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ABSTRACT

In this memoir we consider the Dirichlet problem for parabolic operators in a
half space with singular drift terms. In chapter I we begin the study of a parabolic
PDE modeled on the pullback of the heat equation in certain time varying domains
considered by Lewis - Murray and Hofmann - Lewis. In chapter II we obtain mutual
absolute continuity of parabolic measure and Lebesgue measure on the boundary
of this halfspace and also that the L?(R™) Dirichlet problem for these PDE’s has a
solution when q is large enough. In chapter III we prove an analogue of a theorem of
Fefferman, Kenig, and Pipher for certain parabolic PDE’s with singular drift terms.
Each of the chapters that comprise this memoir has its own numbering system and
list of references.
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CHAPTER 1
THE DIRICHLET PROBLEM AND PARABOLIC MEASURE

1. INTRODUCTION

. The study of parabolic pde’s has a long history and closely parallels the study
of elliptic pde’s. To mention a few highlights, the modern theory of weak solu-
tions of elliptic and parabolic pde’s in divergence form was developed in the late
1950’s and early 1960’s by Nash [N], DiGiorgi [DG], Moser [M], [M1], and oth-
ers. These authors obtained interior estimates (boundedness, Harnack’s inequality,
Hélder continuity) for weak solutions which initially were assumed to lie only in a
certain Sobolev space and satisfy a certain integral identity. The classical problem
of whether solutions to Laplace’s equation in Lipschitz domains had nontangential
limits almost everywhere with respect to surface area and the corresponding L”
Dirichlet problem was not resolved until the late 70’s when Dahlberg [D] showed
that in a Lipschitz domain harmonic measure and surface measure, do, are mutually
absolutely continuous, and furthermore, that the Dirichlet problem is solvable with
data in L?(do). R. Hunt proposed the problem of finding an analogue of Dahlberg’s
result for the heat equation in domains whose boundaries are given locally as graphs
of functions ¥(x,t) which are Lipschitz in the space variable. It was conjectured at
one time that ¢ should be Lip 1 in the time variable, but subsequent counterexam-
ples of Kaufmann and Wu [KW] showed that this condition does not suffice. Lewis
and Murray [LM], made significant progress toward a solution of Hunt’s question,
by establishing mutual absolute continuity of caloric measure and a certain para-
bolic analogue of surface measure in the case that v has % of a time derivative in
BMO(R™) on rectangles, a condition only slightly stronger than Lip 1. Further-
more these authors obtained solvability of the Dirichlet problem with data in LP,
for p sufficiently large, but unspecified. Hofmann and Lewis [HL] obtained, among
other results, the direct analogue of Dahlberg’s theorem (i.e, L? solvability of the
Dirichlet problem for the heat equation) in graph domains of the type considered
by [LM] but only under the assumption that the above BMO norm was sufficiently
small. They also provided examples to show that this smallness assumption was
necessary for L? solvability of the Dirichlet problem.

In this memoir we study the Dirichlet problem and absolute continuity of para-
bolic measure for weak solutions to parabolic pde’s of the form,

(1.1) Lu=wu —V-(AVu) — BVu = 0.
Here A = (A, ;(X,t)), B = (B;(X,t)) are n by n and 1 by n matrices, respectively,
satisfying standard ellipticity conditions with X = (zg,21,...,2n-1) = (zo,z) €

R", t € R. Also Vu denotes the gradient of u in the space variable X only, written
as an n by 1 matrix, while V- denotes divergence in the space variable. This problem
in the elliptic case has been studied in [JK], [FJK], [D1] and [FKP]. As a starting
point for these investigations we note that Jerison and Kenig in [JK] gave another
proof of Dahlberg’s results (mentioned above). To outline their proof let

OResearch of both authors was supported in part by NSF grants
OReceived by the editor June 16, 1997
1
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Q = {X = (xo,z) : &0 > P(x), z € R* '}, where 1) is a Lipschitz function on
R (ie. [(z) —9(y)| < c|x —yl, for some positive ¢, whenever 2,y € R"~!). Let

P, x) = (w0 + P(x),2), & € R,

Then clearly p maps U = {(xg,2) : 20 > 0,2 € R"'} onto Q) and OU onto 9N in a
one to one way. If 4 is a solution to Laplace’s equation in €2, then it is easily seen
that u = 4 o p satisfies weakly in U a pde of the form

(1.2) V- (AVu) =0

where A = A(x) is symmetric, satisfies standard ellipticity conditions, and has
coefficients independent of x¢ (depending only on z). From this fact one can see
that at least in spirit the pde involving A, can be differentiated with respect to xg
to get that u,, also satisfies this pde. Using this idea and a Rellich identity, Jerison
and Kenig were able to show that the Radon Nikodym derivative of harmonic
measure (defined relative to (1.2) and with respect to some point in /) is in a
certain L? reverse Holder class with respect to Lebesgue measure on oU , whenever
A is symmetric, satisfies standard ellipticity conditions and is independent of x.

Next we consider the analogue of this result for the heat equation in a time
varying graph domain of the type considered by Lewis-Murray[LM] and Hofmann-
Lewis[HL]. To this end suppose that ¢ = ¥(x,t) : R"~! x R—R has compact
support and satisfies

(1.3) |[¢(x,t) —(y,t)| < ai|lz —y|, for some a; < co, and all z,y € R"~!,t € R.

Also let Di/qu(:r,t) denote the 1/2 derivative in ¢ of ¥(z, ),z fixed. This half
derivative in time can be defined by way of the Fourier transform or by

' _, [ ¥=s) —¥(x,t)
D )5t(z,1) _C/R 51 ds
for properly chosen c. Assume that this half derivative exists for a.e (z,t) € R™ and
Di/ztb € BMO(R™) with norm,
(1.4) ID! sl < as < oc.

Here BMO(R™) (parabolic BMO) is defined as follows: Let Q = Qq(z,t) = {(y,s) €
R": |y — ;) <d,1 <i<n-—1,|s—t|'/? <d} be a rectangle in R" and given
f : R"—R, locally integrable with respect to Lebesgue n measure, let

fo=1QI /Q f(,t) dadt

where dxdt denotes integration with respect to Lebesgue n measure and |E| denotes
the Lebesgue measure of the measurable set E. Then f €BMO(R"™) with norm || f||.
if and only if

an*:supﬂczrl/ 1 folde} < .
Q Q

We note that (1.3), (1.4) imply and are only slightly stronger than (1.3) and
(1.5)
[Wh(x,t) — p(z, 5)] < ear + az)|s — t|'/? for some ¢ > 0 and all z € R* !, s5,t € R
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(see also [HL, section 8] for the equivalence of (1.1) and (1.4) to another condition).
Let Q = {(zo,x,t) : zo0 > ¥(x,t), (z,t) € R™} and suppose that @ is a solution to
the heat equation in  (i.e, 4, = Ad). Let

p(xo,x,t) = (xo + Y(x,t), x,t), (x,t) € R,

when (zo,z,t) € U = {(v0,y,5) : yo > 0,(y,s) € R"}. Again it is easily checked
that p maps U onto €2 and OU onto 912 in a 1-1 way. In this case u = w o p satisfies
weakly an equation of the form (1.1) where

BVu(X,t) = e(z,t) uz (X, 1), (X,t) €U,

and A = A(x,t) is independent of zy as well as satisfies standard ellipticity con-
ditions. Unfortunately though, ¢ (z,t) may not exist anywhere (see the remark
before (1.5)). To overcome this difficulty we consider as in [HL] a transformation
originally due to Dahlberg - Kenig - Stein. To this end let & = (1,...,1,2) be an
n dimensional multi-index so that if z = (z,t), then

A%z = (\x, \%t)

Az = (%, %)
Let P(z) € C5°(Q1(0,0)) and set
Py(z) = A~ D p(a—ey).

In addition choose P(z) to be an even non-negative function, with [, P(z)dz = 1.
Next let Py be the convolution operator

Pu(z) = Py(z —v)p(v) dv.

R™

and put
(1.6) p(zo,z,t) = (X0 + Pyao¥(x,t),x,t), when (zo,z,t) € U.

From properties of parabolic approximate identities and (1.3), (1.5), it is easily
checked that lim Py, ¥(y,s) = (z,t). Thus p extends continuously to
(yo,y,8)— (=,t)

OU. Also if ~ is small enough (depending on aq, az), it is easily shown that p maps
U onto €2 and OU onto 92 in a one to one way. Next observe that if @ is a solution to
the heat equation in €2, then u = @ o p is a weak solution to an equation of the form
(1.1) where A satisfies standard ellipticity estimates. Before proceeding further
we note that parabolic measure on OU, defined with respect to this pullback pde
and a point in U, is absolutely continuous with respect to Lebesgue measure on 9U,
thanks to [LM, ch.3] (in fact parabolic measure defined with respect to a given point
is an Ao, weight with respect to Lebesgue measure on a certain rectangle). Thus
the pullback pde should be a good model for proving mutual absolute continuity of
parabolic and Lebesgue measure.

In chapters I and II of this memoir we study the remarkable structure of this
pullback pde. In chapter I we establish certain basic estimates for parabolic pde’s
with singular drift terms and establish L? solvability of the Dirichlet problem for
pde’s which are near a constant coefficient pde in a certain Carleson measure sense.
In chapter IT we remove the nearness assumption on the Carleson measures con-
sidered in chapter I and thus obtain our first main theorem on absolute continuity
of parabolic measure and the corresponding L4 Dirichlet problem. As a corollary
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we obtain the results of [LM] mentioned above. In chapter III we obtain parabolic
analogues for pde’s with singular drift terms of theorems in [FKP].

We emphasize that our results are not straight forward generalizations of theo-
rems for elliptic equations. For example we do not know if the pde’s we consider
in chapter 2 have parabolic measures which are doubling, as is well known for the
corresponding elliptic measures. Also we cannot prove certain basic estimates such
as Holder continuity for the adjoint Green’s function of our pde’s. In this respect
our work is more akin to results of [VV] and [KKPT] in two dimensions. Finally
we mention that the possible lack of doubling for our parabolic measures forces us
in chapter III to give alternative arguments in place of the usual square function -
nontangential maximum arguments.

The first author would like to thank Carlos Kenig for helpful discussions con-
cerning necessary conditions on A, B to prove Theorem 2.13. The second author
would like to thank Russell Brown and Wei Hu for useful discussions concerning
basic estimates for pde’s with drift terms.

2. STATEMENT OF RESULTS

As rationale for the structure assumptions on our pde’s, we shall briefly outline
the structure of the pullback pde under the mapping given in (1.6). To this end
recall that a positive measure p is said to be a Carleson measure on U if for some
positive ¢ < oo

:U’[(Oad) X Qd(xat)] < C|Qd('rvt)| for all d > 07 ([E,t) € R".

The infimum over all ¢ for which the above inequality holds is called the Carleson
norm of p and denoted ||u||. The following lemma is proved in [HL, Lemma 2.8].

Lemma A. Let 0,0 be nonnegative integers and ¢ = (¢1,...,0n—1), a multi-indez,
with | = o+ |p|+6. If ¢ satisfies (1.3), (1.4) for some a1, as < 00, then the measure
v defined at (zo,x,t) by

1 2
v = (ogcsm ) o™ dudtda

is a Carleson measure whenever either o +6 > 1 or |¢| > 2, with
v[(0,d) x Qa(z,t)] < ¢|Qa(z,1)].
Moreover, if | > 1, then at (xg,x,t)

0' Pyt / 1-1-6
923 0% 010 | < ¢(ar + ag) xg

where ¢ = (n) and ¢ = ¢(ay,as,7,l,n) > 1.

Remark. The last inequality in Lemma A remains true under the weaker assump-
tions (1.3), (1.5). We shall use this remark in chapters I and III.

Recall that in section 1 we introduced the pullback function, u = %o p, where p is
as in (1.6). Also u satisfied a certain pullback pde of the form (1.1). We note that
a typical term in the pullback drag term B Vu, evaluated at (X, 1), is %PWO@/J Ug, -
From Lemma A with 0 =0 = |¢|, 6§ = 1, we see that

du(X,t) = xo[%P’Yfﬂow(xa t)]Q dXdt
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is a Carleson measure on U. Thus a natural assumption on B is that
dpi (X, t) = zo |B*(X,t) dXadt,
is a Carleson measure on U with

(2.1) ]l < B < o0

Next observe from the above lemma with 6 = |¢| =0, o = 1, that

e o P ) Xl
is a Carleson measure on U. Unfortunately a typical term in AVu evaluated at
(X,t) is [a%iPwO?ﬁ]Q Ugo, 1 < 4 < m—1, and for each such i, the measure with
density

2y ' [52 Pyay)* dX dt

need not give rise to a Carleson measure. The failure of this measure to be Carleson
makes the structure of A for the pullback pde complicated and causes us to make
an abundance of assumptions on A (all are needed in the estimates and all are
satisfied by our model term, as can be deduced from Lemma A). First assume that

(2.2) (20 |VA| + 23 |4 )(X,t) < A < o0
for a.e (X,t) € U and if
dpz(X,t) = (w0 [VA* + a5 |4 ) (X, 1) dXdt,
then po is a Carleson measure on U with
(2.3) [p2l < B2 < o0

Second assume that whenever 0 < i,j <n — 1, we have

n—1
0Ay; _ ij 9 pij ij
el §:<ez o) g
1=0
in the distributional sense. Here
i i g ij
e = (e, €121 €, ),
ij ( ij  pij ij )
= U e dimg )

are measurable functions from U—R™ for 0 <[ < n —1 and (efj , lij ) denotes
the inner product of these functions as vectors in R™. Third assume that
n—1

(2.4) D171+ 171X 1) < A<oo

1=0
and that efj has distributional first partials in X whenever 0 < 4,7 < n — 1. In
(2.4), |elij [, | flij | denote the norm of these functions considered as vectors in R™.
Let Ve?j denote the gradient of efj taken componentwise. Fourth assume that

n—1 n-—1

dps(X, 1) =Y O xo Ve |* + 25 1£717) + |g7]1(X, ) dXdt
i,j=0 1=0

is a Carleson measure on U with

(2.5) usl < B3 < oo.
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Under these conditions and standard ellipticity assumptions, we shall show the
Radon-Nikodym derivative of parabolic measure on rectangles is in a certain reverse
Holder class when (3;, 1 < i < 3, are small.

In order to state the main theorem in chapter I precisely we introduce some
notation which will be used throughout this memoir. For completeness we restate
some of the notation used earlier. Let G, G, |G|, denote the closure, boundary, and
Lebesgue n, n + 1 measure of the set G, whenever G C R™ or R"*! and there is no
chance of confusion. If G C R", let LP(G),1 < p < oo, be the space of equivalence
classes of Lebesgue measurable functions f on G which are p th power integrable
with norm denoted by || f| zr(c). If G is open let C§°(G) be infinitely differentiable
functions with compact support in G. For k a positive integer let H*(G) be the
Sobolev space of equivalence classes f whose distributional partial derivatives D f
(8= (Bo,B1,---,0n—1) = multi - index) of order < k are square integrable. Let

1 ey = ||( D D72

|BI<k L2(G)

and put HY(U) equal to the closure in C$°(U) of H*(U). We say that f € Hkloc (G),

Lploc (@), if f € H*(G,), LP(G4), respectively, whenever G is open with G; C G.

Let Lp(ThTZ’Hkloc (@)),1 < p < 00,k a positive integer, be equivalence classes

of Lebesgue measurable functions f : G x (T1,T2)—R with f(-,t) € Hkloc (G) for

almost every t € (T1,T%) and

Ts
[ 1Ol <
T

whenever G is open with Gy C G. LP(T},Ts, L”,

loc (@)) is defined similarly with

Hkloc (G) replaced by Lploc (@).
n—1
As introduced earlier, V = (8%0, ceey ﬁ) while V. = Z 8%7:' Unless oth-
=0

erwise stated ¢ will denote a positive constant depending only on the dimension,
not necessarily the same at each occurence, while ¢(3, i, v) will denote a constant
depending only on 3, i1, v. Also points in R"*! will be denoted by (X,t) or (x¢,x,t)
while Qg(z,t) C R"™ will denote the rectangle with center (x,t), side length 2d in
the space variables, and side length 2d? in the time variable. We write

Qd(X7 t) = ({EO —d,xy+ d) X Qd(x,t) C R*t!

when there is no chance of confusion. Let §,(Qq(z,t)) be the reverse Holder class
of functions f : R"—R with || f|| Lr(Q, (1)) < 00 and

26) Qi)™ /Q IR A /Q | ey
r(y,s ,

Y,8)
for some A\, 0 < A < o0, and all rectangles with Q,-(y, s) C Qa(z,t). Let || f||5,(Qu(z.0))
be the infimum of the set of all A such that (2.6) holds. Similarly, let a,,(Qq(z, 1))
be the weak reverse Holder class of functions f defined as above except

@7 1@ s /Q i< (@t ) /Q f dudt)?
r(y,s

2r(Y,8)
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for some \,0 < X < oo, and all rectangles with Q2. (y, s) C Qa(z,t). Let || flla, (Qu(w.t)
be the infimum of the set of all A such that (2.7) holds.

Next let A = (4;;(X,1)),0<14,j <n—1, B=(B;(X,?)),0 <i<n-—1, be the
n x n and 1 x n matrices defined in section 1. We assume that A;;, B; : U—R are
Lebesgue measurable and that A satisfies the standard ellipticity condition,

(2.8) (A(X,1)E,€) > P

for some 7y, > 0, almost every (X,¢) € U and all n x 1 matrices £. Here (-, -) denotes
the usual inner product on R™. We also assume that

n—1 n—1
(2.9) Z fits) |BZ‘ + Z ‘A”‘ (X, t) <M <
=0 4,j=0

for almost every (X,t) € U. To simplify matters we shall assume for some large
p > 0, that

(2.10) A = constant matrix in U \ Q,(0,0).

Following Aronsson [A] we say that u is a weak solution to (1.1) in U if for U =
{(zo,2) : @ € R"™!, m9 > 0}, —00 < T < 0o, we have

(2.11) we L*(=T,T,H' . (0)NL>(=T,T, L% (U))
and
n—1 n—1
(2.12) /U —ugy + 3 Ajjuia, ¢p, — 3 Bitig, ¢ | dXdt =0
i,j=0 i=0

for all ¢ € C§°(U).

In the sequel we shall identify OU with R™. The continuous Dirichlet problem
for U can be stated as follows: Given g : R"— R, continuous, and bounded, find u
a bounded weak solution to (1.1) in U with u continuous on U and u = g on 9U.
Assume that the Dirichlet problem for a given A, B always has a unique solution.
Under this asumption we define parabolic measure w at (X,t) € U of the Borel
measurable set £ C R" by

w(X,t, E) =inf {v(X,t):v € F}
where F denotes the family of all nonnegative solutions to the Dirichlet problem
in U with v > 1 on FE. Finally let ﬁ denote the Radon-Nikodym derivative of w

with respect to Lebesgue measure on R™. With this notation we are now ready to
state the main theorem in chapter L.

Theorem 2.13. Let A, B, satisfy (2.1)-(2.5) and (2.8)-(2.11). Suppose for some
€0 > 0 and Ay an n X n matriz that

llzo BlllZoery + 1A = Aol @y + Npaall + Npszll + s

If eg > 0 is small enough, then the continuous Dirichlet problem corresponding to
(1.1), A, B, always has a unique solution. If w denotes the corresponding parabolic
measure, then w(d,z,t + 2d?,-) is mutually absolutely continuous with respect to

Lebesgue measure on Qq(x,t) and dzl/:;s (d,x,t+2d?,-) € Bo(Qa(w,t)) with

| < €.

||ﬁ(d,$,t+ 2d2, ')Hﬁz(Qd(w,t)) <cf < 00,
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for all (x,t) € R™, d > 0. Here ¢* = ¢*(eg,v1, M, A, n).

Remark. 1) In Theorem 2.13, zoB denotes the 1 by n matrix function,

(X,t) = xoB(X,t). We note that the smallness assumption in Theorem 2.13 can be
weakened. We do not prove this weakened version since its proof is more compli-
cated and since we are primarily interested in the case when ||u1]| + ||p2|| + ||#3]|
is large. We refer the reader to the remark at the end of section 5 for an exact
statement of a stronger form of Theorem 2.13.

2) To prove the above result for small ey > 0, we shall use local estimates in [A],
[M], [M1], and [FGS] for solutions to the pde in (1.1) and its adjoint pde, but we
will also need to show that if a solution to (1.1) or its adjoint pde has continuous
zero boundary value on Qo4(x,t) C U, then this solution is Holder continuous on
(0,d) x Qg(z,t). The proof of Holder continuity cannot be deduced from the usual
arguments (such as reflection) since the drag term B evaluated at (X,¢) can blow
up as £9—0 (almost like ;') even under the above Carleson measure assumptions
on B. Using these basic estimates it is not difficult to show that the continuous
Dirichlet problem for the pde in (1.1) always has a unique solution. Moreover,
we can use these estimates to modify slightly an argument of Fabes and Safonov
[FS] to show first that the adjoint Green’s function corresponding to (1.1) satis-
fies a backward Harnack inequality in U when ¢, is sufficiently small and second
that parabolic measure corresponding to (1.1) is a doubling measure. To be more
precise, we show that

w(d, x,t +2d*, Qar(y,8)) < cw(d, x,t +2d*, Q. (y, s))

whenever (z,t) € R",d > 0, and Q2,(y,s) C Qq(z,t) provided ¢ is sufficiently
small. We shall make our basic estimates and prove doubling for pde’s of the form
(1.1) in section 3.

