∈Γa(x,t)

|g| (Y, s).

If g has a locally integrable distributional gradient, ∇g, on U let

(2.15) Sg (x, t) =

(∫
Γa(x,t)

y−n0 |∇g|2(Y, s) dY ds

)1/2

.

Ng and Sg are called the nontangential maximal function and area function of g
defined relative to Γa(x, t). Finally for g as above and µ a Carleson measure on U
we note (see [St, p 236]) that for 1 ≤ p <∞

(2.16)
∫
U

|g|p dµ ≤ c(p, a, n) ‖µ‖ ‖Ng ‖pLp(IRn) .

3. Basic Estimates

In this section we state some basic estimates from [M1, M2], [A], and [FGS] for
weak solutions to (1.1) when A,B satisfy (2.8)-(2.10). We shall also need basic
estimates for weak solutions v to the adjoint pde in U corresponding to (1.1), i.e.

(3.1) L̃v = vt + ∇ · (Aτ ∇v − Bv ) = 0,

where Aτ is the transpose matrix corresponding to A. More specifically, we have

v ∈ L2(−T, T,H1
loc (Û)) ∩ L∞(−T, T, L2

loc (Û))

for 0 < T <∞ and

(3.2)
∫
U

vφt +
n−1∑
i,j=0

Aijvxj φxi − v

n−1∑
i=0

Bi φxi

 dXdt = 0

for all φ ∈ C∞0 (U). Weak solutions to (1.1) or (3.1) in Qd(X, t) are defined similarly
to weak solutions in U except that Û is replaced by {Y : |xi−yi| < d, 0 ≤ i ≤ n−1 }.
We say that v is a local solution to (1.1) or (3.1) in an open set O, if v is a weak
solution in each Qd(X, t) ⊂ O. We shall need the following interior estimates (see
[A, section 2]).

Lemma 3.3 (Parabolic Cacciopoli). Let A,B, satisfy (2.8)-(2.10) and suppose
that u is a weak solution to either (1.1) or (3.1) in Q4d(X, t), 0 < d < x0/8. If
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Q(s) = Qd(X, t) ∩ (IRn × {s}), then

dn
(

max
Qd/2(X,t)

u

)2

≤ c sup
s∈(t−d2 , t+d2)

∫
Q(s)

u2(Y, s) dY

+ c

∫
Qd(X,t)

|∇u|2(Y, s) dY ds

≤ c2 d−2

∫
Q2d(X,t)

u2(Y, s) dY ds

for some c = c(γ1,M, n) ≥ 1, where γ1,M, are as in (2.8)-(2.9).

Lemma 3.4 (Interior Hölder Continuity). Let A,B, satisfy (2.8)-(2.10) and
suppose that u is a weak solution to either (1.1) or (3.1) in Q4d(X, t), 0 < d < x0/8.
If |u| ≤ K <∞ in Q4d(X, t) and (Y, s), (Z, τ) ∈ Q2d(X, t), then

|u(Y, s)− u(Z, τ)| ≤ cK

(
|Y − Z|+ |s− τ |1/2

d

)α
for some c = c(γ1,M, n), α = α(γ1,M, n), 0 < α < 1 ≤ c <∞.

Lemma 3.5 (Harnack’s Inequality). Let A,B, satisfy (2.8)-(2.10) and suppose
that (Y, s), (Z, τ) ∈ Q2d(X, t). There exists c = c(γ1,M, n) such that if u ≥ 0 is a
weak solution to (1.1) in Q4d(X, t), 0 < d < x0/8, then for τ < s,

u(Z, τ) ≤ u(Y, s) exp
[
c

(
|Y − Z|2

|s− τ |
+ 1

)]
while if u ≥ 0 is a weak solution to (3.1), then this inequality is valid when τ > s.

Remark. In [A] the above lemmas are stated for ‖|B|‖L∞(U) < c < ∞. However
using the scaling (X, t)→(X/d, t/d2), we can reduce the proof of Lemmas 3.3 - 3.5
to a rectangle of side length 1 in the space variable that is distance 1 from ∂U.
From (2.9) we see that |B| is bounded almost everywhere on such a rectangle, so
the results in [A] can be used.

We suppose until further notice that either B ≡ 0 in (1.1) or A,B ∈ C∞(Ū).
Under these assumptions there exists Green’s function G for (1.1) in U and corre-
sponding parabolic, adjoint parabolic measures ω(X, t, ·), ω̃(X, t, ·), satisfying for
each (X, t) ∈ U the condition:

(3.6a)

φ(X, t) =
∫
U

[ 〈A∇φ,∇Y G(X, t, ·) 〉 + G(X, t, ·) (φs − B∇φ ) ] dY ds

+
∫
∂U

φ(y, s) dω(X, t, y, s),

(3.6b)

φ(X, t) =
∫
U

{ 〈Aτ∇φ,∇Y G(·, X, t) 〉 + G(·, X, t) (−φs + ∇ · [Bφ] ) } dY ds

+
∫
∂U

φ(y, s) dω̃(X, t, y, s),
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whenever φ ∈ C∞0 (IRn+1). Moreover, G has the properties:
(3.7)
(a) G(X, t, Y, s) = 0 for s > t, (X, t), (Y, s) ∈ U,

(b) For fixed (Y, s) ∈ U, G( ·, Y, s) is a local solution to (1.1) in U \ {(Y, s)},

(c) For fixed (X, t) ∈ U, G(X, t, ·) is a local solution to (3.1) in U \ {(X, t))},

(d) If (X, t), (Y, s) ∈ U, then G(X, t, ·) and G(·, Y, s)extend continuously to Ū
provided both functions are defined to be zero on ∂U.

We note that (3.6), (3.7) are well known when A,B are smooth (see [F]) while if
B ≡ 0 a proof can be given by taking weak limits of solutions to pde’s with smooth
coefficients. It is also easily seen (as in [A]) that the solution to the Dirichlet
problem for (1.1) in U and a given bounded continuous h : IRn→IR is given by

(3.8) u(X, t) =
∫

IRn

h(y, s) dω(X, t, y, s).

Next we state two lemmas from [FGS] concerning the Green’s function and para-
bolic measure. In [FGS] these lemmas are given in Lipschitz cylinders. However
these lemmas remain valid for U as is easily seen.

Lemma 3.9 (Boundary Hölder Continuity). Let A satisfy (2.8)-(2.10),
B ≡ 0, and let u be a weak solution to (1.1) or (3.1) in (0, 2r) × Q2r(y, s). If
r > 0 and u vanishes continuously on Q2r(y, s), then there exists c = c(γ1,M, n)
and α = α(γ1,M, n), 0 < α < 1 ≤ c <∞, such that

u(X, t) ≤ c (x0/r)α max
(0,r)×Qr(y,s)

u

whenever (X, t) ∈ (0, r/2) × Qr/2(y, s). If u ≥ 0 in (0, 2r) × Q2r(y, s), then there
exists c̃ = c̃(γ1,M, n) such that for (X, t) as above,

u(X, t) ≤ c̃ (x0/r)α u(r, y, s± 2r2 )

where the plus sign is taken when u is a weak solution to (1.1) and the minus sign
for u satisfying (3.1).

Lemma 3.10. Let G,ω be Green’s function and parabolic measure corresponding
to (1.1) in U where A satisfies (2.8)-(2.10) and B ≡ 0. If (y, s) ∈ IRn, r > 0, then
there exists c ≥ 1, depending on γ1,M, n, such that

c−1 rnG(X, t, r, y, s+ 100r2 ) ≤ ω(X, t,Qr(y, s))

≤ c ω(X, t,Q2r(y, s)) ≤ c2 rnG(X, t, r, y, s− 100r2),

whenever, t ≥ s+ 200r2, x0 ≥ 4r, and

10−3n ≤ |X − (r, y)|2

t− s
+
t− s

x2
0

≤ 103n.

We shall also need the following backward Harnack inequality in [FS].
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Lemma 3.11 (Backward Harnack Inequality). Let G be Green’s function for
(1.1) in U with A satisfying (2.8)-(2.10) and B ≡ 0. There exists c = c(γ1,M, n) ≥
1 such that for (X, t), (y, s), r, as in Lemma 3.10,

G(X, t, r, y, s− 100r2) ≤ cG(X, t, r, y, s+ 100r2) .

This backward Harnack inequality is proven in [FS] for weak solutions to (1.1) in
bounded Lipschitz cylinders. However using Lemmas 3.5, 3.9, 3.10, it is easily seen
that their proof extends to the situation in Lemma 3.11. From Lemmas 3.5, 3.10,
3.11, we conclude

Lemma 3.12 (Parabolic Doubling). Let ω be parabolic measure correspond-
ing to (1.1) in U with A satisfying (2.8)-(2.10) and B ≡ 0. There exists c =
c(γ1,M, n) ≥ 1 such that

ω(X, t,Q2r(y, s)) ≤ c ω(X, t,Qr(y, s))

where (X, t), (y, s), r are as in Lemma 3.10.

Next we show that Lemmas 3.9 - 3.12 remain valid when B 6≡ 0 provided for almost
every (X, t) ∈ U, we have

(3.13) x0

n−1∑
i=0

|Bi(X, t)| ≤ ε1

and ε1 is sufficiently small. We prove

Lemma 3.14. Let A,B ∈ C∞(Ū) satisfy (2.8)-(2.10) and (3.13). If ε1 =
ε1(γ1,M, n), 0 < ε1 < 1, is small enough, then Lemmas 3.9 - 3.12 are still true.

Remark. If u(X, t) = [− log(x0)]−1, then ∆u+ B∇u = 0 for 0 < x0 < 1/2 where
B = (x−1

0 [1 + 2
log x0

], 0, . . . , 0). Thus some smallness condition such as (3.13) is
needed in order to insure the validity of Lemma 3.9.

Proof of Lemma 3.9 : We first extend u to IRn+1 by defining u ≡ 0 in IRn+1 \
[(0, 2r)×Q2r(y, s)]. Let 0 < ρ < r, (y1, s1) ∈ Qr/2(y, s), and ψ ≥ 0 ∈ C∞0 ((−ρ, ρ)×
Qρ(y1, s1)) with ψ ≡ 1 on (−ρ/2, ρ/2)×Qρ/2(y1, s1). Also choose ψ so that

ρ ‖ |∇ψ| ‖L∞(IRn+1) + ρ2 ‖ ∂∂tψ ‖L∞(IRn+1) ≤ c.

If u vanishes continuously on Q2r(y, s), then from Schauder type estimates (see[F]),
we deduce that φ = uψ2 can be used as a test function in (2.12) or (3.2). Using
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this test function we obtain for some c = c(γ1,M, n) ≥ 1 that

(3.15)

I1 = c−1

∫
U

|∇u|2 ψ2 dXdt ≤
∫
U

〈Ã∇u,∇u〉ψ2 dXdt

≤ c

∫
U

|u| |∇u|ψ |∇ψ| dXdt + c |
∫
U

u ∂
∂t (uψ

2)dXdt|

+ c

∫
U

( |u| |B| |∇u|ψ2 + u2 |B| |∇ψ|ψ )dXdt

= I2 + I3 + I4 .

Here Ã = A when u is a weak solution to (1.1) while Ã = Aτ when u is a weak
solution to (3.1). Also |B| denotes the norm of B considered as a vector. Using
Cauchy’s inequality with ε’s we find in the usual way that

I2 ≤ 1
2I1 + c

∫
U

u2 |∇ψ|2 dXdt.

Differentiating the product in I3 and then integrating the term in ∂
∂tu

2 by parts
one gets

I3 ≤ c

∫
U

u2 | ∂∂tψ
2 | dXdt

To estimate I4 we use the fact that for (X, t) ∈ (0, r)×Qr(y, s) we have

(3.16) uψ(X, t) ≤ x0M
(1)[|∇(uψ)|](X, t)

where

M (1)f(X, t) = x−1
0

∫ x0

0

|f |(z0, x, t) dz0

is ≤ the one dimensional maximal function in the x0 variable when (x, t) are held
constant. Using (3.16), (3.13), Cauchy’s inequality, and the Hardy - Littlewood
maximal theorem we get

I4 ≤ c ε1

∫
U

u2 |∇ψ|2 dXdt + c ε1

∫
U

|∇u|2 ψ2 dXdt.

Putting these estimates for I2, I3, I4 in (3.15) we see for ε1 small enough that

(3.17) I1 ≤ c

∫
U

(
|∇ψ|2 + | ∂∂tψ|

)
u2 dXdt.

From (3.17) and (3.16) with uψ replaced by u, as well as our assumptions on ψ,
we conclude for ε1 = ε1(γ1,M, n) small enough that there exists c = c(γ1,M, n) for
which

(3.18)

∫
(0,ρ/2)×Qρ/2(y1,s1)

|∇u|2 dXdt ≤ c ρ−2
∫
(0,ρ)×Qρ(y1,s1)

u2 dXdt

≤ c2
∫
(0,ρ)×Qρ(y1,s1)

|∇u|2 dXdt.

Next we note from Lemma 3.3 for (X, t) ∈ (0, r/2)×Qr/2(y, s) that

|u(X, t)|2 ≤ c x−2−n
0

∫
(0,2x0)×Q2x0 (x,t)

u2(Z, τ) dZdτ .



14 STEVE HOFMANN AND JOHN L. LEWIS

Thus to prove the first part of Lemma 3.9 it suffices to show

(3.19) ρ−2−n
∫

(0,ρ/4)×Qρ/4(y1,s1)

u2 dXdt ≤ c (ρ/r)α max
(0,r)×Qr(y,s)

u

whenever (y1, s1) ∈ Qr/2(y, s) and 0 < ρ < r/4. To do this, if u is a weak solution
to (1.1) for given A,B and ρ/2 ≤ τ ≤ r/8, we let u0 be the weak solution to this
equation with B ≡ 0 in (0, τ) × Qτ (y1, s1) and u ≡ u0 on the parabolic boundary
of (0, τ)×Qτ (y1, s1). If u satisfies (3.1) we define u0 similarly, with (3.1) replacing
(1.1). Existence of u0 follows from Schauder type estimates or as in [A]. We put
w = u− u0 in place of φ in (2.12) or (3.2) and write down the resulting equations
for u, u0. Subtracting these equations and using (2.8), (2.9), we see that
(3.20)∫

(0,τ)×Qτ (y1,s1)

|∇w |2 dXdt ≤ c

∫
(0,τ)×Qτ (y1,s1)

|B| (|u||∇w |+ |∇u||w| ) dXdt.

From (3.20), (3.16) with uψ replaced by w, u, (3.13), and Cauchy’s inequality we
deduce that

(3.21)
∫

(0,τ)×Qτ (y1,s1)

|∇w |2 dXdt ≤ c ε1

∫
(0,τ)×Qτ (y1,s1)

|∇u |2 dXdt.

Put
Φ(f, v) = v−n

∫
(0,v)×Qv(y1,s1)

|∇f |2 dXdt .

Then from Lemmas 3.3, 3.9 for u0 we see when 0 < v < τ that

(3.22) Φ(u0, v) ≤ c(v/τ)2α Φ(u0, τ).

From (3.21), (3.22) we conclude for 0 < v < τ, that

Φ(u, v) ≤ 4(Φ(u0, v) + Φ(w, v))

≤ c (v/τ)2α Φ(u0, τ) + c (τ/v)n Φ(w, τ)

≤ c [ (v/τ)2α + ε1 (τ/v)n ] Φ(u, τ) .

Set v/τ = θ. Then from the above inequality it is clear that we can choose first θ
and then ε1 so small that

Φ(u, θτ) ≤ 1
2 Φ(u, τ).

With θ now fixed we can iterate this inequality in the usual way starting with
τ = r/8 and continuing to τ = ρ/2. From this iteration and (3.18) we conclude first
that (3.19) is valid and second from our earlier remark that the first part of Lemma
3.9 is true when ε1 is sufficiently small. The second part of this lemma follows from
the first part and Harnack’s inequality in a standard way (see [CFMS] or [FGS]).
2

Remark. Lemma 3.9 is still true if instead of assuming (3.13) in U we assume only
that this inequality holds in (0, 2r) ×Q2r(y, s). Indeed the above proof of Lemma
3.9 uses only the assumption that (3.13) holds in (0, 2r) × Q2r(y, s). We shall use
this remark in chapter II.

Proof of Lemma 3.10. We first prove the left hand inequality in Lemma 3.10.
To do this we integrate (3.1) with v = G(r, y, s+ 100r2, ·) over U ∩ [IRn× (−∞, s)].
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We note that the inner normal to ∂U is e = (1, 0, . . . , 0) and that ∇v = e|∇v| at
points on ∂U with time coordinate < s+ 100r2. Using this remark, the divergence
theorem, and (2.10) we get
(3.23)∫

IRn

G(r, y, s+ 100r2, Z, s) dZ

=
∫ s

−∞

∫
IRn−1

|∇G|−1 〈∇G , A∇G 〉(r, y, s+ 100r2, z, τ) dz dτ ≤ 1.

Using (3.23) and Harnack’s inequality (Lemma 3.5) we see that for (Z1, τ1) in the
parabolic boundary of Qr/2(r, y, s+ 100r2) we have

(3.24) rnG(r, y, s+ 100r2, Z1, τ1) ≤ c

∫
IRn

G(r, y, s+ 100r2, Z, s) dZ ≤ c.

Next we observe from Lemma 3.9 with u = 1 − ω(·, Qr(y, s)) and Harnack’s in-
equality that c ω ≥ 1 on the parabolic boundary of Qr/2(r, y, s+ 100r2). From this
inequality, (3.24), and the boundary maximum principle for solutions to (1.1) we
conclude that

c−1 rnG(X, t, r, y, s+ r2 ) ≤ ω(X, t,Qr(y, s))

which is just the lefthand inequality in Lemma 3.10. To prove the righthand in-
equaliy, let ψ be the function in Lemma 3.9 with ρ = 4r and (y1, s1) = (y, s). Note
from our assumptions on (X, t) in Lemma 3.10 that ψ(X, t) = 0. We put φ = ψ
in (3.6a) and use (2.9), (3.13), (3.16) with uψ replaced by G(X, t, ·), (3.18) with
u = G, Cauchy’s inequality, the Hardy - Littlewood maximal theorem, and Lemma
3.9 to deduce for χ = characteristic function of (0, 4r)×Q4r(y, s) that

(3.25)

ω(X, t,Q2r(y, s)) ≤
∫
∂U

ψ(Y, s) dω(X, t, Y, s)

= −
∫
U

[ 〈A∇ψ,∇Y G(X, t, ·) 〉 + G(X, t, ·) (ψs −B∇ψ )] dY ds

≤ cr−1

∫
(0,4r)×Q4r(y,s)

M (1)(χ |∇YG(X, t, Y, s)| ) dY ds

≤ c rn/2

(∫
(0,4r)×Q4r(y,s)

|∇GY (X, t, Y, s)|2 dY ds

)1/2

≤ c rnG(X, t, r, y, s− 100r2)

which is the righthand inequality in Lemma 3.10. 2

Proof of Lemma 3.11. To prove Lemma 3.11, fix (X, t) as in this lemma and put
v(Z, τ) = G(X, t, Z, τ), for (Z, τ) ∈ U \ {(X, t)}. Given w ∈ IRn−1 and r > 0 put

Jr(w) = {Z ∈ IRn : 0 < z0 ≤ r, −r ≤ zi − wi ≤ r for 1 ≤ i ≤ n− 1 },

Sr(w) = ∂Jr(w) \ {Z : z0 = 0}



16 STEVE HOFMANN AND JOHN L. LEWIS

where ∂Jr(w) is taken with respect to IRn. Following [FS] we first note from Har-
nack’s inequality for (3.1) (Lemma 3.5) and Lemma 3.9 that for some λ, c ≥ 1,
depending only on γ1,M, n, we have
(3.26)
e−ck

2
(z0/ρ)λ v(ρ, y1, s1 + 16ρ2) ≤ v(Z, τ) ≤ c eck

2
(z0/ρ)α v(kρ, y1, s1 − 16ρ2)

whenever k ≥ 100, Z ∈ Jkρ(y1), and τ ∈ (s1 − 9ρ2 , s1 + 9ρ2 ). Here ρ > 0 and
(y1, s1) ∈ IRn with s1 ≤ t − 20 ρ2. Second for Q = (0, ρ) ×Qρ(y1, s1), we show as
in [FS] that if

M1 = max{v(Z, τ) : (Z, τ) ∈ Q̄ }

M2 = max{ v(Z, τ) : (Z, τ) ∈ Skρ(y1)× (s1 − 16ρ2, s1 + 16ρ2) }

and M2 ≤ kλM1, then for k = k(γ1,M, n) ≥ 100 large enough and ε1 as in (3.13)
small enough, we have

(3.27) M3 = max{ v(Z, s1 + 4ρ2) : Z ∈ Jkρ(y1) } ≥ 1
2 M1.

To prove (3.27) let v0 be the weak solution to (3.1) with B ≡ 0 in Ω = Jkρ(y1)×
(s1−4ρ2, s1 + 4ρ2), and with boundary values v0 = v on the parabolic boundary of
Ω. Let G̃ be Green’s function for (3.1) in Ω with B ≡ 0. We note that (3.6b) still
holds if U is replaced by Ω and G by G̃ provided φ ∈ C∞0 (Ω). Also (3.7) remains
true with U,G replaced by Ω, G̃. Using this remark and approximating v − v0 by
smooth functions we deduce from (3.6b) that for (Z1, τ1) ∈ Ω we have

v(Z1, τ1) = v0(Z1, τ1) +
∫

Ω

v B∇Z G̃(Z1, τ1, Z, τ) dZdτ = (v0 + v1)(Z1, τ1).

Now in [FS] it is shown for some c = c(γ1,M, n) that

(3.28) v0(Z, τ) ≤ M3 + e−k/cM2

when (Z, τ) ∈ Ω, z ∈ Jkρ/2(y1), and k ≥ 100. To estimate v1 for (Z1, τ1) =
(z∗0 , z

∗, τ1) ∈ Q we write

v1(Z1, t1) =
∫

Ω

v B∇Z G̃(Z1, τ1, Z, τ) dZdτ

=
∫

Ω1

. . . +
∫

Ω2

. . . +
∫

Ω3

. . . = I1 + I2 + I3,

where
Ω1 = Ω ∩ {(Z, τ) : |Z − Z1|+ |τ − τ1|1/2 < z∗0/2 },

Ω2 = (Ω \ Ω1) ∩ {(Z, τ) : z0 < z∗0/2}

Ω3 = Ω \ (Ω1 ∪ Ω2).

To estimate I1, I3 we shall need the inequality

(3.29) G̃(Z1, τ1, Z, τ) ≤ c |τ − τ1|−n/2 exp
[
−|Z1 − Z|2

c|τ − τ1|

]
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for some c = c(γ1,M, n) ≥ 1. (3.29) is proved in [A]. Put

Ei = {(Z, τ) : 2−i−1z∗0 ≤ |Z − Z1|+ |τ − τ1|1/2 < 2−iz∗0 } for i = 0,±1, . . .

E∗i = Ei+1 ∪ Ei ∪ Ei−1, i = 0,±1, . . . .

For (Z1, τ1) ∈ Q, we note that G̃(Z1, τ1, ·) has an extension (also denoted G̃) to
U ∩ [Jkρ(y1)× (s1 − 4ρ2,∞)] which is a local solution to (1.1) in this open set. In
fact G̃ so extended is the Green’s function for this set with pole at (Z1, τ1). Using
this note, the same argument as in the proof of (3.18), and (3.29) we deduce

(3.30)

∫
Ei∩Ω

|∇G̃|(Z1, τ1, Z, τ)dZdτ

≤ c(z∗0 2−i)(n+2)/2

(∫
Ei∩Ω

|∇G̃|2(Z1, τ1, Z, τ)dZdτ
)1/2

≤ c (z∗02−i)n/2
(∫

E∗i ∩Ω

|G̃|2(Z1, τ1, Z, τ)dZdτ

)1/2

≤ c (2i/z∗0)n/2
(∫

E∗i

dZdτ

)1/2

≤ c z∗0 2−i .

From (3.13), (3.26), and (3.30) we deduce for (Z1, τ1) ∈ Q

(3.31)

|I1| ≤ c ε1 e
ck2

(1/z∗0)M2

∫
Ω1

|∇G̃|(Z1, τ1, Z, τ) dZdτ

≤ c ε1 e
ck2

(1/z∗0)M2

( ∞∑
i=0

∫
Ei

|∇G̃|(Z1, τ1, Z, τ)dZdτ

)

≤ c ε1 e
ck2

M2 (
∞∑
i=0

2−i ) ≤ c ε1 e
ck2

M2 .

To estimate I2 we use (3.16), (3.18) for v, (3.30), and (3.26) to conclude
(3.32)

|I2| ≤ c ε1

∫
Ω2

|∇G̃|(Z1, τ1, ·)M (1)(|∇v|) dZ dτ

≤ c ε1

(∫
Ω2

|∇G̃|2 dZdτ
)1/2 (∫

Ω2∪Ω1

|∇v|2 dZ dτ
)1/2

≤ c ε1 e
ck2

M2.
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I3 is estimated similarly using (3.13), (3.18), (3.26), and (3.30) for −N ≤ i ≤ 0,
where N is the least positive integer greater such that 2N > 2knρ/z∗0 . We get

(3.33)

|I3| ≤ c ε1

∫
Ω3

|∇G̃|(Z1, τ1, ·)M (1)(|∇v|) dZdτ

≤ c ε1

( ∞∑
i=0

∫
E−i∩Ω3

|∇G̃|(Z1, τ1, ·)M (1)(|∇v|) dZdτ

)

≤ c ε1

( ∞∑
i=0

[
∫
E−i∩Ω3

|∇G̃|2 dZdτ ]1/2 [
∫
E−i∩Ω

|∇v|2 dZ dτ ]1/2
)

≤ c ε1 e
ck2

M2 (z∗o/ρ)α (
N∑
i=0

2iα)

≤ cε1 e
ck2

M2.

We conclude from (3.31)-(3.33) that

(3.34) |v1|(Z1, τ1) ≤ c ε1 e
ck2

M2.

From (3.34) and (3.28) we see that first we can choose k large and then with k fixed
choose ε1 small enough so that if M2 ≤ kγM1, then

M1 ≤ 1
2M1 + M3

which clearly implies (3.27).
We now use (3.27) to prove Lemma 3.11. We suppose k, ε1 are fixed so that

Lemmas 3.9, 3.10, and (3.27) are valid. Let (X, t), (r, y, s+ 100r2), be as in Lemma
3.11, and suppose y1 = y, s− 100r2 ≤ s1 ≤ s+ 100r2. In order to avoid confusion
we write Q(ρ) for the above Q and put M(ρ) = max

Q̄(ρ)
v. Let

σ = max
{2r≤ρ∗≤x0/2}

(ρ∗)−λM(ρ∗)

and choose ρ, 2r ≤ ρ ≤ x0/2, such that M(ρ) = ρλ σ. We consider two cases.
First if ρ ≥ x0/(2k), then from (3.26) and Lemma 3.10 we deduce for some K =
K(γ1,M, n, k) ≥ 2 that

(3.35)
K−1x−n−λ0 ≤ r−λ v(r, y1, s1 + r2) ≤ c r−λv(r, y1, s1)

≤ c σ ≤ K x−n−λ0 .

Otherwise ρ ≤ x0/(2k) and we have

M(kρ) ≤ kλM(ρ),

so (3.27) can be used to conclude

(3.36) M(ρ) ≤ 2 v(Z, s1 + 4ρ2)
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for some Z ∈ Jkρ(y1). From this inequality, Harnack’s inequality, (3.26), and Lemma
3.9 it follows easily that for some K = K(γ1,M, n, k) ≥ 2

K−1M(ρ) ≤ 2K−1v(Z, s1 + 4ρ2)

≤ (ρ/r)λ v(r, y1, s1 + r2) ≤ c(ρ/r)λv(r, y1, s1)

≤ cM(ρ).

Thus in either case
v(r, y1, s1) ≤ Kv(r, y1, s1 + r2).

We first take (y1, s1) = (y, s − 100r2). Then we can repeat this argument with
(r, y1, s1) replaced by (r, y1, s1 + r2). Doing this at most 200 times we obtain the
conclusion of Lemma 3.11 . 2

Lemmas 3.5, 3.10, 3.11 clearly imply Lemma 3.12. The proof of Lemma 3.14 is now
complete. 2

Finally in this section we drop the assumption that A,B are smooth when B 6≡ 0.
We prove

Lemma 3.37 Let A,B satisfy (2.8)-(2.10) and (3.13). If ε1 = ε1(γ1,M, n) > 0 is
small enough, then the continuous Dirichlet problem for (1.1) has a unique solu-
tion. Moreover if ω denotes parabolic measure corresponding to (1.1), then when-
ever (x, t) ∈ IRn and Q2r(y, s) ⊂ Qd(x, t) we have for some c = c(γ1,M, n, ε1) ≥ 1,

(α) c ω(d, x, t+ 2d2, Qd(x, t)) ≥ 1,

(β) c ω(d, x, t+ 2d2, Qr(y, s)) ≥ ω(d, x, t+ 2d2, Q2r(y, s)),

(γ) If E ⊂ Q2r(y, s) is a Borel set and ω(2r, y, s+ 8r2, E) ≥ η, then
c ω(d, x, t+ 2d2, E) ≥ η ω(d, x, t+ 2d2, Q2r(y, s)) .

Proof: Our proof is standard so we shall not include all the details. Let h ∈
C∞(−∞,∞), 0 ≤ h ≤ 1, with h ≡ 0 on (−∞, 1/2), h ≡ 1 on (1,∞), and |h′| ≤
100. Put hj(X, t) = h(jx0), for (X, t) ∈ IRn+1 and j = 1, 2, . . . . Let Pλ ≥ 0 be
a parabolic approximate identity on IRn+1 defined as in (1.6) with IRn replaced by
IRn+1. Recall that P ∈ C∞0 (Q1(0, 0)) where now Q1(0, 0) is a rectangle in IRn+1 .
Let A ≡ A0, B ≡ 0, in IRn \ U where A0 is the constant matrix in (2.10) and set

Aj = A0 + hj Pδj
(A−A0)

Bj = hj Pδj
B, for j = 1, 2, . . .

where the convolution is understood to be with respect to each entry in the above
matrices and δj = (100j)−1. Clearly Aj , Bj ∈ C∞0 (IRn+1) and Aj ≡ A0, Bj ≡ 0,
in {(X, t) : x0 ≤ (2j)−1 }. Also it is easily checked that (2.8)-(2.10) and (3.13)
hold for some c = c(n) with γ1,M, ε1 replaced by γ1/c, cM, cε1. Choosing ε1 still
smaller if necessary, it follows that Lemma 3.14 holds for Aj , Bj , j = 1, 2, . . . .
Finally from properties of parabolic approximate identities we have Aj , Bj→A,B
pointwise almost everywhere on U as j→∞.
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Let g be a bounded continuous function on IRn and let (uj)∞1 be the correspond-
ing solutions to the continuous Dirichlet problem for (1.1) with A,B replaced by
Aj , Bj . Thus uj = g on ∂U. Existence of uj , j = 1, . . . , follows from (2.10) and
Schauder type estimates. From the interior estimates in Lemmas 3.3, 3.4, we see
there exists a subsequence (wj)∞1 of (uj)∞1 with wj→u ∈ L2(−T, T,H1

loc(G)) as
j→∞ weakly in the norm of this space. Here T,G are as in (2.11). Also thanks
to Lemma 3.4 we can choose (wj)∞1 so that wj→u as j→∞ uniformly on compact
subsets of U. From this fact and the maximum principle for smooth solutions to
(1.1) with A,B replaced by Aj , Bj , we see that ‖u‖L∞(U) ≤ ‖g‖L∞(IRn). Let u = g
on ∂U.

Next we show that u is continuous on Ū . For this purpose, given η > 0 and
(x, t) ∈ IRn, choose δ > 0 so that |g(y, s) − g(x, t)| ≤ η for (y, s) ∈ Qδ(x, t). Then
since the continuous Dirichlet problem for (1.1), corresponding to Aj , Bj , always
has a unique solution there exist sequences (ŵj), (w∗j ) such that for j = 1, 2, . . .

(i) ŵj , w
∗
j are solutions to the continuous Dirichlet problem for (1.1), Aj , Bj .

(ii) wj − g(x, t) = ŵj + w∗j .

(iii) ‖ ŵj ‖L∞(U) ≤ 2 η.

(iv) w∗j ≡ 0 on Qδ/2(x, t) ⊂ ∂U.

Choosing certain subsequences of (ŵj), (w∗j ) it follows from (i) − (iv) that u −
g(x, t) = u1+u2 where u1, u2 are uniform limits on compact subsets of subsequences
of (ŵj), (w∗j ) respectively. Moreover u1, u2 are weak solutions to (1.1) corresponding
to A,B, and ‖u1 ‖L∞(U) ≤ 2 η. We note from (iv) that Lemma 3.9 holds for (w∗j )
in (0, δ/2)×Qδ/2(x, t) with constants independent of j. Thus the conclusion of this
lemma also holds for u2 so that lim(Y,s)→(x,t) u2(Y, s) = 0. From this remark and
the above facts we conclude that

lim sup
(Y,s)→(x,t)

|u(Y, s)− g(x, t)| ≤ 2η .

Since η ∈ IR and (x, t) ∈ IRn are arbitrary we see that u is a solution to the Dirichlet
problem for (1.1) with boundary function g.

Uniqueness of u is a consequence of the following maximum principle.

Lemma 3.38. Let u, v be bounded continuous local weak solutions to (1.1) in U
where A,B satisfy (2.8)-(2.10). If

lim sup
(Y,s)→(x,t)

(u− v)(Y, s) ≤ 0,

whenever (x, t) ∈ IRn, then u ≤ v in U.

Proof: Given ε > 0 we see from (2.10), continuity, and our knowledge of constant
coefficient parabolic pde’s, that there exists δ > 0 with u − v ≤ ε in U \ G where
G = (δ, 1/δ)×Q1/δ(0, 0). Also from (2.9) we deduce that B is essentially bounded
in G. Now if u − v 6≤ 0, then for ε > 0 small we would have u − v > 2ε at some
point in G. We could then apply a weak maximum principle in G (valid since B is
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essentially bounded in this set (see [A]). Doing this we get u ≤ v + ε in G which is
a contradiction. Thus Lemma 3.38 is true. 2

To complete the proof of Lemma 3.37 we now define parabolic measure ω as in
section 2 relative to (1.1), A,B. (α), (β), (γ) are easily proved for smooth solutions
using Lemmas 3.14, 3.12, 3.10, and 3.9. Taking a weak limit as above, it then
follows that ω satisfies (α), (β), (γ). For completeness we sketch the proof of (γ)
under the asumption that A,B are smooth in Ū . Indeed from Lemma 3.10 and
Harnack’s inequality (Lemma 3.5), we deduce the existence of c̃ ≥ 1 such that
c̃ ω(·, E) ≥ rnG(·, 2r, y, s+ 12r2) on ∂Ω where Ω = U \ L and
L = {(Z, τ) ∈ U : |zi − yi| < r, |z0 − 2r| < r, |τ − s− 12r2 |1/2 ≤ r, 1 ≤ i ≤ n− 1}.
Using the maximum principle for solutions to (1.1), Lemma 3.10 once again, and
the backward Harnack inequality (Lemma 3.11), we get (γ). The proof of Lemma
3.37 is now complete. 2

Remark. We note for use in chapter II that Lemma 3.38 remains valid if U
is replaced by a more general region Ω. For use in chapter II we require only
that this maximum principle remains valid when Ω has one of the following forms:
(a) (0, r)×Qd(x, t), (b)U\[(0, r)×Qd(x, t)], and (c)U\{(0, r)×[Qd(x, t)\Qρ(y, s)]}.
Here 0 < r, d <∞, (x, t) ∈ IRn. and Qρ(y, s) ⊂ Qd(x, t).

4. Proof of Theorem 2.13 in a Special Case

In this section we prove Theorem 2.13, except for some square function estimates,
under the assumptions that
(4.1)

(a) B ≡ 0 and A ∈ C∞(Ū) .

(b) A satisfies (2.8)-(2.10) .

(c) (x0 |∇A| + x2
0 |At|)(X, t) ≤ Λ <∞ for a.e. (X, t) ∈ U and the measure

µ2 with dµ2(X, t) = [x0 |∇A|2 + x3
0 |At|2 ] (X, t) dXdt

is a Carleson measure on U.

(d) ∂Aij

∂x0
=

n−1∑
l=0

〈 eijl ,
∂
∂xl

f ijl 〉 + gij in the distributional sense where

n−1∑
l=0

[ |eijl | + |f ijl | ] (X, t) ≤ Λ <∞, for a.e (X, t) ∈ U whenever

0 ≤ i, j ≤ n− 1,

(e) eijl , f
ij
l have distributional first partials and

dµ3(X, t) = [
n−1∑
i,j=0

(
n−1∑
l=0

x0 |∇eijl |2 + x−1
0 |f ijl |2) + |gij | ](X, t) dXdt

is a Carleson measure on U.

(f) ‖A−A0‖2L∞(U) + ‖µ2‖ + ‖µ3‖ ≤ ε20.

In (4.1)(f), A0 is the constant matrix in Theorem 2.13. We note that (4.1)(a) is
the only additional assumption to those in Theorem 2.13. In section 5 we shall
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remove (4.1)(a) and thus obtain Theorem 2.13. To this end, recall that G(·, Y, s)
is the Green’s function for (1.1) with pole at (Y, s) ∈ U and ω(X, t, ·) is parabolic
measure at (X, t) for (1.1). From Schauder type estimates and (2.10) we note that

dω

dyds
(X, t, y, s) = K(X, t, y, s), (X, t) ∈ U, (y, s) ∈ IRn,

where
(4.2)

T = sup
{ (y,s)∈IRn, r>0 }

|Qr(y, s)|

(∫
Qr(y,s)

K(r, y, s+ 2r2, z, τ)2 dz dτ

)
≤ c1 < ∞ .