In section 4 we begin the proof of Theorem 2.13. We first show that parabolic
measure is in the above reverse Holder class when B = 0 and all the above Carleson
norms are small. In this case we perturb our results off a constant coefficient pde
by making estimates of the form:

/Q o (A = Ao)oo Gyohyo dY ds | < S [N(IVG)l|22(@zuq (z.1)) SRl L2am),
x0 )

where 0—0 as ¢g—0 while G is the Green’s function for (1.1) with B = 0 and pole
at (wg,z,t+22%). Also h is a weak solution to V-(AgVh) = 0 while N, S are defined
below in (2.14), (2.15). We note that if

Yo " [(A — Ap)ool*(Y; ) dYds

were a Carleson measure on U, then the above estimate would be an easy con-
sequence of Cauchy’s inequality and (2.16) at the end of this section. Since this
measure need not be Carleson (compare with the prototype equation discussed in
section 1), we are forced to integrate by parts numerous times in xg, z,t and use all
of our Carleson measure assumptions on A, in order to obtain the above estimate.
The case when B # 0 and ¢ is small, follows easily from the above case using our
basic estimates and another perturbation type argument. The proof of Theorem
2.13 is given in sections 4 and 5.
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We close this section by defining the nontangential maximal and square functions
introduced above. Given a > 0 and (x,t) € R", let

I(z,t) =Tq(z,t) = {(Y,s) €U : (v, ) € Qayo(2,t) }
and if g : U—R, put

(2.14) Ng(z,t) = sup lg| (Y, s).
(Y,s)€Tq (x,t)

If g has a locally integrable distributional gradient, Vg, on U let

1/2
(2.15) Sg (z,t) = (/ yo " VgAY, s) des> :
To(z,t)

Ng and Sg are called the nontangential maximal function and area function of g
defined relative to T'y(x,t). Finally for g as above and u a Carleson measure on U
we note (see [St, p 236]) that for 1 <p < oo

(2.16) /U 97 dpx < c(p,a,m) |l | Ng |2, o, -

3. BAsSic ESTIMATES

In this section we state some basic estimates from [M1, M2], [A], and [FGS] for
weak solutions to (1.1) when A, B satisfy (2.8)-(2.10). We shall also need basic
estimates for weak solutions v to the adjoint pde in U corresponding to (1.1), i.e.

(3.1) Lv=v, + V-(A"Vv — Bv) =0,
where A7 is the transpose matrix corresponding to A. More specifically, we have

ve L*(=T,T,HY . (U))NL>(-T,T,L7, . (U))

for 0 < T < oo and

n—1 n—1
(3.2) / vor+ Y Aijvg, ¢a, — 0 > Bigy, | dXdt=0
U i=0

4,7=0

for all ¢ € C§°(U). Weak solutions to (1.1) or (3.1) in Qq(X, t) are defined similarly
to weak solutions in U except that U is replaced by {V:|x;—y| <d,0<i<n—1}.
We say that v is a local solution to (1.1) or (3.1) in an open set O, if v is a weak
solution in each Qq(X,t) C O. We shall need the following interior estimates (see
[A, section 2]).

Lemma 3.3 (Parabolic Cacciopoli). Let A, B, satisfy (2.8)-(2.10) and suppose
that u is a weak solution to either (1.1) or (3.1) in Qua(X,t), 0 < d < xo/8. If
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Q(s) = Qa(X,t) N (R" x {s}), then
2
dr ( max U) <c sup / UQ(Yv 5)dY
Qa/2(X,t) s€(t—d? ,t4+d2) JQ(s)

+ c/ |Vul2(Y, s)dYds
Qa(X,t)

< c2d? / u?(Y, s)dYds
Q2a(X,t)
for some ¢ = c¢(y1, M,n) > 1, where v1, M, are as in (2.8)-(2.9).

Lemma 3.4 (Interior Holder Continuity). Let A, B, satisfy (2.8)-(2.10) and
suppose that u is a weak solution to either (1.1) or (3.1) in Quqa(X,1t), 0 < d < x0/8.
If lul| < K < 00 in Qua(X,t) and (Y,s),(Z,7) € Q24(X,t), then
Y = Z| + s — 7|/2\"
d
for some ¢ = ¢(y1,M,n), a = a(y1,M,n),0 < a<1<c<oo.

lu(Y,s) —u(Z,7)] < cK (

Lemma 3.5 (Harnack’s Inequality). Let A, B, satisfy (2.8)-(2.10) and suppose
that (Y, 8),(Z,7) € Q24(X,t). There exists ¢ = ¢(v1, M,n) such that if u > 0 is a
weak solution to (1.1) in Quq(X,t),0 < d < x0/8, then for T < s,

w(Z,7) < u(Y,s) exp [c ('Y_i'z + 1)]

‘ —_
while if u > 0 is a weak solution to (3.1), then this inequality is valid when T > s.

Remark. In [A] the above lemmas are stated for ||| B|||z~@) < ¢ < oo. However
using the scaling (X,t)—(X/d,t/d?), we can reduce the proof of Lemmas 3.3 - 3.5
to a rectangle of side length 1 in the space variable that is distance 1 from 9QU.
From (2.9) we see that |B| is bounded almost everywhere on such a rectangle, so
the results in [A] can be used.

We suppose until further notice that either B = 0 in (1.1) or A, B € C>(U).
Under these assumptions there exists Green’s function G for (1.1) in U and corre-
sponding parabolic, adjoint parabolic measures w(X,t,-), ©(X,t,-), satisfying for
each (X,t) € U the condition:

H(X,1) :/U AV, Vy G(X,1,-)) + G(X,t,-) (65 — BVS)]dYds
(3.6a)

+ (Y, s) dw(X,t,y,5),
oU

(3.6D)
H(X, 1) = /U {{ATV, Ty G(, X,1)) + G(- X,t) (~6, + V - [Bé]) } dYds

+ ¢(yvs) d(:J(X7t7yas)7
oU
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whenever ¢ € C§°(R"*!). Moreover, G has the properties:
(3.7)
(a) G(X,t,Y,s)=0for s >t (X,t),(Y,s) €U,

(b) For fixed (Y,s) € U, G(-,Y,s) is a local solution to (1.1) in U \ {(Y,s)},
(¢)  For fixed (X,t) € U, G(X,t,-) is a local solution to (3.1) in U \ {(X,1))},

(d) If (X,t),(Y,s) € U, then G(X,t,-) and G(-,Y, s)extend continuously to U
provided both functions are defined to be zero on 9U.

We note that (3.6), (3.7) are well known when A, B are smooth (see [F]) while if
B =0 a proof can be given by taking weak limits of solutions to pde’s with smooth
coefficients. It is also easily seen (as in [A]) that the solution to the Dirichlet
problem for (1.1) in U and a given bounded continuous h : R®—R is given by

(3-8) wX,t) = [ h(y,s)do(X,t,y,s).
Rn
Next we state two lemmas from [FGS] concerning the Green’s function and para-

bolic measure. In [FGS] these lemmas are given in Lipschitz cylinders. However
these lemmas remain valid for U as is easily seen.

Lemma 3.9 (Boundary Holder Continuity). Let A satisfy (2.8)-(2.10),
B =0, and let u be a weak solution to (1.1) or (3.1) in (0,2r) X Q2-(y,s). If
r > 0 and u vanishes continuously on Qo (y, s), then there exists ¢ = c(v1, M,n)
and o = a(y1,M,n), 0 < a <1< c< oo, such that

u(X,t) < e(zo/r)” u

max
(0,7)xQr(y,s)
whenever (X,t) € (0,7/2) x Qp/2(y, ). If u > 0 in (0,2r) x Q2,(y, s), then there
exists ¢ = ¢(y1, M,n) such that for (X,t) as above,

w(X,t) < é(xo/r)u(r,y,s £ 2r?)

where the plus sign is taken when u is a weak solution to (1.1) and the minus sign
for u satisfying (3.1).

Lemma 3.10. Let G,w be Green’s function and parabolic measure corresponding
to (1.1) in U where A satisfies (2.8)-(2.10) and B = 0. If (y,s) € R™, r > 0, then
there exists ¢ > 1, depending on v, M, n, such that

Tt G(X Y, s +100r%) < w(X,t Q0 (y, 5))

whenever, t > s + 20002, xg > 4r, and
X

+ 2 <0t
t—s 5

10—3n

We shall also need the following backward Harnack inequality in [F'S].
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Lemma 3.11 (Backward Harnack Inequality). Let G be Green’s function for
(1.1) in U with A satisfying (2.8)-(2.10) and B = 0. There exists ¢ = c¢(y1, M,n) >
1 such that for (X,t),(y,s),r, as in Lemma 3.10,

G(X,t,r,y,s —100r?) < cG(X,t,r,y,s+ 100r?).

This backward Harnack inequality is proven in [FS] for weak solutions to (1.1) in
bounded Lipschitz cylinders. However using Lemmas 3.5, 3.9, 3.10, it is easily seen
that their proof extends to the situation in Lemma 3.11. From Lemmas 3.5, 3.10,
3.11, we conclude

Lemma 3.12 (Parabolic Doubling). Let w be parabolic measure correspond-
ing to (1.1) in U with A satisfying (2.8)-(2.10) and B = 0. There exists ¢ =
c(y1,M,n) > 1 such that

w(X,t,Qar(y,5)) < cw(X,t,Qr(y,s))

where (X, t), (y,s),r are as in Lemma 3.10.

Next we show that Lemmas 3.9 - 3.12 remain valid when B # 0 provided for almost
every (X,t) € U, we have

n—1

(3.13) zo Y IBi(X0)] < @
i=0

and €7 is sufficiently small. We prove

Lemma 3.14.  Let A, B € C>®(U) satisfy (2.8)-(2.10) and (3.13). If ¢, =
e1(71, M,n), 0 < e; < 1, is small enough, then Lemmas 3.9 - 8.12 are still true.

Remark. If u(X,t) = [~ log(zo)] 7!, then Au+ BVu = 0 for 0 < z¢ < 1/2 where
B = (x5 [1 + lc)g%]’ 0, ...,0). Thus some smallness condition such as (3.13) is
needed in order to insure the validity of Lemma 3.9.

Proof of Lemma 3.9 : We first extend u to R"*! by defining v = 0 in R"*!\
[(0727’) X QQT(y7$)]' Let 0 < p<r, (yla 51) € QT/2(y75)7 and 1/) Z 0 € Cgo((—p,p) X
Qp(y1,51)) with » =1 on (=p/2,p/2) X Q,/2(y1,51). Also choose 1 so that

PV oo @nry + P2 1550 [l oo @ntry < e

If u vanishes continuously on Q2. (y, s), then from Schauder type estimates (see[F]),
we deduce that ¢ = uy? can be used as a test function in (2.12) or (3.2). Using
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this test function we obtain for some ¢ = ¢(y1, M,n) > 1 that

I = c*l/ \Vau|?? dX dt < /<[1vu,vu> Y2 dXdt
U U

< c/ lu| |Vu| ¢ | V| dX dt + c|/ u 2 (uwp?)dX dt|
(3.15) U u

4—3/<mHBvaw2+uﬂBHv¢ww¢¥ﬁ
U

=L+ 13+ 1.

Here A = A when u is a weak solution to (1.1) while A = A" when u is a weak
solution to (3.1). Also |B| denotes the norm of B considered as a vector. Using
Cauchy’s inequality with €’s we find in the usual way that

L < i+ c/ u? Va2 dX dt.
U

Differentiating the product in I3 and then integrating the term in %uQ by parts
one gets

Is < ¢ /U u? | &? | dXdt
To estimate Iy we use the fact that for (X,¢) € (0,7) x Q. (y, s) we have
(3.16) wh(X,1) < 20 MO (@p)[)(X, 1)
where

zo
MO F(X,8) = a5 / 1£1(z0, 1) dzo
0

is < the one dimensional maximal function in the zy variable when (z,t) are held
constant. Using (3.16), (3.13), Cauchy’s inequality, and the Hardy - Littlewood
maximal theorem we get

Iy <ce / u? V2 dXdt + ce / |Vul|? 2 dX dt.
U U
Putting these estimates for I, I3, I in (3.15) we see for €; small enough that
(3.17) L < c/ (V0 + | 2¢]) u? dXdt.
U

From (3.17) and (3.16) with wi replaced by u, as well as our assumptions on 1,
we conclude for €1 = €1(y1, M, n) small enough that there exists ¢ = ¢(y1, M, n) for
which

) [Vul2dXdt < ) u? dXdt

—2
f(o,p/2>xc2p/2<y1781 cp f(o,mep(yhsl

(3.18)

IN

2 2
c f(07p)XQp(y17sl) |Vul* dX dt.

Next we note from Lemma 3.3 for (X,t) € (0,7/2) x Q,/2(y, s) that

lu(X,t)]* < cxaz_"/ u?(Z,1)dZdr .
(0,220) X Q2 (2,1)
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Thus to prove the first part of Lemma 3.9 it suffices to show

(3.19) p2n / w?dXdt < c(p/r)® max  u

(0.0/4)XQpa(y1,51) (0.r)xQr(y,5)
whenever (y1,s1) € Q,/2(y,s) and 0 < p < r/4. To do this, if u is a weak solution
to (1.1) for given A, B and p/2 < 7 < 1/8, we let ug be the weak solution to this
equation with B =0 in (0,7) X Q,(y1,$1) and u = ug on the parabolic boundary
of (0,7) x Qr(y1, s1). If u satisfies (3.1) we define ug similarly, with (3.1) replacing
(1.1). Existence of ug follows from Schauder type estimates or as in [A]. We put
w = u — ug in place of ¢ in (2.12) or (3.2) and write down the resulting equations
for u, ug. Subtracting these equations and using (2.8), (2.9), we see that
(3.20)

| Vw |2 dXdt < c/ |B| (Jul| Vw | + |Vullw|) dXdt.
(0,7)XQ~+(y1,51) (0,7)xQ~+(y1,51)

From (3.20), (3.16) with ui) replaced by w,u, (3.13), and Cauchy’s inequality we
deduce that

(3.21) / |Vw > dXdt < ce / | Vu |* dXdt.
(0,7)xQ+(y1,81) (0,7)xQr(y1,81)

Put
®(f,v) =v‘"/ |V f[2dXdt.
(0,0)XQy (y1,51)
Then from Lemmas 3.3, 3.9 for ug we see when 0 < v < 7 that

(3.22) ®(ug,v) < c(v/T)** D(ug, 7).
From (3.21), (3.22) we conclude for 0 < v < 7, that
O (u,v) < 4(P(ug,v) + P(w,v))

< c(v/7)%*®(ug,7) + c(t/v)" ®(w,T)

< c[(v/m)** + e (7/v)"] (u, 7).

Set v/7 = . Then from the above inequality it is clear that we can choose first 6
and then ¢; so small that
O(u,07) < %‘I)(u, 7).

With 6 now fixed we can iterate this inequality in the usual way starting with
T = r/8 and continuing to 7 = p/2. From this iteration and (3.18) we conclude first
that (3.19) is valid and second from our earlier remark that the first part of Lemma
3.9 is true when ¢, is sufficiently small. The second part of this lemma follows from
the first part and Harnack’s inequality in a standard way (see [CFMS] or [FGS]).
O

Remark. Lemma 3.9 is still true if instead of assuming (3.13) in U we assume only
that this inequality holds in (0,2r) x Q2,(y, s). Indeed the above proof of Lemma
3.9 uses only the assumption that (3.13) holds in (0, 2r) X Q2. (y, s). We shall use
this remark in chapter II.

Proof of Lemma 3.10. We first prove the left hand inequality in Lemma 3.10.
To do this we integrate (3.1) with v = G(r,y, s + 10072, -) over U N [R™ x (—o0, 5)].



PARABOLIC OPERATORS WITH SINGULAR DRIFT TERMS 15

We note that the inner normal to U is e = (1,0,...,0) and that Vv = ¢|Vv| at
points on AU with time coordinate < s 4 100r2. Using this remark, the divergence
theorem, and (2.10) we get
(3.23)

G(r,y,s+100r%, Z,5) dZ

-
= / / IVG|7Y(VG, AVG )(r,y,s+100r% 2z, 7)dzdr < 1.
—oco JR™ 1

Using (3.23) and Harnack’s inequality (Lemma 3.5) we see that for (Z1,71) in the
parabolic boundary of @, /2(7,y, s + 100r2) we have

(3.24) ™ G(r,y,s + 10002, Z1, 1) < c/ G(r,y,s+100r2, Z,5)dZ < c.

RTL
Next we observe from Lemma 3.9 with v = 1 — w(, @, (y,s)) and Harnack’s in-
equality that cw > 1 on the parabolic boundary of @, /2(7,y, s+ 10072). From this
inequality, (3.24), and the boundary maximum principle for solutions to (1.1) we
conclude that

L G(X oy, s 7)) < w(X,tQr(y,8))

which is just the lefthand inequality in Lemma 3.10. To prove the righthand in-
equaliy, let 1) be the function in Lemma 3.9 with p = 47 and (y1, s1) = (v, ). Note
from our assumptions on (X,t) in Lemma 3.10 that ¢(X,t) = 0. We put ¢ = ¢
in (3.6a) and use (2.9), (3.13), (3.16) with ui) replaced by G(X,t,-), (3.18) with
u = (G, Cauchy’s inequality, the Hardy - Littlewood maximal theorem, and Lemma
3.9 to deduce for x = characteristic function of (0,4r) X Q4,(y, s) that

w(X,t, Q2 (y,5)) < | ¥(Y,s)dw(X,t,Y,s)
ou

_ _/ AV, Vy G(X,6,-)) + G(X, 1) (s — BV dVds
U

(3.25) < et / MO (x| VyG(X,t,Y,s)|)dYds
(0,47) X Q- (,9)

IA

1/2
crn/? (/ |VGy(X,t,Y,s)2des>
(0,4r) X Qar(y,s)

< er"G(X,t,r,y,s — 100r?)

which is the righthand inequality in Lemma 3.10. O

Proof of Lemma 3.11. To prove Lemma 3.11, fix (X, ) as in this lemma and put
v(Z,7)=G(X,t,Z,7), for (Z,7) € U\ {(X,t)}. Given w € R"~* and r > 0 put

J(w)y={ZeR":0<z<r,—r<zi—w;<rforl<i<n-—1}

Sp(w) = OJ-(w)\{Z : z0 =0}
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where 0J,.(w) is taken with respect to R"™. Following [F'S] we first note from Har-
nack’s inequality for (3.1) (Lemma 3.5) and Lemma 3.9 that for some A, ¢ > 1,
depending only on vy, M, n, we have

(3.26)

e~ (z20/p) vl y1, 51+ 16p%) < v(Z,7) < ce™ (20/p) v(kp, 1, 51 — 16p%)

whenever k > 100, Z € Ji,(y1), and 7 € (s1 — 9p?, s1 + 9p?). Here p > 0 and
(y1,s1) € R™ with s; < t — 20p%. Second for Q = (0, p) x Qp(y1,51), we show as
in [FS] that if

M, = max{v(Z,7): (Z,7) €Q}
My = max{v(Z,7): (Z,7) € Skp(y1) x (s1 — 16p%, 51 + 16p?) }

and My < k> My, then for k = k(vy1, M,n) > 100 large enough and ¢; as in (3.13)
small enough, we have

(3.27) M; = max{v(Z,s1 +4p*): Z € Jp,(y1) } > & M.

To prove (3.27) let vy be the weak solution to (3.1) with B=01in Q = Jg,(y1) x
(s1 —4p?, 51 +4p?), and with boundary values vy = v on the parabolic boundary of
Q. Let G be Green’s function for (3.1) in Q with B = 0. We note that (3.6b) still
holds if U is replaced by Q and G by G provided ¢ € C°(£2). Also (3.7) remains
true with U, G replaced by Q,G. Using this remark and approximating v — vo by
smooth functions we deduce from (3.6b) that for (Z;,71) € Q we have

U(Zl,Tl) :Uo(Zl,Tl) =+ / ’UBVZG(Zl,Tl,Z,T) dZdr = (’Uo—l—vl)(Zl,Tl).
Q

Now in [FS] it is shown for some ¢ = ¢(vy1, M, n) that
(3.28) vo(Z,7) < Mz + e "¢ My

when (Z,7) € Q,z2 € Ji,2(y1), and k > 100. To estimate vy for (Z;,71) =
(z5,2%,711) € Q we write

v1(Z1,t) = /UBVZG(Zl,Tl,Z,T)dZdT
Q

:/ +/ +/ co.=5L + I, + I,
Q1 Qo Q3

QU =Qn{(Z,7):|Z - Zi| +|r—n|V? < z5/2},

where

Q= (Q\ Q) N{(Z,7) : 20 < 25/2}
Q3= Q\ (0 UQ).

To estimate I, Is we shall need the inequality

- 7, — Z|?
(3.29) G(Z1,71,Z,7) < clt—7|7% exp {M]

el — 7
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for some ¢ = ¢(vy1, M,n) > 1. (3.29) is proved in [A]. Put

Ei={(Z,7): 277 < |Z—Zy| + |t —n|Y? <275 Y for i =0, +1,...

E;k: i+1UEiUEi717i:07i17""

For (Z1,71) € Q, we note that G(Z;,71,-) has an extension (also denoted G) to
U N [Jkp(y1) x (s1 — 4p?, 00)] which is a local solution to (1.1) in this open set. In
fact G so extended is the Green’s function for this set with pole at (Z;, ;). Using
this note, the same argument as in the proof of (3.18), and (3.29) we deduce

/ \Vé|(Z1,Tl,Z, T)dZdT
E;NQ

~ 1/2
< e(zg 2722 (/ |VG|2(Zl,Tl,Z,T)dZdT>
E;NQ

(3.30) 1/2
< (25272 (/ G121, 71, Z, T)dZdT)
ErnQ

1/2
< c(2t/z5)"? (/ dZdT) < czp27t.
E*
From (3.13), (3.26), and (3.30) we deduce for (Z1,71) € Q
L] < ce eck2(1/z;;)M2/ \NG|(Zy, 1, Z,7) dZdT
Q0
ck? * - ~
(3.31) < ceae® (1Y) My | > | IVGI(Z1, 70, Z,7)dZdr
i=0 7/ Bi

oo
cey eck? Moy (Z 271) < ce ok’ M, .
i=0

IN

To estimate Iy we use (3.16), (3.18) for v, (3.30), and (3.26) to conclude
(3.32)

|L| < cq/ \VG|(Z1,71,-) MO (|Vo|) dZ dr
Qo

. 1/2 1/2 .
< ce (/ VG2 dZdT> (/ |Vv|2dZdT> < cep et M.
Qs QU0
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I3 is estimated similarly using (3.13), (3.18), (3.26), and (3.30) for —N < ¢ < 0,
where N is the least positive integer greater such that 2V > 2knp/z%. We get

Bl < e [ VGI(Zim.) MO(Vel) dzdr
Q3
< ce (Z/ \VG|(Z1, 71, )M (1)(|Vv|)dZdT>
1ﬂQS

(3:33) <ce (i [ / VG2 dZdr])? | /

i=0 E_;NQ3 E_,NQ

|Vv|2dZdT]1/2>

< cep ok’ M ( ZQZO‘

< ceq eck? M.
We conclude from (3.31)-(3.33) that
(3.34) [01](Z1,71) < cer e M.

From (3.34) and (3.28) we see that first we can choose k large and then with k fixed
choose €; small enough so that if My < kY M, then

M; < $M; + Ms

which clearly implies (3.27).

We now use (3.27) to prove Lemma 3.11. We suppose k,€; are fixed so that
Lemmas 3.9, 3.10, and (3.27) are valid. Let (X,t), (r,y, s+ 100r?), be as in Lemma
3.11, and suppose y; =y, s —100r2 < s; < s+ 100r2. In order to avoid confusion

we write Q(p) for the above @ and put M(p) = n_1(a))w. Let
Q(p

*\ — A *
o= max M
{2r<p*<z0/2} (0") (")

and choose p, 2r < p < x0/2, such that M(p) = p* 0. We consider two cases.
First if p > x0/(2k), then from (3.26) and Lemma 3.10 we deduce for some K =
K(v1,M,n, k) > 2 that

K_lxa”#‘ < r~ Moy, st +12) < erM(r g, s1)
(3.35)
<co< Ka:g”_/\.

Otherwise p < x(/(2k) and we have
M(kp) < k* M(p),
0 (3.27) can be used to conclude

(3.36) M(p) < 20(Z,s1 +4p°)
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for some Z € Ji,(y1). From this inequality, Harnack’s inequality, (3.26), and Lemma
3.9 it follows easily that for some K = K(vy1, M,n, k) > 2

K=tM(p) <2K'v(Z,s1 + 4p?)

< (p/’l"))\ ’U(’I‘,yl,Sl +T’2) < C(p/T))\U(T,yl,Sl)

< cM(p).

Thus in either case
v(r,y1,51) < Ko(r,yi, 51+ 72).

We first take (y1,s1) = (y,s — 100r?). Then we can repeat this argument with
(r,y1,s1) replaced by (r,y1,s1 + r2). Doing this at most 200 times we obtain the
conclusion of Lemma 3.11 . O

Lemmas 3.5, 3.10, 3.11 clearly imply Lemma 3.12. The proof of Lemma 3.14 is now
complete. O

Finally in this section we drop the assumption that A, B are smooth when B # 0.
We prove

Lemma 3.37 Let A, B satisfy (2.8)-(2.10) and (3.13). If e1 = e1(y1,M,n) > 0 is
small enough, then the continuous Dirichlet problem for (1.1) has a unique solu-
tion. Moreover if w denotes parabolic measure corresponding to (1.1), then when-
ever (z,t) € R™ and Q2,(y, s) C Qa4(x,t) we have for some ¢ = ¢(v1,M,n,e1) > 1,

() cw(d,z,t +2d?, Qq(z,t)) > 1,
(6) cw(d, z, t+ 2d27 Qr(% 8)) Z w(d> .'177t + 2d27 QQT(y7 S))a
() If E C Qa,(y,s) is a Borel set and w(2r,y,s + 8% E) > 7, then

cw(d, z,t+2d* E) > nw(d,z,t + 2d% Q2 (y,s)) .

Proof: Our proof is standard so we shall not include all the details. Let h €
C*®(—00,00),0 < h <1, with h =0 on (—00,1/2), h =1 on (1,00), and |A'| <
100. Put hj(X,t) = h(jzo), for (X,t) € R"™ and j = 1,2,.... Let Py > 0 be
a parabolic approximate identity on R"*! defined as in (1.6) with R™ replaced by
R™*1 Recall that P € C§°(Q1(0,0)) where now Q1(0,0) is a rectangle in R+ .
Let A= Ay, B=0, in R"\ U where Ay is the constant matrix in (2.10) and set

A; = Ag + hy Ps,(A— Ag)

Bj = thng, fOI‘j:L 2,

where the convolution is understood to be with respect to each entry in the above
matrices and §; = (1005)~'. Clearly A;, B; € C§°(R"™!) and A4; = Ay, B; =0,
in {(X,t) : 20 < (2§)7'}. Also it is easily checked that (2.8)-(2.10) and (3.13)
hold for some ¢ = ¢(n) with 71, M, €1 replaced by v1/¢,cM, ce;. Choosing €; still
smaller if necessary, it follows that Lemma 3.14 holds for A;,B;, j = 1,2,....
Finally from properties of parabolic approximate identities we have A;, B; — A, B
pointwise almost everywhere on U as j—o0.
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Let g be a bounded continuous function on R™ and let (u;)$° be the correspond-
ing solutions to the continuous Dirichlet problem for (1.1) with A, B replaced by
A;,B;. Thus u; = g on 9U. Existence of u;,j = 1,..., follows from (2.10) and
Schauder type estimates. From the interior estimates in Lemmas 3.3, 3.4, we see
there exists a subsequence (w;)7° of (u;)® with w;—u € L*(=T,T, Hlloc(G)) as
j—oo weakly in the norm of this space. Here T, G are as in (2.11). Also thanks
to Lemma 3.4 we can choose (w;)$° so that w;—u as j—oo uniformly on compact
subsets of U. From this fact and the maximum principle for smooth solutions to
(1.1) with A, B replaced by A;, B, we see that [[ul|z ) < ||gllzee@n). Let u =g
on OU.

Next we show that w is continuous on U. For this purpose, given n > 0 and
(z,t) € R™, choose § > 0 so that |g(y,s) — g(x,t)] < n for (y,s) € Qs(x,t). Then
since the continuous Dirichlet problem for (1.1), corresponding to A;, B;, always

has a unique solution there exist sequences (1;), (w}) such that for j =1,2,...

(i) by, wi

% are solutions to the continuous Dirichlet problem for (1.1), Aj, B;.

(1)  wj;—g(z,t) = w; + wy .
(@) || wjllze@) < 2.

(iv)  w}i=0on Qs/a(z,t) CIU.

Choosing certain subsequences of (w;), (w}) it follows from (i) — (iv) that u —
g(x,t) = uy +uz where uq, us are uniform limits on compact subsets of subsequences
of (i;), (w) respectively. Moreover uy, ug are weak solutions to (1.1) corresponding
to A, B, and [|u1 ||~y < 2n. We note from (iv) that Lemma 3.9 holds for (w})
in (0,0/2) x Qs/2(x,t) with constants independent of j. Thus the conclusion of this
lemma also holds for uy so that lim(y, s)—(z,+) u2(Y,s) = 0. From this remark and
the above facts we conclude that

limsup |u(Y,s) —g(z,t)| < 2n.
(Y,8)= (2,t)

Since n € R and (x,t) € R™ are arbitrary we see that u is a solution to the Dirichlet

problem for (1.1) with boundary function g.
Uniqueness of u is a consequence of the following maximum principle.

Lemma 3.38. Let u,v be bounded continuous local weak solutions to (1.1) in U
where A, B satisfy (2.8)-(2.10). If

limsup (v —0)(Y,s) <0,
(Y,8)= (,t)

whenever (z,t) € R™, then u < v in U.

Proof: Given € > 0 we see from (2.10), continuity, and our knowledge of constant
coefficient parabolic pde’s, that there exists § > 0 with u — v < e in U \ G where
G = (6,1/0) x Q1,5(0,0). Also from (2.9) we deduce that B is essentially bounded
in G. Now if u — v £ 0, then for ¢ > 0 small we would have u — v > 2¢ at some
point in G. We could then apply a weak maximum principle in G (valid since B is
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essentially bounded in this set (see [A]). Doing this we get v < v+ € in G which is
a contradiction. Thus Lemma 3.38 is true. O

To complete the proof of Lemma 3.37 we now define parabolic measure w as in
section 2 relative to (1.1), A, B. (a), (8), () are easily proved for smooth solutions
using Lemmas 3.14, 3.12, 3.10, and 3.9. Taking a weak limit as above, it then
follows that w satisfies («), (8), (7). For completeness we sketch the proof of ()
under the asumption that A, B are smooth in U. Indeed from Lemma 3.10 and
Harnack’s inequality (Lemma 3.5), we deduce the existence of ¢ > 1 such that
¢w(-, E) > rG(-,2r,y,s+ 12r?) on 9Q where Q = U \ L and
L={(Z1)eU:|z—yl <rlzo—2r|<r|r—s—12r2 Y2 <pr1<i<n-1}
Using the maximum principle for solutions to (1.1), Lemma 3.10 once again, and
the backward Harnack inequality (Lemma 3.11), we get (). The proof of Lemma
3.37 is now complete. O

Remark. We note for use in chapter II that Lemma 3.38 remains valid if U
is replaced by a more general region 2. For use in chapter II we require only
that this maximum principle remains valid when 2 has one of the following forms:
(a) (0’ T) XQd(mv t)’ (b) U\[(07 T) XQd('r’ t)]7 and (C) U\{(O’ T) X [Qd(x’ t)\ Qﬂ(y7 S)]}
Here 0 < r,d < o0, (z,t) € R". and Q,(y,s) C Qa(z,1).

4. PROOF OF THEOREM 2.13 IN A SPECIAL CASE

In this section we prove Theorem 2.13, except for some square function estimates,
under the assumptions that
(4.1)

(a) B=0and A C>=().

(b) A satisfies (2.8)-(2.10) .
()  (wo|VA] + 2 |A)(X,t) < A < oo for ae. (X,t) €U and the measure

is a Carleson measure on U.

n—1
(d) %2? = Z<€;J, 8%[ /) + g% in the distributional sense where
1=0

n—1
Z[|e§j| + [f711(X,t) < A< oo, forae (X,t) €U whenever
1=0

1

OS a.jgn_la

(e) e, f) have distributional first partials and
n—1 n-1

dps(X,t) = [ > O ao Ve P + a5t [£712) + |97 [1(X,t) dX dt
i,7=0 1=0
is a Carleson measure on U.

(F) 1A= Aol3eeqy + liall + s < 3.

In (4.1)(f), Ao is the constant matrix in Theorem 2.13. We note that (4.1)(a) is
the only additional assumption to those in Theorem 2.13. In section 5 we shall
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remove (4.1)(a) and thus obtain Theorem 2.13. To this end, recall that G(-,Y,s)
is the Green’s function for (1.1) with pole at (Y,s) € U and w(X,¢,-) is parabolic
measure at (X, t) for (1.1). From Schauder type estimates and (2.10) we note that

dw
X, = K(X,t X,t "
dde( »71/;3) ( 9 71173)7( 7)€U7 (yas)ERa
where
(4.2)
T = sup |Q+(y, s)] / K(r,y,s+2r% 2z, 7)?dzdr | < ¢ < 0.
{(y,s)er™, r>0} Qr(y,s)

Here ¢; may depend on among other things the smoothness of A. We shall show in
fact that

(43) 1 =0 (603 Y1, M7 Av n) .

Before we begin the proof of (4.3), we note that (4.3), the basic estimates in section
3, and a familiar “ rate ” type argument imply that Theorem 2.13 is valid when
(4.1) holds. For completeness we give the proof of this statement. If
K(d,z,t+2d?, 2,7)
= sup 3
(z,7)EQr(y,s) K(Ta Y, s+ 2r y %y T)

then from (4.3) we deduce for some ¢ = ¢(vy1, M, n) > 1 that

fQT(y s) K(d,x,t+2d?, z,7)?dzdr
(4.4)
ST fou sy B(ry,s 4202, 2,7)2 dzdr < il |Qp(y, 5)| 71

To estimate I' we first use Schauder regularity, the fact that K(d,z,t+2d?,2,7) =
IVG|~' (VG, AVG), and (2.8) to find
2 2
r<. sup lim G(d,z,t + dz,zo,z,T)
(21)€Qn (ys) 200 LG(r,y,5+2r2, 20,2, 7)

Second we observe from Harnack’s inequality and Lemma 3.37 (o) with d = r, (z,t) =
(y, s) that for some ¢ = ¢(y1, M, n) we have

(4.5) cw(-,Qar(y,8)) > 1Lon (0,7) x Qr(y, s).

Using (4.5), Harnack’s inequality, and Lemma 3.9 with « = G(-, z0,2,7) we find
that

G(',ZO7Z,7—) < CW(~7Q2T(y7S)) G(Ta%s + 27“2,20,2,7') on 8[(()’ %T) X Q%r(yas)]

so by the boundary maximum principle for solutions to (1.1) and Lemma 3.12 we
have

G(d’ x7t+ 2d2? ZO? Z’T) S Cw(d’x’t + 2d27 QQ”’(y7 s)) G(T’ y? S + 2r2’ ZO7 Z’ 7-)

< cw(d,z,t+2d%,Q,(y,8)) G(r,y,s + 2r%, 20, 2,7) .

Dividing this inequality by G(r,y,s + 2r2, 29,2, 7) and letting 2o—0, we conclude
for some ¢ = ¢(vy1, M, n) that

(4.6) I < cw(d,x,t+2d? Q. (y,s)).
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Using (4.6) in (4.4) it follows that

Qr(y,8) ™" Jg, 1y K(d,2,t +2d% 2,7)2 dzdr
(4.7 2
< e (109" Jy (e K(dot+ 242, 2,7) ddr )

whenever @, (y,s) C Qq(z,t). Hence to prove Theorem 2.13 when (4.1) is valid it
remains to prove (4.3).

Proof of (4.3). To prove (4.3) choose (r,y, s + 2r?) € U so that

(4.8) T < 2|Q:(y,s)] / K(r,y,s 4 2r% z,7)* dz dr
Qr(y,s)
and for given g € C5°(Q.(y,s)), g > 0, set

u(X,t) = K(X,t,z,7)g(z,7)dzdr.

R™

From (3.8), (2.10), and Schauder regularity we see that w is a bounded strong
solution to (1.1) in U which is continuous on U with u = g on R". Let ug be the
bounded solution to the continuous Dirichlet problem in U with Lyug = 0 and
boundary values, ug = g on R". Here Lg is defined as in (1.1) with A(X,¢) =
Ao, B(X,t)=0, for (X,t)eU.

Now from our knowledge of second order parabolic operators with constant co-
efficients we get that ug € C°°(U) and for some ¢ = c(y1, M, n)

(4.9) [Nuoll 2@y + [1Suollz2 @) < ¢llgllz2@m)

where N, S are as in (2.14), (2.15). As in section 3 we let ¢ € Cgo[(—gr, gr) X
Q%T(%s)] with ( =1 on (—r,7) X Q-(y, ), ¢ >0, and

THVCHLQC(R”+1) + T2||%C||Loo(ﬂn+1) S c <0

for some ¢ = ¢(n). Put v = (2. Using (3.6) with ¢ equal to a smooth extension of
up 1) to R with compact support and writing G for G(r,y, s +2r?2,-), we obtain
(4.10)

u(r,y, s +2r?) = / gK(r,y,s+2r2,)dZdr = —/ L(upy) GdZdr

R™ U

:7/ (Lz/;)qudZdTJr/ ((A+ A™)Vuy, Vo) GdZdr
U U

=1+ Il +1II
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‘We have
n—1
I:f/ P ug GdZ dr + Z / (%Aij)(%w) uo G dZdr
U = v

(4.11) n-1 .
£y / Ay (52 ) o GdZdr
U J

4,=0

=L + I + I

I3 is similar to Iy, so we ounly treat I; and 5. If D = [0, %r] X Q%T(y, s), then from
Lemma 3.10, Cauchy’s inequality, and (4.9), we get

|| < cr‘2/ ug GdZdr < C?“_Q_n/ ug dZ dr
D D

< CT’i(1+n)/2 ||Nu0||L2(R") < C’I‘i(1+n)/2 HgHLZ(R") .

Also, from Cauchy’s inequality, (4.1)(f), (2.16), Lemma 3.9 with v = G, and
Lemma 3.10, we deduce

1/2 1/2
|L| < crt (/ VA2 ud ZodZdT) </ 2yt G? dZdT)
D D

< ceo|Nuol oy = ([ ot dzdn)?
D

S C€p 7”_(1+n)/2 ||g||L2(]R”)

where as usual ¢ = ¢(y1, M, n). Thus, for 0 < ¢y < 1/2,
(4.12) 11| < er= /2 g 2 gny -

We handle II similarly.
(4.13)

1/2 1/2
[I1] < cr™? (/ Vu0|2zodZdT> (/ 2t G? dZdT>
D D

< cr= W2 |Sug || pegry < er” /2 g|| L2y -

The main term is III. We write,

1T = / V- [(A = Ay)Vuo] G dZdr
U

= / (Vi) (Ag — A)Vup) GdZdT—i—/ B (VG (Ag — A)\Vug )dZ dr
U U

=11 + IIL,.
I11; is estimated just like II. We get for some ¢ = ¢(vy1, M,n) > 1, that
(4.14) 115 < er™ /2| g] 2y -
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For 1115 we have

n—1
—IIl = / ) 32G (A — Ao)ij 5o dZdr
U ‘ 7

i,7=1

n—1
+Z/U’(/)%G (A_AO)iO BAZO’U,OCZZdT
i=1

(4.15) _—
i=17U

—I—/’(/)%G (A—AO)OO E%OUQdZdT
U

=111y + [1lyy + I1l35 + I115y.
To estimate 115 we integrate by parts in zg to get

n—1
Iy = 72 /UZO 521 52-G (A — Ag)y aizjuodZdT

ij=1

n—1
— Z /UZo’(ﬂ(%;zlG) (A—Ao)ij aizqudZdT

ij=1

(4.16) n-l > 5
— Z / 20 ’Lﬁ BizlG Tz()(A — Ao)l‘j szuo dZdT
U

ij=1
n—1
2
— Z / Zod)aizlG(A*Ao)” %BZJUOCZZCZT
i,j=1"U
=P+ P+ P+ P

Using Cauchy’s inequality, (3.18) with u replaced by G, Lemma 3.10, (4.1), and
(4.9) we get

1/2
|Py| < cegr1/? (/ |VG|2dZdT) </ zo|Vu0|2dZdT)
D D

< ceg p—(14n)/2 HSUO HLZ(R") < cep pm(14n)/2 HgHLZ(R") .

1/2

Set
n—1
J=> / ¢|782?;sz|220(1de.
U

1,j=0
Then from Cauchy’s inequality, (4.1)(f), and (4.9), we get

|P2| S C€p J1/2 ||Su0||L2(R7L) S C€p J1/2 ||g||L2(Rn) .
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We note from (4.1)(c) that VG satisfies on D a system of partial differential
equations similar to (1.1). Moreover Lemma 3.3 holds for this system so that if
(Z,7) € D, then

1/2
IVG|(r,y,s +2r2, Z,7) < ¢ <20("+2>/ ) VG|2dZd7->
Qéo/loo(zﬁ')

1/2
Al )  |G]?dzdr .
Q20/100(27+)

Using this inequality and Lemmas 3.10, 3.12, we conclude for (Z ,7) € D that

< céo_(”H)LL) (T,y,s+2r2, QIZ»TOO(,%,%)) < eM(x K(r,y,s+2r%2) (2,7),

whenever %y = %y and |2—Z| + |7—7|"/? < a %. Here y is the characteristic function
of Qu1,.(y, ), a fixed is as in the definition of a parabolic cone (above (2.14)), and
M is the Hardy - Littlewood maximal function defined relative to rectangles of side
length p, p? in the space and time variables respectively. Taking the supremum
over parabolic cones it follows from the above inequality,the Hardy - Littlewood
maximal theorem, and (4.8) that

(4.17) |[N(IVG[HY?) || L2@mny < c|K(ryy, s +20%) Xl pe@ny < cr™(WFD/2 T2,

Using (4.17), (2.16), and (4.1)(f) we estimate P3 by

1/2 1/2
|P5| < ¢ (/¢|VG|2 20 |VAJ]? dZd7'> </1/)|Vu0|2 20 dZd7'>
U U
< cegr—(ntD)/21/2 |Suoll2@ny < ceo p-(ntl)/21/2 lgllz2@n) -

We can handle P, in the same way as Pp, Ps, P3, after integrating by parts in
25,1 < j <n—1, to move a derivative onto G,, or A — Ay. We get

|Pi| < ceo [JV2 4+ (14T D2 ]| g]| L2 ny -
Using these estimates for the P’s in (4.16) we conclude that

(4.18) 1| < ceo [JYV2+ (1+TY2)r= D2 g]| 2 g -
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Next we estimate IIlso . Integrating by parts in zg and using the fact that
%GzOonanorlgignfl,weget

n—1
1Ly = _/ Vo 352G (A — Ag)io o dZdr
U i=1

n—1
(.19) —/UlPZ(%;zOG)(A—AO)iOUOdZdT
4.19 i=1

n—1
*/wzazlG %AiouodZdT
U =1

=S + 53 + S5.