Here c1 may depend on among other things the smoothness of A. We shall show in
fact that

(4.3) c1 = c1(ε0, γ1,M,Λ, n) .

Before we begin the proof of (4.3), we note that (4.3), the basic estimates in section
3, and a familiar “ rate ” type argument imply that Theorem 2.13 is valid when
(4.1) holds. For completeness we give the proof of this statement. If

Γ = sup
(z,τ)∈Qr(y,s)

K(d, x, t+ 2d2, z, τ)
K(r, y, s+ 2r2, z, τ)

then from (4.3) we deduce for some c = c(γ1,M, n) ≥ 1 that

(4.4)

∫
Qr(y,s)

K(d, x, t+ 2d2, z, τ)2 dz dτ

≤ Γ2
∫
Qr(y,s)

K(r, y, s+ 2r2, z, τ)2 dzdτ ≤ c1Γ2 |Qr(y, s)|−1 .

To estimate Γ we first use Schauder regularity, the fact that K(d, x, t+ 2d2, z, τ) =
|∇G|−1 〈∇G,A∇G〉, and (2.8) to find

Γ ≤ c sup
(z,τ)∈Qr(y,s)

lim
z0→0

[
G(d, x, t+ 2d2, z0, z, τ)
G(r, y, s+ 2r2, z0, z, τ)

]
.

Second we observe from Harnack’s inequality and Lemma 3.37 (α) with d = r, (x, t) =
(y, s) that for some c = c(γ1,M, n) we have

(4.5) c ω(·, Q2r(y, s)) ≥ 1 on (0, r)×Qr(y, s).

Using (4.5), Harnack’s inequality, and Lemma 3.9 with u = G(·, z0, z, τ) we find
that

G(·, z0, z, τ) ≤ c ω(·, Q2r(y, s))G(r, y, s+ 2r2, z0, z, τ) on ∂[(0, 5
4r)×Q 5

4 r
(y, s)]

so by the boundary maximum principle for solutions to (1.1) and Lemma 3.12 we
have

G(d, x, t+ 2d2, z0, z, τ) ≤ c ω(d, x, t+ 2d2, Q2r(y, s))G(r, y, s+ 2r2, z0, z, τ)

≤ c ω(d, x, t+ 2d2, Qr(y, s))G(r, y, s+ 2r2, z0, z, τ) .

Dividing this inequality by G(r, y, s + 2r2, z0, z, τ) and letting z0→0, we conclude
for some c = c(γ1,M, n) that

(4.6) Γ ≤ c ω(d, x, t+ 2d2, Qr(y, s)).
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Using (4.6) in (4.4) it follows that

(4.7)

|Qr(y, s)|−1
∫
Qr(y,s)

K(d, x, t+ 2d2, z, τ)2 dz dτ

≤ c
(
|Qr(y, s)|−1

∫
Qr(y,s)

K(d, x, t+ 2d2, z, τ) dzdτ
)2

whenever Qr(y, s) ⊂ Qd(x, t). Hence to prove Theorem 2.13 when (4.1) is valid it
remains to prove (4.3).

Proof of (4.3). To prove (4.3) choose (r, y, s+ 2r2) ∈ U so that

(4.8) T ≤ 2 |Qr(y, s)|

(∫
Qr(y,s)

K(r, y, s+ 2r2, z, τ)2 dz dτ

)

and for given g ∈ C∞0 (Qr(y, s)), g ≥ 0, set

u(X, t) =
∫

IRn

K(X, t, z, τ)g(z, τ)dzdτ.

From (3.8), (2.10), and Schauder regularity we see that u is a bounded strong
solution to (1.1) in U which is continuous on Ū with u = g on IRn. Let u0 be the
bounded solution to the continuous Dirichlet problem in U with L0 u0 = 0 and
boundary values, u0 ≡ g on IRn. Here L0 is defined as in (1.1) with A(X, t) ≡
A0, B(X, t) ≡ 0, for (X, t) ∈ U.

Now from our knowledge of second order parabolic operators with constant co-
efficients we get that u0 ∈ C∞(Ū) and for some c = c(γ1,M, n)

(4.9) ‖Nu0‖L2(IRn) + ‖Su0‖L2(IRn) ≤ c ‖g‖L2(IRn)

where N,S are as in (2.14), (2.15). As in section 3 we let ζ ∈ C∞0 [(− 5
4r,

5
4r) ×

Q 5
4 r

(y, s)] with ζ ≡ 1 on (−r, r)×Qr(y, s), ζ ≥ 0, and

r‖∇ζ‖L∞(IRn+1) + r2‖ ∂∂tζ‖L∞(IRn+1) ≤ c <∞

for some c = c(n). Put ψ = ζ2. Using (3.6) with φ equal to a smooth extension of
u0 ψ to IRn+1 with compact support and writing G for G(r, y, s+ 2r2, ·), we obtain
(4.10)

u(r, y, s+ 2r2) =
∫

IRn

g K(r, y, s+ 2r2, ·) dZ dτ = −
∫
U

L(u0ψ)GdZdτ

= −
∫
U

(Lψ)u0GdZ dτ +
∫
U

〈 (A + Aτ )∇u0 , ∇ψ 〉GdZdτ

+
∫
U

ψ [(L0 − L)u0] GdZdτ

= I + II + III.
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We have

(4.11)

I = −
∫
U

ψt u0GdZ dτ +
n−1∑
i,j=0

∫
U

( ∂
∂zi

Aij) ( ∂
∂zj

ψ) u0GdZdτ

+
n−1∑
i,j=0

∫
U

Aij ( ∂2

∂zi∂zj
ψ) u0GdZdτ

= I1 + I2 + I3.

I3 is similar to I1, so we only treat I1 and I2. If D = [0, 5
4r]×Q 5

4 r
(y, s), then from

Lemma 3.10, Cauchy’s inequality, and (4.9), we get

|I1| ≤ cr−2

∫
D

u0GdZdτ ≤ cr−2−n
∫
D

u0 dZ dτ

≤ c r−(1+n)/2 ‖Nu0‖L2(IRn) ≤ c r−(1+n)/2 ‖g‖L2(IRn) .

Also, from Cauchy’s inequality, (4.1)(f), (2.16), Lemma 3.9 with u = G, and
Lemma 3.10, we deduce

|I2| ≤ c r−1

(∫
D

|∇A|2 u2
0 z0 dZdτ

)1/2 (∫
D

z−1
0 G2 dZdτ

)1/2

≤ c ε0 ‖Nu0‖L2(IRn) r
−1−α−n (

∫
D

z2α−1
0 dZdτ)1/2

≤ c ε0 r
−(1+n)/2 ‖g‖L2(IRn)

where as usual c = c(γ1,M, n). Thus, for 0 < ε0 < 1/2,

(4.12) |I| ≤ c r−(1+n)/2 ‖g‖L2(IRn) .

We handle II similarly.
(4.13)

|II| ≤ c r−1

(∫
D

|∇u0|2 z0 dZdτ
)1/2 (∫

D

z−1
0 G2 dZdτ

)1/2

≤ c r−(1+n)/2 ‖Su0‖L2(IRn) ≤ c r−(1+n)/2 ‖g‖L2(IRn) .

The main term is III. We write,

III =
∫
U

ψ∇ · [(A−A0)∇u0]GdZdτ

=
∫
U

〈∇ψ , (A0 −A)∇u0 〉 GdZdτ +
∫
U

ψ 〈∇G , (A0 −A)∇u0 〉dZ dτ

= III1 + III2.

III1 is estimated just like II. We get for some c = c(γ1,M, n) ≥ 1, that

(4.14) |III1| ≤ c r−(1+n)/2 ‖g‖L2(IRn) .
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For III2 we have

(4.15)

−III2 =
n−1∑
i,j=1

∫
U

ψ ∂
∂zi
G (A−A0)ij ∂

∂zj
u0 dZdτ

+
n−1∑
i=1

∫
U

ψ ∂
∂zi
G (A−A0)i0 ∂

∂z0
u0 dZdτ

+
n−1∑
i=1

∫
U

ψ ∂
∂z0

G (A−A0)0i ∂
∂zi
u0 dZdτ

+
∫
U

ψ ∂
∂z0

G (A−A0)00 ∂
∂z0

u0 dZdτ

= III21 + III22 + III23 + III24 .

To estimate III21 we integrate by parts in z0 to get

(4.16)

III21 = −
n−1∑
i,j=1

∫
U

z0
∂
∂z0

ψ ∂
∂zi
G (A−A0)ij ∂

∂zj
u0 dZdτ

−
n−1∑
i,j=1

∫
U

z0 ψ ( ∂2

∂z0∂zi
G) (A−A0)ij ∂

∂zj
u0 dZdτ

−
n−1∑
i,j=1

∫
U

z0 ψ
∂
∂zi
G ∂

∂z0
(A−A0)ij ∂

∂zj
u0 dZdτ

−
n−1∑
i,j=1

∫
U

z0 ψ
∂
∂zi
G (A−A0)ij ∂2

∂z0∂zj
u0 dZdτ

= P1 + P2 + P3 + P4 .

Using Cauchy’s inequality, (3.18) with u replaced by G, Lemma 3.10, (4.1), and
(4.9) we get

|P1| ≤ c ε0 r
−1/2

(∫
D

|∇G|2 dZ dτ
)1/2 (∫

D

z0 |∇u0|2 dZ dτ
)1/2

≤ c ε0 r
−(1+n)/2 ‖Su0 ‖L2(IRn) ≤ c ε0 r

−(1+n)/2 ‖g‖L2(IRn) .

Set

J =
n−1∑
i,j=0

∫
U

ψ | ∂2

∂zi∂zj
G |2 z0 dZdτ.

Then from Cauchy’s inequality, (4.1)(f), and (4.9), we get

|P2| ≤ cε0 J
1/2 ‖Su0‖L2(IRn) ≤ cε0 J

1/2 ‖g‖L2(IRn) .
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We note from (4.1)(c) that ∇G satisfies on D a system of partial differential
equations similar to (1.1). Moreover Lemma 3.3 holds for this system so that if
(Ẑ, τ̂) ∈ D, then

|∇G|(r, y, s+ 2r2, Ẑ, τ̂) ≤ c

(
ẑ
−(n+2)
0

∫
Qẑ0/100(Ẑ,τ̂)

|∇G|2 dZdτ

)1/2

≤ c

(
ẑ
−(n+4)
0

∫
Qẑ0/100(Ẑ,τ̂)

|G|2 dZdτ

)1/2

.

Using this inequality and Lemmas 3.10, 3.12, we conclude for (Ẑ, τ̂) ∈ D that

|∇G(r, y, s+ 2r2, Z̃, τ̃) |

≤ c ẑ
−(n+1)
0 ω

(
r, y, s+ 2r2, Q ẑ0

100
(ẑ, τ̂)

)
≤ cM(χK(r, y, s+ 2r2, ·)) (ẑ, τ̂),

whenever z̃0 = ẑ0 and |ẑ−z̃|+ |τ̂−τ̃ |1/2 ≤ a ẑ0. Here χ is the characteristic function
of Q 11

8 r
(y, s), a fixed is as in the definition of a parabolic cone (above (2.14)), and

M is the Hardy - Littlewood maximal function defined relative to rectangles of side
length ρ, ρ2 in the space and time variables respectively. Taking the supremum
over parabolic cones it follows from the above inequality,the Hardy - Littlewood
maximal theorem, and (4.8) that

(4.17) ‖N(|∇G|ψ1/2) ‖L2(IRn) ≤ c ‖K(r, y, s+ 2r2, ·)χ‖L2(IRn) ≤ c r−(n+1)/2 T 1/2 .

Using (4.17), (2.16), and (4.1)(f) we estimate P3 by

|P3| ≤ c

(∫
U

ψ |∇G|2 z0 |∇A|2 dZ dτ
)1/2 (∫

U

ψ |∇u0|2 z0 dZ dτ
)1/2

≤ c ε0 r
−(n+1)/2 T 1/2 ‖Su0‖L2(IRn) ≤ c ε0 r

−(n+1)/2 T 1/2 ‖g‖L2(IRn) .

We can handle P4 in the same way as P1, P2, P3, after integrating by parts in
zj , 1 ≤ j ≤ n− 1, to move a derivative onto G,ψ, or A−A0. We get

|P4| ≤ c ε0 [J1/2 + (1 + T 1/2)r−(n+1)/2 ] ‖g‖L2(IRn) .

Using these estimates for the P ′s in (4.16) we conclude that

(4.18) |III21| ≤ c ε0 [J1/2 + (1 + T 1/2)r−(n+1)/2 ] ‖g‖L2(IRn) .
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Next we estimate III22 . Integrating by parts in z0 and using the fact that
∂
∂zi
G = 0 on ∂U for 1 ≤ i ≤ n− 1, we get

(4.19)

III22 = −
∫
U

ψz0

n−1∑
i=1

∂
∂zi
G (A−A0)i0 u0 dZdτ

−
∫
U

ψ

n−1∑
i=1

( ∂2

∂zi∂z0
G ) (A−A0)i0 u0 dZdτ

−
∫
U

ψ

n−1∑
i=1

∂
∂zi
G ∂

∂z0
Ai0 u0 dZdτ

= S1 + S2 + S3.

As in the estimate for P1 we have

|S1| ≤ c r−1 ε0

(∫
D

|∇G|2 dZdτ
)1/2 (∫

D

u2
0 dZ dτ

)1/2

≤ c ε0 r
−(n+1)/2 ‖g‖L2(IRn) .

To handle S2 we integrate by parts in z0 to get

(4.20)

S2 =
∫
U

z0
∂
∂z0

ψ

n−1∑
i=1

( ∂2

∂zi∂z0
G ) (A−A0)i0 u0 dZdτ

+
∫
U

z0 ψ

n−1∑
i=1

( ∂3

∂zi∂z20
G ) (A−A0)i0 u0 dZdτ

+
∫
U

z0 ψ

n−1∑
i=1

( ∂2

∂zi∂z0
G ) ∂

∂z0
Ai0 u0 dZdτ

+
∫
U

z0 ψ

n−1∑
i=1

( ∂2

∂zi∂z0
G ) (A−A0)i0 ∂

∂z0
u0 dZdτ

= S21 + S22 + S23 + S24 .

Now∇ψ = 2ζ∇ζ = 2ψ1/2∇ζ. From this fact, Cauchy’s inequality, and the definition
of J we deduce

|S21| ≤ c ε0 r
−1/2 J1/2 (

∫
D

u2
0 )1/2 ≤ cε0 J

1/2 ‖g‖L2(IRn) .

S24 can be handled exactly like P2. We get

|S24| ≤ c ε0 J
1/2 ‖g‖L2(IRn) .

S23 can be estimated using (4.1)(c), (2.16), and (4.9) to get

|S23| ≤ c J1/2

(∫
U

ψ z0 |∇A|2 u2
0 dZ dτ

)1/2

≤ c ε0 J
1/2 ‖g‖L2(IRn) .
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S22 can be estimated in the same way as S21, S23, S24, after integrating by parts in
zi, 1 ≤ i ≤ n− 1. Using these estimates in (4.20) we get

|S2| ≤ c ε0 J
1/2 ‖g‖L2(IRn) .

To treat S3 we use (4.1)(d), (e) and integrate by parts. Using once again the fact
that ∂

∂zi
G vanishes on ∂U for 1 ≤ i ≤ n− 1 we get

(4.21)

S3 = −
∫
U

ψ

n−1∑
i=1

∂
∂zi
G [ (

n−1∑
l=0

〈 ei0l , ∂
∂zl

f i0l 〉 ) + gi0 ]u0 dZ dτ

=
∫
U

n−1∑
i=1

∂
∂zi
G [ (

n−1∑
l=0

〈 ∂
∂zl
ψ ei0l , f

i0
l 〉 )− ψ gi0 ]u0 dZ dτ

+
∫
U

ψ (
n−1∑
i=1

n−1∑
l=0

∂2

∂zizl
G 〈 ei0l f i0l 〉 )u0 dZ dτ

+
∫
U

ψ (
n−1∑
i=1

n−1∑
l=0

∂
∂zi
G 〈 ∂

∂zl
ei0l , f

i0
l 〉 )u0dZdτ

+
∫
U

ψ (
n−1∑
i=1

n−1∑
l=0

∂
∂zi
G 〈 ei0l , f i0l 〉 ∂

∂zl
u0) dZ dτ

= S31 + S32 + S33 + S34 .

From (4.1)(d), (e), (f), (4.17), and estimates similar to the ones for P1, P3 we see
that

|S31| ≤ cr−1

(∫
U

ψ |∇G|2 dZ dτ
)1/2 (∫

U

ψ u2
0 dZ dτ

)1/2

+ c

(∫
U

ψ |∇G|2
n−1∑
i=1

|gi0|dZ dτ

)1/2 (∫
U

ψ u2
0

n−1∑
i=1

|gi0| dZdτ

)1/2

≤ c r−(n+1)/2 (1 + ε20 T
1/2 ) ‖g‖L2(IRn).

Next we have

|S32| ≤ c

(∫
U

z0 ψ

n−1∑
i=1

n−1∑
l=0

| ∂2

∂zlzi
G|2 dZ dτ

)1/2

·

(
n−1∑
i=1

n−1∑
l=0

∫
U

z−1
0 ψ |f i0l |2 |u0|2 dZ dτ

)1/2

≤ cε0 J
1/2 ‖g‖L2(IRn).
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Also from (4.1)(e), (f),(2.16), (4.9), we deduce

|S33| ≤ c

(
n−1∑
i=1

n−1∑
l=0

∫
U

z−1
0 ψ | f i0l |2 |∇G|2 dZ dτ

)1/2

·

(
n−1∑
i=1

n−1∑
l=0

∫
U

z0 ψ |∇eijl |
2 u2

0 dZ dτ

)1/2

≤ c ε0 r
−(n+1)/2 T 1/2 ‖g‖L2(IRn).

Lastly,

|S34| ≤ c

(
n−1∑
i=1

n−1∑
l=0

∫
U

z−1
0 ψ | f i0l |2 |∇G|2 dZ dτ

)1/2 (∫
U

z0 ψ |∇u0|2 dZ dτ
)1/2

≤ cε0 r
−(n+1)/2 T 1/2 ‖g‖L2(IRn).

Thus
|S3| ≤ c [r−(n+1)/2(1 + ε0 T

1/2 ) + ε0 J
1/2 ] ‖g‖L2(IRn) .

Using our estimates for S1, S2, S3 in (4.19) we find that

(4.22) |III22| ≤ c [r−(n+1)/2(1 + ε0 T
1/2 ) + ε0 J

1/2] ‖g‖L2(IRn).

We handle III23 in exactly the same way as III21. That is we first integrate by
parts in z0 to obtain 4 terms which can be estimated in exactly the same way as
P1 − P4. We get

(4.23) |III23| ≤ cε0 [r−(n+1)/2(1 + T 1/2 ) + J1/2] ‖g‖L2(IRn).

It remains to estimate III24. Integrating by parts in z0, we have

(4.24)

III24 = −
∫
U

∂
∂z0

ψ ∂
∂z0

G (A−A0)00 u0 dZdτ

−
∫
U

ψ ∂2

∂z20
G (A−A0)00 u0 dZdτ

−
∫
U

ψ ∂
∂z0

G ∂
∂z0

(A−A0)00 u0 dZdτ

+
∫
∂U

ψ ∂
∂z0

G (A−A0)00 g dZdτ

= L1 + L2 + L3 + L4.

L1 is estimated in the same way as S1 while the boundary term L4 is easily handled
using the definition of K, Cauchy’s inequality, and (4.1)(f). L3 is estimated similar
to S3, using the “ integration by parts hypothesis ” (4.1)(d), (e). However in this
case we must use a different argument to show that the boundary term correspond-
ing to integration in z0 vanishes, since ∂

∂z0
G 6= 0 on ∂U . To show vanishing observe

from (4.1)(e) and Cauchy’s inequality that there exist (δj) with lim
j→∞

δj = 0 and

such that ∫
IRn

ψ |f00
0 |(δj , z, τ) dzdτ→ 0 as j→∞.
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Using this observation, (4.1)(d), smoothness of G, u0, and taking a limit as δj→0, we
deduce that the boundary term obtained from using (4.1)(d) in L3 and integrating
by parts, vanishes. Altogether we find that

(4.25) |L1|+ |L3|+ |L4| ≤ c [r−(n+1)/2(1 + ε0 T
1/2 ) + ε0 J

1/2] ‖g‖L2(IRn).

To estimate L2 we make several observations. First, observe that

∂2

∂x2
0
G = A−1

00

[
∂
∂x0

(A00
∂
∂x0

G) − ( ∂
∂x0

A00) ∂
∂x0

G
]

and second that (4.1)(c) holds with A00 replaced by A−1
00 . Using these observations

we see that

(4.26)

L2 =
∫
ψA−1

00 (A0 −A)00 ∂
∂z0

(A00
∂
∂z0

G)u0 dZ dτ

+
∫
U

ψA−1
00 (A−A0)00 ∂

∂z0
A00

∂
∂z0

Gu0 dZdτ

= L21 + L22 .

L22 can be handled using the second observation above and (4.1)(d) in essentially
the same way as we handled L3. We get the same estimate for L22 as for L1, L3, L4

in (4.25). Using (1.1) for G we find that

(4.27)

L21 =
∫
U

ψA−1
00 (A0 −A)00 ∂

∂τGu0 dZ dτ

+
n−1∑
i,j=1

∫
U

ψA−1
00 (A−A0)00 ∂

∂zi
(Aij ∂

∂zj
G)u0 dZdτ

+
n−1∑
j=1

∫
U

ψA−1
00 (A−A0)00 ∂

∂z0
(A0j

∂
∂zj

G)u0 dZ dτ

+
n−1∑
i=1

∫
U

ψA−1
00 (A−A0)00 ∂

∂zi
(Ai0 ∂

∂z0
G)u0 dZdτ

= V1 + V2 + V3 + V4 .
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V2, V4 can be handled in our usual manner. For example, integrating by parts in
z0 we get

−V2 =
n−1∑
i,j=1

∫
U

z0
∂
∂z0

ψA−1
00 (A−A0)00 ∂

∂zi
(Aij ∂

∂zj
G)u0 dZdτ

+
n−1∑
i,j=1

∫
U

z0 ψ
∂
∂z0

[A−1
00 (A−A0)00 ] ∂

∂zi
(Aij ∂

∂zj
G)u0 dZdτ

+
n−1∑
i,j=1

∫
U

z0 ψA
−1
00 (A−A0)00 ∂2

∂ziz0
(Aij ∂

∂xj
G)u0 dZdτ

+
n−1∑
i,j=1

∫
U

z0 ψA
−1
00 (A−A0)00 ∂

∂zi
(Aij ∂

∂zj
G) ∂

∂z0
u0 dZdτ

= V21 + V22 + V23 + V24 .

V21, V22, V24, are estimated using the second of the above observations, (2.16), (4.1)
(c), (f), (4.9), (4.17) and Cauchy’s inequality, as previously. To treat V23 we inte-
grate by parts in zi, 1 ≤ i ≤ n− 1, to get integrals which can be estimated just like
the other three integrals. V4 is treated similarly. Making these estimates we find
that

(4.28) |V2|+ |V4| ≤ cε0 [r−(n+1)/2(1 + T 1/2 ) + J1/2] ‖g‖L2(IRn).

As for V3 we have

V3 =
n−1∑
j=1

∫
U

ψA−1
00 (A−A0)00 ∂

∂z0
A0j

∂
∂zj

Gu0 dZ dτ

+
n−1∑
j=1

∫
U

ψA−1
00 (A0 −A)00A0j

∂2

∂zjz0
Gu0 dZdτ.

The first term on the righthand side of this equality can estimated using the above
observation on Carleson measures and (4.1) (d), (e), (f) as in the estimate of S3.
The second term is estimated in the same way as V2. We find that (4.28) remains
valid if |V3| is added to the lefthand side of this equality. Finally integrating with
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respect to z0 in the integral defining V1 we have

V1 =
∫
U

z0
∂
∂z0

ψA−1
00 (A−A0)00 ∂

∂τGu0 dZ dτ

+
∫
U

z0 ψ
∂
∂z0

[A−1
00 (A−A0)00] ∂

∂τGu0 dZ dτ

+
∫
U

z0 ψA
−1
00 (A−A0)00 ( ∂2

∂τ∂z0
G)u0 dZ dτ

+
∫
U

z0 ψA
−1
00 (A−A0)00 ∂

∂τG
∂
∂z0

u0 dZ dτ

= V11 + V12 + V13 + V14.

We note that since G satisfies (1.1) we can estimate ∂
∂τG in terms of first and

second partials in the space variable of G and first partials of A. Using this note
and a repetition of our now well known earlier arguments we find that

|V11|+ |V13| + |V14| ≤ cε0 [r−(n+1)/2 (1 + T 1/2 ) + J1/2] ‖g‖L2(IRn).

To treat V12 we again integrate by parts in z0 to see that

2V12 =
∫
U

z2
0

∂
∂z0

ψA−1
00 (A0 −A)00 ( ∂2

∂τ∂z0
G)u0 dZ dτ

+
∫
U

z2
0 ψ

∂
∂z0

[A−1
00 (A0 −A)00] ( ∂2

∂τ∂z0
G)u0 dZ dτ

+
∫
U

z2
0 ψA

−1
00 (A0 −A)00 ( ∂3

∂τ∂2z0
G)u0 dZ dτ

+
∫
U

z2
0 ψA

−1
00 (A0 −A)00 ( ∂2

∂τ∂z0
G) ∂

∂z0
u0 dZ dτ

= W1 + W2 + W3 +W4.

To estimate these terms put

J1 =
∫
U

z3
0 ψ |∇∂G

∂τ |
2 dZdτ .

Then using our previous arguments we deduce that

|W1|+ |W2|+ |W4| ≤ cε0 [r−(n+1)/2 (1 + T 1/2 ) + J
1/2
1 ] ‖g‖L2(IRn).

As for W3 we integrate by parts in τ to get

W3 =
∫
U

z2
0
∂
∂τ ψA

−1
00 (A−A0)00 ( ∂

2

∂z20
G)u0 dZ dτ

+
∫
U

z2
0 ψ

∂
∂τ [A−1

00 (A−A0)00 ]( ∂
2

∂z20
G)u0 dZ dτ

+
∫
U

z2
0 ψA

−1
00 (A−A0)00 ∂2

∂z20
G ∂

∂τ u0 dZ dτ.
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The first two of the above integrals on the righthand side of this equation are by
now standard integrals. To estimate the third integral we need the fact that∫

U

ψ z3
0 ( ∂

∂τ u0)2 dZdτ ≤ c ‖g‖L2(IRn)

which is easily proven using (4.9) and well known interior estimates for derivatives of
solutions to parabolic pde’s with constant coeffieients. From this fact and Cauchy’s
inequality we get the desired estimate for the last term in the equality inolving W3.
Using these estimates in the display for V12 we find

|V12| ≤ cε0 [r−(n+1)/2 (1 + T 1/2 ) + J1/2 + J
1/2
1 ] ‖g‖L2(IRn).

Next using this inequality in the display for V1 we see that

(4.29) |V1| ≤ cε0 [r−(n+1)/2 (1 + T 1/2 ) + J
1/2
1 + J1/2 ]‖g‖L2(IRn).

In view of (4.29),(4.28), (4.27), we see that we can first replace |V1| by |L21| =
|
∑4
i=1 Vi | in the above inequality and second in view of (4.24), (4.25), (4.26), we

can replace |L21| by |III24|. Using our new inequality, (4.10), (4.12), (4.13), (4.14),
(4.15), (4.18), (4.22), and (4.23) we conclude that

(4.30) |u(r, y, s+2r2)| ≤ c [r−(n+1)/2 (1 + ε0 T
1/2 )+ ε0 J

1/2
1 + ε0 J

1/2 ] ‖g‖L2(IRn).

We claim that

(4.31) J + J1 ≤ c r−(n+1) ( 1 + T )

where c has the same dependence as the constant in Theorem 2.13. Once (4.31) is
proven we can use this inequality in (4.30) to get

|u(r, y, s+ 2r2)| ≤ c r−(n+1)/2 (1 + ε0 T
1/2 ) ‖g‖L2(IRn) .

Taking the supremum on the left hand side of this inequality over all g ∈ C∞0 (Qr(y, s))
with ‖g‖L2(IRn) ≤ 1 and using the usual L2(Qr(y, s)) duality argument we obtain
after some juggling, (4.3), (4.2). Thus it remains to prove (4.31). We prove (4.31)
in section 5.

5. Proof of Theorem 2.13

We first prove (4.31) and thus complete the proof of Theorem 2.13 in the special
case considered in section 4. We begin by estimating J. For 0 ≤ j ≤ n−1 we write
(5.1)

Θ =
∫
U

z0 ψ 〈∇ ∂
∂zj

G, ∇ ∂
∂zj

G 〉 dZ dτ ≤ c

∫
U

z0 ψ 〈A∇ ∂
∂zj

G, ∇ ∂
∂zj

G 〉 dZ dτ

= −
∫
U

z0 ψ ∇ · (A∇ ∂
∂zj

G) ∂
∂zj

GdZ dτ

−
∫
U

z0 〈∇ψ , A∇ ∂
∂zj

G 〉 ∂
∂zj

GdZ dτ

−
∫
U

ψ 〈 e0 , A∇ ∂
∂zj

G 〉 ∂
∂zj

GdZ dτ

= Θ1 + Θ2 + Θ3 .
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In (5.1), e0 = (1, 0, . . . , 0) and c = c(γ1,M, n). Using Cauchy’s inequality with
ε′s, the fact that ∇ψ = 2ψ1/2∇ζ, (2.9), (3.18) with u replaced by G, and Lemma
3.10, we get

(5.2) |Θ2| ≤ c r−(n+1) + 1
4 |Θ| .

As for Θ3 we have

2 Θ3 = −
n−1∑
i=0

∫
U

ψA0i
∂
∂zi

( ∂
∂zj

G)2 dZ dτ

= −
∫
∂U

ψA00 ( ∂
∂zj

G)2 dz dτ

+
n−1∑
i=0

∫
U

∂
∂zi
ψA0i ( ∂

∂zj
G)2 dZ dτ

+
∫
U

ψ ∂
∂z0

A00 ( ∂
∂zj

G)2 dZ dτ

+
n−1∑
i=1

∫
U

ψ ∂
∂zi

A0i ( ∂
∂zj

G)2dZ dτ

= Θ31 + Θ32 + Θ33 + Θ34.

To estimate Θ31 note that this term is zero unless j = 0 in which case we find from
(2.8), (2.9) that

|Θ31| ≤ c r−(n+1) T.

Θ32 is easy to estimate using (3.18) with u = g and Lemma 3.10. We get

|Θ32| ≤ c r−(n+1) .

To estimate Θ33 we use (4.1) (d), (e), (f) and argue as in the estimate of S3, L3 to
obtain

|Θ33| ≤ c T + 1
16nJ.

To treat Θ34 we integrate by parts in z0 to find that

Θ34 = −
n−1∑
i=1

∫
U

z0
∂
∂z0

ψ ∂
∂zi

A0i ( ∂
∂zj

G)2dZ dτ

−
n−1∑
i=1

∫
U

z0 ψ
∂2

∂ziz0
A0i ( ∂

∂zj
G)2dZ dτ

−
n−1∑
i=1

∫
U

z0 ψ
∂
∂zi

A0i
∂
∂z0

( ∂
∂zj

G)2dZ dτ

= ξ1 + ξ2 + ξ3 .

ξ1, ξ3 are estimated using (4.1) (c), (f), and (4.17). We get

|ξ1| + |ξ3| ≤ cr−(n+1) (1 + T ) + 1
16n J .
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Integrating with respect to zi, 1 ≤ i ≤ n − 1, in the integral defining ξ2 we obtain
integrals which can be handled in the same way as ξ1, ξ3. Putting these estimates
together we see that

(5.3) |Θ3| ≤ c r−(n+1)(1 + T ) + 1
4n J .

Next observe that
∇ · (A∇ ∂

∂zj
G) = ∂

∂zj
∇ · (A∇G ) −∇ · ( ( ∂

∂zj
A)∇G )

= ∂2

∂zj∂τ
G−∇ · ( ( ∂

∂zj
A)∇G) .

From this observation we find that

Θ1 = − 1
2

∫
U

z0 ψ
∂
∂τ ( ∂

∂zj
G)2 dZdτ

+
∫
U

z0 ψ
∂
∂zj

G∇ · ( ( ∂
∂zj

A)∇G ) dZ dτ

= Θ11 + Θ12 .

To estimate Θ11 we integrate by parts in τ to get integrals which can be estimated
just like the easy parts of Θ2,Θ3. As for Θ12 we again integrate by parts to find
that

Θ12 = −
∫
U

z0
∂
∂zj

G 〈∇ψ , ( ∂
∂zj

A)∇G 〉 dZ dτ

−
∫
U

z0 ψ 〈∇ ∂
∂zj

G , ( ∂
∂zj

A)∇G 〉 dZdτ

−
∫
U

ψ ∂
∂zj

G 〈 e0, ( ∂
∂zj

A)∇G 〉 dZ dτ

= H1 + H2 + H3.

H1,H2 are easily handled using (4.1)(c), (f), and (4.17). Moreover if j = 0 we can
handle H3 using (4.1)(d), (f). To treat H3 when j 6= 0, we integrate with respect
to z0 and obtain

H3 =
∫
U

z0
∂
∂z0

ψ ∂
∂zj

G 〈 e0 , ( ∂
∂zj

A)∇G 〉 dZ dτ

+
∫
U

z0 ψ
∂2

∂zj∂z0
G 〈 e0 , ( ∂

∂zj
A)∇G 〉 dZ dτ

+
∫
U

z0 ψ
∂
∂zj

G 〈 e0 , ( ∂2

∂zj∂z0
A)∇G 〉 dZ dτ

+
∫
U

z0 ψ
∂
∂zj

G 〈 e0 , ( ∂
∂zj

A)∇ ∂
∂z0

G 〉 dZ dτ

= H31 + H32 + H33 + H34 .

H31,H32,H34 are easily estimated using once again (4.1)(c), (f), and (4.17). In-
tegrating by parts with respect to zj in the integral defining H33 we get integrals
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which can be handled either in the same way as the other H’s or by using (4.1)(d)
as in our estimate of S3, L3. Using these estimates for the H’s and the estimates in
(5.2), (5.3) in (5.1) we conclude that

|Θ| ≤ c r−(n+1)(1 + T ) + 1
2nJ

Summing over j, 0 ≤ j ≤ n− 1, we get J on the left hand side of (5.1). Thus

(5.4) J ≤ c r−(n+1)(1 + T ) .

Next we consider J1. We have
(5.5)

J1 =
∫
U

z3
0 ψ 〈∇ ∂

∂τG, ∇
∂
∂τ G 〉 dZ dτ ≤ c

∫
U

z3
0 ψ 〈∇ ∂

∂τ G , A∇
∂
∂τG 〉 dZ dτ

= −
∫
U

z3
0 ψ

∂
∂τG ∇ · (A∇ ∂

∂τ G) dZ dτ

−
∫
U

z3
0
∂
∂τG 〈∇ψ , A∇

∂
∂τ G 〉 dZ dτ

− 3
∫
U

z2
0 ψ

∂G
∂τ 〈 e0 , A∇

∂
∂τ G 〉 dZ dτ

= Φ1 + Φ2 + Φ3 .

As in the estimate for Θ2 we find

|Φ2| + |Φ3| ≤ c

(∫
U

z0 ψ ( ∂
∂τG)2 dZdτ

)1/2

J
1/2
1

≤ cr−(n+1)(1 + T ) + cJ + 1
4J1 .

Here we have used (1.1), (4.1) (c) to estimate ∂G
∂τ in terms of the first and second

partials in the space variable of G. To treat Φ1 we observe that

∇ · (A∇ ∂
∂τ G ) = ∂

∂τ∇ · (A∇G ) −∇ · ( ∂
∂τA∇G )

= ∂2

∂τ2G−∇ · ( ∂
∂τA∇G).

From this observation we find

Φ1 = − 1
2

∫
U

z3
0 ψ

∂
∂τ ( ∂

∂τG)2 dZdτ

+
∫
U

z3
0 ψ

∂
∂τG∇ · ( ( ∂

∂τA)∇G )dZ dτ

= Φ11 + Φ12 .
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To estimate Φ11 we integrate by parts in τ to obtain an integral which is estimated
similar to Φ2,Φ3. As for Φ12 we again integrate by parts to find that

Φ12 = −
∫
U

z3
0
∂
∂τG 〈∇ψ , ( ∂

∂τA)∇G 〉 dZdτ

−
∫
U

z3
0 ψ 〈∇ ∂

∂τG ,
∂
∂τA∇G 〉 dZdτ

− 3
∫
U

z2
0 ψ

∂
∂τG 〈 e0, ( ∂

∂τA)∇G 〉 dZ dτ.

These integrals are easily handled as in the estimate for Φ2,Φ3. We get that

|Φ12| ≤ cr−(n+1)(1 + T ) + c J + 1
4J1 .

Combining this with our earlier estimates we deduce from (5.5) that

|J1| ≤ cr−(n+1)(1 + T ) + cJ .

From this inequality and (5.4) we conclude first that (4.31) is valid and second
from our earlier remarks that Theorem 2.13 is true in the special case we have been
considering. 2

To continue the proof of Theorem 2.13 we next consider the case when

(5.6)

(a) A satisfies (4.1)(a)− (f).

(b) B 6≡ 0 and B ∈ C∞(Ū) .

(c) x0 |B| (X, t) ≤ ε0 <∞ for a.e. (X, t) ∈ U and the measure µ1

defined by dµ1(X, t) = x0 |B|2(X, t)dXdt
is a Carleson measure on U with ‖µ1‖ ≤ ε20.

To prove Theorem 2.13 in this case we use the same strategy as in section 4. We
assume that ε0 < ε1 in Lemma 3.14. Let ω(X, t, ·) be parabolic measure at (X, t)
corresponding to (1.1) with B 6≡ 0. As in section 4 put

dω

dyds
(X, t, y, s) = K(X, t, y, s), (X, t) ∈ U, (y, s) ∈ IRn,

and set

T = sup
{ (y,s)∈IRn, r>0 }

|Qr(y, s)|

(∫
Qr(y,s)

K(r, y, s+ 2r2, z, τ)2 dz dτ

)
.

Using Lemma 3.14 and arguing as in section 4 we see that to prove Theorem 2.13
under assumption (5.6) it suffices to show that

T ≤ c1 = c1(ε0, γ1,M,Λ, n) <∞ .

To prove this inequality we shall need an analogue of (4.9) for solutions to (1.1)
under assumption (4.1). That is given g ≥ 0 ∈ C∞0 (Qr(y, s)), let

u(X, t) =
∫
U

K̂(X, t, z, τ)g(z, τ)dzdτ.

where K̂ is defined as in section 4 relative to (1.1) with B ≡ 0. Recall that u ∈
C∞(Ū), u is a bounded strong solution to (1.1) on U with B ≡ 0 and u = g on IRn.
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Using our work in section 4 we shall prove for some c having the same dependence
as c1 above that

(5.7) ‖Nu‖L2(IRn) + ‖Su‖L2(IRn) ≤ c ‖g‖L2(IRn)

where N,S are as in (2.14), (2.15) with a = 1. Once (5.7) is proved we can proceed
as in section 4 to get Theorem 2.13 under assumption (5.6). To prove (5.7) we first
claim that whenever (x, t) ∈ IRn and d > 0, we have K̂(d, x, t+2d2, ·) ∈ βp(Qd(x, t))
for some p = p(ε0, γ1,M,Λ, n) > 2 with

(5.8) ‖K̂(d, x, t+ 2d2, ·)‖βp(Qd(x,t)) ≤ c(ε0, γ1,M,Λ, n) <∞ .

To prove this claim observe that (5.8) with p replaced by 2 is just Theorem 2.13 in
the special case proved in section 4. Now (5.8) with p = 2 implies (5.8) for p > 2.
(see [CF]). Next given (x, t) ∈ IRn and d > 0 let (d, y, s) ∈ U with |y − x| + |s −
t|1/2 ≤ d. Let φj ≥ 0 ∈ C∞0 (IRn) with φj ≡ 1 on Q2j+1d(x, t) \Q2jd(x, t) and supp
φj ⊂ Q2j+2d(x, t) \Q2j−1d(x, t) for j = 1, 2, . . . , . We have

(5.9)

u(d, y, s) ≤
∫
Q4d(x,t)

K̂(d, y, s, ·) g dzdτ +
∞∑
j=1

∫
IRn

K̂(d, y, s, ·)φj g dzdτ

= (
∞∑
j=0

uj) (d, y, s)

where

u0(Y1, s1) =
∫
Q4d(x,t)

K̂(Y1, s1, ·) g dzdτ

uj(Y1, s1) =
∫

IRn

K̂(Y1, s1, ·)φj g dzdτ, j = 1, . . . , .

We note that uj is a solution to (1.1) with B ≡ 0 and uj has continuous boundary
values with uj ≡ 0 on Q2j−1d(x, t) for j = 1, 2, . . . . Let q = p/(p − 1) be the
conjugate exponent to p in (5.8). Then from this remark, Lemma 3.9, Hölder’s
inequality, (5.8), and Lemma 3.11 we see for j ≥ 1 that

uj(d, y, s) ≤ c 2−jα uj(2j+1d, y, s+ 24j+1d2)

≤ c 2−jα (Mgq)1/q(d, x, t+ 2d2) |Q2jd(x, t)|1/q

·

[∫
Q2j+2d (x,t)

K(2j+1d, y, s+ 24j+1d2, ·)p dzdτ

]1/p

≤ c 2−jα (Mgq)1/q (d, x, t+ 2d2 ) .

Here M denotes the Hardy - Littlewood maximal function defined with respect
to rectangles of length ρ in the space variable and ρ2 in the time variable. This
inequality also holds when j = 0 as we see from Hö lder’s inequality and (5.8).
Using these estimates for uj(d, y, s) in (5.9) we conclude that

u(d, y, s) ≤ c (Mgq)1/q .
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Since 1 < q < 2, and |x− y| + |s− t|1/2 ≤ d it follows first that

Nu(x, t) ≤ c (Mgq)1/q(x, t),

and second from the Hardy - Littlewood maximal theorem that (5.7) holds for Nu.
To prove (5.7) for Su we argue as in the proof of (4.31). We have for c+ ≥ 1

large enough that
(5.10)

c−2
+ ‖Su‖2L2(IRn) ≤ c−1

+

∫
U

z0 〈∇u, ∇u 〉 dZ dτ ≤
∫
U

z0 〈A∇u, ∇u 〉 dZ dτ

= −
∫
U

z0 ∇ · (A∇u)u dZ dτ −
∫
U

〈A∇u , e0 〉u dZ dτ

= − 1
2

∫
U

z0
∂
∂τ u

2 dZ dτ −
∫
U

〈A∇u , e0 〉u dZ dτ

= 0 + I.

In (5.10) all integrations can be justified using Schauder regularity, (2.10), and our
knowledge of constant coefficient second order parabolic pde’s . To continue the
estimate we note that

(5.11)

2 I = −
n−1∑
i=0

∫
U

A0i
∂
∂zi

(u)2 dZ dτ

= −
∫
∂U

A00 g
2 dzdτ

+
∫
U

∂
∂z0

A00 u
2 dZdτ

+
n−1∑
i=1

∫
U

∂
∂zi

A0i u
2 dZ dτ

= I1 + I2 + I3

From (2.9) we deduce that

|I1| ≤ c ‖g‖2L2(IRn) .

To handle I2 we use the “ integration by parts ” hypothesis (4.1) (d) and (5.7) for
Nu as in the estimates of L3, S3 to get

|I2| ≤ c‖g‖2L2(IRn) + 1
4 c2+

‖Su‖2L2(IRn)
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where c+ is as in (5.10). As for I3 we integrate by parts in z0 to find that

I3 = −
n−1∑
i=1

∫
U

z0
∂2

∂ziz0
A0i u

2 dZ dτ

−
n−1∑
i=1

∫
U

z0
∂
∂zi

A0i
∂
∂z0

u2 dZ dτ

= I31 + I32

Using (4.1)(c), (e) we deduce that

|I32| ≤ c‖g‖2L2(IRn) + 1
4 c2+

‖Su‖2L2(IRn) .

Integrating by parts with respect to zi, 1 ≤ i ≤ n − 1 in the integrals defining
I31 we get integrals which can be estimated in the same way as I32. Putting these
estimates together we find that

|I3| ≤ c‖g‖2L2(IRn) + 1
2 c2+

‖Su‖2L2(IRn) .

Using this estimate as well as our earlier estimates for I1, I2 in (5.11), (5.10) we see
that (5.7) holds for Su.

We now prove Theorem 2.13 when (5.6) holds. Let g be as above and let u1

be the solution to the Dirichlet problem for (1.1) with B 6≡ 0 and u1 ≡ g on IRn.
Let G denote the Green’s function for (1.1) with B 6≡ 0. Also let L,L1 denote the
operators in (1.1) with B ≡ 0, B 6≡ 0, respectively. Proceeding as in section 4 we
write G for G(r, y, s+ 2r2, ·) and use (3.6) to obtain
(5.12)

u1(r, y, s+ 2r2) =
∫

IRn

g K(r, y, s+ 2r2, ·) dZ dτ = −
∫
U

L1(uψ)GdZdτ

= −
∫
U

(L1ψ)uGdZ dτ +
∫
U

〈 (A + Aτ )∇u , ∇ψ 〉GdZdτ

+
∫
U

ψ [(L− L1)u] GdZdτ

= T1 + T2 + T3.

Using Lemma 3.10 (permissible by Lemma 3.14) and (5.7) we deduce

(5.13) |T1| ≤ c r−(1+n)/2 ‖g‖L2(IRn) .

We can handle T2 similarly thanks to (5.7),

(5.14)
|T2| ≤ c r−1 ‖Su‖L2(IRn)

(∫
Q2r(y,s)

z−1
0 ψG2 dZdτ

)1/2

≤ c r−(1+n)/2 ‖g‖L2(IRn) .
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Next

(5.15)

|T3| = |
∫
U

ψB∇uGdZdτ |

≤ c ‖Su‖L2(IRn)

(
|
∫
U

ψ z0|B|2 (z−1
0 G)2 dZdτ

)1/2

= c‖Su‖L2(IRn) T4

From Lemma 3.10 and Harnack’s inequality we see as in section 4 that

N(ψ1/2 z−1
0 G) ≤ cM

[
K(r, y, s+ 2r2, ·)χ

]
where χ is the characteristic function of Q2r(y, s) and M is the Hardy - Littlewood
maximal function taken with respect to rectangles. Using the above inequality,
(2.16), and (5.6)(c) we get

T4 ≤ c ε0 r
−(n+1)/2 T 1/2 .

Putting this inequality in (5.15) and using (5.7) we see that

|T3| ≤ c ε0 r
−(n+1)/2 T 1/2 ‖g‖L2(IRn).

The above inequality and (5.13), (5.14) imply

u(r, y, s+ 2r2) ≤ cr−(n+1)/2 ( 1 + ε0 T
1/2 ) ‖g‖L2(IRn).

Taking the supremum of the lefthandside of this inequality over g ∈ C∞0 (Qr(y, s))
and using L2(Qr(y, s)) duality we get T ≤ c1 < ∞. The proof of Theorem 2.13 is
now complete when (5.6) holds. 2

Finally we remove the assumption A,B ∈ C∞(Ū) in (5.6). Let h ∈ C∞(−∞,∞),
0 ≤ h ≤ 1, with h ≡ 0 on (−∞, 1/2), h ≡ 1 on (1,∞), and |h′| ≤ 100. Put
hj(X, t) = h(jx0), for (X, t) ∈ IRn+1 and j = 1, 2, . . . . Let Pλ be a parabolic ap-
proximate identity on IRn+1 defined as in (1.6) with IRn replaced by IRn+1. Recall
that P ∈ C∞0 (Q1(0, 0)), (Q1(0, 0) = rectangle in IRn+1 ) and Pλψ denotes con-
volution of Pλ with ψ. Now suppose that A,B satisfy the conditions of Theorem
2.13 so that not necessarily are A,B ∈ C∞(Ū). Extend A,B to IRn+1 by setting
A ≡ A0, B ≡ 0 in the complement of U. We assume as we may that the constant
matrix A0 in Theorem 2.13 equals the constant matrix in (2.10), since otherwise
we can replace A0 by this matrix. Next we put

(5.16)
Aj = A0 + hj Pδj (A−A0)

Bj = hj Pδj
B, for j = 1, 2, . . . ,

where the convolution is understood to be with respect to each entry in the above
matrices and 0 < δj ≤ (100j)−1. Clearly Aj , Bj ∈ C∞0 (IRn+1) and Aj ≡ A0, B

j ≡
0, in {(X, t) : x0 ≤ (2j)−1 }. Now for fixed j and 0 < δj ≤ (100 j)−1, sufficiently
small, we can verify (2.8) -(2.10), (4.1)(b)− (f), and (5.6)(c) using the assumptions
in Theorem 2.13 for A,B, and well known convergence properties of approximate
identities in Sobolev spaces. For example if

Ejkl = hj
∂
∂x0

Pδj [(A−A0)kl] − hj
∂
∂x0

(A−A0)kl ,
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then Ejkl tends to zero pointwise and in L1(IRn+1) as δj→0 thanks to (2.10) and
(4.1)(c). Also Ejkl has support in Q2ρ(0, 0) ∩ {(X, t) : x0 ≥ (2j)−1}. Choose δj so
small that

‖Ejkl‖L1(IRn+1) ≤ ε30/j
n+1 .

From this inequality we see that the measure |Ejkl|(X, t) dXdt is a Carleson measure
with norm ≤ c(n) ε30. Next we note that

∂
∂x0

Ajkl = Ejkl + ( ∂
∂x0

hj)Pδj (A−A0) + hj
∂
∂x0

Akl

= Ejkl + F jkl + Gjkl .

From (4.1)(f) we find that the measure |F jkl|(X, t) dXdt is a Carleson measure on
U with norm ≤ c(n) ε0. Using (4.1)(d) we see that

Gjkl =
n−1∑
m=0

〈 eklm , ∂
∂xm

(fklm hj) 〉 + gkl − 〈ekl0 , fkl0 〉 ∂
∂x0

hj

Also from (4.1)(d) we get that the measure | 〈ekl0 , fkl0 〉 ∂
∂x0

hj | dXdt is a Carleson
measure with norm ≤ c(n) ε0. From the above display for Gjkl and our observations
on Carleson measures we deduce that (4.1)(e), (f) holds for Ajkl, 0 ≤ k, l ≤ n− 1,
with fklm replaced by fklm hj and gkl replaced by

Ejkl + F jkl + gkl − 〈 ekl0 , fkl0 〉 ∂
∂x0

hj .

Hence Aj , Bj , j = 1, . . . , satisfy (5.6) with ε0 replaced by c(n)ε1/20 . Choosing
ε0 still smaller if necessary we can use Theorem 2.13 for smooth coefficients to
conclude that dωj

dyds (d, x, t + 2d2, ·) ∈ β2(Qd(x, t)) with constants independent of

j. Now we can choose an L2(Qd(x, t)) subsequence of ( dωj

dyds (d, x, t + 2d2, ·))∞1 re-
stricted to Qd(x, t) which converges weakly to k in this space. From Lemma
3.37 and weak convergence it is easily seen that k = dω

dyds (d, x, t + 2d2, ·) where
ω is parabolic measure defined relative to (1.1), A,B. From weak convergence
it follows that dω

dyds (d, x, t + 2d2, ·) ∈ β2(Qd(x, t)) with reverse Hölder constant
c∗ = c∗(ε0, γ1,M,Λ, n). The proof of Theorem 2.13 is now complete. 2

Remark We note that Lemma 3.14 remains valid for sufficiently small ε1 > 0 if
(3.13) is replaced by the assumption that ‖µ1‖ ≤ ε1. The proof of this version
of Lemma 3.14 can be obtained by copying the old proof verbatim except that
whenever (3.16) is used in the old proof one uses instead the fact that µ1 is a
Carleson measure and makes L2(IRn) estimates for certain nontangential maximal
functions. For example if x−1/2

0 u denotes the function (X, t)→x
−1/2
0 u(X, t), where

u is as in Lemma 3.9, then one can estimate I4 in this lemma by using in place of
(3.16) the fact that

N(x−1/2
0 u )(X, t) ≤ cMf(x, t) .

Here

f(x, t) =
(∫ 2r

0

|∇u|2(z0, x, t) dz0

)1/2

.
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The smallness assumptions in Theorem 2.13 can be weakened. Indeed suppose
that A has distributional partials in X, t satisfying

(5.17)
x0 |∇A|(X, t) ≤ Λ

x2
0 |At| (X, t) ≤ ε0

for a.e (X, t) ∈ U and if

dµ21(X, t) = x0 |∇A|2 (X, t) dXdt

dµ22(X, t) = x3
0 |At|2 (X, t) dXdt

then µ21, µ22 are Carleson measures on U with

(5.18)
‖µ21‖ ≤ Λ2

‖µ22‖ ≤ ε20 .

We also assume that eijl , f
ij
l , g

ij have the properties preceding (2.5) when either
i = 0, 0 ≤ j, l ≤ n− 1, or j = 0, 0 ≤ i, l ≤ n− 1, and

(5.19)

∑
i,j

n−1∑
l=0

|eijl |(X, t) ≤ ε0

∑
i,j

n−1∑
l=0

|f ijl |(X, t) ≤ Λ

for almost every (X, t). Moreover if

dµ31(X, t) = [
∑
i,j

(
n−1∑
l=0

x0 |∇eijl |2 ) + |gij | ] (X, t) dXdt

dµ32(X, t) =
∑
i,j

n−1∑
l=0

x−1
0 |f ijl |2 (X, t) dXdt,

then µ31, µ32 are Carleson measures on U with

(5.20)
‖µ31‖ ≤ ε0

‖µ32‖ ≤ Λ .

The conclusion of Theorem 2.13 is still true if ε0 = ε0(γ1,M,Λ, n) > 0 is sufficiently
small and

(+) ‖µ1‖ ≤ ε0 where µ1 is as in (2.1),

(++) A,B satisfy (2.8)-(2.10),

(+++) (5.17)-(5.20) are valid.
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CHAPTER II
ABSOLUTE CONTINUITY AND THE Lp DIRICHLET PROBLEM :

PART 1

1. Introduction

Recall that in chapter I we considered weak solutions u to pde’s of the form

(1.1) Lu = ut −∇ · (A∇u)−B∇u = 0

under the following structure assumptions on A,B.

(1.2) 〈A(X, t)ξ, ξ 〉 ≥ γ1|ξ|2

for some γ1 > 0, almost every (X, t) ∈ U and all n× 1 matrices ξ.

(1.3)

n−1∑
i=0

x0 |Bi| +
n−1∑
i,j=0

|Aij |

 (X, t) < M <∞

for almost every (X, t) ∈ U. For some large ρ > 0,

(1.4) A ≡ constant matrix in U \Qρ(0, 0) .

If
dµ1(X, t) = x0 |B|2(X, t) dXdt,

then µ1 is a Carleson measure on U with

(1.5) ‖µ1‖ ≤ β1 <∞.

Also
dµ2(X, t) = (x0 |∇A|2 + x3

0 |At|2 )(X, t) dXdt,
is a Carleson measure on U with

(1.6) ‖µ2‖ ≤ β2 < ∞ .

Moreover

(1.7) dµ2/dXdt ≤ Λ <∞
for a.e (X, t) ∈ U. Next we assumed whenever 0 ≤ i, j ≤ n− 1,

∂Aij

∂x0
=

n−1∑
l=0

〈 eijl ,
∂
∂xl

f ijl 〉 + gij

in the distributional sense where
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(1.8) [
n−1∑
l=0

|eijl |+ |f ijl | ] (X, t) ≤ Λ <∞

for a.e (X, t) ∈ U and that

dµ3(X, t) = [
n−1∑
i,j=0

(
n−1∑
l=0

x0 |∇eijl |
2 + x−1

0 |f ijl |
2 ) + |gij | ](X, t) dXdt

is a Carleson measure on U with

(1.9) ‖µ3‖ ≤ β3 < ∞.

In Theorem 2.13 of chapter I we showed that if the Carleson norms of the µ’s are
small enough and A is near enough a constant matrix, then the Radon-Nikodym
derivative of parabolic measure with respect to a given point is in a certain L2

reverse Hölder class. In this chapter we remove these restrictions but at the expense
of a further smoothness assumption on A,B. To this end let

dµ̂1(X, t) = ess sup {x0 |B|2(Y, s) : (Y, s) ∈ Qx0/2(X, t) } dXdt,

dµ̂2(X, t) = ess sup {x0 |∇A|2(Y, s) + x3
0 |As|2(Y, s) : (Y, s) ∈ Qx0/2(X, t)} dXdt,

and set
dµ̂3(X, t) = ess sup {[

∑n−1
i,j=0 (

∑n−1
l=0 [(x0 |∇eijl |2 + x−1

0 |f ijl |2 ) + |gij | ](Y, s)

: (Y, s) ∈ Qx0/2(X, t) } dXdt.
With this notation we prove in chapter II,

Theorem 1.10 Let A,B satisfy (1.2)-(1.9) and either (*) or both (**), (***).

(*) (1.5)-(1.9) hold with µi replaced by µ̂i, for 1 ≤ i ≤ 3.

(**) A has distributional second partials and B has distributional first partials
which at (X, t) ∈ U satisfy

n−1∑
i,j=0

x2
0 (| ∂2A

∂xi ∂xj
| +

n−1∑
i=0

(x3
0 | ∂

2A
∂xi∂t

| + x2
0 | ∂B∂xi

| ) + x4
0|∂

2A
∂t2 | + x3

0 | ∂B∂t |) < Λ1 <∞ .

(***) f ijl , g
ij have distributional first partial derivatives and eijl has

distributional second partial derivatives for 0 ≤ i, j ≤ n− 1 which
satisfy at (X, t) ∈ U
n−1∑
i,j=0

(
n−1∑
l=0

x2
0 | ∂∂tf

ij
l | + x0 |∇f ijl | ) + x0 |∇gij | + x2

0 | ∂∂t g
ij |

+
n−1∑
i,j=0

n−1∑
k,m,l=0

x2
0 |

∂2eij
l

∂xm ∂xk
| +

n−1∑
i,j=0

n−1∑
l,m=0

x3
0 |

∂2eij
l

∂xm∂t
| +

n−1∑
i,j=0

n−1∑
l=0

x4
0 |
∂2eij

l

∂t2 | < Λ1.

Then the continuous Dirichlet problem for the pde in (1.1) always has a unique
solution. Moreover, if ω denotes parabolic measure corresponding to (1.1), A,B,
then ω(d, x, t + 2d2, ·) is mutually absolutely continuous with respect to Lebesgue
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measure on Qd(x, t). Also for some p, 1 < p <∞, dω
dyds (d, x, t+2d2, ·) ∈ αp(Qd(x, t))

with

‖ dω
dyds (d, x, t+ 2d2, ·)‖αp(Qd(x,t)) < c∗∗ <∞,

for all (x, t) ∈ IRn, d > 0. Here c∗∗ depends on β1, β2, β3, γ1,M,Λ, n and also pos-
sibly Λ1.

Remark. As usual all partial derivatives of the various vector functions in Theorem
1.10 are taken componentwise. To outline the proof of this theorem suppose that
(*) of Theorem 1.10 is valid and parabolic measure ω corresponding to (1.1), A,B,
exists. In Lemma 4.1 we show that if ξ =

∑3
i=1 µ̂i[(0, d)×Qd(x, t)] is small enough,

say ξ ≤ ε, and if E Borel ⊂ Qd(x, t) is a large enough fraction of Qd(x, t) (depending
on ε), then

(1.11) c ω(d, x, t+ 2d2, E) ≥ 1

for some c = c(ε, γ1,M,Λ, n). To prove (1.11) one first observes from a maximum
principle that it suffices to prove (1.11) with ω replaced by ω̃ and E by E′. Here
E′ is a closed set with E′ ⊂ E and ω̃ is parabolic measure for a certain parabolic
sawtooth, Ω ⊂ U with E′ ⊂ ∂Ω. Now we shall choose Ω in such a way that the
Carleson measures in Theorem 1.10 are ‘ small ’ on Ω ∩ [(0, d/2)×Qd(x, t)]. Next
we extend A,B restricted to the above intersection to functions A1, B1 on U, where
A1, B1 satisfy the hypotheses of Theorem 2.13 of chapter I. Finally we estimate ω̃
using Theorem 2.13 and the parabolic measure corresponding to A1, B1.

In Lemma 2.1 we show that (1.11) is valid without any smallness assumption
on ξ, i.e when 0 < ε < ∞. In this case we shall use an induction type argument
to reduce back to the case of small ξ considered in Lemma 2.1. Again two impor-
tant ingredients in the reduction are comparison lemmas for parabolic measures
(Lemmas 3.22 and 3.33), as well as our ability to extend A,B from certain para-
bolic sawtooths in such a way that the resulting extensions satisfy the hypotheses
of Theorem 2.13. The comparison lemmas mentioned above do not follow readily
from the work of [DJK] because in our lemmas one of the measures need not be
doubling.

To show that (1.11) for 0 < ξ < ∞ implies Theorem 1.10 we note that if µ̂i
are Carleson measures, 1 ≤ i ≤ 3, then from from the above discusssion, (1.11)
holds whenever d > 0, (x, t) ∈ IRn with constants independent of Qd(x, t). Second
we observe that if we knew ω(d, x, t+ 2d2, ·) was a doubling measure, then it would
follow from the above remark that Theorem 1.10 is true (see [CF]). Unfortunately
we have been unable to prove that ω is doubling, primarily because the proof seems
to rely on proving some basic estimates near ∂U similar to those in section 3 of
chapter I for certain solutions to the adjoint pde corresponding to (1.1). We have
in fact been unable to obtain any meaningful boundary estimates for the adjoint
pde. As a consequence we are unable to use the method in [FS] to get parabolic
doubling when the Carleson norms in (1.5), (1.6), (1.9) are large. To overcome this
possible lack of doubling we show in Lemma 3.6 that (1.11) implies the conclusion
of Theorem 1.10. The proof of Theorem 1.10 is given in sections 2, 3, and 4. For
more discussion concerning doubling and also possible generalizations of this theo-
rem we refer the reader to the remark at the end of section 4. In section 2 we also
point out that one corollary of Theorem 1.10 is the following theorem of [LM, ch
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3] mentioned in section 1 of chapter I.

Corollary 1.12 Let ψ be as in (1.3), (1.4) of chapter I with compact support in
IRn and put Ω = {(x0 + ψ(x, t), x, t) : (X, t) ∈ U }. Let ω be parabolic measure
corresponding to the heat equation in Ω and let ρ be as in (1.6) of chapter I. Put
ω̂(X, t, E) = ω(ρ(X, t), ρ(E)) whenever (X, t) ∈ U and E ⊂ IRn is a Borel set.
There exists p, 1 < p <∞, such that dω̂

dyds (d, x, t+ 2d2, ·) ∈ βp(Qd(x, t)) with

‖ dω̂
dyds (d, x, t+ 2d2, ·)‖βp(Qd(x,t)) < c+ <∞,

for all (x, t) ∈ IRn, d > 0, where c+ depends only on a1, a2 and n.

Remark. 1) Corollary 1.12 is stated in terms of Muckenhoupt weights in [LM, ch 3]
and for ω rather than ω̂. However both statements are easily seen to be equivalent.
To prove Corollary 1.12 we essentially need only show that a solution to the heat
equation composed with the mapping ρ defined in (1.6) of chapter I is a solution
in U to a pde satisfying the conditions of Theorem 1.10.
2) The proof of [LM] for absolute continuity of parabolic measure corresponding to
the heat equation in a time-varying domain relies heavily on Lp estimates for some
complicated singular integral operators. We shall completely avoid using singular
integral theory.
3) As another application of Theorem 1.10 we show in section 4 that a certain
Lq(IRn) Dirichlet problem has a solution. More specifically, we prove

Theorem 1.13 Let A,B, p be as in Theorem 1.10 and put q0 = p/(p − 1). If
q0 ≤ q < ∞ and f ∈ Lq(IRn) with compact support, then there exists u a weak
solution to (1.1) with

(I) lim
(Y,s)→(x,t)

u(Y, s) = f(x, t)

for almost every (x, t) ∈ IRn where the limit is taken through (Y, s) ∈ Γ(x, t). Also
Nu ∈ Lq(IRn) and

(II) ‖Nu‖Lq(IRn) ≤ ĉ ‖f‖Lq(IRn)

where ĉ has the same dependence as c∗∗ in Theorem 1.10. u is the unique weak
solution to (1.1) with properties (I) and (II).

In Theorem 1.13, N is the nontangential maximal function defined as in (2.14) of
chapter I. In the elliptic case we can prove stronger versions of Theorems 1.10, 1.13.
To do so define µ̂i, i = 1, 2 as above Theorem 1.10 with (X, t), dXdt replaced by
X, dX (so As ≡ 0).

In chapter III, section 4, we shall outline the proof of the following two theorems.

Theorem 1.14 Let A = A(X), B = B(X) satisfy (1.2) - (1.7) and either (1.5) -
(1.7) with µi replaced by µ̂i, i = 1, 2 or (**) of Theorem 1.10 with (X, t) replaced
by X in Û = {X : x0 > 0}. Then the continuous Dirichlet problem for the pde

(+) ∇ · (A∇u) +B∇u = 0

in Û always has a unique weak solution. If ω denotes elliptic measure corresponding
to (+), then ω(d, x, ·) is mutually absolutely continuous with respect to Lebesgue
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measure on Bd(x) = {y : |y − x| < d }. Also for some p, 1 < p < ∞, dωdy (d, x, ·) ∈
β∗p(Bd(x)) with

‖dωdy (d, x, ·)‖β∗p(Bd(x)) < c++ <∞,

for all x ∈ IRn−1, d > 0. Here c++ depends on the constants in (1.2)-(1.7) and
possibly also (**) of Theorem 1.10. Moreover β∗p(Bd(x)) stands for a strong re-
verse Hölder class defined in the same way as βp(Qd(x, t)) with Qd(x, t) replaced
by Bd(x).

Theorem 1.15. Let A,B, p be as in Theorem 1.14 and put q0 = p/(p − 1). If
q0 ≤ q < ∞ and f ∈ Lq(IRn−1) with compact support, then there exists u a weak
solution to (+) in Û with

(I) lim
Y→x

u(Y ) = f(x)

for almost every x ∈ IRn−1 where the limit is taken through Y ∈ Γ̃(x). Also Nu ∈
Lq(IRn) and

(II) ‖Nu‖Lq(IRn) ≤ c̄ ‖f‖Lq(IRn)

where c̄ has the same dependence as c++ in Theorem 1.14. u is the unique weak
solution to (+) with properties (I) and (II).

Remark. 1) We note that Theorem 1.14 has already been proved by Kenig and
Pipher (oral communcation of Kenig) using a different method than ours. In fact
an earlier version of this theorem required the integration by parts hypothesis (1.9)
and (***). The new idea which allows us to do away with the integration by parts
hypothesis (essentially that it suffices to consider A lower triangular) is garnered
from reading [KKPT].
2) The cone Γ̃(x) is defined similar to Γ(x, t) in Theorem 1.13 and Nu is the non-
tangential maximal function of u relative to Γ̃(x).
3) In chapter III, section 4, we shall show (see Lemma 4.6) that ω as above is a
doubling measure. Thus in the elliptic case we can show dω

dyds (d, x, ·) is in a strong
reverse Hölder class.

2. Preliminary Reductions for Theorem 1.10

To begin the the proof of Theorem 1.10 for given Qd(x, t) let µi, 1 ≤ i ≤ 3, be
defined as in (1.5)-(1.9) in (0, d)×Qd(x, t) and set

dµ∗(Z, τ) =
3∑
i=1

dµi (Z, τ) = L(Z, τ) dZdτ

when (Z, τ) ∈ (0, d)×Qd(x, t), where

L(Z, τ) = [ z0 |B|2 + z0 |∇A|2 + z3
0 |∂A∂τ |

2

+
n−1∑
i,j=0

(
n−1∑
l=0

z0 |∇eijl |2 + z−1
0 |f ijl |2 ) + |gij | ] (Z, τ).
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Also set

K(Z, τ) = ess sup {L(Y, s) : (Y, s) ∈ Qz0/2(Z, τ) ∩ [(0, d)×Qd(x, t)] }

when (Z, τ) ∈ (0, d)×Qd(x, t) and put

dµ′(Z, τ) = K(Z, τ)dZdτ

on (0, d)×Qd(x, t). With this notation we prove a key lemma.

Lemma 2.1. Let A,B satisfy (1.2)-(1.4) in U and suppose for some (x, t) ∈
IRn, d > 0, ε2 > 0 small that

(i) ∂
∂x0

Aij =
n−1∑
l=0

〈 eijl ,
∂
∂xl

f ijl 〉 + gij on (0,∞)×Qd(x, t) in the

distributional sense where eijl , f
ij
l are vector functions with

distributional partial derivatives on (0,∞)×Qd(x, t) .

(ii) (1.7), (1.8) are valid at points in (0,∞)×Qd(x, t).

(iii) µ̃[(0, d)×Qd(x, t)] ≤ ε2 |Qd(x, t)| where either (a) µ̃ = µ′ or (b) µ̃ = µ∗

and (**), (***) of Theorem 1.10 hold with U replaced by (0, d)×Qd(x, t).

If ε2, 0 < ε2 < min{ε1, ε0}, is small enough (depending only on γ1,M, n,Λ and
possibly Λ1), there exists η0 = η0(ε2), η1 = η1(ε2), 0 < η0, η1 < 1/2, such that
the following statement is true. Let u, 0 ≤ u ≤ 2, be a solution to (1.1) in U,
corresponding to A,B as above, which is continuous on Ū . If u ≡ 1 on some closed
set E ⊂ Qd(x, t) with

|E| ≥ (1− η0) |Qd(x, t)|,
then

u(d, x, t+ 2d2) ≥ η1.

Proof: We emphasize that no Carleson measure assumptions are made on µ̃ in
Lemma 2.1. We write dµ̃(Z, τ) = H(Z, τ) dZdτ for (Z, τ) ∈ (0, d) × Qd(x, t) and
note that H ≡ K when (a) holds while H ≡ L when (b) of Lemma 2.1 is valid.
Next let F be closed, F ⊂ Qd(x, t) and set

δ = ε
1/[1000(n+2)]
2 ,

σ̂(z, τ, F ) = inf{|z − y|+ |s− τ |1/2 : (y, s) ∈ F },

Ω̂ = {(Z, τ) ∈ U : z0 > δ4 σ̂(z, τ, F ) },

A0 = 4
d |Qd(x,t)|

∫
(d/4,d/2)×Qd(x,t)

A(Z, τ) dZdτ,

where the integral is taken componentwise. We shall show for ε2 > 0 sufficiently
small that there exists F as above with

(2.2) |Qd(x, t) \ F | ≤ δ |Qd(x, t)|
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and

(2.3)

(+)
∫ d/2

δ4 σ̂(z,τ,F )

L(z0, z, τ) dz0 ≤ δ100 for a.e (z, τ) ∈ Qd(x, t),

(++) z0 L(Z, τ) ≤ δ40, for (Z, τ) ∈ Ω̂ ∩ [(0, d/2)×Qd(x, t)],

(+ + +) |A−A0|(Z, τ) ≤ δ, for (Z, τ) ∈ Ω̂ ∩ [(0, d/2)×Qd(x, t)].

To prove (2.2), (2.3), we put ε = ε2 and temporarily allow ε to vary. Put

k(z, τ) =
∫ d

0

H(z0, z, τ) dz0, (z, τ) ∈ Qd(x, t),

and set k ≡ 0 otherwise in IRn \Qd(x, t). Note from the assumptions in Lemma 2.1
that ∫

Qd(x,t)

k dzdτ ≤ ε |Qd(x, t)|.

From this remark and weak type estimates we see there exists F1 ⊂ Qd(x, t), with
F1 closed and

(2.4)
|Qd(x, t) \ F1| ≤ ε1/2 |Qd(x, t)|

Mk(z, τ) ≤ c(n) ε1/2, (z, τ) ∈ F1,

where as usual Mk(z, τ) is the Hardy - Littlewood maximal function of k taken
with respect to rectangles containing (z, τ) of length ρ, ρ2 in the space and time
variables, respectively. Again from weak type estimates we see for ε small enough
that there exists F2 ⊂ F1, F2 closed such that

(2.5)
|Qd(x, t) \ F2| ≤ ε1/4 |Qd(x, t)|,

M(χ)(z, τ) ≤ c(n) ε1/4, (z, τ) ∈ F2,

where χ denotes the characteristic function of Qd(x, t) \ F1.
We assume as we may, thanks to (1.7), that A is locally Lipschitz continuous in

U. We claim that if T = ( δ4d, d/2 )×Qd(x, t), then

(2.6) sup
(Z,τ)∈T

|A − A0 |(Z, τ) ≤ δ2

for 0 < δ < δ0, where δ0 depends only on γ1,M,Λ, and possibly Λ1. To prove this
claim observe from (2.4) that if (a) of Lemma 2.1 holds, then for (Z, τ) ∈ T with
(z, τ) ∈ F1, we have

(2.7)

ess sup { y0 |∇A|2(Y, s) + y3
0 | ∂∂t A |

2(Y, s) : (Y, s) ∈ Qz0/16(Z, τ) }

≤ 2 z−1
0

∫ 3z0/2

z0

H(ẑ0, z, τ) dẑ0 ≤ c(n) ε1/2 /(δ4 d).

Since
|Qd(x, t) \ F1| ≤ ε1/2 2n dn+1 ≤ c(n) (δ500 d )n+1

we deduce first for ε small enough that T is contained in the union of rectangles
of the form Qz0/16(Z, τ), with (Z, τ) ∈ T and (z, τ) ∈ F1. Second we deduce from
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(2.7) that for almost every (Z, τ) ∈ T, we have

z0 |∇A|2(Z, τ) + z3
0 | ∂∂τ A |

2(Z, τ) ≤ c(n) ε1/2 /(δ4 d).

Now suppose that (b) of Lemma 2.1 is valid. Then we assume, as we may, thanks
to (**), that ∇A, ∂

∂tA, are locally Lipschitz continuous in (0, d) × Qd(x, t). From
weak type estimates and (2.4) we find for fixed (ẑ, τ̂) ∈ F1, and 0 < ẑ0 < d/2, that

(2.8) ẑ0 |∇A|2(Ẑ, τ̂) + ẑ3
0 | ∂∂τ A |

2(Ẑ, τ̂) ≤ c(n) ε1/4 /d,

except for a set of ẑ0 ∈ (0, d/2) of measure at most ε1/4 d. From (2.4) we get that
the Lebesgue n + 1 measure of the set ⊂ T where (2.8) does not hold is at most
c ε1/4 dn+2. Thus given (Z, τ) ∈ T there exists (Ẑ, τ̂) for which (2.8) holds and with

(2.9) |Ẑ − Z| + |τ̂ − τ |1/2 ≤ c ε
1

4(n+2) d.

Using (2.8), (2.9), and smoothness assumption (**) on the second derivatives of A,
we find that at (Z, τ) ∈ T

(2.10) z0 |∇A|2 + z3
0 | ∂∂τ A |

2 ≤ c (ε1/4/ d + ε
1

4(n+2) d /z2
0 ) ≤ δ200 /d

for ε = ε(M,Λ,Λ1, n) > 0 small enough. In either case we conclude that (2.10) is
valid when (Z, τ) ∈ T. Using (2.10) and basic Sobolev estimates we find that claim
(2.6) is true.