As in the estimate for P; we have

1/2 1/2
1S1] < erte (/ VG|2dZd7') </ u%dZdT)
D D

< ceor™ /2| g|l L2 gny -

To handle S5 we integrate by parts in zg to get

n—1
Sy = /U 20 550 Y (525G ) (A= Ag)io uo dZdr
i=1

n—1
+/Zowz($;z2G)(A—Ao)iouodZdT
u i=1 ©

(4.20) n-1
+ / 20 ﬂ) 2(782?220 G ) %Aio ug dZdr
U i=1

n—1
T / 20y Z(%G) (A—Ap)io %uo dZdr
U i=1

= So1 + Sa2 + So3 + Sos.

Now Vi) = 2V ( = 2¢0'/2V (. From this fact, Cauchy’s inequality, and the definition
of J we deduce

|521‘ < 6601"71/2 J1/2 (/ u%)l/Q < C€p J1/2 HgHLz(]Rn).
D

So4 can be handled exactly like P,. We get
ISQ4| S C€g J1/2 HgHLQ(Rn) .
Sa3 can be estimated using (4.1)(c), (2.16), and (4.9) to get

1/2
1S3 < ¢ JY? </ Y 20 | VA2 ud dZdT> < cey JY? 9l 2@ -
U
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Soo can be estimated in the same way as So1, Sa3, So4, after integrating by parts in
zi, 1 <14 <mn— 1. Using these estimates in (4.20) we get

92| < ceo JV? ||gll 2 gan -

To treat S3 we use (4.1)(d), (¢) and integrate by parts. Using once again the fact
that aiz,-G vanishes on OU for 1 <i <n — 1 we get

n—1 —
_A¢ZQZ1 Z el 78Z, )+glo]uodZdT
=1 =0

n—1 n—1

/Z 9z [(Z azzwel ’ l >)—¢gi°]u0dZd7-

=0

/ Zzam 0 £i0YYugdZ dr

(4.21) i=1 1=0

*/UWZZ%G<£,e;O, ) YugdZdr

[ (TS G ) ) iz dr

= S31 + S32 + S33 + S34..

From (4.1)(d), (e), (f), (4.17), and estimates similar to the ones for P;, P; we see
that

1/2 1/2
|Sg1| < et (/ z/J|VG|2dZdT) (/ Pl dZdT)
U U

- 1/2 - 172
¢ (/ wVG|QZ|giOdZdT> (/ pud 3 |gi0|dZdT)
U i=1 U i=1

< er= (D2 (1 4 ETY?) ||g 2@y

Next we have

|S32] < C(

n—1n-1 1/2
' ( / 2 Y |fz7'02U0|2dZdT> < ceo JV? || gllrzmn)-
» U

n—1n-—1

‘ azlz

1/2
el dZdT)

S
&
<

i=1 [=0
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Also from (4.1)(e), (f),(2.16), (4.9), we deduce

|S33] < C<
1 n—

~("z

i=1 [=0

1 n—1

3
|

1/2
12 |VG]?dZ d7>
1 =0

<.
Il

L 1/2
/ 209 |V [P up dZ dT) < cegr= IR T2 |g|| 2 gny.

Lastly,

n—1ln—1 1/2
|S54] < c< Z/ 02 VG|2dZdT> (/ 201/J|Vu0|2dZdT>
11=0"U u

=

1/2

< cegr—(n)/271/2 9/l £2@n)-
Thus
|S3] < c[r_("H)/Q(l + € T1/2) + € Jl/z} 91l L2 @) -
Using our estimates for Sp,Ss, 53 in (4.19) we find that
(4.22) 11| < c[r™ ™21 4+ 6 TY?) + €0 TV | gl 2y

We handle 71153 in exactly the same way as II15;. That is we first integrate by
parts in zy to obtain 4 terms which can be estimated in exactly the same way as
P, — Py. We get

(4.23) [[11s] < ceo [r~"HD/2(1 + TY2) + T2 ||g|| 12 mmy-

It remains to estimate I1154. Integrating by parts in zg, we have

IIIQ4 = _/ 820’(/) 920 (A— Ao)oo Uuo dZdr

— / w %;G (A — Ao)oo (') dZdr
U 0

(4.24) - /U VoG AL (A= Ag)oo ug dZdr

+/ ’(/J%G(A—Ao)(]ogdZdT
oU

=Li+ Lo+ L3+ Ly.

L4 is estimated in the same way as 57 while the boundary term Ly is easily handled
using the definition of K, Cauchy’s inequality, and (4.1)(f). L3 is estimated similar
to Ss, using the “ integration by parts hypothesis 7 (4.1)(d), (e). However in this
case we must use a different argument to show that the boundary term correspond-
ing to integration in zg vanishes, since %G # 0 on OU . To show vanishing observe
from (4.1)(e) and Cauchy’s inequality that there exist (J;) with ]lgréo d; = 0 and

such that
(U |f80 |(65,2,7)dzdr— 0 as j—oo.
p



30 STEVE HOFMANN AND JOHN L. LEWIS

Using this observation, (4.1)(d), smoothness of G, ug, and taking a limit as 6;—0, we
deduce that the boundary term obtained from using (4.1)(d) in Lz and integrating
by parts, vanishes. Altogether we find that

(4.25) |Ly| + [Ls| + |La| < c[r™ ™21 4+ e T?) + €0 J?] ||gll 22 @)

To estimate L, we make several observations. First, observe that
ot -1 lé] o o) o)
BT:(%G = Aoo [T%(AOO T%G) - (T%AOO)BT:OG}

and second that (4.1)(c) holds with Agg replaced by Ag,'. Using these observations
we see that

L = [0 45 (o= Ao 5 (Aow 6o 2 dr
(420) + [ v g (4= Ao g Au G o dZds
U

= Lo1 + Loaa.

Lss can be handled using the second observation above and (4.1)(d) in essentially
the same way as we handled L3. We get the same estimate for Los as for Ly, Lz, Ly
in (4.25). Using (1.1) for G we find that

Ly = /wAgol (Ao — A)oo ZG updZ dr
U

n—1
+ Z /UdJAaOl (A - Ao)oo %(Al] %G) Uuo dZdr

ij=1

n—1
4.27 _
( ) +Z /'(/)Aool (A_AO)OO aiZO(AOj %G) ug dZ dr
=17V

n—1
+ Z ‘/U’(ﬁ Aaol (A - A())O() %(Ai() %ZOG) Ug dzdr
i=1

=WVi+ Vo + Vs 4+ V4.



PARABOLIC OPERATORS WITH SINGULAR DRIFT TERMS 31

Va5, V4 can be handled in our usual manner. For example, integrating by parts in
2o we get

n—1
RS /UZO 2 Al (A= A)oo 2= (Ayy £-G) o dZdr

ij=1

n—1
+ Z LZO¢%[A501 (A*Ao)oo]%(/l” %G)UodZdT

i,7=1

n—1
+ Z /UZO ¢A501 (A — Ao)oo é?;??(Aij %G) (') dZdr

ij=1

n—1
+ Z /UZ() ¢A(;01 (A — Ao)oo %(A” %G) 6(20 Ug dZdr

i,j=1
= Va1 + Vag + Vog + Vaqu .
Va1, Vag, Vay, are estimated using the second of the above observations, (2.16), (4.1)
(o), (f), (4.9), (4.17) and Cauchy’s inequality, as previously. To treat Va3 we inte-
grate by parts in z;, 1 <47 < n—1, to get integrals which can be estimated just like

the other three integrals. V} is treated similarly. Making these estimates we find
that

(4.28) [Va| + |Va| < ceo [r™"TI/2(1 + TY2) + TV || gl 2y

As for V3 we have

n—1
V3 = Z / wA(;Ol (A — A())()() % AOj TZGUQ dZ dr
j=1"U

n—1
+ Z / ¥ Agg (Ao — A)oo Agj %G uo dZdr.
j=1"Y

The first term on the righthand side of this equality can estimated using the above
observation on Carleson measures and (4.1) (d), (¢), (f) as in the estimate of Ss.
The second term is estimated in the same way as V5. We find that (4.28) remains
valid if |V3]| is added to the lefthand side of this equality. Finally integrating with
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respect to 2o in the integral defining V3 we have

V1 = /20%¢ Aaol (A - Ao)oo %G Ug dZ dr
U
+ /Uzo ¥ 52 [Agy (A= Ag)oo] 5= G ug dZ dr
+ / 20 1,[) Aaol (A — Ao)oo (%;Zo G) Uug dZ dr
U

+ /zowAgol (A= Ag)oo 2 G 5=ugdZ dr
U

= Vi1 4+ Vis + Vis + Vig.

We note that since G satisfies (1.1) we can estimate B%G in terms of first and
second partials in the space variable of G and first partials of A. Using this note
and a repetition of our now well known earlier arguments we find that

Vis| + [Vas| + [Via] < ceo [r™ T2 (1 + TV2) + 2] ||g]l L2 gy

To treat Vi2 we again integrate by parts in zy to see that

2Vip = / 22 —aazoqu(;ol (Ao — A)oo (78788:0 Q) uodZ dr
U
+ / B 2 [Ag (Ao — Aol (55 G) uo dZ dr
U
+ / Z(% ¢ ASol (AO - A)OO (#220 G) (%) dZ dr
U

— 2
+ / 2(2) d) Aool (AO — A)OO (37_878% G) %UO dZ dr
U
= Wi + Wa + W3 + W,y
To estimate these terms put
J = /U 2|V dzdr .
Then using our previous arguments we deduce that

Wil + [Wa| + [Wa| < ceo [r= D721+ TY2) + 112 |lgll 2 am) -
As for W3 we integrate by parts in 7 to get

Ws = /zg Loy Ay (A—AO)OO(—gjg G)ug dZ dr
U
+ / 28 %[Aaol (A= Ap)oo ](5%23 Q) uo dZ dr
U

+ / 259 Agg (A — Ao)oo 3% G ZugdZ dr.
U



PARABOLIC OPERATORS WITH SINGULAR DRIFT TERMS 33

The first two of the above integrals on the righthand side of this equation are by
now standard integrals. To estimate the third integral we need the fact that

[ w38 (fwo? dzdr < clglian
U

which is easily proven using (4.9) and well known interior estimates for derivatives of
solutions to parabolic pde’s with constant coeffieients. From this fact and Cauchy’s
inequality we get the desired estimate for the last term in the equality inolving Ws.
Using these estimates in the display for Vi5 we find

Vial < ceo[r= D2 (14 TV2) + V2 4 12Tl
Next using this inequality in the display for Vi we see that
(429) Vil < ceo "2 (L4 TV2) 1 12 4 g ey

In view of (4.29),(4.28), (4.27), we see that we can first replace |Vi| by |La1| =
| Zle Vi | in the above inequality and second in view of (4.24), (4.25), (4.26), we
can replace | Lo | by |I1154]. Using our new inequality, (4.10), (4.12), (4.13), (4.14),
(4.15), (4.18), (4.22), and (4.23) we conclude that

(4.30) |u(r,y,s+2r%)| < c[r~™D/2 (1 4+ 6TV )+ ¢ Jll/2 + €0 JV?] 91l 2@y
We claim that

(4.31) J+J <er~ ™14 1)

where ¢ has the same dependence as the constant in Theorem 2.13. Once (4.31) is
proven we can use this inequality in (4.30) to get

lu(r,y, s +2r2)] < er= D2 (1 4 6 TY?) 9]l L2 @n) -

Taking the supremum on the left hand side of this inequality over all g € C§°(Q,(y, s))
with [|g||z2@n) < 1 and using the usual L?(Q,(y,s)) duality argument we obtain
after some juggling, (4.3), (4.2). Thus it remains to prove (4.31). We prove (4.31)
in section 5.

5. PROOF OF THEOREM 2.13

We first prove (4.31) and thus complete the proof of Theorem 2.13 in the special
case considered in section 4. We begin by estimating J. For 0 < j < n—1 we write
(5.1)

0 = /zowva%a, Vo G)dZdr < c/

201 (AV 522G, VL2 G)dZ dr
U U J J

:—/zoz/JV~(AV%G)£GdZdT

U J J

—/zowuj,Av%m%GdZdT
U J J

f/ V(eo, AVE- G) =G dZdr
U J J

=0; + 03 + O3.
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In (5.1), ey = (1,0,...,0) and ¢ = ¢(v1, M, n). Using Cauchy’s inequality with
¢’s, the fact that Vi) = 2¢'/2 V¢, (2.9), (3.18) with u replaced by G, and Lemma
3.10, we get

(5.2) 9,] < cr~(™*D 4 Lig].

As for O3 we have
n—1

2@3:_Z/¢Ama%(a%e)2dzm
i=0 VU

=— | $Ap (2 G)*dzdr
au ’

n—1
+Z/U%¢Am(a%a)2d2dr
1=0
+ /Uwai%Aoo((%jG)QdZdT

n—1
+ Z/U%%Am (3= G)2dZ dr
1=1

= O31 + O32 +O33 + O34.
To estimate ©31 note that this term is zero unless j = 0 in which case we find from
(2.8), (2.9) that
|931] < er~ (T
O3 is easy to estimate using (3.18) with u = g and Lemma 3.10. We get
|@32| S CT_(n+1) .

To estimate O35 we use (4.1) (d), (e), (f) and argue as in the estimate of Ss, L3 to
obtain

‘@33‘ S cT + ﬁJ

To treat O34 we integrate by parts in zg to find that

n—1
O = -3 /Uzo Ly 2 Aoy (52 G)dz dr
i=1
n—1
-y / 200 505 Avi (52 G)?dZ dr
i=1 vU

n—1
_Z/ZO¢%AOi %(%G)QdZdT
i=1 YU

=& +& +&.
&1,&3 are estimated using (4.1) (¢), (f), and (4.17). We get

&) + 165 < erm ™D Q4+ T) + 12T .
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Integrating with respect to z;,1 <4 < n — 1, in the integral defining & we obtain
integrals which can be handled in the same way as &1, 3. Putting these estimates
together we see that

(5.3) O] < er "1+ T) + L.
Next observe that

v-(Ava%G) = %v-(AVG) -V ((%A)VG)

= 722GV ((ZAVG).

From this observation we find that

0, = — /201/1 L(2G)2 dZdr

/zwj;dz GV - ((diA)VG)dZdT
U

=011 + O12.

To estimate ©11 we integrate by parts in 7 to get integrals which can be estimated
just like the easy parts of ©5,03. As for ©15 we again integrate by parts to find
that

@12:—/zoaz (Vo (2 A)VG)dZdr
U
_/z0w<V8ZG (2 A)VC)dzZdr

/¢ 592G (e, (32 A)VG)dZdr
=H, + Hy + Hs.
Hy, Hy are easily handled using (4.1)(c), (f), and (4.17). Moreover if j = 0 we can

handle Hj using (4.1)(d), (f). To treat Hs when j # 0, we integrate with respect
to zg and obtain

Hy = /Uzoa%w%meo, (B%A)vmdzm
n /Uzw#;zgmeo,(%mvmdwr
+ [ 200G e (5255 4)VE) azdr
_|_/UZO¢%G<eO,(%A)V%G>dZdT

= H31 + H32 + H33 + H34.

Hsy, Hso, H3y are easily estimated using once again (4.1)(c), (f), and (4.17). In-
tegrating by parts with respect to z; in the integral defining H33 we get integrals
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which can be handled either in the same way as the other H’s or by using (4.1)(d)
as in our estimate of S3, L3. Using these estimates for the H’s and the estimates in
(5.2), (5.3) in (5.1) we conclude that

O] < er V(A 4+ T) + o
Summing over j, 0 < j <n — 1, we get J on the left hand side of (5.1). Thus
(5.4) J < er~Ha 4 1),

Next we consider J;. We have
(5.5)

Ji = /znga%c:, V2 G)dZdr < c/zSdz(V%G,AVa%G)dZdT
U U
:—/Uzgw LG V- (AVEZG)dZdr
—/Uzga%mw,Ava%GMZdT

—3/zgng€<eo, AVEZ GYdzdr
U
- <I)1 +(I)2 + (I)g.
As in the estimate for ©, we find
1/2
s + |@5] < ¢ </ zw(gaydzm) /2
U

< erm MDA T) +eJ + 1.

Here we have used (1.1), (4.1) (c) to estimate %—f in terms of the first and second
partials in the space variable of G. To treat ®; we observe that

V(AVZG) =2V - (AVG) -V (ZAVG)
= &G -V (£AVG).
From this observation we find
Py = f%/zg’dz L(LG)*dzdr
U
+/ZS’¢B—E’TGV~((%A)VG)dZdT
U

=®11 + P12
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To estimate @11 we integrate by parts in 7 to obtain an integral which is estimated
similar to ®5, ®3. As for 15 we again integrate by parts to find that

@12:—/233%G<v¢, (ZA)VG)dzdr
U
7/281/)<V%G, LAV G)dZdr
U

- 3/Uzgw LG ey, (ZA)VG)dZdr.
These integrals are easily handled as in the estimate for ®o, ®3. We get that
|P12] < cr_("H)(l +T) 4+cd + i,]l .
Combining this with our earlier estimates we deduce from (5.5) that
|1 < er™ DA+ T) +eJ.

From this inequality and (5.4) we conclude first that (4.31) is valid and second
from our earlier remarks that Theorem 2.13 is true in the special case we have been
considering. O

To continue the proof of Theorem 2.13 we next consider the case when

(a) A satisfies (4.1)(a) — (f).
(b) B#0 and B e C>®(U).
(5.6)
(¢) zo|B| (X,t) < o < oo for a.e. (X,t) € U and the measure pq

defined by  du1(X,t) = zo|B|*(X,t)dXdt
is a Carleson measure on U with ||u1]| < €3.
To prove Theorem 2.13 in this case we use the same strategy as in section 4. We

assume that ¢y < €; in Lemma 3.14. Let w(X,t,-) be parabolic measure at (X,t)
corresponding to (1.1) with B # 0. As in section 4 put

dw
— (X = K(X X n
dyds( 7t’y58) ( ’t7y?8)7 ( 7t)€U? (y?S)ER b
and set
T— s Q| [ Kewseeanpder )
{ (y,S)ER", 7‘>0} Qr(y’s)

Using Lemma 3.14 and arguing as in section 4 we see that to prove Theorem 2.13
under assumption (5.6) it suffices to show that

T <a 261(607715M3A,n) < 00.

To prove this inequality we shall need an analogue of (4.9) for solutions to (1.1)
under assumption (4.1). That is given g > 0 € C§°(Q(y, s)), let

u(X,t) = / K(X,t,2,7)g(z,7)dzdr.
U

where K is defined as in section 4 relative to (1.1) with B = 0. Recall that u €
C*(U), u is a bounded strong solution to (1.1) on U with B =0 and u = g on R™.
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Using our work in section 4 we shall prove for some ¢ having the same dependence
as ¢; above that

(5.7) [INullL2@ny + [1SullLz@ny < cllgllzz@ny
where N, S are as in (2.14), (2.15) with @ = 1. Once (5.7) is proved we can proceed
as in section 4 to get Theorem 2.13 under assumption (5.6). To prove (5.7) we first

claim that whenever (z,t) € R™ and d > 0, we have K (d, x,t+2d?,-) € 3,(Qa(z, 1))
for some p = p(eg, 1, M, A,n) > 2 with

(58) ||f((d,$,t + 2d25 ')Hﬁp(Qd(w,t)) < 0(607717M7A7n) < 00.

To prove this claim observe that (5.8) with p replaced by 2 is just Theorem 2.13 in
the special case proved in section 4. Now (5.8) with p = 2 implies (5.8) for p > 2.
(see [CF]). Next given (x,t) € R™ and d > 0 let (d,y,s) € U with |y — z| + |s —
t|Y/2 < d. Let ¢; > 0 € C§°(R™) with ¢; = 1 on Qgit+14(w,t) \ Qasg(w,t) and supp

¢j C Qair2g(z,t) \ Qai—14(x,t) for j =1,2,..., . We have
u(da Y, S) S / K(dv Y, s, ) gdZdT + Z/ K(da Y, S, ) ¢j g dzdr
Q4d(ZE,t) j=1 R™
(5.9)
= (O _uy)(dy,s)
=0
where

uo(Y1,81) = / k(Yl,sl, ) gdzdr
Qua(z,t)

(Y1, 81) = / K(Yi,s1, ) gdedr, j=1,..., .
.

We note that u; is a solution to (1.1) with B = 0 and u; has continuous boundary
values with u; = 0 on Qqi-14(z,t) for j = 1,2,.... Let ¢ = p/(p — 1) be the
conjugate exponent to p in (5.8). Then from this remark, Lemma 3.9, Holder’s
inequality, (5.8), and Lemma 3.11 we see for j > 1 that

uj(dyy,s) < c2779%u;(24 d, y, s + 24741 d?)
<279 (Mgn)Ya(d, z,t + 2d?) |Qaiq(x, 1)/

1/p
: V K(29+1d,y, s + 249+1d2, )P dzdr
Q2.7'+2d (I,t)

< 279 (Mg)Ya (d, z,t + 2d?).