Next we show for given ρ > 0 that the function (z, τ)→A(ρ, z, τ) converges as
ρ→0 in L2(Qd(x, t)) to a function denoted A(0, ·) with

(2.11)
∫
Qd(x,t)

(A(0, z, τ) − A0)2 dz dτ ≤ c δ4 |Qd(x, t)|,

where c = c(M,Λ,Λ1, n). To prove this inequality let 0 < ρ1 < ρ2 ≤ d/2, and
Qr(y, s) ⊂ Qd(x, t). Now for almost every ρ1, ρ2, r with respect to one dimensional
Lebesgue measure and pairs (i, j), with 0 ≤ i, j ≤ n− 1, we see from assumption
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(i) of Lemma 2.1 that
(2.12)

I =
∫
Qr(y,s)

(Aij(ρ2, z, τ) − Aij(ρ1, z, τ) )2 dz dτ

= 2
∫ ρ2

ρ1

∫
Qr(y,s)

(Aij(ρ, z, τ)−Aij(ρ1, z, τ)) ∂
∂ρAij(ρ, z, τ) dzdτdρ

= 2
∫ ρ2

ρ1

∫
Qr(y,s)

(Aij(ρ, ·)−Aij(ρ1, ·))[ (
n−1∑
l=0

〈 eijl ,
∂
∂zl
f ijl 〉) + gij ](ρ, ·) dzdτdρ

= 2
∫ ρ2

ρ1

∫
Qr(y,s)

(Aij(ρ, ·)−Aij(ρ1, ·))[−(
n−1∑
l=0

〈 ∂
∂zl
eijl , f

ij
l 〉) + gij ](ρ, ·)dzdτdρ

− 2
∫ ρ2

ρ1

∫
Qr(y,s)

n−1∑
l=0

∂
∂zl

[Aij(ρ, ·)−Aij(ρ1, ·)] 〈 eijl , f
ij
l 〉 (ρ, ·) dzdτdρ

+
∫
∂[(ρ1,ρ2)×Qr(y,s)]

(Aij(ρ, ·)−Aij(ρ1, ·))[
n−1∑
l=0

〈 eijl , f
ij
l 〉 〈 el , ν 〉](ρ, ·)dξ

= S1 + S2 + S3.

In the last integral ξ denotes surface area, ν is the outer unit normal to (ρ1, ρ2)×
Qr(y, s), and el is a unit vector parallel to the xl axis. Using Cauchy’s inequality,
(1.3), (1.8) and (2.4) we deduce that if Qr(y, s) ∩ F1 6= ∅, then

(2.13) |S1| + |S2| ≤ c

∫
[ρ1,ρ2]×Qr(y,s)

|H|(Z, τ)dZ dτ ≤ c ε1/2 |Qr(y, s)|.

From (2.13) and integrability of H we get

(2.14) |S1| + |S2|→0 as ρ1, ρ2→0

outside a set of linear measure zero. Also, from (1.8) we have

(2.15) |S3| ≤ crn (ρ2 − ρ1 ) + c

2∑
k=1

∫
Qr(y,s)

|f ij0 | (ρk, z, τ) dz dτ.

If f(ρ) =
∫
Qr(y,s)

|f ij0 | (ρ, z, τ) dz dτ, we shall show that

(2.16)
(α) f(ρ)→ 0 as ρ→0 outside a set of linear measure zero ,

(β) f(ρ) ≤ cε1/6 rn+1,

for some c = c(M,Λ,Λ1, n) provided F1 ∩Qr(y, s) 6= ∅ and 0 < ρ < d/2. To prove
(2.16) first assume that (a) of Lemma 2.1 holds. Then from Cauchy’s inequality we
see for almost every ρ ∈ (0, d/2) that

f(ρ)2 ≤ c rn+1

∫ 3ρ/2

ρ

∫
Qr(y,s)

H(z0, z, τ)dz0 dz dτ = I1 .
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Now, I1 ≤ cε1/2 r2n+2 independently of ρ thanks to (2.4). Thus (2.16) holds in this
case. If (b) holds, then from (***) of Theorem 1.10 we see for small η > 0 that
|f(ρ)− f(ρ′)| ≤ cηrn+1 when |ρ−ρ′| ≤ ηρ . Using this fact and arguing as above,
we get

f(ρ)2 ≤ cη2 r2n+2 + c η−1 rn+1

∫ (1+η)ρ

ρ

∫
Qr(y,s)

H(z0, z, τ)dz0dzdτ.

Since H is integrable we conclude first that lim sup
ρ→0

f(ρ)2 ≤ c r2n+2 η2 and second

from arbitrariness of η that the limit in (2.16) exists. Finally choosing η = ε1/6 in
the above inequality and using (2.4) we get (2.16).

We note that I in (2.12) is continuous as a function of ρ1, ρ2 as follows from
(1.7). Using this remark, (2.14), (2.15), and (2.16)(α) with r = d, we conclude that
A(ρ, ·)→A(0, ·) in the norm of L2(Qd(x, t)). Moreover, letting ρ2 = δ4 d, r = d and
ρ1→0 in (2.12) we deduce from (2.13), (2.15), (2.16)(β), (2.6) that (2.11) holds for
δ sufficiently small. From (2.11) and the Hardy - Littlewood maximal theorem we
get the existence of F ⊂ F2, F closed with

(2.17)
|Qd(x, t) \ F | ≤ δ |Qd(x, t)|

M [(A(0, ·) − A0)2 ] ≤ c δ3, (z, τ) ∈ F,

where c has the same dependence as the constant in (2.11). Clearly (2.2) holds
for F. Next we prove (2.3) (+). Let (z, τ) ∈ Qd(x, t) and put r = σ̂(z, τ, F ). Then
from (2.5) we see there exists (z1, τ1) ∈ F1 with |z − z1| + |τ1 − τ |1/2 ≤ δ200 r for ε
small enough. If (a) of Lemma 2.1 is valid, then from (2.4) we find for almost every
(z, τ) ∈ Qd(x, t) with respect to Lebesgue n measure that∫ d/2

δ4r

L(z0, z, τ) dz0 ≤
∫ d/2

δ4r

H(z0, z1, τ1) dz0 ≤ cε1/2.

If (b) of Lemma 2.1 holds, we use (∗∗), (∗ ∗ ∗) to get that∫ d/2

δ4r

L(z0, z, τ) dz0 ≤
∫ d/2

δ4r

L(z0, z1, τ1) dz0

+ c δ200 r

∫ d/2

δ4r

z−2
0 dz0 ≤ δ100

for δ > 0 sufficiently small. Thus in either case (2.3) (+) is valid. To prove (2.3)
(++) for L we argue as in (2.7)-(2.10). Indeed, in case (a), one gets (2.3) (++)
by essentially repeating the above argument. In case (b) we use (2.3) (+), weak
type estimates, and (**), (***) of Theorem 1.10 to get (2.3) (++). To prove (2.3)
(+++) let (z1, τ1) in Qd(x, t) ∩ F. Then using (2.17), (2.12)-(2.16) with (y, s) =
(z1, τ1), ρ2 = 2nδ4r, ρ1 = 0, we find for 0 < r ≤ d that∫

Qr(z1,τ1)∩Qd(x,t)

[A(2nδ4r, y, s)−A0]2 dyds ≤ c δ3 rn+1.

Since {2nδ4r} × Qr(z1, τ1) ⊂ Ω̂ we conclude from (2.3) (++) that for some c =
c(M,Λ,Λ1, n),

(2.18) |A−A0| ≤ cδ3/2 on [{2nδ4r} ×Qr(z1, τ1)] ∩ [(0, d/2)×Qd(x, t)].
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If (Z, τ) ∈ Ω̂ and z0 ≥ δ4d, then (2.6) implies (2.3)(+++). Otherwise we can choose
(z1, τ1) ∈ F with

|z − z1| + |τ − τ1|1/2 = σ̂(z, τ, F )
and put 2nδ4r = z0.Using (2.18) and possibly also (2.3) (++) we obtain (2.3)(+++)
for δ sufficiently small.

Armed with (2.2), (2.3) we are now ready to use Theorem 2.13, Lemma 3.37,
and Lemma 3.9 of chapter I to complete the proof of Lemma 2.1. Let E ⊂ Q̄ρ(x, t)
be closed and let σ̂ = σ̂(·, E) be the parabolic distance function defined above (2.2).
We claim there exists a regularized distance function σ(·, E) ∈ C∞0 (Q4d(x, t)) with
the following properties:

(2.19)

(a) c−1 σ̂ ≤ σ ≤ c σ̂, on Q2d(x, t),

(b) |σ(x, t)− σ(y, s)| ≤ c [ |x− y| + |s− t|1/2 ], (x, t), (y, s) ∈ IRn,

(c) σ has distributional partial derivatives in x, t on IRn \ E and
σ̂l−1 | ∂

l

∂xl
k

σ|(x, t) + σ̂2l−1 | ∂
l

∂tl
σ|(x, t) ≤ c. for (x, t) ∈ IRn \ E,

0 ≤ k ≤ n− 1 and l a positive integer.

Proof: In (2.19), c = c(l, n). The construction of a regularized distance function
in the usual Euclidean case is more or less standard (see [St, ch 6]). The only
difference in the parabolic case is that one uses a partition of unity adapted to a
Whitney decomposition of IRn \E into rectangles (of side length ρ, ρ2 in the space
and time variables) rather than cubes. 2

Next let ξ̂ ∈ C∞(IR), 0 ≤ ξ̂ ≤ 1, with supp ξ̂ ⊂ (1/2,∞), ξ̂ ≡ 1 on (1,∞), and
|ξ̂′| ≤ 100. For (Z, τ) ∈ U let

ξ(Z, τ) ≡


ξ̂
(

z0
δ3σ(z,τ,F )

)
for σ(z, τ, F ) 6= 0

= 1 when σ(z, τ, F ) = 0.

We note that ξ ∈ C∞(U) and if (Z, τ) ∈ U, then

(2.20)
zl0 | ∂

l

∂zl
k

ξ(Z, τ)| + z2l
0 | ∂

l

∂τ l ξ(Z, τ)| ≤ c(l, n),

supp [| ∂
l

∂zl
k

ξ|+ | ∂
l

∂τ l ξ|] ⊂ {(Z, τ) ∈ U : δ3 σ(z, τ) ≤ 2z0 ≤ 2δ3σ(z, τ) },

for l a positive integer and 0 ≤ k ≤ n − 1, thanks to (2.19)(c). Also let θ ∈
C∞0 [(−d/2, d/2)×Qd/2(x, t)], 0 ≤ θ ≤ 1, with θ ≡ 1 on (−d/4, d/4)×Qd/4(x, t) and

d ‖∇θ‖L∞(IRn+1) + d2 ‖ ∂∂t θ‖L∞(IRn+1) ≤ c(n) .

Next define A1, B1 on U by

A1 = (A − A0) θ2 ξ2 + A0

B1 = B θ ξ

where A0 is the constant matrix in (2.3). We claim that A1, B1 satisfy the hy-
potheses of Theorem 2.13 for δ = δ(γ1,M,Λ,Λ1, n, ε1) small enough. This claim is
easily verified using (2.19), (2.20), and (2.3). For completeness we prove the most
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difficult assertion, (1.9) for A1. For fixed (i, j), 0 ≤ i, j ≤ n − 1, observe that at
(Z, τ) ∈ (0,∞)×Qd(x, t),

∂
∂z0

(A1)ij = (A−A0)ij θ2 ∂
∂z0

ξ2 + (A−A0)ij( ∂
∂z0

θ2) ξ2 + ( ∂
∂z0

(A−A0)ij)θ2ξ2

= (A−A0)ij θ2 ∂
∂z0

ξ2 + (A−A0)ij( ∂
∂z0

θ2) ξ2 + θ2ξ2(gij +
n−1∑
l=0

〈 eijl
∂
∂zl
f ijl 〉 )

= g̃ij +
n−1∑
i=0

〈 ẽlij ∂
∂zl
f ijl 〉

where
ẽijl = δ2eijl θ ξ

f̃ ijl = δ−2 f ijl θ ξ

g̃ij = (A−A0)ij θ2 ∂
∂z0

ξ2 + (A−A0)ij ( ∂
∂z0

θ2) ξ2

+ gij θ2 ξ2 −
n−1∑
l=0

〈 eijl , f
ij
l 〉 ∂

∂zl
(θξ) .

Using (2.3), (2.19), and (2.20), it is easily checked that µ3 as in (1.9) has norm
≤ c(n) δ. Thus A1, B1 satisfy the hypotheses of Theorem 2.13 for δ sufficiently small
(depending on ε0).

We now prove Lemma 2.1. Let η0 = δ and note from (2.2) that if E ⊂ Qd(x, t)
is closed with |E| ≥ (1 − δ) |Qd(x, t)|, then |E ∩ F | ≥ (1 − 2δ) |Qd(x, t)|. Thus
if χ1 denotes the characteristic function of Qd(x, t) \ (E ∩ F ), and G = {(z, τ) :
M(χ1)(z, τ) ≤ δ1/2 }, then for δ sufficiently small

|Qd(x, t) \G| ≤ 1
2 |Qd/8(x, t)|.

Let ω1 be parabolic measure corresponding to A1, B1. From Theorem 2.13 we
see that if Qr(y, s) ⊂ IRn, then dω1

dyds (r, y, s + 2r2, ·) ∈ β2(Qr(y, s)) with reverse
Hölder constant ≤ c∗(ε0, γ1,M,Λ, n). Using this fact it is not difficult to show that
ω1(r, y, s + 2r2, ·) is an A∞ weight with respect to Lebesgue measure on Qr(y, s)
where rectangles are used instead of cubes in the usual definition(see [CF]). Also
from Lemma 3.37 of chapter I, we have c ω1(r, y, s + 2r2, Qr(y, s)) ≥ 1. Next let
ψ̃(z, τ) = δ2 σ(z, τ, F ) and set

ρ̃(Z, τ) = (z0 + Pz0 ψ̃(z, τ), z, τ), (Z, τ) ∈ U,
where P is as in section 1 of chapter I. We note from (2.19) and the remark after
Lemma A in section 1 of chapter I that if δ is small enough, then ρ̃ maps U one to
one and onto a region Ω̃ with

(2.21) A1 = A, B1 = B, in Ω̃ ∩ [(0, 3d/16)×Qd/4(x, t)].

Let v be a weak solution to (1.1) corresponding to A1, B1. We assert for δ sufficiently
small that v ◦ ρ̃ is a weak solution to (1.1) corresponding to some A2, B2 where
A2, B2 satisfy (1.2)-(1.4) and (3.13) of chapter I. Thus our assertion imples that
there exists parabolic measure ω2 corresponding to (1.1), A2, B2 and Lemma 3.37
of chapter I holds for ω2. We reserve the proof of this assertion until after (2.28).
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Let u2 be the solution to the continuous Dirichlet problem for (1.1), A2, B2, with
u2 ≡ u ◦ ρ̃ on ∂U. Existence of u2 follows from the above assertion. Next we use
this assertion to show that for some ĉ1 = ĉ1(γ1,M,Λ,Λ1, n) ≥ 1 we have

(2.22) ĉ1 u2(r, y, s+ 2r2) ≥ ĉ1 ω2(r, y, s+ 2r2, Qr(y, s) ∩ E ∩ F ) ≥ 1.

whenever (y, s) ∈ Qd/8(x, t) ∩ G and 0 < r ≤ d/16. To prove (2.22) first choose
E′ ⊂ E ∩ F ∩Qr(y, s), with E′ closed and

(2.23) |Qr(y, s) \ E′| ≤ 2|Qr(y, s) \ (E ∩ F )| ≤ 2 δ1/2 |Qr(y, s)|,

where the last inequality follows from the definition of G. We divide Qr(y, s) \ E′
into a sequence of closed rectangles {Q̄j} with disjoint interiors and whose side
lengths in the space direction are proportional to their parabolic distance from E′.
Let

ω∗(Z, τ,K) = ω1( ρ̃(Z, τ),K), K = Borel set ⊂ IRn.

Then From Lemma 3.37(α) of chapter I for ω1 and Harnack’s inequality we see that
if Qj = Qr̂(ŷ, ŝ), then c ω∗(·, Qj) ≥ 1 on Qr̂/2(ŷ, ŝ). Also ω∗(·, Qj) satisfies (1.1)
relative to A2, B2. Using these facts, the definiton of ω2, and Lemma 3.37(β) for
ω2 we find that for each j

c∗ ω∗(r, y, s+ 2r2, Q̄j) ≥ ω2(r, y, s+ 2r2, Q̄j),

where c∗ has the same dependence as ĉ1. Now using this inequality, the A∞ property
of ω1, (2.23), and Lemma 3.37 for ω2 we get for δ > 0 small enough that

ω2(r, y, s+ 2r2,
⋃

Q̄i) ≤ c∗ ω∗(r, y, s+ 2r2,
⋃

Q̄i) ≤ 1
2 ω2(r, y, s+ 2r2, Qr(y, s)).

Thus
2ω2(r, y, s+ 2r2, E′) ≥ ω2(r, y, s+ 2r2, Qr(y, s)) ≥ c−1

for some c having the same dependence as ĉ1, thanks to Lemma 3.37(α). Clearly
this inequality implies the righthand inequality in (2.22). The lefthand inequality
in (2.22) follows from the definition of ω2 and the fact that u2 ≡ 1 on E ∩ F.

Next we note from the chain rule and (2.21) that u ◦ ρ̃, u2 satisfy the same pde
in (0, 3d/16)×Qd/4(x, t) for δ sufficiently small (see (2.28) for computations). Also
these two functions agree on ∂U by our construction. From this observation, the
above assertion, and the remark after (3.22) of chapter I we see that Lemma 3.9
of chapter I can be applied for ε2 sufficiently small with u replaced by u2 − u ◦ ρ̃.
Using this lemma we deduce the existence of ĉ2 ≥ 8 with the same dependence as
ĉ1 such that if r = d/ĉ2, and (y, s) ∈ G ∩Qd/8(x, t), then

(2.24) ĉ1|u2 − u ◦ ρ̃|(r, y, s+ 2r2) ≤ 1/2.

Using (2.22), (2.24), we find that ĉ1 u ◦ ρ̃(r, y, s+ 2r2) ≥ 1/2. From this inequality
and Harnack’s inequality we conclude first that c u(d, x, t+ 2d2) ≥ 1 for some pos-
itive c depending only on ε2, γ1,M,Λ,Λ1, and second that Lemma 2.1 is true once
we prove the assertion following (2.21).

Proof of Corollary 1.12. We prove the above assertion and Corollary 1.12 to-
gether since both follow easily from studying how (1.1) is transformed under the
Dahlberg-Kenig-Stein transformation mentioned in section 1. Let ψ : IRn→IR have
compact support and satisfy

(2.25) |ψ(x, t)− ψ(y, s)| ≤ a1 ( |x− y| + |s− t|1/2 ),
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for some a1, 0 < a1 <∞. As in section 1 we put

ρ(X, t) = (x0 + Pγx0 ψ(x, t), x, t)

when (X, t) ∈ U and note from (2.25), Lemma A in section 1, that γ = γ(a1, n) > 0
can be chosen so small that

(2.26) | ∂
∂x0

Pγx0 ψ(X, t) | ≤ 1/2

whenever (X, t) ∈ U. Fix γ > 0 to be the largest number so that (2.26) holds and
set

Ω = {ρ(X, t) : (X, t) ∈ U}
First from properties of parabolic approximate identities we see that ρ has a con-
tinuous extension to ∂U defined by

ρ(x, t) = (ψ(x, t), x, t), (x, t) ∈ IRn,

and second from (2.26) we see that ρ maps Ū one to one and onto Ω̄. Let h̃ be
a local solution to (1.1) in Ω corresponding to Ã, B̃ (for terminology see the dis-
cussion following (3.2) of chapter I) where Ã, B̃ satisfy (1.2)-(1.4) in Ω. Then a
straightforward calculation shows that h = h̃ ◦ ρ is a weak solution in Ū to (1.1)
corresponding to A,B. Here A,B are defined as follows. For (X, t) ∈ U let

λ (X, t) =
(

1 + ∂
∂x0

Pγx0ψ
)−1

(x, t)

and let C(X, t) = (cij(X, t)), (X, t) ∈ U, be the n by n matrix function with entries
at (X, t),

(2.27)

c00 = λ,

ci0 = −λ ∂
∂xi

Pγx0ψ, 1 ≤ i ≤ n− 1,

cii = 1, 1 ≤ i ≤ n− 1,

cij = 0 when i 6= j and 1 ≤ j ≤ n− 1, 0 ≤ i ≤ n− 1 .

Then from the chain rule we find first that at (X, t)

∇h̃ ◦ ρ = C∇h
and second that

(2.28)
A = Cτ (Ã ◦ ρ)C

B = (B̃ ◦ ρ)C + λ (∇ ∂
∂x0

Pγx0ψ )τ A + λ ∂
∂tPγx0ψ e0.

Here Cτ denotes the transpose of C, e0 = (1 . . . 0) is a 1 by n row matrix, and
the gradient of the above function is an n by 1 column matrix. We now prove the
assertion following (2.21). Let Ã = A1, B̃ = B1. Replacing ψ, ρ, h̃, h by ψ̃, ρ̃, v, v ◦
ρ̃, we see that (2.28) holds with A2 = A,B2 = B. Using this fact, (2.19), the
remark after Lemma A in section 1 of chapter I and the fact that A1, B1 satisfy the
hypotheses of Theorem 2.13, it is easily checked that A2, B2 satisfy (1.2)-(1.4) and
(3.13) of chapter I. The proof of our assertion and Lemma 2.1 are now complete. 2

To prove Corollary 1.12, let ψ satisfy in addition to (2.25) the condition that

(2.29) ‖Dt
1/2ψ‖∗ ≤ a2.



PARABOLIC OPERATORS WITH SINGULAR DRIFT TERMS 59

Let ω be parabolic measure corresponding to the heat equation in Ω. Given E ⊂ IRn

a Borel set put
ω̂(X, t, E) = ω(ρ(X, t), ρ(E)), (X, t) ∈ U .

Then ω̂ is parabolic measure corresponding to (1.1) for A,B as defined in (2.28)
with Ã equal to the n by n identity matrix and B̃ equal to the 1 by n zero matrix.
We shall show that this A,B satisfy the hypotheses of Theorem 1.10. To do so we
note from (2.25)-(2.29) and Lemma A in section 1 of chapter I that (1.2)-(1.4) are
valid. Also we have
(2.30)
(a) If α = (α0, . . . , αn−1) is a multi index and k a nonnegative integer, then

‖x−|α|−2k
0

∂|α|+k

∂xα∂tk
cij‖L∞(U) ≤ c(a1, a2, |α|, k, n), <∞, 0 ≤ i, j ≤ n− 1,

(b) dν(X, t) = [x0 |∇cij |2 + x3
0 | ∂∂tcij |

2 ] (X, t) dXdt is a Carleson measure
on U with ‖ν‖ ≤ c(a1, a2),

(c) ∂
∂x0

c00 = −λ2 ∂2

∂x2
0
Pγx0ψ,

(d) ∂
∂x0

ci0 = λ2( ∂2

∂x2
0
Pγx0ψ ) ∂

∂xi
Pγx0ψ − λ ∂2

∂xix0
Pγx0ψ, 1 ≤ i ≤ n− 1,

(e) ∂
∂x0

cij ≡ 0 for 1 ≤ j ≤ n− 1, 0 ≤ i ≤ n− 1.

From (2.30)(a), (b), Lemma A of section 1, chapter I, and the fact that ∂
∂x0

A =
( ∂
∂x0

Cτ )C + Cτ ∂
∂x0

C we see that (1.6), (1.7), and (**) of Theorem 1.10 hold for
A. Also,

B = λ (∇ ∂
∂x0

Pγx0ψ )τ + λ ∂
∂tPγx0ψ e0

so again from Lemma A we find that (1.5) and (**) are valid for B. To verify (1.9)
and (***) observe that ∂

∂x0
Aij = 0 for 1 ≤ i, j ≤ n− 1 and

∂
∂x0

Aij =
n−1∑
l=0

〈 eijl ,
∂
∂xl

f ijl 〉

where f ijl = ∂
∂x0

Pγx0ψ when either i = 0 or j = 0 and

(2.31)

e000 = −2λ3 [ 1 +
n−1∑
k=1

( ∂
∂xk

Pγx0 ψ )2 ]

e00l = 2λ2 ∂
∂xl

Pγx0 ψ, 1 ≤ l ≤ n− 1,

ei00 = λ2 ∂
∂xi

Pγx0 ψ, 1 ≤ i ≤ n− 1,

ei0l = −λδil for 1 ≤ i, l ≤ n− 1.

In the above display, δil = 1 when i = l and δil = 0 otherwise, is the Kronecker δ.
Using symmetry of A, Lemma A, (2.30), and (2.31) it is easily checked that (1.9)
and (***) holds. Thus A,B as above satisfy the hypotheses of Theorem 1.10 so we
can apply this theorem to conclude that

‖ dω̂
dyds (d, x, t+ 2d2, ·) ‖αp(Qd(x,t)) < c+ <∞ .
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Since ω is known to be doubling (see[FGS], [H]) it follows that αp can be replaced
by βp in the above inequality. The proof of Corollary 1.12 is now complete. 2

3. Lemmas on Parabolic Measure

In this section we prove several lemmas on parabolic measure which are well
known for parabolic measures satisfying the conclusion of Lemmas 3.14 and 3.38 of
chapter I . In fact most of our effort will be devoted to overcoming our inability to
prove that certain parabolic measures in chapter III are doubling. We first examine
the implications of the conclusion of Lemma 2.1. That is, suppose the continuous
Dirichlet problem corresponding to (1.1) and some A1, B1 satisfying (1.2)-(1.4)
always has a unique solution. Let ω1 be parabolic measure corresponding to A1, B1,
and assume there exist η0, η1 > 0 such that whenever Qr(y, s) ⊂ Qd(x, t), E ⊂
Qr(y, s), and E is Borel, we have

(3.1) |E|/|Qr(y, s)| ≥ 1− η0 ⇒ ω1(r, y, s+ 2r2, E) ≥ η1.

In the proof of Theorem 1.10 we shall need the following analogue of Lemma 3.9 in
chapter I.

Lemma 3.2. Let A1, B1 satisfy (1.2)-(1.4) and assume that the continuous Dirich-
let problem corresponding to (1.1), A1, B1 always has a unique solution. Let ω1 be
parabolic measure for (1.1), A1, B1, and suppose that (3.1) holds for ω1 whenever
E = Qr(y, s). Let Q2r(y, s) ⊂ Qd(x, t) and let u1 be a weak solution to (1.1) in
(0, 2r)×Q2r(y, s) corresponding to A1, B1. If u1 vanishes continuously on Q2r(y, s),
then there exists c = c(γ1,M, η0, η1, n) and α = α(γ1,M, η0, η1, n), 0 < α < 1 ≤
c <∞, such that

u1(Z, τ) ≤ c (z0/r)α max
(0,r)×Qr(y,s)

u1

whenever (Z, τ) ∈ (0, r/2) × Qr/2(y, s). If u1 ≥ 0 in (0, 2r) × Q2r(y, s), then there
exists c̃ = c̃(γ1,M, η0, η1n) such that for (Z, τ) as above,

u1(Z, τ) ≤ c̃ (z0/r)α u1(r, y, s+ 2r2 ).

Proof: To prove Lemma 3.2 let 0 < ρ < r/4 and (z, τ) ∈ Qr/2(y, s). Set Gj =
Q̄2−jρ(z, τ) \ Q2−(j+1)ρ(z, τ), for j = 0, 1, . . . , . In (3.1) we take E = Qr(y, s) and
use this implication repeatedly with Qr(y, s) as certain subrectangles of Gj , as well
as Harnack’s inequality, to concude the existence of c∗ ≥ 1 such that

(3.3) c∗ω(·, Gj) ≥ 1

on

[0, 2−jρ]× ∂Q2−j−1/2ρ(z, τ) ∪ {2−jρ} ×Q2−j−1/2ρ(z, τ) for j = 0, 1, . . . , .

Here the boundary of the above set is taken with respect to IRn. Using the maximum
principle for solutions to (1.1) (see the remark after Lemma 3.38 of chapter I) and
the definition of ω1 it follows that

(3.4) ω1(· ,
j−1⋃
i=1

Gi) ≤ c∗ ω1(·, Gj)



PARABOLIC OPERATORS WITH SINGULAR DRIFT TERMS 61

in
(0, 2−jρ)×Q2−j−1/2ρ(z, τ) for j = 1, 2, . . . , .

Clearly this inequality implies

ω1(· ,
j−1⋃
i=1

Gi) ≤
c∗

c∗ + 1
ω1(· ,

j⋃
i=1

Gi) in (0, 2−jρ)×Q2−j−1/2ρ(z, τ), j = 1, 2, . . . , .

Iterating the above inequality starting with j = 1 we see that if β = c∗/(c∗+1) < 1,
then

(3.5) ω1(·, G0) ≤ βj in (0, 2−jρ)×Q2−j−1/2ρ(z, τ), j = 1, . . . , .

To conclude the proof of Lemma 3.2 we observe first from the maximum principle
for (1.1), the definition of ω1, and (3.3) that

u1 ≤ c∗ max
(0,r)×Qr(y,s)

u1 ω1(·, G0) in (0, ρ/2)×Qρ/2(z, τ),

and second from (3.5) with ρ = r/4 that the first part of Lemma 3.2 is valid. The
second part of Lemma 3.2 for u1 ≥ 0 follows from the first part of this lemma and
Harnack’s inequality by a standard argument mentioned in the proof of Lemma
3.14 of chapter I. 2

Next we prove

Lemma 3.6. Let A1, B1 satisfy (1.2)-(1.4) and assume that the continuous Dirich-
let problem corresponding to A1, B1 always has a unique solution. Let ω1 be para-
bolic measure for (1.1), A1, B1, and suppose that (3.1) holds for ω1. Then for some
p, 1 < p <∞, we have dω1

dyds (d, x, t+ 2d2, ·) ∈ αp(Qd(x, t)) with

‖ dω1
dyds (d, x, t+ 2d2, ·) ‖αp(Qd(x,t)) ≤ c(γ1,M, η0, η1, n) <∞.

Proof: We remark that Lemma 3.6 would be an immediate consequence of the
results in [CF] if we knew that ω1 was a doubling measure. To begin the proof, we
claim for given ε > 0 that there exists ĉ = ĉ(ε, γ1,M, η0, η1, n), c− = c−(n) ≥ 1 such
that the following statement is true whenever Qρ(z, τ) ⊂ Qd(x, t). If E ⊂ Qρ(z, τ)
is a Borel set and |E|/|Qρ(z, τ)| ≥ 1− η0/c−, then

(3.7) ω1(· , Qρ/2(z, τ)) ≤ ε ω1(· , Qρ(z, τ)) + ĉ ω1(· , E) in U \ [[0, ρ]× Q̄ρ(z, τ)].

To prove this claim we first show that if G0(η) = Q(1+η)ρ/2 (z, τ)\Q(1−η)ρ/2 (z, τ),
then there exists c+, θ depending on η0, η1, γ,M, n with
(3.8)
ω1(·, G0(η)) ≤ c+ η

θ ω1(·, Qρ(z, τ) ) in U \ [[0, ρ]× Q̄ρ(z, τ)] for 0 < η < 1/1010 .

The proof of (3.8) is similar to the proof of (3.5). Let

Ĝj(η) = Q(1+2j+1 η)ρ/2 (z, τ) \ Q̄(1+2jη)ρ/2 (z, τ),

G̃j(η) = Q(1−2j η)ρ/2(z, τ) \ Q̄(1−2j+1η)ρ/2(z, τ),

Gj(η) = Ĝj(η) ∪ G̃j(η),
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for j = 0, 1, . . . , and 2j+1 η ≤ 1. We apply (3.1) with Qr(y, s) = certain subrect-
anges ⊂ Gj(η) and with E = Qr(y, s). We get that (3.3) holds with Gj replaced
by Gj(η) on the union of [0, 2jηρ]× ∂Q(1±2j+1/2η)ρ/2 (z, τ) and

{2jηρ} × [Q(1+2j+1/2η)ρ/2 (z, τ) \Q(1−2j+1/2η)ρ/2 (z, τ)

for j = 1, . . . , . Using (3.3) and the maximum principle for solutions to (1.1) (see
the remark after Lemma 3.33 of chapter I), we find that (3.4) holds in

U \ {[0, 2jηρ]× (Q̄(1+2j+1/2η)ρ/2 (z, τ) \Q(1−2j+1/2η)ρ/2 (z, τ))}

provided 2jη ≤ 1/3. Iterating (3.4) we obtain (3.8).
Next we observe from (3.1) that for some c0 ≥ 1 we have

c0 ω1(·, G0(η)) ≥ 1 on (0, η ρ)× ∂Qρ/2 (z, τ).

To prove claim (3.7) we choose η, 0 < η ≤ 2−3, to be the largest number such that

(3.9) c0 ω1(·, G0(η)) ≤ ε ω1(·, Qρ(z, τ)) in U \ [[0, ρ]× Q̄ρ(z, τ)].

With η now fixed we use the bisection method, a weak type argument, and (3.1)
to find that if c−(n) is large enough and r = 2−jρ, j = 5, 6, . . . , then there exists
Qr(y, s) ⊂ Qρ/4(z, τ − ρ2/2) with |E ∩ Qr(y, s)| ≥ (1 − η0) |Qr(y, s|. Choosing
r = 2−10ρ and using (3.1) with E replaced by E ∩ Qr(y, s), as well as Harnack’s
inequality, we find the existence of ĉ as in (3.7) with

ĉ ω1(·, E) ≥ 1

on
[ηρ, ρ]× ∂Qρ/2(z, τ) ∪ {ρ} ×Qρ/2(z, τ) .

From the maximum principle noted above we conclude first that

ω1(·, Qρ/2(z, τ)) ≤ c0 ω1(·, G0(η)) + ĉ ω1(·, E) in U \ [[0, ρ]× Q̄ρ/2(z, τ)]

and second from this inequality, as well as (3.9), that claim (3.7) is valid. We also
claim there exists β > 0, 0 < β < 1/2, and c̃ ≥ 2, depending on γ1,M, η0, η1, n such
that if Qr(y, s) ⊂ Q3ρ/2(z, τ) ⊂ Q2ρ(z, τ) ⊂ Qd(x, t), then
(3.10)
c̃−1 (r/d)1/β ≤ ω1(d, x, t+ 2d2, Qr(y, s)) ≤ c̃ (r/ρ)β ω1(d, x, t+ 2d2, Q2ρ(z, τ)).

The leftthand side of (3.10) follows from (3.1) and Harnack’s inequality. The right-
hand side of (3.10) is proved by an argument similar to the one used in proving
(3.8).

Armed with the above claims we are ready to show that ω1 restricted to Qd(x, t)
is absolutely continuous with respect to Lebesgue measure. To do this first observe
for some K ≥ 2, 0 < K <∞, that

(3.11) lim inf
r→0

ω1(d, x, t+ 2d2, Qr(y, s))
ω1(d, x, t+ 2d2, Qr/2(y, s))

≤ K

whenever (y, s) ∈ Qd(x, t). Indeed if the above inequality were false for large K, we
could use the lefthand inequality in (3.10) and iteration to get a contradiction. Sec-
ond we observe from a standard argument (using the Besicovitch covering lemma)
that for ω1(d, x, t+ 2d2, ·) almost every (y, s) ∈ F Borel ⊂ Qd(x, t) we have

(3.12) lim
r→0

ω1(d, x, t+ 2d2, Qr(y, s) \ F )
ω1(d, x, t+ 2d2, Qr(y, s))

≡ 0.
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Now if ω1(d, x, t+ 2d2, ·) were not absolutely continuous with respect to Lebesgue
measure on Qd(x, t), then for some F Borel ⊂ Qd(x, t) we would have |F | = 0 and
ω1(d, x, t+ 2d2, F ) > 0. Choose (y, s) ∈ F so that both (3.11), (3.12) hold. To get
a contradiction we note from (3.11), (3.7), with Qρ(z, τ) replaced by Qr(y, s) and
E by Qr(y, s) \ F that if ε is small enough (depending on K in (3.11)) we have

ω1(d, x, t+ 2d2, Qr(y, s)) ≤ ξ ω1(d, x, t+ 2d2, Qr(y, s) \ F )

for some arbitrary small r > 0 and some ξ > 0 independent of r. Clearly this
inequality contradicts (3.12). Thus by the Radon-Nikodym theorem, whenever
G ⊂ Qd(x, t) is a Borel set, we have

ω1(d, x, t+ 2d2, G) =
∫
G

f dzdτ

for some Borel measurable f ≥ 0 with ‖f‖L1(Qd(x,t)) ≤ 1.
To continue we use an argument essentially due to Gehring (see [G], [Gi], and

[CF]). Fix Q2r′(y′, s′) ⊂ Qd(x, t). Given

(3.13) λ > (1000)100n |Q2r′(y′, s′)|−1

∫
Q2r′ (y

′,s′)

f dyds = λ0

suppose (y, s) ∈ Qr′(y′, s′) is a point of Lebesgue density 1 of

F (λ) = {(z, τ) ∈ Qd(x, t) : f(z, τ) > λ}.

Using (3.13)and continuity of the integral we see there exists r,
0 < r < r′/1000, such that

(3.14)
(a) λ = |Q10r(y, s)|−1

∫
Q10r(y,s)

f dzdτ ,

(b) |Qρ(y, s)|−1
∫
Qρ(y,s)

f dzdτ > λ for 0 < ρ < 10r .

We note from (3.14)(b) that

(3.15) (20)n+1 ω1(d, x, t+ 2d2, Qr/2(y, s) ) ≥ ω1(d, x, t+ 2d2, Q10r(y, s)).

Set

E(δλ) = {(z, τ) ∈ Qd(x, t) : f(z, τ) ≤ δλ }

and suppose that |E(δλ)∩Qr(y, s)| ≥ (1− η0/c−(n) ) |Qr(y, s)|. Then from (3.15),
(3.7) with ρ, z, τ replaced by r, y, s, we see for ε sufficiently small that

ω1(d, x, t+ 2d2, Qr(y, s)) ≤ c ω1(d, x, t+ 2d2, E(δλ) ∩Qr(y, s))

where c depends only on γ1,M, η0, η1, n. Dividing this inequality by |Qr(y, s)| we
deduce from simple estimates using (3.14)(a), (3.15), that for some c′ ≥ 2,

1 ≤ c′ δ .