Here M denotes the Hardy - Littlewood maximal function defined with respect
to rectangles of length p in the space variable and p? in the time variable. This
inequality also holds when j = 0 as we see from Ho lder’s inequality and (5.8).
Using these estimates for u;(d, y, s) in (5.9) we conclude that

u(d,y,s) < c(Mg?)'/?.
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Since 1 < ¢ < 2, and |z —y| + |s — t|'/? < d it follows first that
Nu(z,t) < ¢(Mg")Y(z,t),

and second from the Hardy - Littlewood maximal theorem that (5.7) holds for Nu.
To prove (5.7) for Su we argue as in the proof of (4.31). We have for ¢, > 1

large enough that

(5.10)

G2 Sullfagny < c;l/UzOWu, Vu)dZ dr < /UZO<AVU, Vu)dZ dr

= f/zo V- (AVu)udZdr — /(AVu,eo>udZdT
U U

:_%/20 %udedT_/(AVu,e())udZdT
U U
=0+ 1.

In (5.10) all integrations can be justified using Schauder regularity, (2.10), and our
knowledge of constant coefficient second order parabolic pde’s . To continue the
estimate we note that

n—1
QIZ—Z/AQZ%(U)QdZdT
i=0 “U

= —/ AOO 92 dZd’T
oU

(5.11) + [ 2 Agu?dzdr
U

n—1
+Z/U%Aol»u2d2dr
i=1

=11 + 1 +13
From (2.9) we deduce that
L] < cllgllie g -

To handle I, we use the “ integration by parts ” hypothesis (4.1) (d) and (5.7) for
Nu as in the estimates of L3, S5 to get

|Bo| < ellglliz@ny + rer 19uliz@n
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where ¢y is as in (5.10). As for I3 we integrate by parts in zg to find that

n—1
52
Ig = — E / 20 732,;20 A()i u2 dZ dT
i=1 U

n—1
9 0,2
- 2/20871.‘401 3o U dZ dr
i=17U

= I31 + I3z
Using (4.1)(c), (e) we deduce that
[Ls2| < cllglz@ny + ﬁ”suuiqﬂany

Integrating by parts with respect to z;, 1 < ¢ < n — 1 in the integrals defining
I31 we get integrals which can be estimated in the same way as I32. Putting these
estimates together we find that

3] < cllglZo@ny + ﬁllSuH%zaxn)'

Using this estimate as well as our earlier estimates for Iy, I in (5.11), (5.10) we see
that (5.7) holds for Su.

We now prove Theorem 2.13 when (5.6) holds. Let g be as above and let u;
be the solution to the Dirichlet problem for (1.1) with B # 0 and u; = g on R™.
Let G denote the Green’s function for (1.1) with B % 0. Also let L, Ly denote the
operators in (1.1) with B = 0, B # 0, respectively. Proceeding as in section 4 we
write G for G(r,y, s+ 2r%,-) and use (3.6) to obtain
(5.12)

u(r,y, s +2r?) = / gK(r,y,s+2r2,)dZ dr = —/ Li(w) GdZdr
U

n

:—/ (L1¢)quZdT+/ ((A+ A™)Vu, Vi) GdZdr
U U

+/Uw[(L — Ly)u] GdZdr

=T + T +1T15.
Using Lemma 3.10 (permissible by Lemma 3.14) and (5.7) we deduce
(5.13) ITy| < er™ M2 g|l L2any -
We can handle T5 similarly thanks to (5.7),
1/2
|T2| S C’r‘71 ||Su||L2(]R") (/ 20_1 ’l/}GZ dZdT)
(5.14) 2r (1:9)

S C T_(1+n)/2 HgHLz(}R”) .
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Next

T3] = |/z/)BVquZdT\
U

5.15 _ Yz
( ) < C”S’UJHL2(}RH) <|/ ’l/)Z()'B‘Q (ZO 1G)2 dZd’T)
U

= c||Sul| 2 @) Ts
From Lemma 3.10 and Harnack’s inequality we see as in section 4 that
N(wl/2 z0_1 G)<cM [K(r,y,s + 27"2,-))(]

where x is the characteristic function of Q2. (y, s) and M is the Hardy - Littlewood
maximal function taken with respect to rectangles. Using the above inequality,
(2.16), and (5.6)(c) we get

Ty < cegr—(WHD/271/2
Putting this inequality in (5.15) and using (5.7) we see that
‘T3| S CE€p ’]"7<n+1)/2 T1/2 HgHLz(}R")'
The above inequality and (5.13), (5.14) imply
u(r,y, s +2r?) < er= D2 (14 6o TY?) gl L2 my-

Taking the supremum of the lefthandside of this inequality over g € C5°(Q,(y, s))
and using L?(Q,(y, s)) duality we get T < ¢; < oo. The proof of Theorem 2.13 is
now complete when (5.6) holds. O

Finally we remove the assumption A, B € C*°(U) in (5.6). Let h € C°°(—00, c0),
0<h<1, withh=0on(-001/2),h =1 on (1,00), and |h'| < 100. Put
h;(X,t) = h(jzo), for (X,t) € R"™! and j = 1,2,.... Let Py be a parabolic ap-
proximate identity on R"*! defined as in (1.6) with R™ replaced by R"*!. Recall
that P € C5°(Q1(0,0)), (Q1(0,0) = rectangle in R™*! ) and Pyt denotes con-
volution of Py with . Now suppose that A, B satisfy the conditions of Theorem
2.13 so that not necessarily are A, B € C>(U). Extend A, B to R"! by setting
A = Ay, B =0 in the complement of U. We assume as we may that the constant
matrix Ay in Theorem 2.13 equals the constant matrix in (2.10), since otherwise
we can replace Ag by this matrix. Next we put

AV = Ay + hj Ps, (A — Ap)
(5.16)
Bl = hj Ps,B, forj=1,2,...,

where the convolution is understood to be with respect to each entry in the above
matrices and 0 < §; < (1005)~!. Clearly A7, BY € C§°(R™""1) and A7 = Ay, B =
0, in {(X,t) : 2o < (2j)~*}. Now for fixed j and 0 < §; < (1005)~", sufficiently
small, we can verify (2.8) -(2.10), (4.1)(b) — (f), and (5.6)(c) using the assumptions
in Theorem 2.13 for A, B, and well known convergence properties of approximate
identities in Sobolev spaces. For example if

EJ; = hj 52 Ps;[(A— Ao)wi] — hj 32 (A — Ao)wi,

j 8$0
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then FJ, tends to zero pointwise and in L'(R"*') as §;—0 thanks to (2.10) and
(4.1)(c). Also Ej, has support in Q2,(0,0) N {(X,t) : zg > (2j)~'}. Choose §; so
small that

”Ekl HLl(ﬂe"+1) < 60/]n+1

From this inequality We see that the measure | EY l|(X t) dXdt is a Carleson measure
with norm < ¢(n) €}. Next we note that

Al = Bl + (% hy) P (A= Ao) + hy 525 Au

=Ej, + Fl, + G},

From (4.1)(f) we find that the measure |F},|(X,t)dXdt is a Carleson measure on
U with norm < ¢(n) ¢g. Using (4.1)(d) we see that

n—1

Gl = > (e, a0 (fa hi)) + g™ = (e, £ 55hy

m=0

Also from (4.1)(d) we get that the measure | (ef!, f§') 52 Fo-hj[dXdt is a Carleson
measure with norm < ¢(n) ¢y. From the above display for G 1 and our observations
on Carleson measures we deduce that (4.1)(e), (f) holds for A7,, 0 < k,l <n—1,
with f* replaced by fk! h; and g*! replaced by

2 p;

8900

Bl + Fl, + g — (el f§1)

Hence A;,Bj,j = 1,..., satisfy (5.6) with ¢y replaced by c(n )60 Choosing
€o still smaller if necessary we can use Theorem 2.13 for smooth coefficients to
conclude that ;;(js (d,x,t + 2d%,-) € B2(Qa(z,t)) with constants independent of

j. Now we can choose an L?(Qg(z,t)) subsequence of (d;ais (d,z,t + 2d?,-))5° re-
stricted to Qg(z,t) which converges weakly to k in this space. From Lemma

3.37 and weak convergence it is easily seen that k£ = ﬁ(d,x,t + 2d?,-) where

w is parabolic measure defined relative to (1.1), A, B. From weak convergence

it follows that d‘;“;s(d,x,t +2d?,-) € B2(Qq(w,t)) with reverse Holder constant

c* = c*(eg, 71, M, A,n). The proof of Theorem 2.13 is now complete. O

Remark We note that Lemma 3.14 remains valid for sufficiently small ¢; > 0 if
(3.13) is replaced by the assumption that ||u1]] < €1. The proof of this version
of Lemma 3.14 can be obtained by copying the old proof verbatim except that
whenever (3.16) is used in the old proof one uses instead the fact that p is a
Carleson measure and makes L2(R") estimates for certain nontangential maximal
functions. For example if 1:0 ? u denotes the function (X, t)—x, 1/2 u(X,t), where
u is as in Lemma 3.9, then one can estimate I in this lemma by using in place of
(3.16) the fact that

N(zg' 2 u)(X,t) < cMf(at).

flz,t) = (/OQT |Vul?(20, x,t) dzo)

Here
1/2
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The smallness assumptions in Theorem 2.13 can be weakened. Indeed suppose
that A has distributional partials in X, ¢ satisfying

20 |[VA|(X,t) < A
(5.17)
g | A (X,t) < e

for a.e (X,t) € U and if
dpo1 (X, t) = zo [VA]? (X, t)dXdt

dﬂ'QQ(Xv t) = .Tg |At|2 (X7 t) dXdt
then poq, poo are Carleson measures on U with

|par]] < A2
(5.18)

[p2zll < €.

We also assume that el , f , g have the properties preceding (2.5) when either
1=0,0<4,0l<n—1,0orj=0,0<40l<n-—1,and

ZZ|el]|Xt ) < €

3,5 1=0

Sy

for almost every (X,t). Moreover if

(5.19)

n—1

dpsi (X, t) = D ( Zxo\w ) + |91 (X, t) dXdt
1_7 :

dusa(X,t) = sz |f712 (X, t)dXdt,
3,5 1=0

then ps1, ps2 are Carleson measures on U with

lws1ll < eo
(5.20)

2]l < A.

The conclusion of Theorem 2.13 is still true if g = €y(y1, M, A, n) > 0 is sufficiently
small and

(+) |1 ]l < €o where pq is as in (2.1),
(++) A, B satisfy (2.8)-(2.10),

(+++)  (5.17)-(5.20) are valid.
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CHAPTER II

ABSOLUTE CONTINUITY AND THE LP DIRICHLET PROBLEM :
PART 1

1. INTRODUCTION

Recall that in chapter I we considered weak solutions u to pde’s of the form

(1.1) Lu=u—V-(AVu) —BVu =0

under the following structure assumptions on A, B.

(1.2) (AX,0)E,€) > mlef

for some 1 > 0, almost every (X,t) € U and all n x 1 matrices &.
n—1 n—1

(1.3) ST wmo|Bil + > Ayl | (X ) < M < o0
i=0 i,j=0

for almost every (X,t) € U. For some large p > 0,
(1.4) A = constant matrix in U \ @,(0,0).

If
dp (X, 1) = 20 |B*(X, 1) dXdt,

then pq is a Carleson measure on U with
(1.5) [l < Br < 0.

Also
dpa(X, 1) = (20 [VA[? + 2§ | A2 ) (X, 1) dXdt,
is a Carleson measure on U with

(1.6) [p2]l < B2 < o0,
Moreover
(1.7) dus /dXdt < A < o0

for a.e (X,t) € U. Next we assumed whenever 0 <i,5 <n —1,

n—1

a0 *Z<€l o) T g
=0

in the distributional sense where
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n—1

(1.8) [ e[+ 711X 1) < A<
=0
for a.e (X,t) € U and that

n—1 n-—1

dps(X,t) = [ > O o [Ve P + a5 1£717) + 1g7]1(X, ) dXdt
i,7=0 =0

is a Carleson measure on U with

(1.9) usl < B3 < oo.

In Theorem 2.13 of chapter I we showed that if the Carleson norms of the u’s are
small enough and A is near enough a constant matrix, then the Radon-Nikodym
derivative of parabolic measure with respect to a given point is in a certain L?
reverse Holder class. In this chapter we remove these restrictions but at the expense
of a further smoothness assumption on A, B. To this end let

din(X,t) = ess sup {xo |B]*(Y,s) : (Y.s) € Qq,/2(X,t) } dXdL,

diin(X,t) = ess sup {0 [VAPR(Y,s) + o |[A2(Y, s) : (Y, 5) € Quy2(X, 1)} dXdt,
and set
dis(X,t) = esssup {30720 (0015 [(wo Ve’ 2 + ag ' [F72) + 19| ](Y:s)

2 (Y, 5) € Qg 2(X,t) }dXdt.
With this notation we prove in chapter II,

Theorem 1.10 Let A, B satisfy (1.2)-(1.9) and either (*) or both (**), (***).

(*) (1.5)-(1.9) hold with p; replaced by fi;, for 1 <i < 3.

(**) A has distributional second partials and B has distributional first partials
which at (X,t) € U satisfy
n—1
92A [e]
> |6w18z]| + Z “’0|azat| + 2} 182]) + x| G#t| + 2f| B2 < Ay < oo.
4,j=0
(¥5%) f;j,gij have distributional first partial derivatives and efj has

distributional second partial derivatives for 0 < i,57 < n — 1 which
satisfy at (X,t) e U
n—1 n—1 - N
Y Qo wIG S+ 2 VP + 20 Vg + a9 |
i,j=0 1=0
8%ed — = 8%t — = 82e!
+Z Z :CO Bacmézk|+z Z x0|azl szg 8t2l
1,§=0 k,m,l=0 i,j=0 1,m=0 i,j=0 1=0
Then the continuous Dirichlet problem for the pde in (1.1) always has a unique
solution. Moreover, if w denotes parabolic measure corresponding to (1.1), A, B,
then w(d,x,t + 2d?,-) is mutually absolutely continuous with respect to Lebesgue
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measure on Qq(x,t). Also for somep,1 < p < o0, &(d,x,t—k?d% ) € ap(Qalz, 1))
with

Iy (ds 2, + 24, oy (@t < €7 < 00,

for all (z,t) € R™, d > 0. Here ¢** depends on 1, B2, 83,71, M, A,n and also pos-
sibly Aq.

Remark. Asusual all partial derivatives of the various vector functions in Theorem
1.10 are taken componentwise. To outline the proof of this theorem suppose that
(*) of Theorem 1.10 is valid and parabolic measure w corresponding to (1.1), A, B,
exists. In Lemma 4.1 we show that if £ = Zle £:[(0,d) x Qq(z,t)] is small enough,
say £ < ¢, and if E Borel C Qq4(z,t) is a large enough fraction of Q4(x,t) (depending
on ¢€), then

(1.11) cw(d,z,t+2d* E) > 1

for some ¢ = ¢(e,y1, M, A,n). To prove (1.11) one first observes from a maximum
principle that it suffices to prove (1.11) with w replaced by © and E by E’. Here
E’ is a closed set with £/ C E and @ is parabolic measure for a certain parabolic
sawtooth, Q C U with E’ C 9Q. Now we shall choose  in such a way that the
Carleson measures in Theorem 1.10 are ¢ small > on QN [(0,d/2) x Qa(x,t)]. Next
we extend A, B restricted to the above intersection to functions Ay, By on U, where
Aj, By satisfy the hypotheses of Theorem 2.13 of chapter I. Finally we estimate @
using Theorem 2.13 and the parabolic measure corresponding to A1, By.

In Lemma 2.1 we show that (1.11) is valid without any smallness assumption
on &, i.e when 0 < € < oco. In this case we shall use an induction type argument
to reduce back to the case of small £ considered in Lemma 2.1. Again two impor-
tant ingredients in the reduction are comparison lemmas for parabolic measures
(Lemmas 3.22 and 3.33), as well as our ability to extend A, B from certain para-
bolic sawtooths in such a way that the resulting extensions satisfy the hypotheses
of Theorem 2.13. The comparison lemmas mentioned above do not follow readily
from the work of [DJK] because in our lemmas one of the measures need not be
doubling.

To show that (1.11) for 0 < £ < oo implies Theorem 1.10 we note that if fi;
are Carleson measures, 1 < ¢ < 3, then from from the above discusssion, (1.11)
holds whenever d > 0, (z,t) € R"™ with constants independent of Q4(z,t). Second
we observe that if we knew w(d, z,t + 2d?, ) was a doubling measure, then it would
follow from the above remark that Theorem 1.10 is true (see [CF]). Unfortunately
we have been unable to prove that w is doubling, primarily because the proof seems
to rely on proving some basic estimates near QU similar to those in section 3 of
chapter I for certain solutions to the adjoint pde corresponding to (1.1). We have
in fact been unable to obtain any meaningful boundary estimates for the adjoint
pde. As a consequence we are unable to use the method in [FS] to get parabolic
doubling when the Carleson norms in (1.5), (1.6), (1.9) are large. To overcome this
possible lack of doubling we show in Lemma 3.6 that (1.11) implies the conclusion
of Theorem 1.10. The proof of Theorem 1.10 is given in sections 2, 3, and 4. For
more discussion concerning doubling and also possible generalizations of this theo-
rem we refer the reader to the remark at the end of section 4. In section 2 we also
point out that one corollary of Theorem 1.10 is the following theorem of [LM, ch
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3] mentioned in section 1 of chapter I.

Corollary 1.12 Let ¢ be as in (1.3), (1.4) of chapter I with compact support in
R" and put Q = {(zo + ¥(,t),z,t) : (X,t) € U}. Let w be parabolic measure
corresponding to the heat equation in Q and let p be as in (1.6) of chapter I. Put
W(X,t, E) = w(p(X,t),p(E)) whenever (X,t) € U and E C R"™ is a Borel set.

There exists p,1 < p < 0o, such that ﬁ(d,x,t +2d?,-) € B,(Qa(x,t)) with

|| d(;i;s (d, z,t+ 2d2, ')Hﬂp(@d(%t)) <ct < 00,

for all (z,t) € R", d > 0, where ¢* depends only on a1,az and n.

Remark. 1) Corollary 1.12 is stated in terms of Muckenhoupt weights in [LM, ch 3]
and for w rather than w. However both statements are easily seen to be equivalent.
To prove Corollary 1.12 we essentially need only show that a solution to the heat
equation composed with the mapping p defined in (1.6) of chapter I is a solution
in U to a pde satisfying the conditions of Theorem 1.10.

2) The proof of [LM] for absolute continuity of parabolic measure corresponding to
the heat equation in a time-varying domain relies heavily on LP estimates for some
complicated singular integral operators. We shall completely avoid using singular
integral theory.

3) As another application of Theorem 1.10 we show in section 4 that a certain
L2(R™) Dirichlet problem has a solution. More specifically, we prove

Theorem 1.13 Let A, B,p be as in Theorem 1.10 and put qo = p/(p — 1). If
go < g < 0o and f € LI(R™) with compact support, then there exists u a weak
solution to (1.1) with

() lm u(Ys) = f(a.t)

(Yi5)= (1)

for almost every (x,t) € R™ where the limit is taken through (Y,s) € T'(x,t). Also
Nu € L1Y(R") and

(I1) INullLa@ny < ellfllLe@m)

where ¢ has the same dependence as c** in Theorem 1.10. wu is the unique weak
solution to (1.1) with properties (I) and (II).

In Theorem 1.13, N is the nontangential maximal function defined as in (2.14) of
chapter I. In the elliptic case we can prove stronger versions of Theorems 1.10, 1.13.
To do so define fi;,7 = 1,2 as above Theorem 1.10 with (X,t),dXdt replaced by
X,dX (so A, =0).

In chapter III, section 4, we shall outline the proof of the following two theorems.

Theorem 1.14 Let A= A(X), B = B(X) satisfy (1.2) - (1.7) and either (1.5) -
(1.7) with p; replaced by fi;,i = 1,2 or (**) of Theorem 1.10 with (X,t) replaced
by X in U ={X : 29> 0}. Then the continuous Dirichlet problem for the pde

(+) V- (AVu) + BVu =0

inU always has a unique weak solution. If w denotes elliptic measure corresponding
to (+), then w(d,z,-) is mutually absolutely continuous with respect to Lebesgue
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measure on By(z) = {y : |y — x| < d}. Also for some p,1 < p < o0, Z—‘;(d,x,-) €
85(Ba(x)) with

| %(d7 €, )|
for all z € R"~' d > 0. Here ¢t depends on the constants in (1.2)-(1.7) and
possibly also (**) of Theorem 1.10. Moreover (3,(Ba(x)) stands for a strong re-

verse Holder class defined in the same way as B,(Qa(z,t)) with Qq(x,t) replaced
by By(z).

81 (Ba(ay) < €T <00,

Theorem 1.15. Let A, B,p be as in Theorem 1.14 and put qo = p/(p — 1). If
qo < q < oo and f € LY(R"Y) with compact support, then there exists u a weak
solution to (+) in U with
(1) Jim u(Y) = f(z)

for almost every x € R"~* where the limit is taken through Y € f‘(a:) Also Nu €
LYR™) and

(1) [NullLa@gny < €|l fllLe@m)
where ¢ has the same dependence as ¢t in Theorem 1.14. w is the unique weak
solution to (+) with properties (I) and (II).

Remark. 1) We note that Theorem 1.14 has already been proved by Kenig and
Pipher (oral communcation of Kenig) using a different method than ours. In fact
an earlier version of this theorem required the integration by parts hypothesis (1.9)
and (***). The new idea which allows us to do away with the integration by parts
hypothesis (essentially that it suffices to consider A lower triangular) is garnered
from reading [KKPT].

2) The cone T'(z) is defined similar to I'(x,t) in Theorem 1.13 and Nu is the non-
tangential maximal function of u relative to T'(z).

3) In chapter III, section 4, we shall show (see Lemma 4.6) that w as above is a
doubling measure. Thus in the elliptic case we can show ﬁ(d, z,-) is in a strong
reverse Holder class.