If δ0 = 1
2c′ , where c′ is the above constant, then from the above inequality and

(3.14)(a) we see that

(3.16) |Qr(y, s) ∩ F (δ0λ)| ≥ (η0/c−) |Qr(y, s)| .
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Using a well known covering argument we get a sequence {Q10ri(yi, si) } of rectan-
gles for which (3.14)-(3.16) holds and also

(3.17)

(+) {(yi, si)} ⊂ F (λ) ∩Qr′(y′, s′)

(++)

∣∣∣∣∣ (F (λ) ∩Qr′(y′, s′)) \
⋃
i

Q10ri(yi, si)

∣∣∣∣∣ = 0,

(+ + +) Qri(yi, si) ∩Qrj (yj , sj) = ∅ when i 6= j.

Let H1 be the subfamily of rectangles Q ∈ {Qrj (yj , sj) } with Q \ Qr′(y′, s′) 6= ∅
and put H2 = {Qrj (yj , sj)}\H1. If Qr(y, s) ∈ H1 we note from (3.10) and (3.14)(b)
that

λ |Qr(y, s)| ≤
∫
Qr(y,s)

f dzdτ ≤ c(r/r′)β ω1(d, x, t+ 2d2, Q2r′(y′, s′)) .

Solving this inequality for r and using the definition of λ0 in (3.13) we get

(3.18) r ≤ c(n) r′ (λ0/λ)1/(n+1−β) = ηr′/(100n) .

Hence
⋃
Q∈H1

Q ⊂ Qr′(1+η) (y′, s′) \ Qr′(1−η) (y′, s′) and we can argue as in the
proof of (3.7) to conclude as in (3.8) that

(3.19)
⋃

Q∈H1

ω1(d, x, t+ 2d2, Q̄) ≤ c (λ0/λ)θ1 ω1(d, x, t+ 2d2, Q2r′(y′, s′))

where c = c(γ1,M, η0, η1, n) and θ1 = θ/(n+1−β). Using (3.14)-(3.19) we obtain
(3.20)∫

F (λ)∩Qr′ (y
′,s′)

f dzdτ ≤
∑
i

∫
Q10ri

(yi,si)

f dz dτ

≤ (20)n+1
∑
i

∫
Qri

(yi,si)

fdzdτ = (20)n+1[
∑
Q∈H1

∫
Q

fdzdτ +
∑
Q∈H2

∫
Q

fdzdτ ]

≤ c (λ0/λ)θ1 ω1(d, x, t+ 2d2, Q2r′(y′, s′)) + c λ
∑
Q∈H2

|Q|

≤ c(λ0/λ)θ1 ω1(d, x, t+ 2d2, Q2r′(y′, s′)) + c λ
∑
Q∈H2

|Q ∩ F (δ0λ)|

≤ c(λ0/λ)θ1 ω1(d, x, t+ 2d2, Q2r′(y′, s′)) + c λ |F (δ0λ) ∩Qr′(y′, s′)| .
This inequality implies (see [Gi, ch 5 ]) the existence of θ2, 0 < θ2 < θ1/2, such

that
(3.21)

|Qr′(y′, s′)|−1

∫
Qr′ (y

′s′)

f1+θ2 dzdτ ≤ c

(
|Q2r′(y′, s′)|−1

∫
Q2r′ (y

′,s′)

f dzdτ

)1+θ2

.

To see that (3.20) implies (3.21) we multiply (3.20) by λ−1+θ2 and integrate from
λ0 to ∞. After a careful limiting argument we deduce for sufficiently small θ2
that the integral corresponding to the last term in (3.20) can be absorbed into the
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integral corresponding to the lefthandside of this equation. The resulting integrals
are equivalent to (3.21). Since Q2r′(y′, s′) ⊂ Qd(x, t) is arbitrary we conclude that
Lemma 3.6 is true. 2

To set the stage for our next lemma suppose K ⊂ Qd(x, t) is a nonempty closed
set and 0 ≤ ψ ≤ 10−2n σ(·,K), where σ, ψ : IRn→IR are as in (2.19) and (2.25),
respectively. Let ρ : U→U be as in the display following (2.25) and γ > 0 as in
(2.26). Let u1 be a solution to (1.1) in U corresponding to A1, B1 satisfying (1.2)-
(1.4) with constants γ1,M. Then from (2.25) -(2.28) and Lemma A in section 1 we
deduce that u2 = u1 ◦ ρ is a weak solution to (1.1) corresponding to some A2, B2.
Also A2, B2 satisfy (1.2)- (1.4) with constants depending only on n, the constants
for A1, B1, and a1 in (2.25). With this notation we prove

Lemma 3.22. Let K,Qd(x, t), A1, B1, A2, B2 be as above. Suppose also that the
Dirichlet problem for A1, B1 and A2, B2 always has a unique solution. Let ω1, ω2

be the corresponding parabolic measures and assume that (3.1) is valid for ω1 while
the conclusion of Lemma 3.37 holds with ω = ω2. Then there exists α > 0, c̃ ≥ 1,
depending only on n, γ1,M, a1, γ, η0, η1, and the constant in Lemma 3.37 of chapter
I, such that

c̃ ω2(d, x, t+ 2d2,K) ≥
(

|K|
|Qd(x, t)|

)α
.

Proof: We remark that if we knew ω1 were a doubling measure, then we could
use the same argument as in [DJK] to get Lemma 3.22. Instead we use an argu-
ment based on the Calderón - Zygmund decomposition and an elaboration of the
argument following (2.23). To begin the proof we first note from Lemma 3.6 that
if Q2r(y, s) ⊂ Qd(x, t) and f = dω1

dyds (2r, y, s + 4r2, ·), then there exists p > 1 such
that ‖f‖αp(Q2r(y,s)) <∞. Hence if G is a Borel subset of Qr(y, s), then
(3.23)

ω1(2r, y, s+ 4r2, Qr(y, s) \G) =
∫
Qr(y,s)\G

f dzdτ

≤ |Qr(y, s) \G|(p−1)/p

(∫
Qr(y,s)

fpdzdτ

)1/p

≤ c

(
|Qr(y, s) \G|
|Qr(y, s)|

)(p−1)/p

,

where c depends on the constant in Lemma 3.6. Next we use a construction of
Whitney to write Qd(x, t) \K =

⋃
Q̄i, where {Qi} are parabolic rectangles with

disjoint interiors and side length in the space direction proportional to their par-
abolic distance from K. Also we choose these rectangles from the family of all
rectangles obtained by bisecting the sides of Qd(x, t) into rectangles of side length
21−md in the space direction and side length 2 · 4−md2 in the time direction for
m = 1, 2, . . . , . Let K̂ ⊂ Qd(x, t) be the union of K and certain of the above closed
Whitney rectangles. We use (3.23) to show the existence of θ1, θ2, 0 < θ1, θ2 < 1/2,
having the same dependence as c̃ in Lemma 3.22, such that if Qr(y, s) ⊂ Qd(x, t),
then

(3.24)
|K̂ ∩Qr(y, s)|
|Qr(y, s)|

≥ 1− θ1 ⇒ ω2(r, y, s+ 2r2, K̂ ∩Qr(y, s)) ≥ θ2.

Thus (3.24) implies Lemma 3.22 when K = K̂ is most of Qd(x, t).
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Let F be the family of all open Whitney rectangles, Qi, such that Q̄i∩Q̄r/3(y, s)
6= ∅. We note that if Qi ∈ F , then from the geometry of Whitney rectangles, there
exists Qi′ ∈ F with Q̄i ∩ Q̄i′ 6= ∅ and

c |Qi′ ∩Qr/3(y, s)| ≥ min {|Qi|, |Qr(y, s)| },

where c = c(n) depends on the ratio of the side lengths of neighboring Whitney
rectangles. Let F1 be the subfamily of F consisting of rectangles Qi with Q̄i′ ⊂ K̂
and let F2 be the set of all rectangles in F which are not in F1. From the doubling
property of ω2 (Lemma 3.37 (β) of chapter I) and the above note we find that
(3.25)∑
Qi∈F1

ω2(r/2, y, s+ r2/2, Q̄i ∩Qr/3(y, s)) ≤ c ω2(r/2, s+ r2/2, K̂ ∩Qr/3(y, s))

where c has the same dependence as the constant in Lemma 3.37. If Qi ∈ F2 and
r1 = (r/3)(1 + c θ

1/(n+1)
1 ), then for c large enough (depending only on n and the

ratio of the side length of Qi to its distance from K), we have

(3.26) Q̄i′ ⊂ Qr1(y, s) \ K̂ .

Let ρ be defined as above Lemma 3.22 and set ω∗(z, τ, E) = ω1(ρ(z, τ), E), (z, τ) ∈
Ū , whenever E ⊂ IRn is a Borel set. Note that ω∗(·, E) satisfies (1.1) relative to
A2, B2. If Qi = Qr̂(ŷ, ŝ) ∈ F2, then from (3.1), Harnack’s inequality, and the fact
that 0 ≤ ψ ≤ 10−2nσ, we deduce first that c ω∗(·, Qr̂(ŷ, ŝ)) ≥ 1 on Qr̂/4(ŷ, ŝ) and
second from Harnack’s inequality, Lemma 3.37 (β) of chapter I, the definition of
ω2, and (3.26) that

(3.27) ω2(r, y, s+ 2r2, Qi′) ≤ c∗ ω∗(r, y, s+ 2r2, Qi′).

Let G =
⋃
Qi∈F2

Q̄i, G
′ =

⋃
Qi∈F2

Q̄i′ . Then from (3.23), (3.26), (3.27) and
Lemma 3.37 (α), (β), we find for θ1 > 0 small enough that

ω2(r/2, y, s+ r2/2, G) ≤ c ω2(r/2, y, s+ r2/2, G′)

≤ cc∗ω∗(r/2, y, s+ r2/2, G′) ≤ 1
2 ω2(r/2, y, s+ r2/2, Q̄r/3(y, s))

This inequality and (3.25) imply that

(3.28) ω2(r/2, y, s+ r2/2, Q̄r/3(y, s)) ≤ c ω2(r/2, y, s+ r2/2, K̂ ∩Qr/3(y, s)).

Using, (3.28), Lemma 3.37 (α), and Harnack’s inequality we see that (3.24) is true.
Next let φ = 10−(n+1) θ1, θ = θ2/c1, where c1 is a large positive constant to be

specified later. We shall show there exists a positive integer m and a sequence of
Borel sets {Kj}m0 such that

(3.29)

(a) K0 = K,Km = Q̄d(x, t), and Ki ⊂ Kj for i < j,

(b) If m > 1, then (1− φ)|Ki| ≥ |Ki−1|, for 1 ≤ i ≤ m− 1,

(c) |Km−1|/|Qd(x, t)| ≤ 1− θ1,

(d) ω2(d, x, t+ 2d2,Ki−1 ) ≥ θ ω2(d, x, t+ 2d2,Ki ), 1 ≤ i ≤ m,

(e) Ki, 1 ≤ i ≤ m, is the union of K and certain Qj .
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We note that (3.29) implies

|K|/|Qd(x, t)| ≤ (1− φ)m−1 and

ω2(d, x, t+ 2d2,K) ≥ θm ω2(d, x, t+ 2d2, Qd(x, t)).

Clearly these inequalities and Lemma 3.37 (α) imply Lemma 3.22 with α = ln θ
ln(1−φ) .

Thus to complete the proof of Lemma 3.22 we need only prove (3.29). To do this we
proceed by induction. Suppose, for some nonnegative integer l that K0, . . . ,Kl have
been constructed satsifying (a) − (e) in (3.29). If |Kl|/|Qd(x, t)| ≥ 1 − θ1 we put
m = l+ 1. Using (3.24) with K̂ replaced by Kl, we see that ω2(d, x, t+ 2d2,Kl) ≥
θ ω2(d, x, t + 2d2, Qd(x, t)). Thus (3.29) is valid in this case. If |Kl|/|Qd(x, t)| <
1 − θ1, we use the method of Calderón-Zygmund to get sequences {Lj}, {L′j} of
open parabolic rectangles satisfying

(3.30)

(i) (1− θ1) |L′j | ≤ |Kl ∩ L′j |,

(ii) |Kl ∩ Lj | < (1− θ1)|Lj |,

(iii) |Kl \
(⋃

L′j
)
| = 0,

(iv) L′j ⊂ Lj and |Lj | = 2n+1 |L′j |,

(v) L′i ∩ L′j = ∅ for i 6= j.

Let
Kl+1 = Kl

⋃
{Q̄i : Q̄i ∩  Lj 6= ∅ for some j}.

We first show that (3.29)(b) holds with i = l + 1. To do this we use a wellknown
covering argument to get a subsequence {L∗j} of {Lj} consisting of disjoint parabolic
rectangles with

10n+1
∑

|L∗j | ≥ |
⋃
Lj | .

Let L∗ =
⋃
L∗j , L =

⋃
Lj . Then from (3.30) (ii) we see that |Kl ∩ L∗| ≤ (1 −

θ1) |L∗|. From this inequality, the above inequality, and (3.30) (iii) we find

|Kl| = |Kl ∩ L∗| + |Kl \ L∗|

≤ (1− θ1) |L∗| + |L \ L∗|

≤ |L| − θ1|L∗|

≤ (1− φ)|L|

≤ (1− φ)|Kl+1|.

Thus (3.29) (b) is valid with i = l + 1.
Next we show that (3.29) (d) is true with i = l+ 1. Let H1 be the family of all

Qi ⊂ Kl+1 \Kl for which there exists Qi′ ⊂ Kl with Q̄i ∩ Q̄i′ 6= ∅. Using Lemma
3.37 (β) of chapter I, once again, we see that

(3.31)
∑

Qi∈H1

ω2(d, x, t+ 2d2, Q̄i) ≤ c ω2(d, x, t+ 2d2,Kl).
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Put H2 = {Qi ⊂ Kl+1 \Kl : Qi 6∈ H1}. If Qi ∈ H2, then from (3.30) (i), (ii), (iv),
and the definition of Kl+1 we deduce the existence of j = j(i) and c+(n) ≥ 1 such
that if Lj = Qr̂(ŷ, ŝ), then Qi ⊂ Qc+r̂(ŷ, ŝ). From this deduction, Lemma 3.37 (β),
and (3.30) (iv) we conclude for a given Lj that if L′′j is the union of all Q̄i ∈ H2

such that j = j(i), then -

(3.32) ω2(d, x, t+ 2d2, L′′j ) ≤ cω2(d, x, t+ 2d2, Lj) ≤ c2 ω2(d, x, t+ 2d2, L′j).

Now from (3.24) and (3.30) (i) we find also for L′j = Qr′(y′, s′) that

c′ω2(r′, y′, s′ + 2(r′)2,Kl ∩ L′j) ≥ 1.

From Lemma 3.37 (γ) and the above inequality it follows that

c′′ω2(d, x, t+ 2d2,Kl ∩ L′j) ≥ ω2(d, x, t+ 2d2, L′j) .

Using this inequality in (3.32) and (3.30)(v) we get

ω2(d, x, t+ 2d2,
⋃

Qi∈H2

Q̄i ) ≤ c ω2(d, x, t+ 2d2, Kl).

Clearly this inequality and (3.31) yield (3.29)(d). (3.29)(e) is included in the defi-
nition of Kl+1. By induction we obtain (3.29). From the remark after (3.29) we see
that Lemma 3.22 is true. 2.

Finally in this section suppose that K =
⋃N
i=1 Q̄ri

(yi, si),K ′ =
⋃N
i=1 Q̄2ri

(yi, si),
and K ⊂ K ′ ⊂ Qd(x, t). Also assume that Q̄2ri(yi, si)∩Q̄2rj (yj , sj) = ∅ when i 6= j.

Let ψ, σ be as in (2.19), (2.25), respectively and suppose that 0 ≤ ψ ≤ 10−2nσ(·,K)
on Qd(x, t) \K ′ while 0 ≤ ψ ≤ 10−2nri on Q̄2ri(yi, si) for 1 ≤ i ≤ N < ∞. Define
ρ relative to ψ as in the display after (2.25). We close this section with

Lemma 3.33. Let ω1 be as in Lemma 3.22 and define ω2 relative to ω1, ρ as in
this lemma. Suppose that (3.1) is valid for ω1 while the conclusion of Lemma 3.37
of chapter I holds with ω = ω2. Then there exists α > 0, c̃ ≥ 1, depending only on
n, γ1,M, a1, a2, γ, η0, η1, and the constant in Lemma 3.37, such that

c̃ ω2(d, x, t+ 2d2,K) ≥
(
|K ∩Qd(x, t)||
|Qd(x, t)|

)α
.

Proof: Note that Lemma 3.33 does not follow directly from Lemma 3.22 because
of our relaxed assumptions on ψ. However if {Q̄i} is a Whitney decomposition of
Qd(x, t)\K, as previously, then we can repeat verbatim the argument in this lemma
to get first (3.24) with K replaced by

K ′′ = K ′ ∪ {(z, τ) : (z, τ) ∈ Q̄i for some i with Q̄i ∩K ′ 6= ∅}

and thereupon (3.29) with K0 = K ′′. We then obtain as in the remark after (3.29)
that Lemma 3.33 is true with K replaced by K ′′. Using the doubling property of
ω2 we get Lemma 3.33 for K. 2
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4. Extrapolation

Recall from Lemma 2.1 that for (Y, s) ∈ (0, d)×Qd(x, t)

L(Y, s) = [ y0 |B|2 + y0 |∇A|2 + y3
0 |∂A∂τ |

2

+
n−1∑
i,j=0

(
n−1∑
l=0

y0 |∇eijl |2 + y−1
0 |f ijl |2 ) + |gij | ] (Y, s).

Next for (Y, s) as above let

D(Y, s) = Qy0/2(Y, s) ∩ [(0, d)×Qd(x, t)]

L∗(Y, s) = L(Y, s) + y−n−2
0

∫
D(Y,s)

L(Z, τ)dZdτ

dµ∗(Y, s) = L∗(Y, s)dY ds.

Since µ∗ ≥ µ∗, we see that Lemma 2.1 remains valid with µ∗ replaced by µ∗ in
(iii). In this section we prove Theorem 1.10. We shall “ extrapolate ” this theorem
from Lemma 2.1 by a bootstrap type procedure. We first prove

Lemma 4.1. Lemma 2.1 is valid with µ∗, ε2 replaced by µ∗, K whenever 0 < K <
∞ provided ηi = ηi(K, γ1,M,Λ,Λ1, n) > 0 are small enough for i = 0, 1.

Proof: We prove Lemma 4.1 by an induction type argument on K. To avoid
confusion we temporarily indicate the dependence of ε2 on the quantities in Lemma
2.1. From this lemma we see that Lemma 4.1 is valid with µ∗ replaced by µ∗
whenever K ≤ ε2(γ1, M, Λ,Λ1, n). Suppose that whenever γ1,M,Λ,Λ1 are given
as above we have shown that Lemma 4.1 holds with µ∗ replaced by µ∗ wheneverK ≤
K∗ and K∗ ≥ ε2(γ1,M,Λ,Λ1, n) where K∗ = K∗(γ1,M,Λ,Λ1, n). We assume as
we may that M,Λ,Λ1 are all ≥ 100. We then put

(4.2)

η =
[

ε2( 1
2γ1, 4M, 4Λ, 40Λ1, n)

( Λ + Λ1 + M )(1 +K∗)c1(n)

]2100n

δ =
[

ε2( 1
2γ1, 4M, 4Λ, 40Λ1, n)

( Λ + Λ1 + M )(1 +K∗)c1(n)

]20
and shall show for c1 = c1(n) ≥ 1 large enough that Lemma 4.1 is valid for K ≤
(1 + η)K∗ provided ηi = ηi(K), i = 0, 1 are defined suitably for K∗ < K ≤
(1 + η)K∗. We then get Lemma 4.1 by induction. To this end choose N such that
2−(N+1) ≤ δ5 ≤ 2−N and recall the definition of K above Lemma 2.1. Put H ≡ K
when (a) holds in (iii) of Lemma 2.1 while H ≡ L∗ when (b) in (iii) of Lemma 2.1
is valid. Suppose first that

(4.3)
∫ d

2−2Nd

(
∫
Qd(x,t)

H(Z, τ) dzdτ) dz0 ≥ η K∗ |Qd(x, t)|.

Using the bisection method we can divide Q̄d(x, t) into closed rectangles with dis-
joint interiors and of side length 21−2Nd, 21−4N d2 in the space and time variables
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respectively . Let {Q̄j} be these rectangles. From (4.3) and our induction assump-
tion we see that∑

j

∫ 2−2Nd

0

(
∫
Qj

H(Z, τ) dzdτ)dz0 ≤ K∗ |Qd(x, t)|

which implies by weak type estimates that∫ 2−2Nd

0

(
∫
Q

H(Z, τ) dz dτ) dz0 ≤ K∗ |Q|

for someQ ∈ {Qj}. Now we can apply the induction hypothesis with (0, d)×Qd(x, t)
replaced by (0, 2−2Nd) × Q. Using this hypothesis and Harnack’s inequality we
find that Lemma 4.1 is valid in this case for K∗ < K ≤ (1 + η)K∗ provided
η0(K) ≤ c2(n)−1 δ10(n+1) η0(K∗), η1(K) ≤ c3(γ1, δ,M, n)−1η1(K∗) and c2, c3 are
large enough.

Next suppose that (4.3) is false. We again divide Qd(x, t) into subrectangles
by the bisection method. Let Gm be the closed rectangles obtained in the m th
subdivision for m = 1, 2, . . . , . Then the rectangles in Gm have disjoint interiors
and side length 21−m d, 21−2md2 in the space and time variables respectively. Let
Sm be the subcollection of rectangles Q2−md(y, s) in Gm with

(4.4)

∫ d

2−(N+j)d

∫
Q2−jd(y,s)∩Qd(x,t)

H(Z, τ) dzdτdz0

≤ (100n)100n
2
η K∗ |Q2−jd (y, s)|

= η̂ K∗ |Q2−jd (y, s)|
for j = 1, 2, . . . ,m− 1, while

(4.5)
∫ d

2−(N+m) d

∫
Q2−md(y,s)∩Qd(x,t)

H(Z, τ) dzdτdz0 ≥ η̂ K∗ |Q2−md(y, s) |

Using the fact that (4.3) is false and a Calderòn - Zygmund type argument, we
get a family of closed rectangles, S =

⋃
Sm with disjoint interiors. Moreover if

(y, s) 6∈
⋃
Q∈S Q, then (4.4) holds for j = 1, 2, . . . , . Put F ∗ = Qd(x, t)\

(⋃
Q∈S Q

)
.

We consider two cases : (a)|F ∗| ≥ 2η |Qd(x, t)| and (b)|F ∗| < 2η |Qd(x, t)|.
If (a) holds, we suppose η0 (K) ≤ η/2 for K∗ < K ≤ (1 + η)K∗ and set

d1 = d[1− η
4(n+1) ]. We observe that there exists F closed, F ⊂ F ∗ ∩E ∩Qd1(x, t)

with |F | ≥ η |Qd(x, t)|. Next we show for each (y, s) ∈ F and c1 large enough that

(+)
∫ d

(8δ)5r

L(y0, z, τ)dy0 ≤ δ100

whenever (z, τ) ∈ Qr(y, s) ∩Qd(x, t) and 0 < r ≤ d. In fact this inequality follows
directly from (4.4), (4.2) if (a) of (iii) in Lemma 2.1 holds. If (b) of (iii) in Lemma
2.1 is valid we use (4.4), (4.2) and weak type estimates to deduce that

(++) z0 L(Z, τ) ≤ δ200

for (z, τ) ∈ Qr(y, s) ∩ Qd(x, t), (y, s) ∈ F and (8δ)5r ≤ z0 ≤ 3d/4. Let ρ =
min{δ−200r, 3d/4}. We estimate the integral over [(8δ)5r, ρ] in (+) using (++) and
the rest of the integral using (∗), (∗∗) in Theorem 1.10 (as in (2.3) (+) ) and the
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observation that (4.4) implies there exists (z1, τ1) with |z− z1| + |τ − τ1|1/2 ≤ 10r
for which ∫ d

ρ

L(y0, z1, τ1)dy0 ≤ δ200.

Let Ω̂ = {(Z, τ) : z0 > δ4 σ̂ (z, τ, F ) }, where σ̂ is the parabolic distance function
defined above (2.2). From (+), (++) we deduce

(4.6)
∫ d

δ4σ̂(z,τ,F )

L(z0, z, τ) dz0 ≤ δ100

whenever (z, τ) ∈ Qd(x, t) and

(4.7) z0 L(Z, τ) ≤ δ40

for (Z, τ) ∈ Ω̂ ∩ [(0, d/2) × Qd(x, t)]. Let σ = σ(·, F ) be the reguralized parabolic
distance function as in (2.19) and let ξ be as in (2.20). Also let θ, 0 ≤ θ ≤ 1, be in
C∞0 [(−d/2, d/2)×Q2d(x, t)] with θ ≡ 1 on (−d/4, d/4)×Qd(x, t) and

dl ‖ ∂l

∂xl
k

θ‖∞ + d2l ‖ ∂
l

∂tl
θ ‖∞ ≤ c(l, n).

To handle case (a) we use a slightly more elaborate argument than the one following
(2.20). If (Z, τ) ∈ (0,∞)×Qd(x, t), put

(4.8)
A1(Z, τ) = [A(Z, τ)−A(δ3σ(z, τ, F ), z, τ)] ξ2(Z, τ) + A(δ3σ(z, τ), z, τ),

B1(Z, τ) = Bθξ(Z, τ).

Put A1 ≡ I,B1 ≡ 0 in U \ [(0,∞) × Qd(x, t)]. Here I denotes the n by n identity
matrix. Using (4.6) - (4.8), and (2.19) it can be shown for c1 sufficiently large,
as in the calculations after (2.20), that A1, B1 satisfy the hypotheses of Lemma
3.37 of chapter I and Lemma 2.1 with constants γ1/2, 4M, 4Λ, 40Λ1 (if (**), (***)
are valid) and with Qd(x, t) replaced by Qr(y, s) whenever Qr(y, s) ⊂ Qd(x, t).
Applying Lemma 2.1 we see that the corresponding parabolic measure, ω1, satisfies
the hypotheses of Lemma 3.6. Thus for some p > 1, we have ‖ dω1

dyds‖αp(Qd(x,t)) <

c <∞. Next set
ψ = δ3 σ(·, F ),

Ω = {(Z, τ) : z0 > ψ},

ρ(Z, τ) = (z0 + Pz0 ψ(z, τ), z, τ),
when (Z, τ) ∈ U. Then for c1 sufficiently large, we see that ρ maps U, ∂U one to
one and onto Ω, ∂Ω. Let v be a solution to the Dirichlet problem for (1.1), A1, B1.
Then from the remark after Lemma A of chapter I, (2.19) (b), and (2.27) - (2.29)
we see that v ◦ ρ satisfies (1.1) for some A2, B2 satisfying (1.2)-(1.4), as well as the
hypotheses of Lemmas 3.14, 3.37 of chapter I. Let ω1, ω2 be parabolic measures
corresponding to A1, B1 and A2, B2, respectively. From the above discussion we
see that Lemma 3.22 can be applied with K = F to get for some c′ ≥ 1, having the
same dependence as η0 in Lemma 4.1, that

c′ ω2(d, x, t+ 2d2, F ) ≥ 1.

We note that ω2 extends continuously to U ∪ (∂U \F ) with ω2 ≡ 0 on ∂U \F. From
this remark, the above inequality and the maximum principle for solutions to (1.1)
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(see the remark after Lemma 3.38 of chapter I) we deduce that if d2 = d(1− η
8(n+1) ),

then 0 < d1 < d2 and

c′ω2 ≥ 1 at some point on (0, r]× ∂Qd2(x, t) ∪ {r} ×Qd2(x, t)

whenever r > 0. Next since ω2 vanishes in ∂U\Q̄d1(x, t) and σ̂(∂Qd2(x, t), Qd1(x, t))
≈ ηd, we can use Lemma 3.9 of chapter I to deduce the existence of c+ ≥ 1, having
the same dependence as η0, such that if 0 < r ≤ ηd/c+, then c′ ω2(·, F ) < 1 on
(0, r)× ∂Qd2(x, t). Thus for these values of r we have

c′ω2(r, y, s, F ) ≥ 1 for some (y, s) ∈ Q̄d2(x, t).

We can now repeat the argument from (2.22) on. Let u2 be the weak solution to
(1.1) corresponding to A2, B2 with u2 = u ◦ ρ on ∂U. Then since u ≥ 1 on F it
follows from the definition of ω2 that for (r, y, s) as above,

(4.9) c′ u2(r, y, s) ≥ c′ ω2(r, y, s, F ) ≥ 1.

Next we observe that u ◦ ρ, u2 satisfy the same pde in (0, d/4) × Qd(x, t), since
A1 = A, B1 = B in Ω ∩ ([0, d/4] × Qd(x, t)). Since u2 − u ◦ ρ vanishes on ∂U we
can apply Lemma 3.9 of chapter I to conclude the existence of c− > c+ such that
if r′ = ηd/c−, then

(4.10) c′|u2(r′, y, s)− u ◦ ρ(r′, y, s)| ≤ 1
2

for all (y, s) ∈ Q̄d2(x, t). Combining (4.9), (4.10) we conclude first that c′(u ◦
ρ)(r′, y, s) ≥ 1

2 for some (y, s) ∈ Q̄d2(x, t) and second from Harnack’s inequality
that Lemma 4.1 is valid when K∗ ≤ K ≤ (1 + η)K∗.

Next we consider case (b). We claim there exists a finite subcollection S′ of S
such that if Q ∈ S′ and η′ = η̂

(100n)10n then

(4.11)

(a)
∫ 2−(N+1) s(Q)

0

∫
Q

H(Z, s) dzdτdz0 ≤ (1− η′)K∗ |Q|,

(b)
∑
Q∈S′

|Q| ≥ η′ |Qd(x, t)|,

(c) σ̂(Q,Q′) ≥ 4n max{s(Q), s(Q′) } .

In (4.11)(a), s(Q) denotes the side length of Q in the space direction. To prove our
claim we let

(4.12) T (Q) = (2−(N+1) s(Q), d )×Q

whenever Q ∈ S and observe from (4.12) as well as the definition of S that

(4.13)
∫ ∫

T (Q)

H dZ dτ ≥ η̂ K∗ |Q|.

Clearly

(4.14) T (Q), T (Q′), Q,Q′ have disjoint interiors
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whenever Q,Q′ ∈ S and Q 6= Q′. From the induction hypothesis and (4.14) we note
that

(4.15)

∑
Q∈S

∫ 2−(N+1) s(Q)

0

∫
Q

H(Z, s) dzdτdz0 +
∑
Q∈S

∫ ∫
T (Q)

H(Z, s) dZ ds

≤ (1 + η)K∗ |Q| .

Using (4.12) - (4.15) and the definition of η̂ we obtain∑
Q∈S

∫ 2−(N+1) s(Q)

0

∫
Q

H(Z, s) dzdτ dz0 ≤ K∗ (1− (100n)5n η′) |Qd(x, t)| .

Now ∑
Q∈S

|Q| ≥ (1− 2η)|Qd(x, t)|

since |F ∗| < 2η. Claim (4.11) follows from these two inequalities, weak type esti-
mates, and a covering argument.

Next we suppose η0(K) ≤ η0(K∗) ηn+2 for K∗ < K ≤ (1 + η)K∗. We shall
show the existence of a finite subset Ŝ = {Qri

(yi, si) }l1 of S′ and Q4r′i
(zi, τi) ⊂

Qri(yi, si) such that for 1 ≤ i ≤ l, we have 1
2η ≤

r′i
ri
≤ η and

(4.16)

(i)
∫

(0,r′i)×Qr′
i
(zi,τi)

H(Z, τ) dZdτ ≤ K∗|Qr′i(zi, τi)|,

(ii) |E ∩Qr′i(zi, τi)| ≥ (1− η0(K∗))|Qr′i(zi, τi)|,

(iii)
l∑
i=1

|Qr′i(zi, τi)| ≥ ηn+2 |Qd(x, t)|,

(iv) Either r ≥ ηd/100n for some Qr(y, s) ∈ Ŝ or
∪Q∈Ŝ Q ⊂ Qd1(x, t).

In (iv), d1 is defined as in case (a). (4.16) (i) is a consequence of (4.11)(a) and
our usual weak type argument. (4.16) (ii), (iii), (iv) follow from (4.11)(b) and a
counting argument using the definition of η0(K). We omit the details.

First suppose there exists Qri(yi, si) ∈ Ŝ with ri ≥ ηd/100n. Then from (4.16)
(i), (ii) and the induction hypothesis we see that c u(r′i, zi, τi+2(r′i)

2 ) ≥ 1 for some
c having the same dependence as η0. From this inequality and Harnack’s inequality
we conclude that Lemma 4.1 is valid for K∗ < K ≤ (1 + η)K∗. Thus we assume
that the second alternative in (4.16) (iv) occurs.

Put F+ = {(yi, si) : Qri(yi, si) ∈ Ŝ } and let

σ̃(z, τ) =
{
ri when |z − yi| + |τ − si|1/2 ≤ ri, 1 ≤ i ≤ l,
= σ̂(z, τ, F+), otherwise in IRn.

We now are in a position to essentially repeat the argument in case (a) from (4.6)
on. More specifically we define Ω̂ as in case (a) relative to σ̃ and use (4.4), to show
that (4.6), (4.7) are valid. Let σ+ ∈ C∞0 (IRn) be a parabolic regularization of σ̃
constructed so that (2.19) (a)−(c) are valid with σ, σ̂ replaced by σ+, σ̃, respectively.
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Define A1, B1 as in (4.8) with σ replaced by σ+. Then as in the first case we see
from (4.6), (4.7), for c1 large enough, that A1, B1 satisfy the hypotheses of Lemma
2.1 with Qd(x, t) replaced by Qr(y, s) whenever Qr(y, s) ⊂ Qd(x, t). Consequently,
Lemma 3.37 of chapter I, (3.1), and Lemma 3.6 are valid for ω1. Next we define
ψ, ρ,Ω relative to σ+ as in case (a). Let v be a solution to (1.1) corresponding to
A1, B1. Then from (2.19) (b), (2.25)-(2.28), and the remark after Lemma A we see
that v ◦ ρ satisfies (1.1) relative to some A2, B2 and Lemma 3.37 is valid for the
corresponding parabolic measure, ω2. Next from (4.11)(c) and the definition of σ̃
we see that Lemma 3.33 can be applied with K =

⋃
Q∈Ŝ Q̄. Applying this lemma

we get for some c′′ ≥ 1 having the same dependence as η0,

c′′ω2(d, x, t+ 2d2,∪Q∈Ŝ Q̄ ) ≥ 1.

Now as above we see from (4.16) and the induction hypothesis that for each i we
have c u(r′i, zi, τi+2(r′i)

2) ≥ 1. Using this fact and Harnack’s inequality we conclude
that there exists c∗ ≥ 1, for which c∗ u ◦ ρ ≥ 1 on Qr′i(zi, τi + 4(r′i)

2 ), 1 ≤ i ≤ l.

Let u2 be the solution to the continuous Dirichlet problem for (1.1), A2, B2, with
u2 ≡ u ◦ ρ on ∂U. From the previous inequality for u ◦ ρ we deduce that

(4.17) c∗ u2 ≥ ω2(·,∪Qr′i(zi, τi + 4(r′i)
2) ) .

Also from the above inequality for ω2 and Lemma 3.37 (β) we find for some c∗∗ ≥ 1
with the same dependence as η0 that

(4.18) c∗∗ ω2(d, x, t+ 2d2,∪Qr′i(zi, τi + 4(r′i)
2) ) ≥ 1.

Using (4.17), (4.18), we can now argue as in case (a) to get first (4.9) with F
replaced by

⋃
Qr′i(zi, τi + 4(r′i)

2) and then (4.10). As in case (a) we conclude
from (4.9), (4.10) that Lemma 4.1 is true when K∗ < K ≤ (1 + η)K∗. We put
η0(K) = η0(K∗) ηn+2 and observe for this value of η0, that Lemma 4.1 is true for
the above values of K. By induction we now obtain Lemma 4.1. 2

To finish the proof of Theorem 1.10 we need to show the continuous Dirichlet
problem corresponding to A,B always has a unique solution. Indeed let Bj(X, t) =
B(x0 + j−1, x, t) for j = 1, 2, . . . , and (X, t) ∈ U. Now Bj converges pointwise to B
almost everywhere as j→∞ and A,Bj satisfy the hypotheses of Lemma 4.1 when-
ever Qd(x, t) ⊂ IRn with constants independent of j since cµ∗[(0, d) × Qd(x, t)] ≥
µ∗[(0, d) × Qd(x, t)] for some c = c(n) as follows from interchanging the order of
integration in the integral defining µ∗. Also since Bj is essentially bounded we can
use the remark after (3.22) of chapter I and the same argument as in (i) − (iv) of
Lemma 3.37 in chapter I to deduce that the continuous Dirichlet problem for A,Bj
always has a unique solution. From this fact and Lemma 4.1 we see that (3.1) holds
for the corresponding parabolic measures with constants that are independent of
j. Thus Lemma 3.2 is valid with A1, B1 replaced by A,Bj and with constants that
are independent of j. Lemma 3.2 with uniform constants can be used to show that
the continuous Dirichlet problem corresponding to A,B has a unique solution (this
is the gist of (i) − (iv) of Lemma 3.37). We can now use Lemma 4.1 for A,B to
conclude first that (3.1) is true for the corresponding parabolic measure and second
from Lemma 3.6 that Theorem 1.10 is true. 2

Proof of Theorem 1.13. Finally in this section we show that Theorem 1.10 im-
plies Theorem 1.13. We again prove a more general result for use in chapter III.
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Lemma 4.19. Let A1, B1, ω1 be as in the hypotheses of Lemma 3.6 and let p > 1
be as in the conclusion of this lemma. If q = p/(p− 1), then the Lq(IRn) Dirichlet
problem for A1, B1 always has a unique solution in the sense of (I) and (II) of
Theorem 1.13.

Proof: To prove this lemma we note first from Harnack’s inequality that whenever
k ≥ 1 and E ⊂ IRn is a Borel set, then

ω1(d, x, t+ 2d2, E) ≤ c(k, γ,M, n)ω1(kd, x, t+ 2k2d2, E) .

Since dω1
dyds (kd, x, t+2k2d2, ·) ∈ αp(Qkd(x, t)) with norm ≤ c for k = 1, 2, . . . , we see

that ω1(d, x, t + 2d2, ·) is absolutely continuous with respect to Lebesgue measure
on IRn whenever d > 0 and (x, t) ∈ IRn. Thus if we put

dω1
dyds (d, x, t+ 2d2, ·) = K(d, x, t+ 2d2, ·),

then

(4.20)
∫
Qkd(x,t)

Kp(2kd, x, t+ 4k2d2, y, s)dyds ≤ c |Qkd(x, t)|1−p,

for some c = c(γ1,M, η0, η1, n) and k = 1, 2, . . . , . For our estimates we shall use
the fact that (4.20) actually holds with p replaced by some p1 > p and c suitably
large(see[Gi, ch 5]). We suppose first that f ∈ C∞0 (IRn) ∩ Lq(IRn) and set

u(X, t) =
∫

IRn

K(X, t, y, s) f(y, s) dy ds,

whenever (X, t) ∈ U. Clearly u is a weak solution to (1.1) in U. Now the continu-
ous Dirichlet problem for (1.1), A1, B1 has a solution corresponding to f and this
solution is unique thanks to the maximum principle in Lemma 3.38 of chapter I.
Using basic functional analysis arguments we see that u is this solution so u extends
continuously to Ū and u ≡ f on ∂U. We prove (II) only for Nf in (2.14) of chapter
I defined relative to parabolic cones with a = 1. The proof for general a > 0 is
similar. We assume as we may that f ≥ 0. Given (x, t) ∈ IRn and (Y, s) ∈ Γ1(x, t),
we let d = y0. Next we choose a sequence of continuous functions on IRn with

(a) φ0 ≡ 1 on Q2d(x, t) and supp φ0 ⊂ Q4d(x, t),

(b) φj ≡ 1 on Q2j+1d(x, t) \Q2jd(x, t) for j = 1, . . . ,
and supp φj ⊂ Q2j+2d(x, t) \Q2j−1d(x, t) for j = 1, . . . ,

(c) 0 ≤ φj ≤ 1, for j = 1, . . . , .

From Harnack’s inequality we observe that

(4.21)

c−1 u(Y, s) ≤ u(d, x, t+ 2d2) ≤
∞∑
j=0

∫
IRn

fφj dzdτ

=
∞∑
j=0

uj(d, x, t+ 2d2),

where c has the same dependence as the constant in (4.20). (4.21) is essentially the
same as (5.9) of chapter I. We can in fact repeat the argument after (5.9) to deduce
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first from Lemma 3.2 that

uj(d, x, t+ 2d2) ≤ c2−jβ uj(2j+3d, x, t+ 22j+6d2),

and second from (4.20) for p1 > p that

uj(2j+3d, x, t+ 22j+6d2)q1 ≤ cM(fq1)(x, t)

where q1 = p1
p1−1 . Using the above inequalities in (4.21) and the Hardy - Littlewood

maximal theorem we see that (II) of Theorem 1.13 is valid when f ∈ C∞0 (IRn) ∩
Lq(IRn). The general case f ∈ Lq(IRn) follows from the smooth case and the basic
estimates in Lemmas 3.3,3.4 of chapter I. (I) is easily deduced from (II) and the
fact that (I) is valid when f is continuous. Since this argument is well known we
omit the details.

To prove uniqueness, suppose u, v are both solutions to (1.1) satisfying (I), (II)
relative to f ∈ Lp(IRn). Then from (1.4) and our knowledge of parabolic pde’s with
constant coefficients we see there exists r > 0 such that u − v has a bounded
continuous extension to Ū \ Qr(0, 0) with u − v ≡ 0 on ∂U \ Qr(0, 0). Next
given ε > 0 and (d, x, t + 2d2) ∈ U we see from this fact and a measure the-
oretic argument (essentially Ergoff’s theorem) that there exists a compact set
K = K(ε) ⊂ Qr(0, 0) ⊂ IRn such that if ψ = σ̂(·, K ∪ [IRn \ Qr(0, 0)]) and
ρ(Y, s) = (y0 + Pγy0ψ(y, s), y, s), (Y, s) ∈ Ū , then
(4.22)
(a) |Qr(0, 0) \K| ≤ ε,

(b) (u− v) ◦ ρ is continuous in Ū with (u− v) ◦ ρ = 0 on K ∪ (IRn \Qr(0, 0)) .

We note that σ ≤ c(n)ε1/(n+1). Consequently for ε small enough it follows from the
remark after Lemma A and (2.27)-(2.29) that (u−v)◦ρ satisfies weakly in U a pde
of the form (1.1) corresponding to some A2, B2 for which (1.2)-(1.4) are valid. We
also assume that c(n)ε1/(n+1) ≤ d/2 so that (d/2, x, t+ 2d2) ∈ ρ(U). The idea now
is to construct w ≥ 0 a solution to the Dirichlet problem for (1.1) corresponding to
A1, B1 with

(4.23)
(∗) |(u− v) ◦ ρ| ≤ w ◦ ρ on ∂U,

(∗∗) For some fixed a > 0, ‖Naw‖Lq(IRn) = ξ where ξ→0 as ε→0.

Here Na stands for the nontangential maximal function defined relative to a as in
(2.14) of chapter I. From (∗) and the maximum principle in Lemma 3.38 of chapter
I we see that (u− v) ◦ ρ ≤ w ◦ ρ on U. Using this fact and Harnack’s inequality we
deduce from (∗∗) that

|u− v|(d, x, t+ 2d2)q ≤ w(d, x, t+ 2d2)q

≤ c d−(n+1)

∫
Qd(x,t+4d2)

wq(d, z, τ) dzdτ

≤ c d−(n+1) ‖Naw‖qLq(IRn) ≤ c d−(n+1) ξq,

where the c′s depend only on γ1,M, n. Since ε > 0 and (d, x, t+ 2d2) are arbitrary
we conclude that u ≡ v. Thus uniqueness holds in Lemma 4.19 once we have proved
(4.23).
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To construct w we use a more or less standard argument. Given δ > 0, let O be
an open set with Ō ⊂ Qr(0, 0) \K such that |(u− v) ◦ ρ| ≤ δ on IRn \O. Existence
of O follows from (4.22). Let {Qi} be a Whitney decomposition of Qr(0, 0)\K into
parabolic rectangles with disjoint interiors and side lengths proportional to their
distance from K ∪ ∂Qr(0, 0). Let h ≥ 0 be a continuous function on IRn defined as
follows. If Q = Qr̂(ŷ, ŝ) ∈ {Qi} and Q ∩ O 6= ∅ let h ≡ inf{ δ + Na(u − v)(z, τ) :
(z, τ) ∈ Qr̂/4(ŷ, ŝ− r̂2/4) } = b on Qr̂/4(ŷ, ŝ− r̂2/4). Extend h continuously to the
rest of Q̄ in such a way that h ≤ b and h ≡ δ on Q \Qr̂/4(ŷ, ŝ− r̂2/4). If Q∩O = ∅
we set h ≡ δ on Q. We also put h ≡ δ on K and Q2r(0, 0) \ Qr(0, 0). Finally we
extend h continuously to the rest of IRn in such a way that h is nonnegative with
supp h ⊂ Q4r(0, 0). Let

w(Y, s) = c′
∫

IRn

h(z, τ)K(Y, s, z, τ) dzdτ

when (Y, s) ∈ U. We reserve our choice of a and c′ until later. Then w is the solution
to the continuous Dirichlet problem for (1.1) corresponding to A1, B1 with w = c′ h
on ∂U. To prove (∗) we observe first from positivity of h that

0 = |(u− v) ◦ ρ| ≤ w ◦ ρ on K ∪ (IRn \Qr(0, 0)).

If Qr̂(ŷ, ŝ) ∈ {Qi}, then there exists Qr′(y′, s′) ∈ {Qi} with s′ ≤ ŝ − r̂2 and
Q̄r′(y′, s′) ∩ Q̄r̂(ŷ, ŝ) 6= ∅. From the definition of h,w we find for (y, s) ∈ Q̄r̂(ŷ, ŝ)
and a, c′ large enough (depending only on γ1,M, η0, η1, n) that

w ◦ ρ(y, s) ≥ c′
∫
Qr′ (y

′,s′)

K(ρ(y, s), z, τ)h(z, τ)dzdτ

≥ c′ |(u− v) ◦ ρ|(y, s)
∫
Qr′/4(y

′,s′−(r′)2/4)

K(ρ(y, s), z, τ) dzdτ

≥ |(u− v) ◦ ρ|(y, s).
Here we have used (3.1) with E = Qr′/4(y′, s′ − (r′)2/4) and Harnack’s inequality.
Thus (∗) is true. (∗∗) follows from (II) and properties of the Lebesgue integral.
The proof of Lemma 4.19 is now complete. 2

To prove Theorem 1.13 we simply observe from Theorem 1.10 and Lemma 4.1
that we may replace A1, B1 by A,B in the hypotheses of Lemma 4.19. 2

Remark. It would be interesting to know if Lemma 4.1 has a simpler proof when
E = Qd(x, t). This special case of Lemma 4.1 is all that was needed to prove Hölder
continuity for solutions vanishing continuously on Qd(x, t) in Lemma 3.2. Perhaps
Lemma 3.2 is even valid with less restrictive assumptions on A. More specificallly
is the conclusion of Lemma 3.2 valid if we assume only that A,B satisfy (1.2)-(1.4)
and B satisfies (1.5)?

As regards the doubling property of ω mentioned in the remark after the state-
ment of Theorem 1.10, we note that if ∇·B = 0 weakly, then the adjoint pde (3.1)
is similar to (1.1), so for example Lemma 3.2 holds with (1.1) replaced by (3.1).
In this case we have managed to use the method in [FS] to prove that parabolic
measure corresponding to (1.1) is doubling. We omit the details of the proof in this
memoir. For further remarks concerning parabolic doubling see the remarks after
sections 10 and 11 of this memoir.
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CHAPTER III
ABSOLUTE CONTINUITY AND THE Lp DIRICHLET PROBLEM:

PART 2

1. Introduction

In this chapter we consider parabolic generalizations of a theorem of [FKP]. To this
end, recall that throughout this memoir we have considered weak solutions u to
pde’s of the form

(1.1) Lu = ut −∇ · (A∇u)−B∇u = 0

in U under the following structure assumptions on A,B.

(1.2) 〈A(X, t)ξ, ξ 〉 ≥ γ1|ξ|2

for some γ1 > 0, almost every (X, t) ∈ U and all n× 1 matrices ξ.

(1.3)

n−1∑
i=0

x0 |Bi| +
n−1∑
i,j=0

|Aij |

 (X, t) < M <∞

for almost every (X, t) ∈ U. For some large ρ > 0,

(1.4) A ≡ constant matrix in U \Qρ(0, 0) .

We also assume for given A,B satisfying (1.2)-(1.4) and some λ, p, 1 < λ, p < ∞
that
(1.5)
(a) The continuous Dirichlet problem for (1.1), A,B has a unique solution,

(b) If ω is parabolic measure for (1.1), A,B, then λω(d, x, t+ 2d2, Qd(x, t)) ≥ 1,

(c) ‖ dω
dyds (d, x, t+ 2d2, ·)‖αp(Qd(x,t)) < λ <∞,

for all (x, t) ∈ IRn, d > 0. Next given (X, t) ∈ U and A1, A2, B1, B2 satisfying
(1.2)-(1.4) put

dν(X, t) = ess sup
{
x−1

0 |A1 −A2|2(Y, s) + x0 (|B1|2 + |B2|2)(Y, s)

: (Y, s) ∈ Qx0/2(X, t)
}
dXdt.

We assume that ν is a Carleson measure on U with

(1.6) ‖ν‖ ≤ β̂ < ∞.

With this notation we prove in sections 1 and 2, the following parabolic analogue
of Theorem 2.3 in [FKP].

Theorem 1.7. Let A1, A2, B1, B2, satisfy (1.2)-(1.4) and (1.6). If (1.5) holds for
A1, B1 and some λ1, p1, then there exists λ2, p2 > 1 such that (1.5) is valid with
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A,B, λ, p replaced by A2, B2, λ2, p2. Moreover, if q2 = p2/(p2 − 1), then for
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q2 ≤ q <∞, the Lq(IRn) Dirichlet problem for (1.1), A2, B2, always has a unique
solution in the sense of (I), (II) of Theorem 1.13 in chapter 2.

Remark 1) We note that Nyström [N] has obtained analogues of theorems in [FKP]
for pde’s of the form (1.1) when B ≡ 0 in Lip ( 1, 1/2 ) domains. He does this by
first showing that the argument in [FS] (see chapter I) can be generalized to Lip
(1, 1/2) domains in order to obtain that the corresponding parabolic measures are
doubling. After getting doubling, he is able to use a proof modeled on the one of
[FKP]. Our situation is quite different as we have not been able to prove that (1.5)
implies ω is doubling, which is an important ingredient in the proof of [FKP]. Again
the main reason we cannot prove doubling (as in Theorem 1.10 of chapter II) is
because we cannot prove basic estimates for the adjoint pde corresponding to (1.1).
This lack of doubling considerably complicates our proofs. For example we were not
able to get an Lr bound for the area function in terms of the nontangential maximal
function or vice versa (as concerns solutions to (1.1) corresponding to A1, B1) and
thus were forced to devise a proof different from [FKP] which does not use these
bounds.
2) As for a proof we follow the general strategy of Theorem 1.10 of chapter II and
first show that this theorem is valid when a certain measure involving A1−A2 and
B1−B2 satisfies a Carleson measure condition similar to the one considered in [Fe]
and [FKP], with small Carleson norm. In order to do this we begin by proving
existence and making some basic estimates for the Green’s function corresponding
to A1, B1 (see Lemma 2.2). We then study solutions to the equation Lu = ∇·F + f
in Lemmas 2.6, 2.10. Finally we use these lemmas, as well as Picard iteration, to
first prove Lemma 2.23 and second in Lemma 2.42 that Theorem 1.7 is valid in this
special case.
3) After proving the above special case we consider the general case of Theorem 1.7.
Our argument in this case is necessarily more complicated than the one in [FKP].
To see why we note that these authors get the large Carleson norm special case
considered in [Fe] (see Theorem 2.4 in [FKP]) simply by applying their estimates in
the small norm case to t→ tA2 + (1− t)A1, 0 < t < 1, on short intervals depending
on the Carleson norm. This argument works because the above authors have basic
estimates for their pde’s which involve constants depending only on the ellipticity
constants for A1, A2. Unfortunately our basic estimates depend in addition to the
ellipticity constants on λ in (1.5)(b). Thus our estimates can vary with t and so
could conceivably blow up for some t < 1.

To overcome this difficulty we extract the case when either A1 ≡ A2, B2 ≡ 0 or
B1 ≡ 0, from the special case mentioned in 1), by an induction type argument sim-
ilar to the one we use in proving Theorem 1.10 of chapter II. Again the comparison
lemmas for parabolic measure in section 3 of chapter II will play an important role
in the proof (see the remark after the statement of Theorem 1.10). The above two
cases are easily seen to imply Theorem 1.7.
4) Theorem 1.7 is proved in sections 2 and 3. For possible generalizations of this
theorem see the remark at the end of section 3.
5) For elliptic operators we can prove a stronger version of Theorem 1.7. In order to
state this theorem let A1, A2, B1, B2 satisfy (1.2)− (1.4) with (X, t) replaced by X
and suppose that (1.5) is also valid with (x, t+ 2d2), Qd(x, t), replaced by x,Bd(x)
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and ω = elliptic measure corresponding to A1, B1. Set

dν̃(X) = ess sup
{
x−1

0 |A1 −A2|2(Y ) + x0 (|B1 −B2|2)(Y )

: Y ∈ Bx0/2(X)
}
dXdt.

We assume that ν̃ is a Carleson measure on Û with

(1.8) ‖ν̃‖ ≤ β̃ < ∞.

With this notation we prove in section 4, the following analogue of Theorem 2.3 in
[FKP].

Theorem 1.9. Let A1, A2, B1, B2, be as above. Then there exists λ2, p2 > 1 such
that (1.5) is valid with A,B, λ, p, (x, t), αp(Qd(x, t)) replaced by A2, B2, λ2, p2, x,
β∗p(Bd(x)). Moreover, if q2 = p2/(p2 − 1), then for q2 ≤ q < ∞, the Lq(IRn−1)
Dirichlet problem always has a unique solution in the sense of (I), (II) of Theorem
1.15 of chapter II.

Remark. 1) Theorem 1.9 when B1 ≡ B2 ≡ 0 is equivalent to Theorem 2.3 in
[FKP]. Our proof of Theorem 1.9 is different than [FKP] even in the case when
B1 ≡ B2 ≡ 0. As mentioned in remark 1) after Theorem 1.10, our proof avoids the
use of S and N functions. Also when B1 or B2 6≡ 0, we are forced to give a more
complicated argument in the large Carleson norm case of Theorem 1.9 (see remark
3) after Theorem 1.7). The reader is invited to compare the two arguments.
2) Note that (1.8) is a weaker assumption than (1.6). Again we can prove a stronger
theorem in the elliptic case mainly because in Lemma 4.6 we shall show that an el-
liptic measure satisfying (1.8) is necessarily doubling. Our proof of doubling differs
from the usual proof where one estimates ω(d, x,Br(y)) in terms of r2−nG(d, x, r, y)
when B2r(y) ⊂ Bd(x), by choosing an appropriate test function and using essen-
tially subsolution estimates in (−r, r) × Br(y). This proof is not available in our
situation so instead we use an iterative procedure to obtain the above estimate.
Finally in section 4 we prove Theorems 1.14-1.15 stated in chapter II. For a closing
remark on parabolic doubling see the remark at the end of section 4.

The authors would like to thank Carlos Kenig and Jill Pipher for sharing their
work with them at an early stage (see the remark following the statement of The-
orem 1.14 in chapter II).

2. Proof of Theorem 1.7 in a Special Case

As mentioned in section 1, the proof of Theorem 1.7 will proceed in the same way
as the proof of Theorem 1.10. That is we first prove this theorem in a special case
(Lemma 2.42) and then in section 3 extrapolate the general case from this special
case using Lemmas 3.6, 3.22, and 3.33 of chapter II. On the one hand Lemma 2.42
is more difficult to prove than Theorem 2.13 in chapter I in the sense that we do
not know to begin with whether it suffices to consider only smooth A1, B1.A2, B2.
Thus we must review our basic estimates in section 3 of chapter I and establish the
existence of the Green’s function as well as some of its properties for (1.1) corre-
sponding to A1, B1. On the other hand once we do our preliminary investigations,
most of the remainder of the proof (see Lemma 2.23) will involve estimating the
terms in a certain iterative sequence wheareas the proof of Theorem 2.13 involved
numerous integrations by parts. We note as in section 1 that our proof manages to
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avoid any Lp(∂U) estimates of Su in terms of Nu. In fact we have not been able to
determine whether such estimates are valid for solutions u to (1.1) (corresponding
to A1, B1) with Lp(∂U) nontangential limits. The essential difficulty in trying to
prove such estimates as in [DKJ], is that we do not know whether parabolic mea-
sure corresponding to A1, B1 restricted to a parabolic sawtooth domain is doubling,
so that we cannot apply Lemma 3.22 of chapter II. Luckily for our extrapolation
scheme to work we do not need such estimates.

To begin let A,B satisfy (1.2)-(1.4) and suppose that the continuous Dirichlet
problem for (1.1), A,B, always has a unique solution. If ω denotes the correspond-
ing parabolic measure we assume for some positive c∗ <∞ that

(2.1) c∗ ω(d, x, t+ 2d2, Qd(x, t)) ≥ 1

whenever d > 0 and (x, t) ∈ IRn. Our first lemma is

Lemma 2.2. Let A,B be as above and suppose that ω satisfies (2.1). There exists
G : U × U→IR with the following properties. If (X, t), (Y, s) ∈ U, (X, t) 6= (Y, s),
and r = |X − Y | + |s − t|1/2, then for some c ≥ 1, 0 < θ < 1

2 (depending only on
γ1,M, n, c∗), we have

(a) G(X, t, Y, s) ≤ cr−n, 0 < r < y0/2,

(b) G(X, t, Y, s) ≤ c y−n0 ω(X, t,Qr1(z, τ)) for (z, τ) ∈ Qy0/16(y, s),
r > y0/2, y0/4 < r1 < y0,

(c) G(X, t, Y, s) < c (x0/r)θ G(X̂, t̂, Y, s) for r > x0 and
X̂ = (x0 + r, 0, . . . , 0), t̂ = t+ 2r2,

(d) G(·, Y, s) and G(Y, s, ·) are weak solutions to(1.1), (3.1)
respectively (see chapter I) in U \ {(Y, s)},

(e) If 0 < d1, d2 < min { r/100n, y0/2, x0/2 }, then G(· , ·) is
Hölder continuous on Qd1(X, t)×Qd2(Y, s), with exponent
independent of d1, d2, (X, t), (Y, s).

Proof: Recall that in section 3 of chapter I (see (3.6), (3.7)) we defined the Green’s
function Ĝ relative to Â, B̂ satisfying (1.2)-(1.4) when either B̂ ≡ 0 or Â, B̂ are
smooth. Moreover (d), (e) were valid with G replaced by Ĝ. Also for (Y, s) ∈ U

the functions Ĝ(Y, s, ·), Ĝ(·, Y, s) had a continuous extension to Ū \ {(Y, s)} with
Ĝ(Y, s, ·) ≡ Ĝ(·, Y, s) ≡ 0 on ∂U. We note that (a) of Lemma 2.2 holds with G

replaced by Ĝ and c by a constant depending only on n as well as the constants in
(1.2), (1.3) for Â, B̂. In fact the proof of (a) of Lemma 2.2 in the smooth case for
r ≈ y0 was given in (3.23), (3.24) of chapter I. The proof for other values of r is
the same.

We shall essentially get G as a certain weak limit of smooth Green functions.
However to prove (b), (c) of Lemma 2.2 we need to carefully choose the sequence.
For this purpose, let Aj(X, t) = A(x0 + j−1, x, t), Bj(X, t) = B(x0 + j−1, x, t)
for j = 3, 4, . . . , and (X, t) ∈ {(Y, s) : y0 ≥ −j−1 }. Then Aj , Bj satisfy (1.2)
- (1.4) and for fixed j, Bj is essentially bounded by Mj. Now we can choose
sequences of smooth functions which satisfy (1.2) - (1.4) (with uniform constants)
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and converge pointwise on U to Aj , Bj . Using the basic estimates in Lemmas 3.3 -
3.5 of chapter I we see for fixed (Y, s) ∈ U and j that a subsequence involving smooth
Ĝ(·, ·) converges uniformly in a certain Hölder norm on Qd1(X, t) × Qd2(Y, s) to
Gj(·, ·). Here d1, d2, (X, t), (Y, s) are as in (e) of Lemma 2.2. We can also choose this
subsequence so that for each (Y, s) ∈ U, the sequences involving Ĝ(·, Y, s), Ĝ(Y, s, ·)
converge weakly in L2(−d2 + τ, d2 + τ,H1

loc (Q̂d(Z, τ)) to Gj(·, Y, s), Gj(Y, s, ·),
whenever Q̄d(Z, τ) ⊂ U \ {(Y, s)}, where Ê = {X : (X, t) ∈ E for some t ∈
IR }. From the above remarks we observe that (a) of Lemma 2.2 (with a constant
depending only on γ1,M, n) and (d), (e) of Lemma 2.2 are valid for Gj (with an
exponent depending only on γ1,M, n). Now since ‖Bj‖L∞(U) ≤ Mj we can further
choose Â, B̂ in our sequences so that (3.13) of chapter I holds uniformly in rectangles
of small side length which touch ∂U. From this fact and the remark after (3.22) in
chapter I we see that Lemma 3.9 of chapter I holds for Â, B̂ with uniform Hölder
exponent and constant. Using this fact, Harnack’s inequality, and (a) of Lemma
2.2 for the Green’s functions in the sequence, we deduce that (c) of Lemma 2.2 is
valid for Gj with a constant which may depend on j.

We now use Lemmas 3.3 - 3.5 of chapter I to argue as in the above smooth
case and get G satisfying (a), (d), (e) of Lemma 2.2, as a certain weak limit of
a subsequence of {Gj}. Let ω∗j (X, t, ·) = ω(x0 + j−1, x, t, ·), for (X, t) ∈ U. j =
3, 4, . . . , . Then ω∗j is a weak solution to (1.1) in U relative to Aj , Bj and from (2.1)
as well as (a) of Lemma 2.2 we find

(2.3) Gj(·, Y, s) ≤ c y−n0 ω∗j (·, Qr1(z, τ))

on ∂Qyo/100n(Y, s) whenever y0 ≥ j−1, (z, τ) ∈ Qy0/16(y, s), and y0/4 ≤ r1 < y0.
From (c) of Lemma 2.2 for Gj we see that Gj(·, Y, s) has continuous boundary
value zero. Using this fact, (2.3), and the maximum principle (see the remark after
Lemma 3.38 of chapter I) for solutions to (1.1) we conclude that (2.3) holds in
U \ Qy0/100n(Y, s) with a constant independent of j = 1, 2, . . . , . Letting j→∞ in
(2.3) we get (b) of Lemma 2.2. (c) of Lemma 2.2 is a consequence of (b), Lemma
3.2 for A,B, of chapter II and the fact that ω(·, Qr1(z, τ)) has continuous boundary
value zero at points of IRn \ Q̄r1(z, τ). The proof of Lemma 2.2 is now complete. 2

Next suppose that either Ω = U or Ω = Qd(X, t) ∩ U for some d > 0, (X, t) ∈ U
and also that v ∈ L2(−T, T,H1

loc (Û) ), 0 < T <∞, satisfies

(2.4)
∫
U

[〈A∗∇v + F, ∇ξ 〉 − (B∗∇v + f ) ξ − v ξs ] dY ds = 0

whenever ξ ∈ C∞0 (Ω) and A∗, B∗ satisfy (1.2)-(1.4). Here F = (F0, . . . , Fn−1) and
f, Fi ∈ L2(U) for 0 ≤ i ≤ n − 1. Also f, Fi each vanish outside of a compact set
K ⊂ U. We say that v is a weak solution to L∗v = ∇ · F + f in Ω where L∗ is
as in (1.1) relative to A∗, B∗. Let d1 < d2 and Q̄d2(Y, s) ⊂ Ω. We shall need the
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Cacciopoli inequality:

(2.5)

∫
Qd1 (Y,s)

|∇v|2 dZdτ

≤ c

∫
Qd2 (Y,s)

[ |F |2 + (d2 − d1)2 f2 ] dZ dτ

+ c (d1 − d2)−2
∫
Qd2 (Y,s)\Qd1 (Y,s)

v2 dZdτ.

Here c depends on n, the distance of Q̄d2(Y, s) to ∂Ω and the constants in (1.2)-
(1.3). If d2 ≤ y0/2, then c can be chosen to depend only on n and the constants
in (1.2), (1.3). (2.5) follows easily from (2.4) by using Cauchy’s inequality with ε’s
and routine juggling, once it is shown that ve−λt times a certain cutoff function can
essentially be used as a test function (see [A]). Let O be an open set with K ⊂ O
and Ō ⊂ U. By a solution to the Cauchy problem Lu = ∇·F + f, u|∂U = g, where
g is continuous and bounded on ∂U, we mean a function u ∈ L2(−T, T,H1

loc (Û))
for 0 < T < ∞ which is bounded outside of O, satisfies (2.4) in U (with A∗, B∗

replaced by A,B) and is continuous on Ū with u = g on ∂U. With this terminology
we prove

Lemma 2.6. Let A,B, ω,G be as in Lemma 2.2 and f, F as in (2.4). Then for a
given continuous, bounded g on ∂U, the Cauchy problem, Lu = ∇·F + f, u|∂U = g
has a unique solution:

u(X, t) =
∫
∂U

g dω(X, t, ·) +
∫
U

[−〈F, ∇Z G(X, t, ·) 〉 + f G(X, t, ·) ] dZdτ.

Proof: Put u∗(X, t) =
∫
∂U

g dω(X, t, ·) and

u∗∗(X, t) =
∫
U

[−〈F, ∇Z G(X, t, ·) 〉 + f G(X, t, ·) ] dZdτ

for (X, t) ∈ U. We first consider u∗∗. Replace G, f, F by Ĝ, f̂ , F̂ in the definition of
u∗∗, where Ĝ is as above, and call the resulting function û. We assume that f̂ , F̂
have support in Ō. Then from Schauder type estimates we deduce for smooth f̂ , F̂
that û is the unique solution to the Cauchy problem L̂û = ∇ · F̂ + f̂ , û|∂U = 0,
where L̂ is defined as in (1.1) relative to Â, B̂. Choose 0 < d1 < d2, (Y, s) so
that Ō ⊂ Qd1(Y, s) and Q̄d2(Y, s) ⊂ U. Recall that Lemma 3.9 of chapter I held
uniformly for the sequence we used to define Gj (with constants that could depend
on j). Thus we can use (a)− (c) of Lemma 2.2 and Lemma 3.3 of chapter I for Ĝ
as well as (1.4) to conclude that û is uniformly bounded on U \ Qd1(Y, s). Using
this fact, (2.5), and essentially Poincare’s inequality, we deduce that

(2.7) ‖û‖L2(Qd1 (Y,s)) ≤ c ( ‖f‖L2(U) + ‖F‖L2(U) ).

Here c depends on j, n, d2 − d1, the distance of Qd2(Y, s) to ∂U and the con-
stants in (1.2)-(1.3). Next from (2.5), (2.7) we see that û is locally bounded in
L2(−T, T,H1

loc(Û)), 0 < T < ∞, with constants having the same dependence as
c above. Approximating f, F by smooth f̂ , F̂ whose supports are all contained in
Ō and taking a weak limit as in Lemma 2.2 we get a solution ũj to the Cauchy
problem, Lj ũj = ∇ · F + f, ũj |∂Ω = 0, where Lj is defined as in (1.1) relative
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to Aj , Bj . From our construction of Gj(·, ·) as a certain weak limit and estimates
using (a)− (c) of Lemma 2.2, Lemma 3.3 of chapter I, it can be deduced that

(2.8) ũj(X, t) =
∫
U

[−〈F, ∇Z Gj(X, t, ·) 〉 + f Gj(X, t, ·) ] dZdτ, (X, t) ∈ U.

Also from (2.3) and Lemma 3.3 of chapter I for Gj we see that we can use (2.5) for
j large to get (2.7) with û replaced by ũj and constants independent of j. Thus we
can take a subsequence of the subsequence of j’s used to define G so that the corre-
sponding subsequence of {ũj} converges weakly in L2(−T, T,H1

loc(Û)), 0 < T <∞,
to ũ, a solution to the Cauchy problem Lũ = ∇ · F + f, ũ|∂U = 0. Finally from
(2.8), weak convergence, Lemma 3.3 of chapter I, and (a) of Lemma 2.2 it can be
shown that ũ = u∗∗ almost everywhere on U. To complete our analysis of u∗∗ we
note from (c) of Lemma 2.2 and Lemma 3.3 for G that u∗∗(X, t)→0 as x0→0. As for
u∗, we see by an easy functional analysis type argument, that this function is the
solution to the Dirichlet problem for (1.1), A,B with boundary function g. Thus
u = u∗ + u∗∗ is the desired solution. Uniqueness of u follows from the maximum
principle in Lemma 3.38 of chapter I. 2

Next we put

(2.9) Ej = Ej(X, t) = Q2jx0(X, t) \Q2j−1x0(X, t) for j = 0,±1, . . . ,

and with this notation prove

Lemma 2.10. Let f, F, v be as in (2.5) relative to A,B,Ω = Q4x0(X, t)∩U. Then∫
E0

|∇v|2G(X, t, ·) dY ds ≤ c ‖vχ‖2L∞(U) + c ‖vχ‖L∞(U)

∫
U

G(X, t, ·) |f |χdY ds

+ c‖vχ‖L∞(U)

(∫
U

|∇G(X, t, ·)| |F |χdY ds + c x−1
0

∫
U

G(X, t, ·) |F |χdY ds
)

+ c

∫
U

G(X, t, ·) |F |2 χdY ds,

where χ denotes the characteristic function of Q2x0(X, t) \Qx0/4(X, t).

Proof: Recall formula (3.6a) of chapter I for smooth Â, B̂, Ĝ. Taking a limit as
above we see for φ ∈ C∞0 (IRn+1) and fixed j, that
(2.11)

φ(X, t) =
∫
U

[ 〈Aj∇φ,∇Y Gj(X, t, ·) 〉 + Gj(X, t, ·) (φs − Bj ∇φ ) ] dY ds

+
∫
∂U

φ(y, s) dωj(X, t, y, s),

whenever (X, t) ∈ U, where ωj is parabolic measure defined relative to Aj , Bj . Let
Q = Q2x0(X, t) \Qx0/4(X, t) and let θ ∈ C∞0 (Q) with

x0 |∇θ‖(Y, s) + x2
0 | ∂∂tθ|(Y, s) ≤ c(n) for (Y, s) ∈ Q

while θ ≡ 1 on Qx0(X, t)\Qx0/2(X, t). Next let κ be an even function in C∞0 [(−1, 1)]
with

∫
IR
κ dx = 1 and first derivatives bounded by c(n). Let κδ(τ) = δ−1 κ(τ/δ) for
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given δ > 0 and if g is an integrable function on IR let g ∗ κδ denote convolution
of g with κδ. If h is a real valued function defined on a subset of IRn+1 we put
hδ(Y, s) = h(Y, ·) ∗ κδ(s) whenever the convolution makes sense. Finally we extend
Gj(X, t, ·) to a continuous function on IRn+1 \ {(X, t)} by putting Gj(X, t, ·) ≡ 0 in
IRn+1 \ U.

For v as in Lemma 2.10 we assume, as we may, that ‖vχ‖L∞(U) < ∞ and
put vj(Y, s) = v(y0 + j−1, y, s), fj(Y, s) = f(y0 + j−1, y, s), F j(Y, s) = F (y0 +
j−1, y, s). Then for j large enough we find that

(2.12)

(i) vj satisfies (2.4) relative to Aj , Bj , fj , F j in
Ωj = {(Z, τ) : (Z, τ) ∈ Q3x0(X, t) and z0 > −j−1 },

(ii) vj is Hölder continuous in a neighborhood of Q ∩ ∂U,

(iii) |∇Gj |(X, t, ·) has square integrable distributional derivatives on
Q4x0(X, t) \Qx0/8(X, t).

(ii) is a consequence of Lemma 3.4 of chapter I for v and the fact that f, F have
compact support. (iii) follows from ‖Bj‖L∞(U) ≤ Mj and the same argument as
in (3.18) of chapter I. Approximating by smooth functions and using (2.12) we see
that the function ξ defined by

ξ =
{

[ (vj)δ θ2Gj(X, t, ·) ]δ on U ∩Q,
0 in Q \ U

can be used as a test function in (2.4) for vj . Putting this function in (2.4) we get
after some rearranging that if w = (vj)δ, and ∇ = ∇Y , then
(2.13)

I1 =
∫
Q

〈 (Aj∇vj)δ , ∇[w θ2Gj(X, t, ·) ] 〉 dY ds

=
∫
Q

(Bj ∇vj)δ w θ2Gj(X, t, ·) dY ds +
∫
Q

(fj)δ w θ2Gj(X, t, ·) dY ds

−
∫
Q

〈F jδ , ∇(w θ2Gj(X, t, ·)) 〉 dY ds− 1
2

∫
Q

∂
∂s (w2) θ2Gj(X, t, ·) dY ds

= I2 + I3 + I4 + I5.

We note that
(2.14)

I1 =
∫
Q

〈Aj∇w,∇w〉 θ2G(X, t, ·) dY ds+
∫
Q

〈Aj∇w,∇θ2〉wG(X, t, ·) dY ds

+ 1
2

∫
Q

〈Aj∇(w θ)2,∇G(X, t, ·)〉θ2〉 dY ds−
∫
Q

〈Aj∇θ,∇G(X, t, ·) 〉w2 θdY ds

+
∫
Q

〈 (Aj∇vj)δ −Aj∇w ,∇[w θ2Gj(X, t, ·) ] 〉 dY ds

= I11 + I12 + I13 + I14 + I15.
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Also
(2.15)

I2 = 1
2

∫
Q

Bj ∇(w θ)2Gj(X, t, ·) dY ds −
∫
Q

Bj ∇θ w2θ Gj(X, t, ·) dY ds

+
∫
Q

[(Bj ∇v)δ −Bj∇w)]w θ2Gj(X, t, ·) dY ds

= I21 + I22 + I23.

From (1.2) we see that

(2.16)
∫
Q

|∇w |2 θ2G(X, t, ·) dY ds ≤ c I11 .

Using Cauchy’s inequality with ε ’ s we deduce that
(2.17)
|I12| + |I14| + |I22|

≤ 1
4 I11 + c ‖w2 χ‖2L∞(U) x

−1
0 (

∫
Q

y−1
0 Gj(X, t, ·) + |∇Gj(X, t, ·) | dY ds ).

We also observe that

I4 = −
∫
Q

〈F jδ , ∇w 〉 θ2Gj(X, t, ·) dY ds

−
∫
Q

〈F jδ ,∇(θ2) 〉wGj(X, t, ·) dY ds−
∫
Q

wθ2〈F jδ ,∇Gj(X, t, ·)〉 dY ds

= I41 + I42 + I43.