2. PRELIMINARY REDUCTIONS FOR THEOREM 1.10

To begin the the proof of Theorem 1.10 for given Qq(z,t) let p;, 1 < i < 3, be
defined as in (1.5)-(1.9) in (0,d) x Qg(x,t) and set

3
dp*(Z,7) =Y dpi (Z,7) = L(Z,7)dZdr
=1
when (Z,7) € (0,d) X Qq(z,t), where
L(Z,7) = [20|B> + 20 [VA]* + 23|22

n—1 n-—1
+ 37 (X0 IVe P + 2 HAIR) + 191 (Z.7).
=0

ij=0 1=
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Also set
K(Z,7) = ess sup {L(Y,5) : (Y, ) € Qz/2(Z,7) N[(0,d) x Qa(x,1)] }
when (Z,7) € (0,d) X Qq(z,t) and put
dy'(Z,7) = K(Z,7)dZdr

on (0,d) x Qq(x,t). With this notation we prove a key lemma.

Lemma 2.1. Let A, B satisfy (1.2)-(1.4) in U and suppose for some (x,t) €
R™,d > 0,e5 > 0 small that
n_l .. ..
(i) 8%014”- = Z (e, 8%1 ) 4+ g7 on (0,00) X Qq(x,t) in the
=0 .
distributional sense where e;’, f;” are vector functions with
distributional partial derivatives on (0,00) X Qq(z,t) .

) (1.7), (1.8) are valid at points in (0,00) X Qq(z,1).

(vit) 2[(0,d) X Qq(z,t)] < e2|Qalx,t)| where either (a) i = p' or (b) i = p*
and (**), (***) of Theorem 1.10 hold with U replaced by (0,d) x Qq(z,1t).

If €2, 0 < eo < min{ey, €0}, is small enough (depending only on 1, M,n,A and
possibly A1), there exists ng = no(e2), m = m(e2), 0 < no,m < 1/2, such that
the following statement is true. Let u,0 < u < 2, be a solution to (1.1) in U,
corresponding to A, B as above, which is continuous on U. If u = 1 on some closed

set E C Qq(z,t) with
|E| = (1—mno)|Qa(z,t),
then
u(d, z,t +2d*) > n.

Proof: We emphasize that no Carleson measure assumptions are made on [ in
Lemma 2.1. We write di(Z,7) = H(Z,7)dZdr for (Z,7) € (0,d) x Qq(x,t) and
note that H = K when (a) holds while H = L when (b) of Lemma 2.1 is valid.
Next let F' be closed, F C Qq(x,t) and set

5= 6;/[1ooo(n+2)]’

(2,7, F) = inf{lz —y[+|s = 7['/? : (y.5) € F },

Q={(Z1)eU:2>d6(zT1F)},
T
0 d|Qa(z,t)] (d/4,d/2)xQa(x,t)

where the integral is taken componentwise. We shall show for €5 > 0 sufficiently
small that there exists F' as above with

(2.2) Qa(x, 1) \ F| < 6[Qa(x,1)|
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and
/2
(+) / L(20,2,7)dzy < 0% for ae (2,7) € Qq(m, 1),
64 6(z,7,F)
(2~3) 40 O
(++) 20 L(Z,7) < 0%, for (Z,7) € QN[(0,d/2) x Qq(z,1)],

(+++) A= A|(Z,7) <5, for (Z,7) € AN[(0,d/2) x Qa(x,1)].
To prove (2.2), (2.3), we put € = €5 and temporarily allow € to vary. Put

d
k(z,7) = /0 H(zg,2,7)dz0, (2,7) € Qa(x, 1),

and set k = 0 otherwise in R™ \ Q4(x,t). Note from the assumptions in Lemma 2.1
that

/ kdzdr < €|Qa(x,t)].
Qa(,t)

From this remark and weak type estimates we see there exists Fi C Qq(z,t), with
Fi closed and

|Qd(‘r7t) \ F1| < el/? ‘Qd(ajvt”
(2.4)
Mk(z,7) < c(n)e'/? (z,7) € I,

where as usual Mk(z,7) is the Hardy - Littlewood maximal function of k taken
with respect to rectangles containing (z,7) of length p, p? in the space and time
variables, respectively. Again from weak type estimates we see for € small enough
that there exists Fy C F}, F5 closed such that

Qa(z, 1)\ Fo| < e/*|Qq(z,t)],
(2.5)
M(x)(z,7) < e(n) /4, (2,7) € Fa,

where x denotes the characteristic function of Qq(z,t) \ Fi.
We assume as we may, thanks to (1.7), that A is locally Lipschitz continuous in
U. We claim that if T = (6*d,d/2) x Qq(z,t), then

(2.6) sup |A — Ao|(Z,7) < 52
(Z,7)eT

for 0 < § < dg, where dy depends only on 1, M, A, and possibly A;. To prove this
claim observe from (2.4) that if (a) of Lemma 2.1 holds, then for (Z,7) € T with
(z,7) € Fy, we have

ess sup {yo [VAP(Y,s) + 43 |5 AP(Y.5) : (Y.5) € Qop16(Z,7) }

(27) 320/2
< 2z51/ H(%0,2,7)d% < c(n)e/?/(6%d).
zo
Since
‘Qd(.’)&‘,t) \F1| < 61/2 on dn+1 < C(?’L) (5500d)n+1
we deduce first for € small enough that 7' is contained in the union of rectangles
of the form Q.,/16(Z,7), with (Z,7) € T and (2,7) € F1. Second we deduce from
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(2.7) that for almost every (Z,7) € T, we have
20 VAP (Z,7) + 25| £ A*(Z,7) < e(n) €2 /(5% d).

Now suppose that (b) of Lemma 2.1 is valid. Then we assume, as we may, thanks
to (**), that VA, %A, are locally Lipschitz continuous in (0,d) X Qq(x,t). From
weak type estimates and (2.4) we find for fixed (2,7) € Fy, and 0 < %9 < d/2, that

(2.8) 20 |VAP(Z,7) + 25|12 AP(Z,%) < e(n) e/ /d,

except for a set of 2y € (0, d/2) of measure at most €'/*d. From (2.4) we get that
the Lebesgue n + 1 measure of the set C T where (2.8) does not hold is at most
cet/* @2 Thus given (Z,7) € T there exists (Z,7) for which (2.8) holds and with

(2.9) 1Z =2 + |7 =72 < ceTmm 4.

Using (2.8), (2.9), and smoothness assumption (**) on the second derivatives of A,
we find that at (Z,7) € T

(2.10) 2 VAP + 2| Z AP < (/) d + e d/22) < 62 /d

for e = ¢(M,A,A1,n) > 0 small enough. In either case we conclude that (2.10) is
valid when (Z,7) € T. Using (2.10) and basic Sobolev estimates we find that claim
(2.6) is true.

Next we show for given p > 0 that the function (z,7)—A(p, z,7) converges as
p—0 in L?(Qq4(z,t)) to a function denoted A(0,-) with

(2.11) / (A0, 2,7) — Ag)?dzdr < ¢6*|Qu(x,1)],
Qd(z,t)

where ¢ = ¢(M, A, A1,n). To prove this inequality let 0 < p; < py < d/2, and
Qr(y,s) C Qq(x,t). Now for almost every pi, pa,r with respect to one dimensional
Lebesgue measure and pairs (i, ), with 0 < 4,5 <n—1, we see from assumption
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(7) of Lemma 2.1 that
(2.12)

I= / (o2 27) = Aglpr,27) Rz

P2
= 2/ / Aij(p,z,7) — Aij(p1, 2, T)) Az](p,z T)dzdTdp
P1 T(y,a)

= 2/{)12 /Q - (Aij(p,-) — Aij(p1, .))[(Z <€f ’ aaz, lz]>) + ¢9)(p, ) dzdrdp

=0

2/;/@ - (Aii(p,) = Aiglpr, D= (S (e, £19)) + gi7](p, -Ydzdrdp

=0

P2
—2/ /( ZBZ, (02 ) = Ayy(pr, N (e | £ (p, ) dedrdp
P1 Y,

$) 1=0
n—1
+/ (Aij(pa - z] Pl,' Z el y l €l,ll>](p,')d§
A(p1,p2)XQr(y,s)] 1=0

=51 + 5 + S5.

In the last integral & denotes surface area, v is the outer unit normal to (p1, p2) X
Q- (y,s), and e; is a unit vector parallel to the x; axis. Using Cauchy’s inequality,
(1.3), (1.8) and (2.4) we deduce that if Q,.(y,s) N Fy # (), then

(213)  |Si] + |S] < c/ \H|(2,7)dZ dr < 2 |Qu(y, 5)|.
[p1,p2] X Qr(y,5)

From (2.13) and integrability of H we get
(214) |Sl| + |Sg|—>0 as pl,p2—>0

outside a set of linear measure zero. Also, from (1.8) we have

(2.15) |S3| < er(p2 —p1) + ¢ Z/ |£9 (pr, 2, 7) dz dr.
If f(p er (v.5) \f&| (p, z,7) dz dr, we shall show that

() f(p) — 0 as p—0 outside a set of linear measure zero ,
(2.16)

(8) flp) < ce/Ormtt,

for some ¢ = ¢(M, A, A1, n) provided F1 N Q,(y,s) # 0 and 0 < p < d/2. To prove
(2.16) first assume that (a) of Lemma 2.1 holds. Then from Cauchy’s inequality we
see for almost every p € (0,d/2) that

3p/2
f(p)* < crmtt / / H(zp,2,7)dzodzdr = I .
p v,
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Now, I; < ce'/?2r?"*2 independently of p thanks to (2.4). Thus (2.16) holds in this
case. If (b) holds, then from (***) of Theorem 1.10 we see for small n > 0 that
|f(p) = F(p)| < enr™*! when |p—p'| < np . Using this fact and arguing as above,
we get

(I+m)p
f(p)? < e r?"+2 4 ep et / / ( )H(zo,z,T)dzodsz.
P r(y,s

Since H is integrable we conclude first that limsup f(p)? < ¢7?"™27n? and second
p—0

from arbitrariness of 7 that the limit in (2.16) exists. Finally choosing n = €
the above inequality and using (2.4) we get (2.16).

We note that 7 in (2.12) is continuous as a function of pq, ps as follows from
(1.7). Using this remark, (2.14), (2.15), and (2.16)(«) with r = d, we conclude that
A(p,)—A(0,-) in the norm of L?(Qu(x,t)). Moreover, letting p = 6*d, r = d and
p1—0 in (2.12) we deduce from (2.13), (2.15), (2.16)(8), (2.6) that (2.11) holds for
d sufficiently small. From (2.11) and the Hardy - Littlewood maximal theorem we
get the existence of F' C F5, F closed with

|Qa(z,t) \ F| < 0|Qa(w,1)]

MI[(A0,) — Ag)?] < ¢&?, (2,7) € F,

1/6 in

(2.17)

where ¢ has the same dependence as the constant in (2.11). Clearly (2.2) holds
for F. Next we prove (2.3) (+). Let (z,7) € Q4(z,t) and put r = 6(z,7, F). Then
from (2.5) we see there exists (z1,71) € Fy with |2 — 21| + |73 — 7|Y/2 < 8297 for €
small enough. If (a) of Lemma 2.1 is valid, then from (2.4) we find for almost every
(2,7) € Qq(z,t) with respect to Lebesgue n measure that

d/2 aj/2
/ L(z0,2,7)dzg < H(zg,21,m1)dzp < cel/?.
5

4p 54r

If (b) of Lemma 2.1 holds, we use (xx), (x * *) to get that

d/2 d/2
/ L(zp,2,7)dzp < / L(z0, 21,71 ) d2o
b

ip §4r

/2
+ 052007‘/ 252 dzo < 510
4r

for § > 0 sufficiently small. Thus in either case (2.3) (+) is valid. To prove (2.3)
(++) for L we argue as in (2.7)-(2.10). Indeed, in case (a), one gets (2.3) (++)
by essentially repeating the above argument. In case (b) we use (2.3) (+), weak
type estimates, and (**), (***) of Theorem 1.10 to get (2.3) (++). To prove (2.3)
(+++) let (z1,71) in Qq(x,t) N F. Then using (2.17), (2.12)-(2.16) with (y,s) =
(21,71), p2 = 2nd*r, p1 = 0, we find for 0 < r < d that

/ [A(2ndr,y, s) — Ag)? dyds < 837",
Qr(z1,71)NQq4(z,t)

Since {2nd%r} x Q.(z1,71) C Q we conclude from (2.3) (++) that for some ¢ =
(M, A, Aq,n),

(2.18) |A — Ag| < ¢6%? on [{2n6*} x Q. (21, 7)] N [(0,d/2) x Qa(z,t)].
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If (Z,7) € Qand zy > 6*d, then (2.6) implies (2.3)(+-++). Otherwise we can choose
(2‘1,7’1) € F with

|2 — 21| + |7 —7|? = 6(z,7, F)
and put 2né*r = zy. Using (2.18) and possibly also (2.3) (++) we obtain (2.3)(+++)
for 0 sufficiently small.

Armed with (2.2), (2.3) we are now ready to use Theorem 2.13, Lemma 3.37,
and Lemma 3.9 of chapter I to complete the proof of Lemma 2.1. Let E C Q,(z,t)
be closed and let 6 = (-, E') be the parabolic distance function defined above (2.2).
We claim there exists a regularized distance function o(-, E) € C§°(Qqa(x,t)) with
the following properties:

(a) cte <o <co, on Qay(x,t),

() lo(x,t) —o(y,s)| < cllz—y| + |s—t]'/?], (2,1),(y,s) € R",
(2.19)

(c) o has distributional partial derivatives in z,¢ on R™ \ E and

&1 2rol(x,t) + 6% [ Zol(x,t) < e for (x,t) € R\ E,
k
0 <k <n—1and]l a positive integer.

Proof: In (2.19), ¢ = ¢(I,n). The construction of a regularized distance function
in the usual Euclidean case is more or less standard (see [St, ch 6]). The only
difference in the parabolic case is that one uses a partition of unity adapted to a
Whitney decomposition of R\ E into rectangles (of side length p, p? in the space
and time variables) rather than cubes. O

Next let £ € C®(R),0 < £ < 1, with supp & C (1/2,00),€ =1 on (1,00), and
€] < 100. For (Z,7) € U let

£ ( 7630(2%1,) ) for o(z,7,F) #0
&Z,7) =
= 1 when o(z,7, F) = 0.
We note that £ € C°(U) and if (Z,7) € U, then
l 1
213827 + 2 Fé(Z, )] < ellin),
(2.20)
supp [|687£§| + \%f” c{(Z,7)eU:830(z,7) < 22 < 28%0(2,7)},
for [ a positive integer and 0 < k < n — 1, thanks to (2.19)(c). Also let 6 €
Ceo[(=d/2,d/2) x Qq/2(,1)],0 < 0 < 1, with § = 1 on (—d/4,d/4) X Qa/4(7,t) and
d[VO Lo grry + d? ||% Ol| oo (grn+1y < c(n).
Next define Ay, By on U by
Al = (A — A 0?2+ A

B, = BO¢

where Ay is the constant matrix in (2.3). We claim that A;, By satisfy the hy-
potheses of Theorem 2.13 for § = 6(y1, M, A, A1, n,€1) small enough. This claim is
easily verified using (2.19), (2.20), and (2.3). For completeness we prove the most
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difficult assertion, (1.9) for A;. For fixed (i,7), 0 < i,7 < n — 1, observe that at
(Z,7) € (0,00) X Qu(z, 1),

52 (A1)ij = (A = Ag)ij 0% 5267 + (A — A0)ij(556°) € + (5% (A — Ag)i)0°¢?

n—1
= (A= Ag)ij 0526 + (A — Ag)ij(7202) &2 + 02 (g7 + > _ (e 2 £7))
=0
n—1
=37 + > (& Zf7)
1=0

where
~1] _ 52 1] 95

;J =52 f;jef

§7 = (A= Ao)i; 02 556 + (A= Ao)y; (5567 €

n—1
+g70%6 = Y (e f7) 25 (09).
1=0
Using (2.3), (2.19), and (2.20), it is easily checked that pg as in (1.9) has norm
< ¢(n)d. Thus Ay, B; satisfy the hypotheses of Theorem 2.13 for § sufficiently small
(depending on €p).

We now prove Lemma 2.1. Let ng = § and note from (2.2) that if £ C Qq(z,1)
is closed with |E| > (1 — ) |Qa(z,t)], then |[EN F| > (1 — 2§)|Qa(x,t)|. Thus
if x1 denotes the characteristic function of Qq(x,t) \ (ENF), and G = {(z,7) :
M(x1)(z,7) < 82}, then for § sufficiently small

|Qd(x7t) \ G| S %‘Qd/S(xat”'
Let w; be parabolic measure corresponding to A;, B;. From Theorem 2.13 we
see that if Q-(y,s) C R", then j;dls (r,y,s +2r%,-) € B2(Qr(y,s)) with reverse
Hélder constant < ¢*(ep, 1, M, A, n). Using this fact it is not difficult to show that
wi(r,y,s +2r2 ) is an A, weight with respect to Lebesgue measure on Q.. (y, s)
where rectangles are used instead of cubes in the usual definition(see [CF]). Also
from Lemma 3.37 of chapter I, we have cwi(r,y,s + 2r%,Q,(y,s)) > 1. Next let

1/3(2,7') = 0% (2,7, F) and set
p(Z, )= (20 + PZ01/~)(277'),277—), (Z,7) e,

where P is as in section 1 of chapter I. We note from (2.19) and the remark after
Lemma A in section 1 of chapter I that if § is small enough, then p maps U one to
one and onto a region 2 with

(2.21) A=A, Bi =B, in Qn[(0,3d/16) x Qa/a(x,1)].

Let v be a weak solution to (1.1) corresponding to A, By. We assert for  sufficiently
small that v o p is a weak solution to (1.1) corresponding to some Ay, Ba where
Asg, By satisfy (1.2)-(1.4) and (3.13) of chapter I. Thus our assertion imples that
there exists parabolic measure wo corresponding to (1.1), As, By and Lemma 3.37
of chapter I holds for wy. We reserve the proof of this assertion until after (2.28).
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Let ug be the solution to the continuous Dirichlet problem for (1.1), As, By, with
ug = wo p on QU. Existence of us follows from the above assertion. Next we use
this assertion to show that for some ¢; = ¢ (y1, M, A, A1,n) > 1 we have

(2.22) GLug(r,y,s +2r%) > G wa(ry, s +2r%, Q. (y,s) NENF) > 1.

whenever (y,s) € Qq/s(x,t) NG and 0 < r < d/16. To prove (2.22) first choose
E'Cc ENFNQ.(y,s), with E' closed and

(2.23) Qr(y,8) \ E'| < 2Qr(y,5) \ (ENF)| < 26"2|Q,(y,5)l,

where the last inequality follows from the definition of G. We divide Q,-(y, s) \ E’
into a sequence of closed rectangles {QJ} with disjoint interiors and whose side
lengths in the space direction are proportional to their parabolic distance from E’.
Let

w(Z,7,K) = w(p(Z,71),K), K= Borel set C R".

Then From Lemma 3.37(«) of chapter I for w; and Harnack’s inequality we see that
if Q; = Q#(9,5), then cw*(-,Q;) > 1 on Qz/2(7, 8). Also w*(-,Q;) satisfies (1.1)
relative to Ag, Bs. Using these facts, the definiton of wy, and Lemma 3.37(83) for
wo we find that for each j

c* w*(rayas + 2T23Qj) Z wQ(ray7$ + 2r2’Qj)7

where ¢* has the same dependence as ¢;. Now using this inequality, the A, property
of wy, (2.23), and Lemma 3.37 for we we get for § > 0 small enough that

wa(r,y,s + 22, U Qi) < cFw(r,y,s+ 22, U Qi) < %wg(r,y, s+ 2r2, Qr(y,9)).
Thus
2wo(r,y, 8+ 22 B') > wy(r,y,s +2r%, Q. (y,s)) > ¢t

for some ¢ having the same dependence as ¢;, thanks to Lemma 3.37(a). Clearly
this inequality implies the righthand inequality in (2.22). The lefthand inequality
in (2.22) follows from the definition of ws and the fact that us =1 on ENF.

Next we note from the chain rule and (2.21) that u o p, us satisfy the same pde
in (0,3d/16) x Qq4/4(w,t) for § sufficiently small (see (2.28) for computations). Also
these two functions agree on QU by our construction. From this observation, the
above assertion, and the remark after (3.22) of chapter I we see that Lemma 3.9
of chapter I can be applied for ey sufficiently small with u replaced by us — w o p.

Using this lemma we deduce the existence of ¢; > 8 with the same dependence as
¢1 such that if r = d/é;, and (y,s) € G N Qqs(w,t), then

(2.24) éi|ug — wopl(ryy, s+ 2r?) < 1/2.

Using (2.22), (2.24), we find that é wo p(r,y, s+ 2r?) > 1/2. From this inequality
and Harnack’s inequality we conclude first that cu(d, z,t +2d?) > 1 for some pos-
itive ¢ depending only on €s,v1, M, A, A1, and second that Lemma 2.1 is true once
we prove the assertion following (2.21).