Moreover,
(2.18)

|I41|+ +|I42| + |I43| ≤ 1
4 I11 + c

∫
Q

|F jδ |2 θ2Gj(X, t, ·) dY ds

+ c ‖wθ‖L∞(U) [
∫
Q

|F j | (x−1
0 Gj(X, t, ·) + θ |∇Gj(X, t, ·)| ) dY ds ].

Next approximating by smooth functions and using (2.12) we deduce that (2.11) is
valid with φ = (wθ)2. From (2.11) and (a) of Lemma 2.2 we find that

(2.19) | − I13 + I21 + I5 | ≤ c ‖wθ‖2L∞(U) .

Finally we note that the constants in (2.16)-(2.19) depend at most on the con-
stants for A,B in (1.2)-(1.4). We first let δ→0 and use (2.12) (iii) to conclude that
I15 + I23→0. Then we let j→∞ through values used in the sequence defining G.
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We deduce from (2.13)-(2.19) that
(2.20)∫

Q

|∇v |2 θ2G(X, t, ·) dY ds

≤ c ‖v2 χ‖2L∞(U) [
∫
Q

x−1
0 ( y−1

0 G(X, t, ·) + |∇G(X, t, ·)| ) dY ds ]

+ c ‖vχ‖L∞(U)

∫
Q

G(X, t, ·)|f | dY ds+ c

∫
Q

|F | |∇G(X, t, ·)| dY ds

+ c x−1
0 ‖vχ‖L∞(U)

∫
Q

|F |G(X, t, ·) dY ds + c

∫
Q

|F |2G(X, t, ·) dY ds .

Now from (a)− (d) of Lemma 2.2 and Lemma 3.3 we see by the same argument as
in (3.30) of chapter I that∫

Qy0/16(Y,s)

θ (z−1
0 G(X, t, ·) + |∇G(X, t, ·) | ) dZdτ ≤ c z0 ω(X, t,Qz0/2(z, τ) ),

whenever (z, τ) ∈ Qy0/16(Y, s). This inequality implies that

(2.21)

∫
Q

( z−1
0 G(X, t, ·) + |∇G(X, t, ·) | ) dZdτ

≤ c

∫
Q6x0 (X,t)

y
−(n+1)
0 ω(X, t,Qy0/2(y, s)) dY ds ≤ cx0.

In (2.21) the lefthand inequality is obtained from writing the first integral as a sum
over Whitney rectangles and using the above inequality. The righthand inequality
follows from interchanging the order of integration in the second integral. Putting
(2.21) into (2.20) we conclude the validity of Lemma 2.10. 2

Armed with Lemma 2.10 we are ready to begin the proof of the special case of
Theorem 1.7 mentioned at the beginning of this section. To begin we assume only
that A1, B1 satisfy (1.5) (a), (b) and not necessarily (c) of this display. That is,

(a) The continuous Dirichlet problem for (1.1), A1, B1

always has a unique solution,

(b) If ω1 denotes the corresponding parabolic measure, then
λ1 ω1(d, x, t+ 2d2, Qd(x, t)) ≥ 1.

Let G1 be the Green’s function corresponding to (1.1), A1, B1. We assume that
(2.22)
Either the backward Harnack inequality in Lemma 3.11 holds for G1 or A2 ≡ A1.

Put
d ν̂(Y, s) = y−1

0 ess sup {[|A2 −A1|2 + z2
0 |B2 −B1|2](Z, τ) :

(Z, τ) ∈ Qy0/16(Y, s)} dY ds,

ξ(y, s) =
∫ ∞

0

d ν̂
dY ds (z0, y, s) dz0 .
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We prove

Lemma 2.23. Let Ai, Bi satisfy (2.1)-(2.3) for i = 1, 2. Suppose that A1, B1 satisfy
(1.5)(a), (b), and that (2.22) is valid. There exists ε3 > 0 depending on γ1,M, n, λ1

such that if ‖ξ‖L∞(IRn) ≤ ε23, then the Dirichlet problem for (1.1) corresponding
to g (continuous and bounded on ∂U), A2, B2 has a unique solution u given for
(X, t) ∈ U by

u(X, t) = u1(X, t) +
∫
U

〈 (A2 −A1)∇u , ∇G1(X, t, ·) 〉 dY ds

+
∫
U

(B2 −B1)∇uG1(X, t, ·)dY ds.

u1 is the solution to the continuous Dirichlet problem for (1.1), A1, B1 with u1 ≡ g
on ∂U. Moreover,

‖u− u1‖L∞(U) ≤ c(γ1,M, n, λ1) ε3 ‖g‖L∞(∂U).

Proof: Note that Lemma 2.23 does not make a Carleson measure asuumption
on B1, B2 individually, as in Theorem 1.7. We first prove Lemma 2.23 under the
assumption that

(+) There exist δ > 0 such that A2 ≡ A1 and B2 ≡ B1 in U ∩ {(Z, τ) : z0 ≤ δ }.

To show the existence of u satisfying the above integral equation, we use Picard
iteration. Put

uk+1(X, t) = u1(X, t) +
∫
U

〈 (A2 −A1)∇uk , ∇G1(X, t, ·) 〉 dY ds

+
∫
U

(B2 −B1)∇ukG1(X, t, ·) dY ds

= u1(X, t) +
∫
U

Hk(X, t, ·) dY ds,

for k = 1, 2, . . . , whenever these integrals make sense. We write,

(u2 − u1)(X, t) =
∑∞

j=−∞

∫
Ej

H1(X, t, Y, s)dY ds

where Ej is as in (2.9) relative to (X, t). We note from ‖ν̂‖ ≤ ε23 that

(2.24) ‖A2 −A1‖L∞(U) + ‖x0 (B2 −B1)‖L∞(U) ≤ c(n) ε3.

We also note that the interior estimates in Lemmas 3.3 - 3.5 of chapter I hold for
weak solutions to (1.1) in U corresponding to A1, B1, as we see once again from
approximating such solutions by smooth solutions and taking limits. Let β be the
exponent of Hölder continuity in Lemma 3.4 of chapter I corresponding to (1.1),
A1, B1. If j ≤ −1 we deduce from (2.24), (a)− (c) of Lemma 2.2, and Lemmas 3.3,
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3.4 of chapter I that∫
Ej

|H1|(X, t, ·) dY ds ≤ c ε3

∫
Ej

|∇u1| [ y−1
0 G1(X, t, ·) + |∇G1(X, t, ·)| ] dY ds

≤ cε3

(∫
Ej

|∇u1|2 dY ds

)1/2(∫
Ej

y−2
0 G2

1(X, t, ·) + |∇G1(X, t, ·)|2 dY ds

)1/2

≤ c ε3 2βj ‖u1‖L∞(U) ≤ c ε3 2βj ‖g‖L∞(∂U),

where the last inequality is a consequence of the maximum principle in Lemma 3.38
of chapter I. Summing over j ≤ −1, it follows that

(2.25)
∫
Qx0/2(X,t)

|H1|(X, t, ·) dY ds ≤ cε3 ‖g‖L∞(∂U) .

If j ≥ 0, put Xj = (2j+5 x0, x), tj = t + 4j+5 x2
0 for j = 0, 1, . . . , . To avoid

confusion we indicate the dependence of Ej on (X, t). We claim that
(2.26)∫

Ej(X,t)

|H1|(X, t, ·) dY ds ≤ cε32−jα
(∫

E0(Xj ,tj)

|∇u1|2G1(Xj , tj , ·) dY ds

)1/2

where α is the exponent in Lemma 3.2 of chapter II relative to A1, B1. To prove
(2.26) we put

a = ar(Z, τ) =, min
Qr(Z,τ)

{| dν̂

dY ds
|1/2(Y, s)}

and note that if (Z, τ) ∈ Ej(X, t), j = 0, 1, . . . , then from (2.22), Lemma 2.2,
Lemma 3.2 of chapter II, and Lemmas 3.5, 3.3 of chapter I, we get for z0/1000 ≤
r ≤ z0/64, that
(2.27)∫
Qr(Z,τ)

|(A2 −A1)∇u1| |∇G1(X, t, ·)|dY ds

≤ caz
(n+1)/2
0 G1(X, t, Z, τ − z2

0/322)

(∫
Qr(Z,τ)

|∇u1|2 dY ds

)1/2

≤ ca2−jα z(n+1)/2
0 G1(Xj , tj , Z, τ − z2

0/322)

(∫
Qr(Z,τ)

|∇u1|2 dY ds

)1/2

≤ c2−jα
(∫

Qr(Z,τ)

y−1
0 G1(Xj , tj , ·)dν̂

)1/2(∫
Qr(Z,τ)

|∇u1|2G1(Xj , tj , ·)dY ds

)1/2

Next we divide Ej into Whitney rectangles {Q̄rl
(Zl, τl)} with disjoint interiors and

such that if Qr̂(Ẑ, τ̂) ∈ {Qrl
(Zl, τl)}, then ẑ0/1000 ≤ r ≤ ẑ0/64. Using (2.27) with

Qr(Z, τ) replaced by the above Whitney rectanges, summing and using Cauchy’s
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inequality we obtain

(2.28)

∫
Ej(X,t)

|(A2 −A1)∇u1| |∇G1(X, t, ·)|dY ds ≤

c 2−jα
(∫

E0(Xj ,tj)

y−1
0 G1(Xj , tj , ·) dν̂(Y, s)

)1/2

·

(∫
E0(Xj ,tj)

|∇u1|2G1(Xj , tj , ·)dY ds

)1/2

.

We note that Lemma 2.2 (b) holds for 0 < r1 ≤ y0/4, provided we allow c in
this equality to also depend on r1, as follows easily from the proof of Lemma 2.2.
Using this new version of Lemma 2.2 (b) for r1 = r1(n) > 0 sufficiently small and
interchanging the order of integration in the first integral on the righthandside of
(2.28) we get

(2.29)

∫
E0(Xj ,tj)

y−1
0 G1(Xj , tj , ·) dν̂(Y, s) ≤ c

∫
IRn

ξ(y, s) dω1(x, tj , y, s)

≤ c ε23.

Using (2.29) in (2.28) we see that∫
Ej(X,t)

|(A2 −A1)∇u1| |∇G1(X, t, ·)|dY ds

≤ c 2−jαε3

(∫
E0(Xj ,tj)

|∇u1|2G1(Xj , tj , ·)dY ds

)1/2

.

By a somewhat easier argument we also find that∫
Ej(X,t)

|(B2 −B1)∇u1|G1(X, t, ·)dY ds

≤ c 2−jαε3

(∫
E0(Xj ,tj)

|∇u1|2G1(Xj , tj , ·)dY ds

)1/2

.

From the above inequalities we deduce that claim (2.26) is true. From the fact that
u1 is a weak solution to L1 u1 = 0, Lemma 2.10, and the maximum principle we
get with (X, t) replaced by (Xj , tj),

(2.30)
∫
E0(Xj ,tj)

|∇u1|2G1(Xj , tj , ·) dY ds ≤ c ‖g‖2L∞(∂U).

Using (2.30) in (2.26) and summing we obtain

(2.31)
∫
U\Qx0/2(X,t)

|H1|G1(X, t, ·) dY ds ≤ cε3 ‖g‖L∞(∂U).

Combining (2.31) and (2.25) we see that

(2.32) ‖u2 − u1‖L∞(U) ≤ cε3 ‖g‖L∞(∂U) .
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Note from assumption (+) and Lemma 2.6 that u2 is the solution to the Cauchy
problem L1 u2 = ∇ · F1 + f1 where L1 is the operator in (1.1) defined relative to
A1, B1 and

f1 = (B2 −B1)∇u1

F1 = (A2 −A1)∇u1.

Using this note, Lemma 2.10, and (2.32) we see that u in L2(−T, T,H1
loc(Û)), 0 <

T < ∞. We also assert for 0 < r ≤ x0/2 and (X, t) ∈ U that for some c ≥ 1, we
have
(2.33)

Φ(r, u2 − u1) = r−n
∫
Qr(X,t)

|∇(u2 − u1)|2dY ds ≤ c+ (r/x0)β ε23 ‖g‖2L∞(∂U) ,

where again β is the constant in Lemma 3.4 for weak solutions to (1.1), A1, B1.
To prove (2.33) we observe from (2.5), (2.24), (2.32), and the above note that if
x0/100 ≤ r ≤ x0/2, then

Φ(r, u2 − u1) ≤ cε23 r
−n
∫
Q3r/2(X,t)

|∇u1|2 dY ds + cε23 ‖g‖2L∞(∂U)

≤ cε23 ‖g‖2L∞(∂U) .

Thus (2.33) holds for the above values of r. To prove this inequality for 0 < r ≤
x0/100, we write u2 − u1 = C1 + D1, where for (Z, τ) ∈ U,Q = Qr(X, t), and
G1 = G1(Z, τ, ·), we have

C1(Z, τ) =
∫
Q

〈 (A2 −A1)∇u1,∇G1 〉 dY ds+
∫
Q

(B2 −B1)∇u1G1 dY ds,

D1(Z, τ) =
∫
U\Q

〈 (A2 −A1)∇u1,∇G1 〉 dY ds+
∫
U\Q

(B2 −B1)∇u1G1 dY ds.

Arguing as in the display above (2.25) we see for some c = c(γ1,M, n) ≥ 1 that

|C1(Z, τ)| ≤ c ε3 (r/x0)β ‖g‖L∞(∂U), for (Z, τ) ∈ U \Q2r(X, t).

Using this inequality, the fact that Φ(r, u1) ≤ c(r/x0)2β , and (2.5) for C1 it follows
that there exists c∗ = c∗(γ1,M, n) ≥ 1 for which

(2.34) Φ(r, C1) ≤ c ε23 (r/x0)2β ‖g‖2L∞(∂U). ≤ c∗ ε23 (r/x0)β ‖g‖2L∞(∂U).

Next we note from Lemma 2.6 that D1 is a weak solution to (1.1) corresponding
to A1, B1 in Q. We claim for 0 < 100r1 ≤ r, that there exists ĉ = ĉ(γ1,M, n) ≥ 1
such that

(2.35) Φ(r1, D1) ≤ ĉ (r1/r)2β Φ(r/2, D1).

To prove this statement we observe from Lemmas 3.3, 3.4 of chapter I that if
r/8 < ρ < r/4 and a denotes the average of D1 on Qρ(X, t), then

Φ(r1, D1) ≤ c (r1/r)2β r−(n+2)

∫
Qρ(X,t)

(D1 − a)2 dY ds.

So to complete the proof of (2.35) it suffices to show that the integral involving
D1 − a times r−n−2 is less than or equal to cΦ(r/2, D1). This estimate does not
follow directly from Poincáre’s inequality since the gradient of D1 is only in the
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space variable. However choosing an appropriate test function in (2.5) with u
replaced by D1 it is not difficult to show for some ρ as above and t−ρ2 < s < t+ρ2

that if a(s) denotes the average of D1 with respect to Lebesgue n measure on
Qρ(X, t) ∩ (IRn × {s}), then

| a(s) − a | ≤ cΦ(r/2, D1) .

This inequality and Poincáre’s inequality applied in Qρ(X, t) ∩ (IRn × {s}) for t −
ρ2 < s < t + ρ2 give the desired inequality. Thus (2.35) is valid. We now use
(2.34) and (2.35) to prove (2.33). We shall show that if (2.33) holds for some
r, 0 < r ≤ x0/100, with c+ replaced by c̃, then for c̃ large enough there exists
θ = θ(γ1,M, β, n), 0 < θ < 1, for which this inequality also holds at θr. That is,

(2.36) Φ(θr, u2 − u1) ≤ c̃ ε23 (θr/x0)β ‖g‖2L∞(∂U).

Iterating (2.36) (starting with r = x0/100) and using the fact that Φ(ρ, u2 − u1) ≤
cΦ(r, u2 − u1), for θr ≤ ρ ≤ r, we get (2.33). Hence we need only prove (2.36). As
for (2.36) we see from (2.34), (2.35) with r1 = θr, that

Φ(θ r, u2 − u1) ≤ 2[Φ(θ r, C1) + Φ(θ r,D1)]

≤ 2θ−n Φ(r, C1) + 2 ĉ θ2β Φ(r/2, D1)

≤ (2 θ−n + 2n+2 θ2β ĉ ) Φ(r, C1) + 2n+2 ĉ θ2β Φ(r, u2 − u1)

≤ [ (2 θ−n + 2n+2 ĉ ) c∗ + 2n+2 ĉ θ2β c̃ ] (r/x0)β ε23 ‖g‖2L∞(∂U).

We first choose θ so that 2n+2 ĉ θβ = 1/2. We next put

c̃ = 2 θ−β (2 θ−n + 2n+2ĉ ) c∗ .

From the above inequality we see for these values of c̃, θ that (2.36) is true. From
the remark following (2.36) we conclude that assertion (2.33) is true.

Next we show that

(2.37)
∫
E0(X,t)

|∇(u2 − u1)|2G1(X, t, ·)dY ds ≤ c ε23 ‖g‖2L∞(∂U) .

To prove (2.37) we use (2.32) and Lemma 2.10 to write for v1 = u2 − u1,
(2.38)∫

E0(X,t)

|∇v1|2G1(X, t, ·)dY ds ≤ c ε23 ‖g‖2L∞(∂U)

+ cε3 ‖g‖L∞(∂U)

∫
U

G1(X, t, ·) |f1|χdY ds

+ cε3 ‖g‖L∞(∂U)

(∫
U

[ |∇G1(X, t, ·)| + x−1
0 G1(X, t, ·) ] |F1|χdY ds

)

+ c

∫
U

G1(X, t, ·) |F1|2 χdY ds

= cε23 ‖g‖2L∞(∂U) + cε3 ‖g‖L∞(∂U) (T1 + T2) + c T3,
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where f1, F1, are as below (2.32). Arguing as in (2.27)-(2.29) and using (2.30) we
get that

|T1|+ |T2| ≤ c

∫
E0(X,t)

|(B2 −B1)∇u1|G1(X, t, ·) dY ds

+c
∫
E0(X,t)

|(A2 −A1)∇u1| [ |∇G1(X, t, ·)| + x−1
0 G1(X, t, ·) ]dY ds

≤ c ε3

(∫
E0(X1,t1)

|∇u1|2G1(X1, t1, ·)dY ds

)1/2

≤ c ε3 ‖g‖L∞(∂U) .

Also from (2.24) we have

|T3| ≤ cε23

∫
E0(X1,t1)

|∇u1|2G1(X1, t1, ·)dY ds ≤ c ε23 ‖g‖2L∞(∂U) .

Putting these estimates for the T ’s into (2.38) we get (2.37).
We now proceed by induction. Put vk = uk+1−uk for k = 1, 2, . . . , and suppose

for 1 ≤ k ≤ l that we have shown

(2.39)

(a) ‖vk‖L∞(U) ≤ (c1 ε3)k‖g‖L∞(∂U),

(b) Φ(r, vk) ≤ (r/x0)β (c1 ε3)2k‖g‖2L∞(∂U)

for (X, t) ∈ U and 0 < r ≤ x0/2,

(c)
∫
E0(X,t)

|∇vk|2G1(X, t, ·)dY ds ≤ (c1 ε3)2k ‖g‖2L∞(∂U)

whenever (X, t) ∈ U.

Note from (2.32), (2.33), and (2.37) that (2.39) is valid when k = 1 for c1 sufficiently
large. Using the induction hypothesis, we shall prove that (2.39) holds when k =
l + 1 provided c1 = c1(γ1,M, n, λ1, p1) is large enough (independent of l). We
proceed as in the case k = 1. In fact from (2.39) (b) with k = l we get as in the
display above (2.25) that for some c̄ ≥ 1

(2.40)
∫
Qx0/2(X,t)

|Hl+1 − Hl|(X, t, ·) dY ds ≤ (c̄ ε3) (c1 ε3)l ‖g‖L∞(∂U).

Also using (2.39) (c) for k = l and arguing as in the proof of (2.27)- (2.31) we find
that

(2.41)
∫
U\Qx0/2(X,t)

|Hl+1 − Hl|(X, t, ·) dY ds ≤ (c̄ ε3) (c1 ε3)l ‖g‖L∞(∂U).

Combining (2.40) and (2.41) we get (2.39) (a) when k = l+ 1 provided c1 ≥ c̄. We
note from assumption (+) and Lemma 2.6 that vk is the solution to the Cauchy
problem L1 vk = ∇ · Fk + fk where L1 is the operator in (1.1) defined relative to
A1, B1 and for k > 1,

fk = (B2 −B1)∇vk−1

Fk = (A2 −A1)∇vk−1.
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For k = 1, f1, F1 are as defined earlier. Using this note, (2.5), and (2.39) for k = l,

we see that vl+1 in L2(−T, T,H1
loc(Û)), 0 < T < ∞. Moreover, using (2.5) and

(2.39), we find as in (2.33) whenever (X, t) ∈ U and x0/100 ≤ r ≤ x0/4,

Φ(r, vl+1 ) ≤ cε23 Φ(3r/2, vl ) + (c∗ε3)2 (c1ε3)2l ‖g‖2L∞(∂U)

≤ (c∗∗ε3)2 (c1ε3)2l ‖g‖2L∞(∂U) .

If r ≤ x0/100, we put vl+1 = Cl+1 + Dl+1, where for (Z, τ) ∈ U,Q = Qr(X, t),
and G1 = G1(Z, τ, ·), we have

Cl+1(Z, τ) =
∫
Q

〈 (A2 −A1)∇vl,∇G1 〉 dY ds+
∫
Q

(B2 −B1)∇vlG1 dY ds,

Dl+1(Z, τ) =
∫
U\Q

〈 (A2 −A1)∇vl,∇G1 〉 dY ds+
∫
U\Q

(B2 −B1)∇vlG1 dY ds.

Arguing as in the proof of (2.34) we deduce first from (2.39) with k = l that

|Cl+1(Z, τ)| ≤ c ε3 (r/x0)β/2 (c1 ε3)l ‖g‖L∞(∂U), for (Z, τ) ∈ U \Q2r(X, t),

and second from this inequality, as well as (2.39), that

Φ(r, Cl+1) ≤ c∗ ε23 (r/x0)β (c1 ε3)2l ‖g‖2L∞(∂U).

Using this inequality, (2.35) with D1 replaced by Dl+1, and arguing as in the proof
of (2.36) we obtain (2.39) (b) for k = l+1 with (c1ε3)2l+2 replaced by c∗ ε23 (c1ε3)2l.
Since (X, t) ∈ U is arbitrary and we can cover Qr(X, t), x0/4 ≤ r ≤ x0/2, by at
most c(n) rectangles of side length x0/8, we conclude that (2.39) (b) holds for c1
large enough. Finally to prove (2.39)(c) for k = l + 1, we use (2.40), (2.41), and
Lemma 2.10 to get as in (2.38) that∫

E0(X,t)

|∇vl+1|2G1(X, t, ·)dY ds ≤ (c−ε3)2 (c1ε3)2l ‖g ‖2L∞(∂U)

+ (c− ε3)2 (c1ε3)l ‖g‖L∞(∂U)

(∫
E0(X1,t1)

|∇vl|2G1(X1, t1, ·)dY ds

)1/2

≤ (c− ε3)2 (c1ε3)2l ‖g‖2L∞(∂U),

where the last inequality was obtained from (2.39)(c) for k = l. Thus (2.39)(c) is
true for c1 ≥ c− when k = l + 1 and so (2.39) is true. By induction we conclude
that (2.39) holds for k a positive integer.

From (2.39) we see that u = lim
k→∞

uk exists in L2(−T, T,H1
loc(Û)) ∩ L∞(U) for

0 < T < ∞. From the definition of uk and (+) it follows that u is the solution to
the integral equation in Lemma 2.23. Note from this equation, (+), and Lemma
2.6 that u is a weak solution to L1u = ∇ · F + f where f = (B2 − B1)∇u and
F = (A2 − A1)∇u or equivalently u is a weak solution to L2u = 0 where L2 is
defined as in (1.1) relative to A2, B2. Moreover from the definition of u1 and (c)
of Lemma 2.2 we conclude first that u − u1 has limit zero at each point in ∂U
and second that u2 is a solution to the continuous Dirichlet problem for L2 with
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boundary function g. Uniqueness of u is a consequence of the maximum principle
in Lemma 3.38. Next we observe from (2.39) that for ε3 sufficiently small, we have

‖u− u1‖L∞(U) ≤ 2c1 ε3 ‖g‖L∞(∂U).

Hence Lemma 2.23 is true under assumption (+). To conclude the proof of Lemma
2.23 we approximate A2, B2 by Âj , B̂j , j = 1, 2, . . . , where Âj→A2, B̂j→B2 point-
wise as j→∞. Furthermore, Âj , B̂j satisfy the hypotheses of Lemma 2.23 and (+)
holds for j = 1, 2, . . . . For example, if (X, t) ∈ U let

Âj(X, t) =
{
A2(X, t) for x0 ≥ j−1

A1(X, t) for x0 < j−1

and define B̂j similarly for j = 1, 2, . . . , . From Lemma 2.23 we deduce first that
parabolic measure can be defined for each member of the above sequence. Second
we deduce that the conclusion of Lemma 2.23 is valid with A2, B2 replaced by Âj , B̂j
and with constants independent of j. From this deduction, (1.5)(b) for ω1, and the
definition of parabolic measure we find that parabolic measure corresponding to
each member of the above sequence satisfies (1.5) (b) with constants independent
of j. Using this fact, Lemma 3.2 of chapter II and the same argument as in Lemma
3.37 of chapter I we get after letting j→∞ that the continuous Dirichlet problem for
(1.1), A2, B2 has a solution. Again uniqueness follows from the maximum principle
in Lemma 3.38. Finally it is easily checked that the last inequality in Lemma 2.23
is still valid. 2

Let ω2 be parabolic measure defined relative to A2, B2, Next suppose in addition
to (1.5) (a), (b) that ω1 satisfies (1.5)(c). That is

(c) ‖ dω1
dyds (d, x, t+ 2d2, ·)‖αp1 (Qd(x,t)) < λ1 <∞.

Using Lemma 2.23 we can now easily prove the following special case of Theorem
1.7.

Lemma 2.42. Let Ai, Bi be as in Lemma 2.23 for i = 1, 2, and suppose also
that (1.5)(c) holds for ω1, λ1, p1 > 1. Then (1.5) also holds for ω2 and some λ2 =
λ2(γ1,M, n, λ1, p1, ε3), p2 = p2(γ1,M, n, λ1, p1, ε3) > 1. Also if q ≥ p2/(p2 − 1),
then the Lq(IRn) Dirichlet problem always has a unique solution in the sense of (I)
and (II) of Theorem 1.13.

Proof: To prove Lemma 2.42 we observe as above that the conclusion of Lemma
2.23 holds with u1, u replaced by ω1(·, F ), ω2(·, F ), whenever F is a Borel measur-
able subset of ∂U. We note that the reverse Hölder assumption on ω1 in (1.5) (c)
implies (3.1) of chapter II for ω1. That is, there exist η0, η1 > 0 depending only on
γ1,M, λ1, n, p1 such that if E ⊂ Qr(y, s) and E is Borel, then

|E|/|Qr(y, s)| ≥ 1− η0 ⇒ ω1(r, y, s+ 2r2, E) ≥ η1.

From (3.1) of chapter II for ω1 and the conclusion of Lemma 2.23 for ω1, ω2, we
deduce that ω2 also satisfies (3.1) of chapter II with constants η0, η1/2, provided
ε3 is small enough. Using this fact and Lemma 3.6 of chapter II we find that ω2

also satisfies (1.5) with constants having the same dependence as η0, η1. The last
sentence in Lemma 2.23 (solution and uniqueness of the Lq(IRn) Dirichlet problem
for q ≥ p2 /(p2 − 1)) follows from (1.5) for A2, B2, ω2, and Lemma 4.19 of chapter
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II. The proof of Lemma 2.42 is now complete. 2

Remark We write ωi for ωi(d, x, t+2d2, ·) when i = 1, 2 and d > 0, (x, t) ∈ IRn are
fixed. If ω1, ω2 are doubling measures, then from Lemma 2.23, [CF], and Lemma
3.10 of chapter I it is easily seen that ω1, ω2 are A∞ weights with respect to each
other on Qd(x, t). In the general case when neither ω1 or ω2 may be doubling,
we can use Lemma 2.23 and mimic the proof of Lemma 3.6 of chapter II with
Lebesgue measure replaced by ω1. Doing this one can first show that ω2 is absolutely
continuous with respect to ω1 on Qd(x, t) so dω2 = f dω1. Second if Q2r′(y′, s′) ⊂
Qd(x, t), then one can prove that there exists, θ = θ(γ1,M, n, λ1, ε3) > 0, such that∫

Qr′ (y
′,s′)

f1+θ dω1 ≤ c ω1(d, x, t+ 2d2, Q2r′(y′, s′))−θ
[∫

Q2r′ (y
′,s′)

f dω1

]1+θ

,

where c depends on the same quantities as θ and also on the ratio of ω1[Q2r′(y′, s′)]
to ω1[Qr′/2(y′, s′ + 2(r′)2)]. We omit the details.

3. Proof of Theorem 1.7

As in section 2 we shall need to do some preliminary investigations before we
can begin the proof of Theorem 1.7, in general. To this end suppose as in section 2
that the continuous Dirichlet problem corresponding to A,B (satisfying (1.2)-(1.4))
always has a unique solution and (1.2) holds for ω, the corresponding parabolic
measure. That is, for some constant c∗ ≥ 1 we have

(3.1) c∗ω(d, x, t+ 2d2, Qd(x, t)) ≥ 1

whenever (x, t) ∈ IRn and d > 0. Let F ⊂ IRn be a compact set and recall from
section 2 of chapter II (see (2.19)) the definition of the parabolic distance function
σ̂(·, F ). Let ψ = θσ̂(·, F ) where θ > 0 and let

ρ(X, t) = (x0 + Pγx0ψ(x, t), x, t), (X, t) ∈ U,
be as in sections 2-4 of chapter II, where γ is chosen so small that this mapping is
one to one from U onto ρ(U) ⊂ U. If u satisfies (1.1) relative to A,B, then from
(2.19), (2.27), (2.28) of chapter II we see once again that ũ = u◦ρ is a weak solution
to (1.1) for some Ã, B̃ satisfying (1.2)-(1.4). We shall prove that

Lemma 3.2. Let A,B, ω, ρ be as above. Then the continuous Dirichlet problem
corresponding to (1.1), Ã, B̃ always has a unique solution. Moreover if ω̃ denotes
the corresponding parabolic measure, then for some c̃ = c̃(γ1,M, θ, c∗, n) ≥ 1 we
have

c̃ ω̃(d, x, t+ 2d2, Qd(x, t)) ≥ 1,
whenever (x, t) ∈ IRn and d > 0.

Proof: Let Ãj(X, t) = = Ã(x0 + j−1, x, t), B̃j(X, t) = B̃(x0 + j−1, x, t), for j =
1, 2, . . . , and all (X, t) ∈ U. We first show that estimates similar to the ones in
Lemma 3.9 of chapter I are valid for Ãj , B̃j , j = 1, 2, . . . , with constants that are
independent of j. To this end let ũj be a solution to (1.1) corresponding to Ãj , B̃j
in (0, 2r)×Q2r(y, s) with ũj vanishing continuously on Q2r(y, s). We observe that if
Q3r/2(y, s) ⊂ U \F, then |B̃| ≤ cM/r on (0, 5

4r)×Q 5
4 r

(y, s). From this observation
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and the remark after (3.22) of chapter I we conclude that in this case Lemma
3.9 of chapter I is valid with u replaced by ũj and constants independent of j.
Otherwise, let h = ω(·, Q3r/2(y, s) \ Q9r/8(y, s)), h̃ = h ◦ ρ, and put h̃j(X, t) =
h̃(x0 + j−1, x, t) for j = 1, 2, . . . , and (X, t) ∈ U. We observe that h̃j is a solution to
(1.1) corresponding to Ãj , B̃j in U. Moreover h̃j ≥ 0 on Q2r(y, s) and c′ h̃j ≥ 1 on
J = ∂[(0, 5

4r)×Q 5
4 r

(y, s)] thanks to (3.1) and Harnack’s inequality. Then from the
maximum principle (see the remark after Lemma 3.38 of chapter I) and Lemma 3.2
of chapter II for A,B, h we have for (X̂, t̂) ∈ (0, r)×Qr(y, s) that

(3.3)
ũj(X̂, t̂) ≤ c (maxJ ũj) h̃j(X̂, t̂)

≤ c
(

max[j−1, x̂0, σ̂(x̂, t̂, F ) ]/r
)α

.

If
x̂0 ≤ (100n)−1σ̂(x̂, t̂, F ) = r̂

we observe that |B̃| ≤ cM/r̂ on (0, 4 r̂)×Q4r̂(x̂, t̂). Thus if I = ∂[(0, 2r̂)×Q2r̂(x̂, t̂)]
we can again use the remark after (3.22)of chapter I to conclude that

ũj(X̂, t̂) ≤ c (max
I
ũj) (max[j−1, x̂0]/r̂ )α .

Combining this inequality with (3.3) of chapter I we get

ũj(X̂, t̂) ≤ c (max
J

ũj) (max[j−1, x̂0]/r )α .

Using the above inequality we can now argue as in the proof of Lemma 3.37 of
chapter I (see (i) − (iv) of this lemma) to get first that the continuous Dirichlet
problem corresponding to Ã, B̃ has a unique solution and second that Lemma 3.9
of chapter I is valid with A,B replaced by Ã, B̃. From Lemma 3.9 with u = 1− ω̃
we see that Lemma 3.2 is true. 2

Next we put

H(X, t) = ess sup {[y−1
0 |A1 −A2|2 + y0|B2 −B1|2](Y, s) : (Y, s) ∈ Qx0/2(X, t)}

L(X, t) = ess sup {[y−1
0 |A1 −A2|2 + y0|B2 −B1|2](Y, s) : (Y, s) ∈ Qx0/16(X, t)}

dν∗(X, t) = H(X, t) dXdt

when (X, t) ∈ U. As in section 6 we shall need the following lemma.

Lemma 3.4. Let A1, B1, A2, B2 satisfy (2.1)-(2.3) and (2.22). Suppose also that
the continuous Dirichlet problem corresponding to (1.1), A1, B1 always has a unique
solution and that (1.5) holds for ω1. If 0 < ε4 < ε3 is small enough (depending
on γ1,M, n, p, λ, ε3) and ν∗[(0, d)×Qd(x, t)] ≤ ε4|Qd(x, t)|, then there exists η0 =
η0(ε4), η1 = η1(ε4), 0 < η0, η1 < 1/2, such that the following statement is true.
Let u, 0 ≤ u ≤ 2, be a solution to (1.1) in U, corresponding to A2, B2 which is
continuous on Ū . If u ≡ 1 on some closed set E ⊂ Qd(x, t) with

|E| ≥ (1− η0) |Qd(x, t)|,

then
u(d, x, t+ 2d2) ≥ η1.
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Proof: We note that Lemma 3.1 is similar to Lemma 2.1 of chapter II. In fact we
can repeat essentially verbatim the argument in case (*) of Lemma 2.1 in chapter
II to get F closed, F ⊂ Qd(x, t) such that if

δ = ε
1/[100(n+2)]
4 ,

Ω = {(Z, τ) ∈ U : z0 > σ̂(z, τ, F ) },

then for ε4 sufficiently small we have

(3.5) |Qd(x, t) \ F | ≤ δ |Qd(x, t)|

and

(3.6)
∫ d/2

σ̂(z,τ,F )

L(z0, z, τ) dz0 ≤ δ whenever (z, τ) ∈ Qd(x, t).

Let A′ = A2, B
′ = B2 on Ω∩ [(0, d/2)×Qd(x, t)] and A′ = A1, B

′ = B1, otherwise.
Then from (3.6) we see that the hypotheses of Lemma 2.42 are satisfied for ε4
sufficiently small. Thus the continuous Dirichlet problem corresponding to (1.1),
A′, B′ has a unique solution and if ω′ denotes the corresponding parabolic measure,
then (1.5) holds for ω′ provided λ, p are replaced by λ′, p′ > 1. Let ψ = σ̂(·, F ) and
define ρ relative to ψ as in the display following (3.1). Then ρ maps U one to one
and onto Ω. Let u′ be a weak solution to (1.1), A′, B′ and put û = u′◦ρ. Then û is a
weak solution to (1.1) corresponding to some Ã, B̃ satisfying (1.2)-(1.4). From our
remarks on A′, B′ we see that Lemma 3.2 can be used with A,B replaced by A′, B′

to conclude that the continuous Dirichlet problem corresponding to (1.1), Ã, B̃ has
a unique solution. Let ũ denote the solution to the continuous Dirichlet problem
for Ã, B̃ with boundary values ũ = u◦ρ on ∂U. we claim that if Qr(y, s) ⊂ Qd(x, t),
and |Qr(y, s) \ (E ∩ F )| ≤ 4δ |Qr(y, s)|, then for some c− ≥ 1 we have

(3.7) ũ(r, y, s+ 2r2) ≥ ω̃(r, y, s+ 2r2, E ∩ F ) ≥ c−1
−

provided ε4 > 0 is small enough. Here c− has the same dependence as ε4 in Lemma
3.2. To prove (3.7) we use Lemma 3.2 and argue as in the proof of (2.22). Choose
E′ ⊂ E∩F with E′ ⊂ Qr(y, s) closed and with |Qr(y, s)\E′| ≤ 2|Qr(y, s)\(E∩F )|.
Let {Q̄j} ⊂ Q be a Whitney decomposition of Qr(y, s)\E′ into parabolic rectangles
with side length s(Qi) in the space variables satisfying (300)−n σ̂(Qi, F ) ≤ s(Qi) ≤
100−nσ̂(Qi, F ) for each i. Then from (1.5) for ω′ and the maximum principle we
see that if Q̂j denotes the rectangle with the same center as Qj and twice the side
length in the space and time directions, and if

ω∗(Z, τ,K) = ω′(ρ(Z, τ),K), K = Borel set ⊂ IRn,

then c ω∗(·, Q̂j) ≥ 1 on Qj . Also this function is a weak solution to (1.1) relative to
Ã, B̃ so from the maximum principle we have

c ω∗(·, Q̂j) ≥ ω̃(·, Qj) .