Proof of Corollary 1.12. We prove the above assertion and Corollary 1.12 to-
gether since both follow easily from studying how (1.1) is transformed under the
Dahlberg-Kenig-Stein transformation mentioned in section 1. Let ¢ : R®— R have
compact support and satisfy

(2.25) (@, t) =¥y, 9)| < a1 (|z =yl + [s —¢]'/?),
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for some a1, 0 < a1 < co. As in section 1 we put

p(X,1) = (w0 + Pyay ¥(2,t), @, 1)

when (X, t) € U and note from (2.25), Lemma A in section 1, that v = y(a;,n) > 0
can be chosen so small that

(2.26) |52 Py (X, )| < 1/2

whenever (X,t) € U. Fix v > 0 to be the largest number so that (2.26) holds and
set

Q= {p(X,t): (X,1) € U}
First from properties of parabolic approximate identities we see that p has a con-
tinuous extension to QU defined by

p(l‘,t) = (7#(33’75)790775)7 (x7t) € R",

and second from (2.26) we see that p maps U one to one and onto Q. Let h be
a local solution to (1.1) in Q corresponding to A, B (for terminology see the dis-
cussion following (3.2) of chapter I) where A, B satisfy (1.2)-(1.4) in Q. Then a

straightforward calculation shows that h = h o p is a weak solution in U to (1.1)
corresponding to A, B. Here A, B are defined as follows. For (X,t) € U let

A(X, 1) = (1 + Q%szp)*l (1)

and let C'(X,t) = (¢;;(X, 1)), (X,t) € U, be the n by n matrix function with entries
at (X,t),

Coo = A,

Cio = 7>\%P’yzo¢a 1<i<n-1,
(2.27)
Cii:LlSiSn—l,

cij=0wheni#jand1<j<n-1,0<¢<n—-1.
Then from the chain rule we find first that at (X, ¢)
Vhop = CVh
and second that
A=C"(Aop)C
(2.28) )
B = (Bop)C + AV 3% Pyt )" A + A 5 Pyt eq.

Here C7 denotes the transpose of C, eg = (1...0) is a 1 by n row matrix, and
the gradient of the above function is an n by 1 column matrix. We now prove the
assertion following (2.21). Let A = A;, B = By. Replacing v, p, h,h by ¥, p,v,v 0
p, we see that (2.28) holds with Ay = A, By = B. Using this fact, (2.19), the
remark after Lemma A in section 1 of chapter I and the fact that A, B; satisfy the
hypotheses of Theorem 2.13, it is easily checked that Ay, Bo satisfy (1.2)-(1.4) and
(3.13) of chapter I. The proof of our assertion and Lemma 2.1 are now complete. O
To prove Corollary 1.12, let 1 satisfy in addition to (2.25) the condition that

(2.29) 1D1)o¥lls < as.
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Let w be parabolic measure corresponding to the heat equation in ). Given £ C R"
a Borel set put
(X, t, E) = w(p(X,t), p(E)), (X,t) e U.

Then & is parabolic measure corresponding to (1.1) for A, B as defined in (2.28)
with A equal to the n by n identity matrix and B equal to the 1 by n zero matrix.
We shall show that this A, B satisfy the hypotheses of Theorem 1.10. To do so we
note from (2.25)-(2.29) and Lemma A in section 1 of chapter I that (1.2)-(1.4) are
valid. Also we have

(2.30)
(a) If = (agy...,@p—1) is a multi index and k a nonnegative integer, then
a2k glaltk .
|| o= gzaatkcij”L"o(U) < c(al,a2,|a|,k,n),<oo,() <uj<n—1,
(b) dv(X,t) = [20|Vey|? +ad| &eij [2](X,t) dXdt is a Carleson measure
on U with ||v|| < ¢(aq,az),
2
(C) %COO = 7)\2 %Pymow,
(d) %Clo = )‘2( “/:row) Wﬂb 8:1: iTo vxo¢7 1<i<n—1,
(e) 8200”_0f0r1<j<n—1 0<i<n-—1

From (2.30)(a), (b), Lemma A of section 1, chapter I, and the fact that %A =

(axo CT)C+ C7 4 8 = C we see that (1.6), (1.7), and (**) of Theorem 1.10 hold for
A. Also,

B:)‘(Vaixop'yzow) +)‘ P’Ya:0¢60
so again from Lemma A we find that (1.5) and (* ) are valid for B. To verify (1.9)

and (***) observe that %Aij =0for1<i,5<n-—1and
n—1
) _ 1%}
ag Aif = Z<el e z”>
1=0
where flij = gag Dy when either ¢ =0 or 7 =0 and
n—1

= =201+ Y (32 Py, ¥0)?]
k=1

(2.31) =2 2P, ¥, 1<1<n-1,
0 _ )\Q%P,moqﬁ,lgign—l’

efo = =My for 1 <i,l<n-—1.

In the above display, d;; = 1 when ¢ = and d;; = 0 otherwise, is the Kronecker §.
Using symmetry of A, Lemma A, (2.30), and (2.31) it is easily checked that (1.9)
and (***) holds. Thus A, B as above satisfy the hypotheses of Theorem 1.10 so we
can apply this theorem to conclude that

|| dyds( Tt 2d2a ) ||o¢p(Qd(m,t)) < ¢t < 0.
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Since w is known to be doubling (see[FGS], [H]) it follows that «, can be replaced
by 3, in the above inequality. The proof of Corollary 1.12 is now complete. O

3. LEMMAS ON PARABOLIC MEASURE

In this section we prove several lemmas on parabolic measure which are well
known for parabolic measures satisfying the conclusion of Lemmas 3.14 and 3.38 of
chapter I . In fact most of our effort will be devoted to overcoming our inability to
prove that certain parabolic measures in chapter III are doubling. We first examine
the implications of the conclusion of Lemma 2.1. That is, suppose the continuous
Dirichlet problem corresponding to (1.1) and some Aj, By satisfying (1.2)-(1.4)
always has a unique solution. Let w; be parabolic measure corresponding to A, By,
and assume there exist 1,71 > 0 such that whenever Q,(y,s) C Qq(x,t),E C
Q(y,s), and E is Borel, we have

(31) |E|/|QT(yaS)| > 17770 = wl(ray7$+2r27E) Z -

In the proof of Theorem 1.10 we shall need the following analogue of Lemma 3.9 in
chapter 1.

Lemma 3.2. Let Ay, By satisfy (1.2)-(1.4) and assume that the continuous Dirich-
let problem corresponding to (1.1), A1, By always has a unique solution. Let wy be
parabolic measure for (1.1), Ay, By, and suppose that (3.1) holds for wy whenever
E = Q. (y,s). Let Qar(y,5) C Qalz,t) and let uy be a weak solution to (1.1) in
(0,2r) X Qar(y, s) corresponding to Ay, By. If u1 vanishes continuously on Qa(y, s),
then there exists ¢ = c¢(y1, M,no,m,n) and a = a(y1, M,no,m1,n), 0 < a < 1 <
c < 00, such that

u1(Z,7) < ¢(z0/7)” U1

max
(0,)xQr(y,s)
whenever (Z,7) € (0,7/2) x Qp/2(y,s). If ur > 0 in (0,2r) x Q2,-(y, s), then there
exists ¢ = ¢(y1, M, no,mn) such that for (Z,7) as above,

u1(Z,7) < &(20/7)%ui(r,y, s + 2r?).

Proof: To prove Lemma 3.2 let 0 < p < r/4 and (2,7) € Q,/2(y,s). Set G; =
Q2-ip(2,7) \ Qa-w+1,(2,7), for j =0,1,..., . In (3.1) we take E = Q,(y,s) and
use this implication repeatedly with @, (y, s) as certain subrectangles of G, as well
as Harnack’s inequality, to concude the existence of ¢* > 1 such that

(3.3) cw(-,Gj) > 1
on
0,277 p] X 0Qg-i-1/2,(2,7) U {277 p} X Qg-j-1/2,(2,7) for j =0,1,...,.

Here the boundary of the above set is taken with respect to R™. Using the maximum
principle for solutions to (1.1) (see the remark after Lemma 3.38 of chapter I) and
the definition of w; it follows that

j—1
(34) wl(-, U Gl) S c* wl(-,Gj)

=1
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in

(0,277p) X Qq-j-1/2,(2,7) for j=1,2,...,.
Clearly this inequality implies
* J

1('a U G?) in (0727jp) X Q2—j—1/2p(z77—)a .7 = 1a25 tery e

i=1

j—1
c
=1
Tterating the above inequality starting with j = 1 we see that if § = ¢*/(¢*+1) < 1,
then

(3.5) wi(, Go) < A in (0,277p) X Qgs-1r2,(2,7), j =1,

To conclude the proof of Lemma 3.2 we observe first from the maximum principle
for (1.1), the definition of wy, and (3.3) that
< ¢ -, Go) in (0,p/2) x .7,

= (O»T)r;lgi{(yﬁ)m @i, Go) In (0,0/2) x Qpya(27)
and second from (3.5) with p = r/4 that the first part of Lemma 3.2 is valid. The
second part of Lemma 3.2 for u; > 0 follows from the first part of this lemma and
Harnack’s inequality by a standard argument mentioned in the proof of Lemma
3.14 of chapter I. O

Next we prove

Lemma 3.6. Let Ay, By satisfy (1.2)-(1.4) and assume that the continuous Dirich-
let problem corresponding to A1, By always has a unique solution. Let wy be para-
bolic measure for (1.1), Ay, By, and suppose that (3.1) holds for wi. Then for some
p,1 < p < oo, we have ;;dls (d,z,t +2d?,-) € a,(Qa(x,t)) with

I f‘fils(dﬁ’t‘*‘ 2d°, ") oy (Qata,t)) < (1, M,m0,m1,n) < 00.
Y

Proof: We remark that Lemma 3.6 would be an immediate consequence of the
results in [CF] if we knew that w; was a doubling measure. To begin the proof, we
claim for given € > 0 that there exists é = é(e, y1, M, n9,m1,n),c— = c_(n) > 1 such
that the following statement is true whenever Q,(z,7) C Qq(z,t). If E C Q,(2,7)
is a Borel set and |E|/|Q,(z,T)] > 1 —mno/c—, then

(37) wl('v Qp/Q(ZvT)) < ewl(" QP(Z’T)) + éwl('? E) in U\ HO,P] X Qp(sz)]'

To prove this claim we first show that if Go(n) = Q4n)p/2 (2, 7) \Q1=n)p/2 (2, 7T),
then there exists c4, 6 depending on 7y, 71,7y, M,n with

(3.8)

wl('VGO(n)) < o4 770 wl('va(ZvT)) in U\ [[07p] X QP(ZvT)} for 0 < n< 1/1010 :

The proof of (3.8) is similar to the proof of (3.5). Let

éj (n) = Q(1+2j+1 n)p/2 (Za 7) \Q(1+2Jn)p/2 (2, 7'),
Gi(m) = Q2 np2(2,7) \ Quu—si+1n)py2(2,T),

Gj(n) = Gj(n) U G;(n),
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for j =0,1,..., and 2/*1p < 1. We apply (3.1) with Q..(y,s) = certain subrect-
anges C G;(n) and with £ = Q,(y,s). We get that (3.3) holds with G, replaced
by G;(n) on the union of [0,2/np] X dQ 1 1a5+1/25),/2 (2,7) and

{27np} X [Q1 1241720572 (2:T) \ Qu_git+1/25)y2 (2,T)

for j =1,...,. Using (3.3) and the maximum principle for solutions to (1.1) (see
the remark after Lemma 3.33 of chapter I), we find that (3.4) holds in

U\ {[0,27np] x (Quus2i+1/2n)ps2 (2,7) \ Quositiszg) 2 (2,7))}

provided 271 < 1/3. Tterating (3.4) we obtain (3.8).
Next we observe from (3.1) that for some ¢g > 1 we have

€o Wl(',GO(U)) > lon (Ovnp) X an/Q (Z,T).
To prove claim (3.7) we choose 17, 0 < 1 < 273, to be the largest number such that

(39 cowi(,Go) < € wil-Qu(=7)) in U0, 0] x Qy(z, 7).

With 7 now fixed we use the bisection method, a weak type argument, and (3.1)
to find that if c_(n) is large enough and r = 277p, j = 5,6,..., then there exists
Qr(y, S) C Qp/4(z77- - p2/2) with |E n QT(Z/’S)‘ > (1 - 770) ‘Qr(yas| ChOOSing
r = 271% and using (3.1) with E replaced by E N Q,(y,s), as well as Harnack’s
inequality, we find the existence of ¢ as in (3.7) with

éwl('aE) Z 1

on
[1p, ] % 0Qp/2(2,7) U {p} x Qp/2(2,7).
From the maximum principle noted above we conclude first that

wl('va/2(Z7T)) < chl("GO(T/)) + éwl("E) in U\ [[O,M X QP/2<Z’T)]

and second from this inequality, as well as (3.9), that claim (3.7) is valid. We also
claim there exists § > 0,0 < 8 < 1/2, and ¢ > 2, depending on 71, M, 19, m1, n such
that if Qr(ya 8) - QSp/Q(Za T) C Q2p(zv7—) - Qd(xvt)a then
(3.10)

EH /)P < wi(d,z,t + 2%, Qr(y, 5)) < E(r/p)’ wi(d, @t +2d%, Qap(2, 7).

The leftthand side of (3.10) follows from (3.1) and Harnack’s inequality. The right-
hand side of (3.10) is proved by an argument similar to the one used in proving
(3.8).

Armed with the above claims we are ready to show that w; restricted to Qq(z,t)
is absolutely continuous with respect to Lebesgue measure. To do this first observe
for some K > 2,0 < K < oo, that

. . wl(d7x7t+2d2aQT(y7s))
3.11 1 f < K
( ) lgg wl(d7w7t+2d27Qr/2(yas)) N

whenever (y, s) € Qq(x,t). Indeed if the above inequality were false for large K, we
could use the lefthand inequality in (3.10) and iteration to get a contradiction. Sec-
ond we observe from a standard argument (using the Besicovitch covering lemma)
that for wy(d, z,t + 2d?,-) almost every (y,s) € F Borel C Qq(z,t) we have

(3.12) iy “1(d @i+ 2d%, Q,(y, 5) \ F)

= 0.
r—0 wl(d,m,t+2d27Qr(yaS))
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Now if wy(d, x,t + 2d?,-) were not absolutely continuous with respect to Lebesgue
measure on Qq(z,t), then for some F' Borel C Qq(x,t) we would have |F| = 0 and
wi(d,z,t +2d?, F) > 0. Choose (y,s) € F so that both (3.11), (3.12) hold. To get
a contradiction we note from (3.11), (3.7), with Q,(z,7) replaced by Q,(y,s) and
E by Qr(y,s) \ F that if € is small enough (depending on K in (3.11)) we have

wl(d7$»t+2d2vQT(y15)) S gwl(d7m7t+ 2d27Qr(yvs) \ F)

for some arbitrary small » > 0 and some £ > 0 independent of r. Clearly this
inequality contradicts (3.12). Thus by the Radon-Nikodym theorem, whenever
G C Qq(x,t) is a Borel set, we have

wi(d, z,t 4 2d* Q) :/ fdzdr
G

for some Borel measurable f > 0 with || f[|z1(Q, ) < 1.
To continue we use an argument essentially due to Gehring (see [G], [Gi], and
[CF]). Fix Q2 (v, ") C Qa(z,t). Given

(3.13) A > (1000)100”|Q2T/(y’,s’)|*1/ fdyds = X
QZT/(yI’S/)
suppose (y, s) € Q. (y', s") is a point of Lebesgue density 1 of
F\) = {(z,7) € Qalx,t) : f(z,7) > A}.

Using (3.13)and continuity of the integral we see there exists r,
0 < r < r'/1000, such that

@ A=lQulpsl" [ far,
(3.14) @ror(v:)
(b))  1Qu(y,s)|! fQﬂ(%s) fdzdr > X for 0 < p < 10r.
We note from (3.14)(b) that
(3.15) (20)" T wy (d, x, t + 2d?, Qr2(y,8)) = wil(d,x,t + 2d°, Q1or(y, 5))-

Set
E(0N) = {(2,7) € Qa(x,t) : f(z,7) < dA}

and suppose that [E(dA)NQx(y,s)] > (1—no/c—(n))|Qr(y, s)|. Then from (3.15),
(3.7) with p, z, 7 replaced by r,y, s, we see for € sufficiently small that

wi(d,z, t+2d*,Qp(y,5)) < cwi(d,z,t+2d* E(6)) N Qr(y, )

where ¢ depends only on ~1, M, no,n1,n. Dividing this inequality by |Q.(y, s)| we
deduce from simple estimates using (3.14)(a), (3.15), that for some ¢’ > 2,

1<,

If 6o = %, where ¢’ is the above constant, then from the above inequality and
(3.14)(a) we see that

(3.16) Qr(y,8) N E(G0A)] = (no/c-) |Qr(y, )|
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Using a well known covering argument we get a sequence {Q1or, (i, ;) } of rectan-
gles for which (3.14)-(3.16) holds and also

(+) {(yissi)} CFA) N Qi (', ")

(3.17) ()

(FN)NQr(y's8)) \ U Q1or, (yi,8i) | =0,

(+++) Qr(yi,5) NQr,(y;,55) =0 when i # j.

Let H; be the subfamily of rectangles @ € { Qr,(y;,5s;) } with @\ Q. (y',s") # 0
and put Hy = {Q,,(y;,5;)} \H1. If Q,(y,s) € Hy we note from (3.10) and (3.14)(b)
that

Qo (. 8)| < / fdedr < o(r)r')P wi(d, .t + 282, Qon (4, ) -

Qr(y,s)
Solving this inequality for r and using the definition of A\ in (3.13) we get
(3.18) r < e(n)r’ (Ao/N)Y =B = 0 /(100n) .

Hence Ugey, @ C Qriiy) (¥'s8") \ Qra—n (¥, s') and we can argue as in the
proof of (3.7) to conclude as in (3.8) that

(3.19) U wild 2t +2d% Q) < c(A/N" wi(d, 2, +2d% Qar (v, )
QeH,
where ¢ = ¢(v1, M, n0,m1,n) and 61 = 6/(n+1— (). Using (3.14)-(3.19) we obtain

(3.20)
fdszSZ/ fdzdr

FANQ, (y',s") 10r; (Yi,rSi)

< (20) n+lz / fdzdr = (20)"+1[ / fdzdr + > / fdzdr]

(yi,8:) QeH Q€H,

IN

C()\()/)\)el W1(d;x,t+2d27Q2W(y/78/)) + cA Z
QEH,>

< c(ho/N" wi(d,z,t+2d%, Qo (i, 8) + X D> [QNF(5)))|
QEH>

< c()\g//\)91 wi(d, z,t +2d?, Qo (y',8")) + cA|F (5N N Qyp (y',5")].

This inequality implies (see [Gi, ch 5 ]) the existence of 65,0 < 02 < 61/2, such
that
(3.21)

1462
1Qr (v, 8" / F dzdr < o | |Qar (¥, 8| / [ dzdr :
Q. (y's’) 2 (y'587)

To see that (3.20) implies (3.21) we multiply (3.20) by A~!*% and integrate from
Ao to oo. After a careful limiting argument we deduce for sufficiently small 6y
that the integral corresponding to the last term in (3.20) can be absorbed into the
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integral corresponding to the lefthandside of this equation. The resulting integrals
are equivalent to (3.21). Since Qo (v, s") C Qq(z,t) is arbitrary we conclude that
Lemma 3.6 is true. O

To set the stage for our next lemma suppose K C Qq(z,t) is a nonempty closed
set and 0 < ¢ < 1072" ¢ (-, K), where 0,7 : R"—R are as in (2.19) and (2.25),
respectively. Let p : U—U be as in the display following (2.25) and v > 0 as in
(2.26). Let u; be a solution to (1.1) in U corresponding to Aj, By satisfying (1.2)-
(1.4) with constants 1, M. Then from (2.25) -(2.28) and Lemma A in section 1 we
deduce that us = uq o p is a weak solution to (1.1) corresponding to some As, Bs.
Also Az, By satisfy (1.2)- (1.4) with constants depending only on n, the constants
for Ay, By, and aq in (2.25). With this notation we prove

Lemma 3.22. Let K,Qq(x,t), A1, By, A2, Bo be as above. Suppose also that the
Dirichlet problem for Ay, By and As, By always has a unique solution. Let wy,ws
be the corresponding parabolic measures and assume that (3.1) is valid for wy while
the conclusion of Lemma 3.837 holds with w = wy. Then there exists a > 0,¢ > 1,
depending only on n,vy1, M, a1,7v,n0,M1, and the constant in Lemma 3.37 of chapter
I, such that
cwy(d, x,t 4+ 2d* K) > ('I(') )
Qa(w, 1)

Proof: We remark that if we knew w; were a doubling measure, then we could
use the same argument as in [DJK] to get Lemma 3.22. Instead we use an argu-
ment based on the Calderén - Zygmund decomposition and an elaboration of the
argument following (2.23). To begin the proof we first note from Lemma 3.6 that
if Qar(y,s) C Qulz,t) and f = j;dls(%,y,s + 472, .), then there exists p > 1 such
that || fl|a, (@, (y,s)) < oo Hence if G is a Borel subset of Q.(y, s), then

(3.23)

w1(2r g5 + 42, Q1 (y,5)\ G) = / f dedr
Qr(y,s)\G

1/p s (p—1)/p
< 1Qr(y, )\ G|(p*1)/p </Q fpdzd7'> <c <W> ’

where ¢ depends on the constant in Lemma 3.6. Next we use a construction of
Whitney to write Qq(z,t) \ K = |JQ:, where {Q;} are parabolic rectangles with
disjoint interiors and side length in the space direction proportional to their par-
abolic distance from K. Also we choose these rectangles from the family of all
rectangles obtained by bisecting the sides of Qq(z,t) into rectangles of side length
21=™d in the space direction and side length 2 - 4~™d? in the time direction for
m=1,2,...,. Let K C Q4(z,t) be the union of K and certain of the above closed
Whitney rectangles. We use (3.23) to show the existence of 61,602,0 < 61,05 < 1/2,
having the same dependence as ¢ in Lemma 3.22, such that if Q,(y,s) C Qqu(z,1),
then

»(y,s)

KN Qr(y,s)| 2 7
— = > 1-0, = w(r,y,s+2r , KNQ,(y,s)) > 6.
Qr(v.5)] vl (:2)) = 02

Thus (3.24) implies Lemma 3.22 when K = K is most of Qq(z,t).