Using the reverse Hölder condition for ω′ (i.e (1.5)(c)) in a now well known way
and Lemma 3.2 for ω̃, Qr(y, s), we conclude for some c̄ ≥ 1 and δ > 0 small enough
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that if r̂ = r(1 + cδ1/(n+1) ), then

ω̃(r, y, s+ 2r2, Qr(y, s) \ (E ∩ F )) ≤ c
∑
j

ω∗(r, y, s+ 2r2, Q̂j)

≤ c ω∗(r, y, s+ 2r2, Qr̂(y, s) \ F ′) ≤ 1
2 ω̃(r, y, s+ 2r2, Qr(y, s)).

From this inequality and Lemma 3.2 we get the righthand inequality in claim (3.7).
The lefthand inequality follows from the definition of parabolic measure and the
boundary values of u.

Next we note that ũ, u ◦ ρ satisfy the same pde in (0, d/16) × Qd/2(x, t) and
have the same continuous boundary values on ∂U. Using this fact, Lemma 3.2, and
Lemma 3.2 of chapter II we find the existence of c = c(ε4) ≥ 1, such that if r = d/c,
then

(3.8) c− |ũ− u ◦ ρ|(r, y, s+ 2r2) ≤ 1/2,

where c− is as in (3.7). Combining (3.8), (3.7) and using Harnack’s inequality we
conclude the validity of Lemma 3.4. 2

Extrapolation Revisited. To get Theorem 1.7 we shall essentially repeat the
argument in section 4 of chapter II. We prove

Lemma 3.9. Remove (2.22) from the statement of Lemma 3.4 and replace ε4, ν∗ by
K, ν in this lemma, where ν is as defined above (1.6). Then this amended version of
Lemma 3.4 remains valid whenever 0 < K <∞, provided ηi = ηi(K, γ1,M, λ1, p1, n),
are defined suitably for i = 0, 1.

Proof: Note that Lemma 3.9 is similar to Lemma 4.1 in chapter II. We claim that
it suffices to prove Lemma 3.9 under the assumption that one of (∗), (∗∗) are valid

(∗) A1 ≡ A2, B2 ≡ 0,

(∗∗) B1 ≡ 0 .

Indeed to prove Lemma 3.9 in general we can first use (*) to reduce the proof of this
lemma to the situation when B1 ≡ 0. We then obtain Lemma 3.9 from (**). We
continue under the assumption that either (*) or (**) holds and observe in either
case that (2.22) is valid (thanks to Lemmas 3.11 and 3.14 of chapter I). We put

H̃(X, t) = ess sup {[y−1
0 |A1 −A2|2 + y0(|B2|+ |B1|)2](Y, s)

: (Y, s) ∈ Qx0/2(X, t)}

L̃(X, t) = ess sup { [y−1
0 |A1 −A2|2 + y0 (|B2|+ |B1|)2 ](Y, s)

: (Y, s) ∈ Qx0/16(X, t)}

when (X, t) ∈ U and note that dν(X, t) = H̃(X, t) dXdt . As in Lemma 4.1 of
chapter II, we shall prove Lemma 3.9 by an induction type argument on K. From
the remark following (**) and Lemma 3.4, we see that Lemma 3.9 is valid for
K ≤ ε4(γ1, M, λ1, p1, n). Suppose that whenever γ1,M, λ1, p1 are given as above
we have shown that Lemma 3.9 holds for K ≤ K∗ and K∗ ≥ ε4(γ1,M, λ1, p1, n)
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where K∗ = K∗(γ1,M, λ1, p1, n). We assume as we may that M,λ1, are both
≥ 100. We then put

(3.10)

η =
[

ε2(γ1,M, λ1, p1, n)
(λ1 + M )(1 +K∗)c1(n)

]230n

δ =
[

ε2(γ1,M, λ1, p1, n)
(λ1 + M )(1 +K∗)c1(n)

]20
and shall show for c1 = c1(n) ≥ 1 large enough that Lemma 3.9 is valid for K ≤
(1 + η)K∗ provided ηi = ηi(K), i = 0, 1 are defined suitably for K∗ < K ≤
(1 + η)K∗. We then get Lemma 3.9 by induction. To this end choose N such that
2−(N+1) ≤ δ5 ≤ 2−N and suppose first that

(3.11)
∫ d

2−2Nd

(
∫
Qd(x,t)

H̃(Z, τ) dzdτ) dz0 ≥ η K∗ |Qd(x, t)|.

Then as in the argument after (4.3) of chapter II we get that Lemma 3.9 holds
for K∗ < K ≤ (1 + η)K∗ provided η0(K) ≤ c2(n)−1 δ10(n+1) η0(K∗), η1(K) ≤
c3(γ1, δ,M, n)−1 η1(K∗) and c2, c3 are large enough.

Next suppose that (3.11) is false. We again divide Qd(x, t) into subrectangles
by the bisection method. Let Gm be the closed rectangles obtained in the m th
subdivision for m = 1, 2, . . . , . Then the rectangles in Gm have disjoint interiors
and side length 21−m d, 21−2md2 in the space and time variables respectively. Let
Sm be the subcollection of rectangles Q2−md(y, s) in Gm with

(3.12)

∫ d

2−(N+j)d

∫
Q2−jd(y,s)∩Qd(x,t)

H̃(Z, τ) dzdτdz0

≤ (100n)100n
2
η K∗ |Q2−jd (y, s)|

= η̂ K∗ |Q2−jd (y, s)|

for j = 1, 2, . . . ,m− 1, while

(3.13)
∫ d

2−(N+m) d

∫
Q2−md(y,s)∩Qd(x,t)

H̃(Z, τ) dzdτdz0 ≥ η̂ K∗ |Q2−md(y, s) |

Using the fact that (3.11) is false and a Calderòn-Zygmund type argument, we get
as in section 4 of chapter II, a family of closed rectangles, S =

⋃
Sm with disjoint

interiors. Moreover if (y, s) 6∈
⋃
Q∈S Q, then (3.12) holds for j = 1, 2, . . . , . Put

F ∗ = Qd(x, t) \
(⋃

Q∈S Q
)

. We consider two cases : (a)|F ∗| ≥ 2η |Qd(x, t)| and
(b)|F ∗| < 2η |Qd(x, t)|.

If (a) holds, we suppose η0 (K) ≤ η/2 for K∗ < K ≤ (1 + η)K∗ and set
d1 = d[1− η

4(n+1) ]. We observe that there exists F closed, F ⊂ F ∗ ∩E ∩Qd1(x, t)
with |F | ≥ η |Qd(x, t)|. Next we use (3.12) and argue as in previous proofs (see
(4.6)-(4.7) of chapter II) to get

(3.14)
∫ d

δσ̂(z,τ,F )

L̃(z0, z, τ) dz0 ≤ δ
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as well as

(3.15) z0 L̃(Z, τ) ≤ δ on Ω ∩ [(0, 3d/4)×Qd(x, t)].

Set
ψ = δσ̂(·, F ),

Ω = {(Z, τ) : z0 > ψ(z, τ)},

ρ(Z, τ) = (z0 + Pγz0 ψ(z, τ), z, τ),
when (Z, τ) ∈ U. If (*) holds in the display below Lemma 3.9, we put A′ = A2, B

′ =
0 on Ω and A′ = A1, B

′ = B1, otherwise in U. If (**) holds, let A′ = A2, B
′ = B2

on (0, d/2)×Qd(x, t) and A′ = A1 otherwise in U. From (3.14) and the observation
following (**) we see that Lemma 3.4 can be applied with A2, B2 replaced by
A′, B′. We get that the corresponding parabolic measure, ω′, satisfies (1.5) for
some λ′, p′ > 1 and so also (3.1) of chapter II. Let u′ be a solution to the Dirichlet
problem for (1.1), A′, B′. Then from (2.27) - (2.29) of chapter II,(3.15) and Lemma
A in chaper I, we see that u′ ◦ ρ satisfies (1.1) for some Ã, B̃ satisfying (1.2)-(1.4),
as well as (3.13) of chapter I. Thus we can apply Lemma 3.37 of chapter I to obtain
that the continuous Dirichlet problem corresponding to (1.1), Ã, B̃ has a unique
solution and if ω̃ denotes the corresponding parabolic measure, then ω̃ is a doubling
measure in the sense of this lemma. From this discussion we see that the hypotheses
of Lemma 3.22 in chapter II are satisfied with ω1, ω2 replaced by ω′, ω̃. From this
lemma we find for some c′ ≥ 1, that

c′ ω̃(d, x, t+ 2d2, F ) ≥ 1.

Using this inequality we can now use the maximum principle and argue as above
(4.9) of chapter II to deduce the existence of c4 ≥ 1, having the same dependence
as η0 such that if 0 < r < ηd/c3, and d2 = d(1− η

8(n+1) ), then

c′ ω̃(r, y, s, F ) ≥ 1 for some (y, s) ∈ Q̄d2(x, t).

Let ũ be the weak solution to (1.1) corresponding to Ã, B̃ with ũ = u ◦ ρ on ∂U.
Then since u ≥ 1 on F it follows from the definition of ω̃ that (3.7) holds with c−1

−
replaced by c′ and (r, y, s) as above. Next we observe that u ◦ ρ, ũ satisfy the same
pde in (0, d/8)×Qd(x, t), as we see from the definition of A′, B′ and (2.27)-(2.29)
of chapter II. Since ũ − u ◦ ρ vanishes on ∂U we can apply Lemma 3.2 of chapter
II to conclude that (3.8) holds for all (y, s) ∈ Q̄d2(x, t) with c− replaced by c′ and
r ≤ ηd/c, where c has the same dependence as η0. Combining (3.8), (3.7) it follows
that Lemma 3.9 is valid in case (a) when K∗ ≤ K ≤ (1 + η)K∗.

Next we consider case (b). Arguing as in the proof of claim (4.11) of chapter II
we first get a finite subcollection S′ of S such that if Q ∈ S′ and η′ = η̂

(100n)10n ,

then

(3.16)

(a)
∫ 2−(N+1) s(Q)

0

∫
Q

H(Z, s) dzdτdz0 ≤ (1− η′)K∗ |Q|,

(b)
∑
Q∈S′

|Q| ≥ η′ |Qd(x, t)|,

(c) σ̂(Q,Q′) ≥ 4n max{s(Q), s(Q′) } .
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If η0(K) ≤ η0(K∗) ηn+2 for K∗ < K ≤ (1 + η)K∗, then arguing as in the proof of
(4.16) of chapter II we get the existence of a finite subset Ŝ = {Qri

(yi, si) }l1 of S′

and Q8r′i
(zi, τi) ⊂ Qri(yi, si) such that for 1 ≤ i ≤ l, we have 1

2η ≤
r′i
ri
≤ η and

(3.17)

(i)
∫

(0,r′i)×Qr′
i
(zi,τi)

H(Z, τ) dZdτ ≤ K∗|Qr′i(zi, τi)|,

(ii) |E ∩Qr′i(zi, τi)| ≥ (1− η0(K∗))|Qr′i(zi, τi)|,

(iii)
l∑
i=1

|Qr′i(zi, τi)| ≥ ηn+2 |Qd(x, t)|,

(iv) Either r ≥ ηd/100n for some Qr(y, s) ∈ Ŝ or
∪Q∈Ŝ Q ⊂ Qd1(x, t).

First suppose there exists Qri
(yi, si) ∈ Ŝ with ri ≥ ηd/100n. Then from (3.17)

(i), (ii) and the induction hypothesis we see that c u(r′i, zi, τi+2(r′i)
2 ) ≥ 1 for some

c having the same dependence as η0. From this inequality and Harnack’s inequality
we conclude that Lemma 3.9 is valid for K∗ < K ≤ (1 + η)K∗. Thus we assume
that the second alternative in (3.17) (iv) occurs.

Put F+ = {(yi, si) : Qri(yi, si) ∈ Ŝ } and let

σ̃(z, τ) =
{
ri when |z − yi| + |τ − si|1/2 ≤ ri, 1 ≤ i ≤ l,
= σ̂(z, τ, F+), otherwise in IRn.

Define ψ,Ω, ρ as following (3.15) with σ̂(·, F ) replaced by σ̃. Then from (3.12) we
see that (3.14), (3.15) are valid. Next we define A′, B′ relative to A1, B1, A2, B2,Ω
as in case (a). From (3.14), (3.15) we see that once again we can use Lemma 3.4
to get that ω′ satisfies (1.5). We define Ã, B̃ relative to A′, B′, ρ as in in case
(a). We then get that Lemma 3.37 of chapter I holds for ω̃. Next from (3.16) (c)
and the definition of σ̃ we see that Lemma 3.33 of chapter II can be applied with
K =

⋃
Q∈Ŝ Q̄. Applying this lemma we get for some c′′ ≥ 1 having the same

dependence as η0,

(3.18) c′′ω̃(d, x, t+ 2d2,∪Q∈Ŝ Q̄ ) ≥ 1.

Now as earlier in case (b) we see from (3.17) and the induction hypothesis that for
each i we have c u(r′i, zi, τi+2(r′i)

2) ≥ 1. Using this fact and Harnack’s inequality we
conclude that there exists c∗ ≥ 1, for which c∗ u◦ρ ≥ 1 on Qr′i(zi, τi+ 4(r′i)

2 ), 1 ≤
i ≤ l. Let ũ be as in case (a). Then from the previous inequality for u◦ρ we deduce
that

(3.19) c∗ ũ ≥ ω̃(·,∪Qr′i(zi, τi + 4(r′i)
2) ) .

Also from (3.18) for ω̃ and Lemma 3.37 (β) of chapter I we find for some c∗∗ ≥ 1
with the same dependence as η0 that

(3.20) c∗∗ ω̃(d, x, t+ 2d2,∪Qr′i(zi, τi + 4(r′i)
2) ) ≥ 1.

Using (3.19), (3.20) we can now argue as at the end of case (a) to get first (3.7) with
F replaced by

⋃
Qr′i(zi, τi + 4(r′i)

2) and then (3.8). We put η0(K) = η0(K∗) ηn+2

and for this value of η0 conclude from (3.7), (3.8) as in case (a) that Lemma 3.9 is
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true when K∗ < K ≤ (1 + η)K∗. By induction we obtain Lemma 3.9. 2

Proof of Theorem 1.7. We now prove Theorem 1.7. First we apply Lemma 3.9
to find that (3.1) of chapter II holds whenever d > 0 and Qd(x, t) ⊂ IRn. From (3.1)
and Lemma 3.6 of chapter II we deduce the validity of Theorem 1.7. 2.

Remark. We conjecture that Theorem 1.7 remains valid with ν replaced by ν∗.
That is Theorem 1.7 is valid if instead of assuming x0(|B1|2 + |B2|2) dXdt is a
Carleson measure we assume only that x0(|B1−B2|2) dXdt is a Carleson measure.
In fact if we could prove that ω̃ as in Lemma 3.2 is always a doubling measure,
then it is easily seen that this stronger verion of Theorem 1.7 is valid. If one is un-
able to prove doubling for such parabolic measures, then another way to prove this
conjecture would be to generalize Lemmas 3.22, 3.33 of chapter II to nondoubling
measures and also to do away with assumption (2.22) in Lemma 2.23. Finally we
note from section 1 that the elliptic verion of the above conjecture is true as we
shall show in section 4.

4. Elliptic Results

In this section we prove our elliptic results. For ease of notation we shall always
assume that n > 2. We first prove some basic estimates similar to those in Lemma
2.2. To begin let A,B satisfy (1.2)-(1.4) with (X, t) replaced by X in Û = {X :
x0 > 0} and suppose that the continuous Dirichlet problem for A,B, relative to the
pde

(4.1) ∇ · (A∇u) +B∇u = 0

always has a unique weak solution. If ω denotes the corresponding elliptic measure
we assume for some positive c∗ <∞ that

(4.2) c∗ ω(d, x,Bd(x)) ≥ 1

whenever d > 0 and x ∈ IRn. Here Bd(x) = {y : |y − x| < d}. We shall also denote
the ball in IRn of radius d about X by Bd(X) when there is chance of confusion.
First we prove an analogue of Lemma 2.2.

Lemma 4.3. Let A,B be as above and suppose that ω satisfies (4.2). There exists
G : Û × Û→IR with the following properties. If X,Y ∈ Û , X 6= Y, and r = |X−Y |,
then for some c ≥ 1, 0 < θ < 1

2 (depending only on γ1,M, n, c∗), we have

(a) c−1 r2−n ≤ G(X,Y ) ≤ cr2−n 0 < r < y0/2,

(b) G(X,Y ) ≤ cy2−n
0 ω(X,Br1(z)) for z ∈ By0/16(y), r > y0/2, y0/4 < r1 < y0,

(c) G(X,Y ) < c (x0/r)θ G(X̂, Y ) for r > x0 and X̂ = (x0 + r, 0, . . . , 0),

(d) G(·, Y ) is a weak solution to (4.1) and G(Y, ·) is a weak solution to
∇ · [Aτ ∇G(Y, ·) − BG(Y, ·) ] = 0 in U \ {Y },

(e) If 0 < d1, d2 < min { r/100n, y0/2, x0/2 }, then G(· , ·) is Hölder
continuous on Bd1(X)×Bd2(Y ), with exponent independent of r1, r2, X, Y.
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Proof: The proof of this lemma is somewhat different than in the parabolic case
so we include some details. Let Ĝ denote the Green’s function defined relative to a
‘smooth’ Â, B̂ satisfying (1.2)-(1.4) with (X, t) replaced byX. Then from Schauder’s
theorem, (1.4), and the divergence theorem applied in Û \ B̄r(X), r ≤ x0/2, we
deduce for some c = c(γ1,M, n) ≥ 1 that

1 =
∫

IRn−1 |∇Ĝ|−1 〈∇Ĝ , Â∇Ĝ 〉(X, 0, y)dy

=
∫
∂Bs(X)

|X − Y |−1 〈X − Y , Â∇Y Ĝ(X,Y )〉dσ(Y ).

Here dσ denotes surface area and 0 < s ≤ x0/2. Integrating this inequality over
s ∈ (r/16, r/8), using the elliptic analogue of Lemma 3.3 in chapter I, as well as
Hölder’s and Harnack’s inequalities, we get for some c = c(γ1,M, n) ≥ 1 that

(4.4) 1 ≤ c |X − Y |2−n Ĝ(X,Y ) for 0 < |X − Y | ≤ x0/2.

We note that (4.4) is just the reverse of the inequality obtained in the parabolic
case by a similar argument.

As in section 2 we put Aj(X) = A(x0 + j−1, x), Bj(X) = B(x0 + j−1, x) for
j = 3, 4, . . . , and X ∈ {Y : y0 ≥ −j−1 }. Then Aj , Bj satisfy (1.2) - (1.4) and
for fixed j, Bj is essentially bounded by Mj. Clearly we can choose sequences of
smooth Â, B̂ which converge pointwise to Aj , Bj on Û and satisfy (1.2)-(1.4) with
uniform constants. We can also choose this sequence so that (3.13) of chapter I
holds (with (X, t) replaced by X) uniformly in cylinders of height and side length
≈ ε1 (Mj)−1 which touch ∂U. Thus an elliptic analogue of Lemma 3.10 in chapter
I is valid (with uniform constants depending on j). Using elliptic analogues of the
basic estimates in Lemmas 3.3 - 3.5 and Lemma 3.10 of chapter I, we see for fixed
Y ∈ Û and j that a subsequence involving smooth Ĝ(·, ·) converges uniformly in a
certain Hölder norm on Bd1(X)×Bd2(Y ) to Gj(·, ·). Here d1, d2, X, Y are as in (e) of
Lemma 4.3. Also we can choose this sequence so that for each Y ∈ U, the sequences
involving Ĝ(·, Y ), Ĝ(Y, ·) converge weakly in H1

loc (Bd(Z)) to Gj(·, Y ), Gj(Y, ·),
whenever B̄d(Z) ⊂ U \{Y }. From the above remarks and (4.4) we observe that the
lefthand inequality in (a) of Lemma 4.3 is valid (with a constant depending only on
γ1,M, n) while from the elliptic version of Lemma 3.10 we see that the righthand
inequality in (a) of Lemma 4.3 holds with a constant that in addition to the above
quantities may also depend on j. Also (d), (e) of Lemma 4.3 are valid for Gj (with
an exponent depending only on γ1,M, n). Next from the remark after (3.22) in
chapter I we observe that the elliptic analogue of Lemma 3.9 holds in cylinders of
height and radius ≈ ε1 (Mj)−1 with constants depending only on γ1,M, n. That
is, suppose z ∈ IRn−1, 0 < d ≤ ε1 (Mj)−1, and u ≥ 0 is a weak solution to (4.1)
in (0, 2d)×B2d(z) (with A,B replaced by Aj , Bj), which vanishes continuously on
B2d(z). Then there exists α = α(γ1,M, n) > 0 and c = c(γ1,M, n) such that

(4.5) u(Y ) ≤ c (y0/d)α u(d, z)

whenever Y ∈ (0, d) × Bd(z). From (4.5) and the same argument as in Lemma
3.37 of chapter I we see that the continuous Dirichlet problem correponding to
Aj , Bj always has a unique solution. Let ωj denote elliptic measure corresponding
to Aj , Bj and set ω∗j (Z, ·) = ω(z0 + j−1, z, ·) when Z ∈ Û . Then ω∗ is a weak
solution to (4.1), with A,B replaced by Aj , Bj . From the maximum principle, (4.2),
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Harnack’s inequality and the definition of elliptic measure we have for some c∗∗ ≥ 1,

c∗∗ω∗j (·, IRn−1 \B2d(z)) ≥ ωj(·, IRn−1 \B2d(z))

whenever d ≥ ε1 (Mj)−1. From this inequality and the elliptic analogue of Lemma
3.2 of chapter II for A,B we find for some c = c(γ1,M, n, c∗) ≥ 1 and d ≥ ε1 (Mj)−1

that
ωj(Y, IRn−1 \B2d(z)) ≤ c(y0/d)α

for Y ∈ (0, d) × Bd(z). From (4.5) if follows that the above inequality actually
holds whenever 0 < d < ∞. Using this inequality for y0 small enough, Harnack’s
inequality, and the fact that ωj(·, B2d(z)) + ωj(·, IRn−1 \B2d(z)) = 1, we conclude
that (4.2) holds with ω replaced by ωj . We can now use the elliptic version of
Lemma 3.2 of chapter II to get that (4.5) holds for j = 3, 4, . . . , with constants
independent of j.

Next suppose that v is the solution to the continuous Dirichlet problem for (4.1),
Aj , Bj with v ≡ g on ∂U where 0 ≤ g ≤ 1 is continuous on ∂Û with support in
B2x0(x) and g ≡ 1 on Bx0(x). Then from (4.5), Lemma 3.2 of chapter II, and
essentially Poincare’s inequality we see for some c′ = c′(γ1,M, n, c∗) ≥ 1, that

xn−2
0 ≤ c′

∫
(x0/c′, x0/2)×Bx0 (x)

|∇v |2 dZ.

From this inequality and the elliptic analogue of Lemma 2.10 for Aj , Bj we obtain
that if m is the minimum of Gj(X, ·) on (x0/c

′, x0/2)×Bx0(x), then

mxn−2
0 ≤ c′

∫
(x0/c′,x0/2)×Bx0 (x)

Gj(X, ·) |∇v |2 dZ ≤ c.

This inequality and Harnack’s inequality imply that the righthand inequality in
Lemma 4.3 (a) holds for r = d/2 with a constant independent of j. To obtain this
inequality for other values of r one can use classical elliptic estimates similar to
those in section 3. One proof for example would be to assume that the righthand
inequality in (a) of Lemma 4.3 holds for r = r0 ≤ y0/2 and some constant c̃. Let
G′(·, Y ) denote the Green’s function for Br0(Y ) with pole at Y defined relative to
(1.1), Aj , Bj . Then from properties of the Green’s function similar to those listed
in (3.6), (3.7) of chapter I we see that Gj(·, Y ) ≤ G′(·, Y ) + c̃ r2−n0 in Br0(Y ).
Scaling to a ball of radius y0 and using the same argument as above we find first
that G′ ≤ c r2−n0 on Br0/2(Y ) and thereupon that the righthand inequality in (a)
of Lemma 4.3 is true for c̃ large enough, whenever r = r0/2. Thus (a) of Lemma
4.3 holds with constants independent of j. Using (a) of Lemma 4.3, letting j→∞,
and arguing as in the proof of Lemma 2.2 we get G satisfying (a)− (e) in Lemma
4.3. 2

Next we prove an elliptic analogue of Lemma 3.10 in chapter I.

Lemma 4.6 Let A,B, ω,G be as in (4.1)-(4.2) and Lemma 4.3. If B2r(y) ⊂ Bd(x),
then for some c = c(γ1,M, n, c∗) ≥ 1, we have

c−1 rn−2G(d, x, r, y) ≤ ω(d, x,Br(y))

≤ c ω(d, x,B2r(y)) ≤ c2 rn−2G(d, x, r, y)

whenever x ∈ IRn−1 and d > 0.
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Proof: Clearly the top inequality involving G,ω is implied by Lemma 4.3 (b).
To prove the rest of this inequality we first show for given ε > 0 the existence of
c(ε) = c(ε, γ1,M, n, c∗) ≥ 0 such that

(4.7) ω(·, Br(y)) ≤ ε ω(·, B2r(y)) + c(ε) rn−2G(·, r, y)

in Û \ [ (0, 3r/2)×Br/2(y)]. The proof of (4.7) is essentially the same as the proof
of (3.7) in chapter II except that instead of using ω1(·, E) we use rn−2G(·, r, y) to
make our comparisons, which is permissible thanks to the lefthand inequality in (a)
of Lemma 4.3. We omit the details. 2

We note from (4.2) and (a) of Lemma 4.3 that Lemma 4.6 is true when r ≈ d.
Thus we assume r/d = 2−N for some large positive integer N. Iterating (4.7) we
see that
ω(d, x,Br(y)) ≤ ε ω(d, x,B2r(y)) + c(ε) rn−2G(d, x, r, y)

≤ ε2 ω(d, x,B4r(y)) + ε c(ε) (2r)n−2G(d, x, 2r, y) + c(ε) rn−2G(d, x, r, y)

≤ · · · ≤ εNω(d, x,B2d(x)) + c(ε) [
∑N

i=1
εi−1(2i−1r)n−2G(d, x, 2i−1r, y)] = T.

From Harnack’s inequality and (a) of Lemma 4.3 we see for ε sufficiently small
that there exists c1 having the same dependence as the constant in Lemma 4.6
with T ≤ c1 r

n−2G(d, x, r, y). In view of the above inequality we conclude for some
c ≥ 1 that

ω(d, x,Br(y)) ≤ c rn−2G(d, x, r, y).
Thus ω(d, x,Br(y)) ≈ c rn−2G(d, x, r, y) which along with Harnack’s inequality
implies Lemma 4.6. 2

Next let σ̄(·, F ) denote the Euclidean distance from the compact set F ⊂ IRn−1.
Let A,B be as in (4.1) and put ψ = θ σ̄(·, F ) where θ > 0. Define ρ relative to
ψ as in section 3 and note that if u is a weak solution to (4.1), corresponding to
A,B, then u ◦ ρ is a weak solution to (4.1) corresponding to some Ã, B̃ satisfying
(1.2)-(1.4) with (X, t) replaced by X. We prove

Lemma 4.8. Let A,B, ω be as in (4.1), (4.2) and ρ, Ã, B̃ as above. Then the
continuous Dirichlet problem corresponding to (1.1), Ã, B̃ always has a unique so-
lution. Moreover if ω̃ denotes the corresponding elliptic measure, then for some
c̃ = c̃(γ1,M, n, c∗) ≥ 1 we have

(a) ω̃(r, y,Br(y)) ≥ 1, whenever r > 0 and y ∈ IRn−1,

(b) Lemma 4.6 holds with G,ω replaced by G̃, ω̃, where G̃ is the
Green’s function corresponding to Ã, B̃.

Proof: (a) of Lemma 4.8 is just the elliptic analogue of Lemma 3.2 and is proved
in the same way as this lemma. (b) of Lemma 4.8 follows from (a), Lemma 4.3 for
G̃, and Lemma 4.6. 2

Proof of Theorem 1.9 To prove Theorem 1.9 we repeat the argument in sec-
tions 2 and 3. Assumption (2.22) can now be done away with. Also assumptions
(∗), (∗∗) following (3.9) are unnecessary. In fact we needed (∗), (∗∗) only to assure
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that (2.22) held and that certain parabolic measures obtained from using the ρ
mapping were doubling so that Lemmas 3.22, 3.33 of chapter II could be applied.
From Lemmas 4.6, 4.8 we see that the corresponding elliptic measures are always
doubling so that we can use elliptic analogues of Lemmas 3.22, 3.33 in chapter II in
our proof. In fact we can essentially just use the result in [DJK] mentioned earlier.
Doing this we get Theorem 1.9. 2

Proof of Theorems 1.14, 1.15. To prove Theorem 1.14 of chapter II we first
consider elliptic pde’s for which (1.2)-(1.4) hold in Û and

(4.9) A ∈ C∞
( ¯̂
U
)

is lower triangular, A00 ≡ 1, B ≡ 0, and y0|∇A(Y )| ≤ ε̂ ∈ Û .

We shall show that if x ∈ IRn−1, d > 0, and ε̂ > 0 is small enough, then dω/dy (d, x, ·)
∈ β∗2(Bd(x)) where ω = ω(d, x, ·) is elliptic measure corresponding to A. Indeed let
g(d, x, ·) be the corresponding adjoint Green’s function with pole at (d, x). Then
∇ · (At∇Y g(d, x, Y )) = 0 when Y 6= (d, x) where At is the transpose of A. We
note that At is upper triangular and At00 = A00 ≡ 1. Differentiating the pde for
g = g(d, x, ·) with respect to yl and using this note we see for 1 ≤ l ≤ n− 1 that

∇ · (At∇gyl
) +∇ · (Atyl

∇g) = 0

where Atyl
∇g does not involve any term in gy0 . If u = (gy1 , . . . , gyn−1), then the

above system has the same structure as (3.1) in chapter I and u ≡ 0 on ∂Û . It is
easily seen for ε̂ > 0 small enough that the argument in (3.15)-(3.17) of chapter I
can be repeated with minor modifications to get the Cacciopoli inequality in (3.18)
of chapter I. Using (3.18) for u, and Lemma 3.14 of chapter I we find for z ∈ Bd(x)
and 0 < r < d/4 that

(4.10)
∫ r

0

∫
Br(x)

|∇u|2 dY ≤ cr−2

∫ 2r

0

∫
B2r(x)

|u|2 dY ≤ c rn−4g2(d, x, 3r, x).

Now we can use the pde for g to estimate gy0y0 pointwise in terms of |u|, |∇u|.
Doing this, using (4.10), and making estimates by way of either Hardy’s inequality
or (3.16) of chapter I we see that∫ r

0

∫
Br(x)

|gy0y0 |2 dY ≤ c

∫ 2r

0

∫
B2r(x)

|∇u|2dY ≤ c rn−4g2(d, x, 3r, x).

Finally from this inequality, Cauchy’s inequality, (3.18) and Lemma 3.14 of chapter
I for g, we conclude that∫

Br(x)

|gy0 |2(0, y) dy ≤
∫
Br(x)

|gy0 |2(r, y) dy

+ c r

∫ r

0

∫
Br(x)

|gy0y0 |2 dY + c r−1

∫ r

0

∫
Br(x)

|gy0 |2 dY

≤ crn−3g2(d, x, 3r, x) ≤ cr1−n[ω(Br(x))]2.

This inequality and dω/dy(0, y) ≈ |∇g|(d, x, 0, y), for y ∈ ∂Û are easily seen to
imply that dω/dy ∈ β∗2(Bd(x)). Thus Theorem 1.14 is valid in this case.

Next we use Theorem 1.9 and the above special case to deduce that Theorem
1.14 is valid when (1.2)-(1.4) hold, B satisfies (1.5) of chapter II, and A is as in
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(4.9). Moreover we observe that if u,B,A smooth satisfy ∇ · (A∇u) + B∇u = 0
where A,B satisfy (1.2)-(1.7) of chapter II with (X, t), dXdt replaced by X, dX

then this equation can be rewritten in the form ∇ · (Ã∇u) + B̃∇u = 0 where Ã is
lower triangular, Ã00 ≡ 1 , and Ã, B̃ satisfy (1.2)-(1.7). Moreover if x0|∇A| is small
in Û , then so also is x0|∇Ã|. Thus Theorem 1.14 is vald when A,B are smooth,

(4.11) A,B satisfy (1.2)-(1.7) and x0|∇A| is sufficiently small in Û .

We remove the smoothness assumption on A,B by the same argument as the one
after (4.4).

To continue the proof of Theorem 1.14 of chapter II, we prove an analogue of
Lemma 2.1 in chapter II. In this lemma, µ̂1, µ̂2 are as in Theorem 1.14 of chapter II.

Lemma 4.12. Let A,B satisfy (1.2)-(1.4) in Û and suppose for some x ∈ IRn−1, d >
0, ε1 > 0 small that

(i) (1.7) of chapter II with dXdt replaced by dX is valid in (0,∞)×Bd(x).

(ii) µ̃[(0, d)×Bd(x)] ≤ ε1|Bd(x)| where either µ̃ = µ̂1 + µ̂2 or (b) µ̃ = µ1 + µ2

and (**) of Theorem 1.10 in chapter II is valid.

If ε1 > 0 is small enough (depending only on γ1,M, n,Λ and possibly Λ1), there
exists η0 = η0(ε1), η1 = η1(ε1), 0 < η0, η1 < 1/2, such that the following statement
is true. Let u, 0 ≤ u ≤ 2, be a solution to (1.1) in Û , corresponding to A,B as
above, which is continuous on ¯̂

U. If u ≡ 1 on some closed set E ⊂ Bd(x, t) with

|E| ≥ (1− η0) |Qd(x, t)|,

then
u(d, x) ≥ η1.

Proof: Let L(X) = x0|B(x)|2 + x0|∇A|2 and if F ia closed, F ⊂ Bd(x) set

δ = ε
1/[1000(n+2)]
1

σ(z, F ) = inf{|z − y| : y ∈ F }

Ω = {Z ∈ U : z0 > δ4 σ(z, F ).

We claim that for ε1 > 0 sufficiently small there exists F as above with

(4.13)

(+) |Bd(x) \ F | ≤ δ |Bd(x)|

(++) z0 L(Z) ≤ δ40, for Z ∈ Ω ∩ [(0, 3d/4)×Bd(x)]

(+ + +)
∫ 3d/4

δ4 σ(z,F )

L(z0, z) dz0 ≤ δ100 for a.e z ∈ Bd(x).

To prove (4.13) we can essentially copy the argument in Lemma 2.1 of chapter II
except that now we do not have to worry about the integration by parts hypothesis
(1.9) of chapter II or showing that A is near a constant matrix. We omit the details.



PARABOLIC OPERATORS WITH SINGULAR DRIFT TERMS 111

Let Pλ(z) = λ−nP (z/λ) where P ∈ C∞0 (B1(0)) with
∫

IRn−1 P (z)dz = 1. Set
ρ(X) = (x0 + Pλσ(x, F ), x). Using (4.13) and (2.27)- (2.31) of chapter II, we see
that u ◦ ρ satisfies a pde with coeficients Ã, B̃ for which (1.2)-(1.7) of chapter
II hold in Û and x0|∇Ã| is small in (0, d/2) × Bd/2(x) when ε1 > 0 is small. Let
φ, 0 ≤ φ ≤ 1, be in C∞0 (−d/4, d/4) with φ = 1 on (−d/8, d/8). Let A0 be the average
of u◦ρ on (d/8, d/4)×Bd/4(x) and put A1(X) = (Ã−A0)(X)φ(x)φ(x0) + A0 while
B1(X) = B̃(X) whenever X ∈ Û . Then A1, B1 satisfy (4.11) in Û for ε1 > 0 small
enough. Let u1 be the solution to the Dirichlet problem for A1, B1 guaranteed by
Theorem 1.9 with u1 = u ◦ ρ on ∂Û . From (4.11) for A1, B1 we see that Lemma
4.12 is valid with u replaced by u1. Lemma 4.12 for u1 implies Lemma 4.12 for u
as in (2.24) of chapter II. 2.

We can now extrapolate Theorem 1.14 from Lemma 4.12 just as Theorem 1.10
was extrapolated from Lemma 2.1 (see section 4 of chapter II). Again the argument
is somewhat easier since we do not have to worry about the integration by parts
hypothesis (1.9). 2

Theorem 1.15 is deduced from Theorem 1.14 in the same way that Theorem 1.13
was deduced from Theorem 1.10. 2.

Remark. In Lemma 4.6 we showed that elliptic measure satisfying (4.2) is always
doubling. We would not be surprised if a corresponding result held in the para-
bolic case. The chief obstacle to adapting the proof in [FS] to parabolic equations
satisfying (1.1), (3.1) of chapter I is, as mentioned earlier, that we have not been
able to obtain basic estimates for the adjoint pde in (3.1). Thus for example since
constants do not need to be solutions to (3.1) of chapter I , we cannot use the the
maximum principle in proving an inequality such as (3.27) of chapter I for the ad-
joint Green’s. function. Also given (3.27) one appears to need Hölder continuity of
the adjoint Green’s function near ∂U in order to complete the proof of Lemma 3.4
in chapter I. Finally we point out (as mentioned in the remarks after Theorem 1.10
in chapter II and in the remark at the end of section 2) that Lemma 4.6, the elliptic
version of Lemma 2.42, and [CF] imply a weak version of Theorem 2.5 in [FKP].
Still though one cannot use this theorem as in [FKP] to pass from the small norm
R. Fefferman condition to the large norm R. Fefferman condition (Theorem 2.4 in
[FKP]) because our basic estimates also depend on λ and not just on the ellipticity
constants. Thus the extrapolation argument used in the proof of Theorem 1.7 is
also needed in the elliptic case (Theorem 1.9).
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