(3.24)
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Let F be the family of all open Whitney rectangles, Q;, such that Q;NQ,3(y, s)
# (). We note that if Q; € F, then from the geometry of Whitney rectangles, there
exists Qy € F with Q; N Q; # 0 and

¢|Qi N Qry3(y,s)| > min{[Qil, [Qr(y, 5)| },

where ¢ = ¢(n) depends on the ratio of the side lengths of neighboring Whitney
rectangles. Let F) be the subfamily of F consisting of rectangles @Q; with Q; C K
and let F5 be the set of all rectangles in F which are not in F;. From the doubling
property of wy (Lemma 3.37 () of chapter I) and the above note we find that
(3.25)
Z (UQ(’I“/2, Y, s+ 7“2/2a QiN Qr/S(y7 S)) < ch(r/Q’ s+ 7‘2/2, Kn Qr/S(y7 S))

QiEF1
where ¢ has the same dependence as the constant in Lemma 3.37. If Q; € F> and
r1 = (r/3)(1+ c@}“nﬂ) ), then for ¢ large enough (depending only on n and the
ratio of the side length of Q; to its distance from K), we have

(326) Qi' C er (y7 S) \K

Let p be defined as above Lemma 3.22 and set w*(z,7, F) = wi(p(z,7), E), (2,7) €
U, whenever E C R" is a Borel set. Note that w*(-, E) satisfies (1.1) relative to
Ao, By, If Q; = Q#(9,8) € Fa, then from (3.1), Harnack’s inequality, and the fact
that 0 < ¢ < 1072"0, we deduce first that cw*(-, Q7(7,8)) > 1 on Q:/4(7,8) and
second from Harnack’s inequality, Lemma 3.37 () of chapter I, the definition of
wa, and (3.26) that

(327) w2 (Ta Y,s + 2T27 Qz’) < c* w*(r, Yy,s + 2727 Qz’)

Let G = Ug,er, Qi» G = Ug,ex, @i Then from (3.23), (3.26), (3.27) and
Lemma 3.37 («), (3), we find for ; > 0 small enough that

WQ(T/27ya s+ 7“2/2, G) < CW?(T/2ay7 s+ T'2/2, Gl)

< CC*W*(T/Q,:Z/,S—FT?/Q,G’) < %wQ(T/2vy7S+T2/27Qr/3(yvs))

This inequality and (3.25) imply that

(328) WQ(T/Z Yy,s+ T2/27 QT/S(ya 5)) < ch(T/2, Y, s+ 7”2/2, K N Qr/B(yv 8))

Using, (3.28), Lemma 3.37 («), and Harnack’s inequality we see that (3.24) is true.

Next let ¢ = 10~ ("t g, 9 = 02 /c1, where ¢ is a large positive constant to be
specified later. We shall show there exists a positive integer m and a sequence of
Borel sets {K;}§" such that

(a) Ko =K, K, = Qu(z,t), and K; C K; for i < j,

(b) If m > 1, then (1 —¢)|K;| > |K;—1], for 1 <i<m—1,
(329) (@ |Kmoal/|Qu(zt) < 1- 04,

(d) wo(d,z,t +2d? K;_1) > Qwo(d,z, t +2d%, K;),1 <i <m,

(e) K;,1 <i<m, is the union of K and certain @Q;.
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We note that (3.29) implies
|K|/|Qa(x,t)] < (1—¢)™" and

wo(d,,t 4 2d* K) > 0™ wa(d, z,t + 2d°, Qa(x,1)).

Clearly these inequalities and Lemma 3.37 (<) imply Lemma 3.22 with a = m(l?i_eqay

Thus to complete the proof of Lemma 3.22 we need only prove (3.29). To do this we
proceed by induction. Suppose, for some nonnegative integer [ that Ko, ..., K; have
been constructed satsifying (a) — (e) in (3.29). If |K;|/|Qa(z,t)| > 1 — 61 we put
m =1+ 1. Using (3.24) with K replaced by K;, we see that wy(d, z,t + 2d2, K;) >
Owa(d,z,t + 2d%, Qq(z,t)). Thus (3.29) is valid in this case. If |K;|/|Qa(x,t)| <
1 — 61, we use the method of Calderén-Zygmund to get sequences {L;}, {L}} of
open parabolic rectangles satisfying

() (-6)|Lj| < KNI
() |KinL| < (1- )Ly
(3.30) (i) K\ (UL =0,

(iv) L, CLyand |L| = 2"+ |1,

(v) LiN L =0 for i # j.
Let
K =K U{Ql (Qi N L; # 0 for some j}.
We first show that (3.29)(b) holds with ¢ = [ + 1. To do this we use a wellknown
covering argument to get a subsequence {L} of {L;} consisting of disjoint parabolic

rectangles with
0+ 1Ly > L.

Let L* = J L}, L = J L;. Then from (3.30) (ii) we see that |K; N L*[ < (1 —
01) |L*|. From this inequality, the above inequality, and (3.30) (i#4) we find

(K| = [Kin L] + [K;\ L7

< (1 =0)[L7] + [L\ L7
< L] = 61|17

< (1-9)IL]

< (1= 9)|[Kiyal.

Thus (3.29) (b) is valid with ¢ = [+ 1.

Next we show that (3.29) (d) is true with ¢ =1+ 1. Let H; be the family of all
Q; C K;41 \ K; for which there exists Qy C K; with Q; N Q; # (). Using Lemma
3.37 (B) of chapter I, once again, we see that

(3.31) > wald,x,t+2d%,Q;) < cwald,x,t+2d°, K.
Qi€H1
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Put Ho = {Q; C K111\ K; : Q; € Hi}. If Q; € Ha, then from (3.30) (i), (i4), (iv),
and the definition of K;,; we deduce the existence of j = j(¢) and ¢4 (n) > 1 such
that if L; = Q#(7, 8), then Q; C Q,#(9,5). From this deduction, Lemma 3.37 (3),
and (3.30) (iv) we conclude for a given L; that if L is the union of all @; € Ha
such that j7 = j(¢), then -

(3.32)  wa(d,x,t+2d° L)) < cwy(d,a,t+2d°, L;) < Fwayld,x,t+2d°, Lf).
Now from (3.24) and (3.30) (i) we find also for L, = Q,(y’,s’) that
dwp(r'yy 8 + 20" KN LY) > 1.
From Lemma 3.37 () and the above inequality it follows that
"wold,x, t +2d%, K N L) > wo(d,z,t + 242, Ly).
Using this inequality in (3.32) and (3.30)(v) we get

wo(d, x,t 4 2d?, U Qi) < cwy(d,x,t +2d* K;).
Qi€H2

Clearly this inequality and (3.31) yield (3.29)(d). (3.29)(e) is included in the defi-
nition of Kjy;. By induction we obtain (3.29). From the remark after (3.29) we see
that Lemma 3.22 is true. O.

Finally in this section suppose that K = Ui\; Qr, (yi,5:), K' = Uil Qar, (Yi, 81,
and K C K' C Qq(w,t). Also assume that Qay, (s, 5:) N Qar, (Y, 5;) = 0 when i # j.
Let ¢, o be as in (2.19), (2.25), respectively and suppose that 0 < ¢ < 102" (-, K)
on Qq(z,t) \ K’ while 0 < < 1072"r; on Qa, (yi,5;) for 1 <i < N < oo. Define
p relative to 1 as in the display after (2.25). We close this section with

Lemma 3.33. Let w; be as in Lemma 3.22 and define wo relative to wy,p as in
this lemma. Suppose that (3.1) is valid for wy while the conclusion of Lemma 3.37
of chapter I holds with w = wo. Then there exists a > 0,¢ > 1, depending only on
n,v1, M, a1,az2,7v,1m0,n1, and the constant in Lemma 3.37, such that

. 2 K N Qaa,1)[1\"
CWQ(d,z,t+2d 7K) 2 <Qd(l‘7t)|> .

Proof: Note that Lemma 3.33 does not follow directly from Lemma 3.22 because
of our relaxed assumptions on 1. However if {Q;} is a Whitney decomposition of
Qa(z,t)\ K, as previously, then we can repeat verbatim the argument in this lemma
to get first (3.24) with K replaced by

K" = K'U{(2,7) : (2,7) € Q; for some i with Q; N K" # 0}

and thereupon (3.29) with Ky = K”. We then obtain as in the remark after (3.29)
that Lemma 3.33 is true with K replaced by K”. Using the doubling property of
wy we get Lemma 3.33 for K. O
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4. EXTRAPOLATION

Recall from Lemma 2.1 that for (Y, s) € (0,d) x Qq(z,t)
L(Y,s) = [y |BI* + 9o |VAP + 43 | 55

n—1 n-—1
+ 3 (S wol Vel 2 + w17 12) + 197 (Ys).
0

ij=0 I=
Next for (Y, s) as above let
D(Y, 3) = ng/Z(Yv 5) N [(Oa d) X Qd(SL‘, t)]

L(Yis) = L(Y,s) + 35" [ Lzmyizar
D(Y,s)

dpy (Y, 8) = L(Y, s)dY ds.

Since p. > p*, we see that Lemma 2.1 remains valid with p* replaced by p. in
(¢41). In this section we prove Theorem 1.10. We shall “ extrapolate ” this theorem
from Lemma 2.1 by a bootstrap type procedure. We first prove

Lemma 4.1. Lemma 2.1 is valid with p*, €3 replaced by py, K whenever 0 < K <
oo provided n; = n;(K,v1, M, A, A1,n) > 0 are small enough fori =0, 1.

Proof: We prove Lemma 4.1 by an induction type argument on K. To avoid
confusion we temporarily indicate the dependence of €5 on the quantities in Lemma
2.1. From this lemma we see that Lemma 4.1 is valid with p* replaced by .
whenever K < ex(y1, M, A, A1,n). Suppose that whenever v, M, A, A; are given
as above we have shown that Lemma 4.1 holds with y* replaced by p, whenever K <
K* and K* > e3(y1, M, A, A1, n) where K* = K*(v1, M, A, A1,n). We assume as
we may that M, A, A; are all > 100. We then put

210071.

|: 62(%’}/1,4M, 4A,40A1,’H,)
77 =
(

A+ A+ M)1+K*)ei(n)
(4.2) N

5 [ €2(371,4M,4A, 40A1, n) ]
(A + A+ M)+ K*)er(n)

and shall show for ¢; = ¢1(n) > 1 large enough that Lemma 4.1 is valid for K <
(1 + n)K* provided n; = n;(K),i = 0,1 are defined suitably for K* < K <
(14 n)K*. We then get Lemma 4.1 by induction. To this end choose N such that
2-(V+1) < §5 < 27N and recall the definition of K above Lemma 2.1. Put H = K
when (a) holds in (7i7) of Lemma 2.1 while H = L, when (b) in (i4i) of Lemma 2.1
is valid. Suppose first that

d
(4.3) / ( / H(Z,7) dzdr) dzo > 0 K* |Qu(a ).
2—2Ng Qa(x,t)

Using the bisection method we can divide Q4(z,t) into closed rectangles with dis-
joint interiors and of side length 2172V d, 21=4N ¢2 in the space and time variables
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respectively . Let {Q,} be these rectangles. From (4.3) and our induction assump-
tion we see that

272Ng
S [ HEnadand < K Qo)
j 0 Qj
which implies by weak type estimates that

272Ny
/ (/ H(Z,7)dzdr)dz < K* |Q)
) Q

(
for some @ € {Q;}. Now we can apply the induction hypothesis with (0, d) xQq(z, t)
replaced by (0,272Vd) x Q. Using this hypothesis and Harnack’s inequality we
find that Lemma 4.1 is valid in this case for K* < K < (1 4 n)K* provided
no(K) < ez(n)=t 6100+ o (K*), n(K) < e3(y1,0, M,n) " n (K*) and ¢3, c3 are
large enough.

Next suppose that (4.3) is false. We again divide Qg(x,t) into subrectangles
by the bisection method. Let G,, be the closed rectangles obtained in the m th
subdivision for m = 1,2,..., . Then the rectangles in G,, have disjoint interiors
and side length 2'=™ d, 2'=2™4? in the space and time variables respectively. Let
Sm be the subcollection of rectangles Qs-mg(y, s) in Gy, with

d
/ / H(Z,7)dzdrdzg
2-(N+i)d Qz*jd(y’s)de(a:vt)

(4.4)
< (100n) 1907 1) K* |Qa-14 (y, 5))|
= A K" |Qasa (1, 5)]
for j=1,2,...,m— 1, while
d
(4.5) / / H(Z,7) dzdrdzo > 7K |Qs ma(y,s) |
2 Qo—m g (y,5)NQa(x,t)

—(N+m)d

Using the fact that (4.3) is false and a Calderon - Zygmund type argument, we
get a family of closed rectangles, S = |J S,, with disjoint interiors. Moreover if

(4,5) & Upes @ then (4.4) holds for j = 1,2,..., . Put F* = Qd(m,t)\<UQeS Q) .
We consider two cases :  (a)|F*| > 21 |Qq(z,t)| and (b)|F*| < 21 |Qa(z,1)|.

If (a) holds, we suppose 19 (K) < n/2 for K* < K < (1+ n)K* and set
dy = d[1- ﬁ] We observe that there exists F' closed, FF C F* N ENQq, (z,1)
with |F| > n]Qa(x,t)|. Next we show for each (y,s) € F and ¢; large enough that

d
(+)/ L(y()aZaT)dyO S 6100
(86)5r

whenever (z,7) € Qr(y,$) N Qq(z,t) and 0 < r < d. In fact this inequality follows
directly from (4.4), (4.2) if (a) of (i#) in Lemma 2.1 holds. If (b) of (i#i) in Lemma
2.1 is valid we use (4.4), (4.2) and weak type estimates to deduce that

(++) 20 L(Z,7) < 62
for (z,7) € Q.(y,s) N Qu(x,1), (y,s) € F and (85)°r < zy < 3d/4. Let p =
min{6—2%r, 3d/4}. We estimate the integral over [(85)°r, p] in (+) using (++) and
the rest of the integral using (), (**) in Theorem 1.10 (as in (2.3) (+) ) and the
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observation that (4.4) implies there exists (21, 7;) with |z — 21| + |7 — 7 [/2 < 10r
for which

d
/ L(yo, 21, 1)dyo < 6.
p

Let Q = {(Z,7): 2 > 06 (2,7, F)}, where & is the parabolic distance function
defined above (2.2). From (4), (++) we deduce

d
(4.6) / L(zg,2,7)dzg < 690
646 (z,7,F)

whenever (z,7) € Qq(z,t) and
(4.7 20 L(Z,7) < 6%

for (Z,7) € QN [(0,d/2) x Qq(x,t)]. Let ¢ = o(-, F) be the reguralized parabolic
distance function as in (2.19) and let £ be as in (2.20). Also let 6,0 < 6 < 1, be in
C& [(—d/2,d/2) X Qag(x,t)] with 8 =1 on (—d/4,d/4) x Qq(z,t) and

l l
d'|| Zrtlloe + & [ 570lloc < c(l,m).

To handle case (a) we use a slightly more elaborate argument than the one following
(2.20). If (Z,7) € (0,00) x Qq(z,t), put

gy MO = WD) - AR D)) + ARl ),
" B(Z,7) = BO(Z7).

Put Ay =1,B1 =01in U\ [(0,00) X Qg(x,t)]. Here I denotes the n by n identity
matrix. Using (4.6) - (4.8), and (2.19) it can be shown for ¢; sufficiently large,
as in the calculations after (2.20), that Ay, By satisfy the hypotheses of Lemma
3.37 of chapter I and Lemma 2.1 with constants 7, /2,4M, 4A,40A; (if (**), (**%)
are valid) and with Qq(z,t) replaced by Q.(y,s) whenever Q,(y,s) C Qq(x,t).
Applying Lemma 2.1 we see that the corresponding parabolic measure, wq, satisfies
the hypotheses of Lemma 3.6. Thus for some p > 1, we have H%H%(Qd(z,t)) <

¢ < oo. Next set
¢ = 530('aF)7

Q={(Z,7): 20> v},

p(Z, 1) = (20 + Put(2,7),2,7),

when (Z,7) € U. Then for ¢; sufficiently large, we see that p maps U,9U one to
one and onto 2, 99). Let v be a solution to the Dirichlet problem for (1.1), Ay, B.
Then from the remark after Lemma A of chapter I, (2.19) (b), and (2.27) - (2.29)
we see that v o p satisfies (1.1) for some Ao, By satisfying (1.2)-(1.4), as well as the
hypotheses of Lemmas 3.14, 3.37 of chapter I. Let wy,ws be parabolic measures
corresponding to Ay, By and As, Bs, respectively. From the above discussion we
see that Lemma 3.22 can be applied with K = F' to get for some ¢’ > 1, having the
same dependence as 79 in Lemma 4.1, that

c wo(d,x,t +2d* F) > 1.

We note that we extends continuously to U U (QU \ F') with wy = 0 on OU \ F. From
this remark, the above inequality and the maximum principle for solutions to (1.1)
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(see the remark after Lemma 3.38 of chapter I) we deduce that if do = d(1
then 0 < d; < dy and

o 8(nn+1) ),

dwy > 1 at some point on (0,7] X dQa, (x,t) U {r} x Qa,(z,t)

whenever r > 0. Next since wy vanishes in OU\Qg, (v, t) and 6(0Qa, (7, 1), Qq, (x,1))
~ nd, we can use Lemma 3.9 of chapter I to deduce the existence of ¢y > 1, having
the same dependence as 7, such that if 0 < r < nd/cy, then ¢/ wa (-, F) < 1 on
(0,7) x 0Qq,(x,t). Thus for these values of r we have

dwo(r,y,s, F) > 1 for some (y,s) € Qq,(v,1).

We can now repeat the argument from (2.22) on. Let us be the weak solution to
(1.1) corresponding to As, By with ug = wo p on U. Then since u > 1 on F it
follows from the definition of wy that for (r,y, s) as above,

(49) C/UQ(Tayvs) 2 C/WZ(T7y7S>F) Z 1.

Next we observe that u o p,us satisfy the same pde in (0,d/4) X Qu(x,t), since
Ay = A, By = Bin QN ([0,d/4] x Qa(x,t)). Since us — u o p vanishes on U we
can apply Lemma 3.9 of chapter I to conclude the existence of ¢_ > ¢y such that
if ' =nd/c_, then

(4.10) uz(r',y,8) —uwop(r',y,s)| < 3

for all (y,s) € Qua,(z,t). Combining (4.9), (4.10) we conclude first that ¢/(u o
p)(r',y,s) > 3 for some (y,s) € Qa,(z,t) and second from Harnack’s inequality
that Lemma 4.1 is valid when K* < K < (14+n)K*.

Next we consider case (b). We claim there exists a finite subcollection S’ of S
such that if Q € S’ and / = W then

@

1) Y@l o Quln b,

Qes’

(©) 6(Q, Q") = 4n max{s(Q), s(Q') }.

In (4.11)(a), s(Q) denotes the side length of @) in the space direction. To prove our
claim we let

(4.12) T(Q) = (2-"*s(Q), d) x Q

whenever ) € S and observe from (4.12) as well as the definition of S that

o= (N+1) ¢

(@)
/H(Z,s)dszdzo < (1-7)K*|Q|,
Q

(4.13) // HdZdr > 7 K*|Q|.
T(Q)

Clearly

(4.14) T(Q), T(Q"),Q,Q" have disjoint interiors
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whenever Q, Q" € S and @ # @Q’. From the induction hypothesis and (4.14) we note
that

2=V 5(Q)
> / / H(Z,s)dzdrdz + Y / / H(Z,s)dZ ds
0 Q T(Q)

(4.15)  Qes Qes

< (L+n) K7[Q.
Using (4.12) - (4.15) and the definition of 7 we obtain

o—(N+1) s(Q)
Z/ / H(Z,s)dzdr dzg < K* (1 — (100n)°" ') |Qa(x,t)] .
Qes ™0 Q
Now

Y 1Q1 = (1 209)[Qalz, )|

QeSs
since |F*| < 2n. Claim (4.11) follows from these two inequalities, weak type esti-
mates, and a covering argument.

Next we suppose 19(K) < no(K*)n"t2 for K* < K < (1+ n)K*. We shall

show the existence of a finite subset S = {Q, (yi, i) }4 of S’ and Qar: (2i,7i) C

Q- (yi, i) such that for 1 <i <, we have %77 < :—; < n and

W H(Z,7)dZdr < K*\Qu (26,7,
(0. X1 (20.7)
(i) [EN Qi (zi,7)| 2 (1= n0(K7))|Qy (25 7)1,
(4.16) !
(i) Y 1Qu(zi )| = "2 |Qala, )],
i=1
(iv) Either r > 1d/100n for some Q,(y,s) € S or

UQQS’ Q - le(ﬂf,t).

In (iv),d; is defined as in case (a). (4.16) () is a consequence of (4.11)(a) and
our usual weak type argument. (4.16) (i4), (i), (iv) follow from (4.11)(b) and a
counting argument using the definition of 79(K). We omit the details.

First suppose there exists Q,, (yi,s;) € S with r; > 1d/100n. Then from (4.16)
(1), (i7) and the induction hypothesis we see that cu(r}, z;, 7; +2(r%)?) > 1 for some
¢ having the same dependence as 1. From this inequality and Harnack’s inequality
we conclude that Lemma 4.1 is valid for K* < K < (1 +n)K*. Thus we assume
that the second alternative in (4.16) (iv) occurs.

Put Fy = {(y5,5:) : Qr,(yi,5:) € S} and let

G5(z,7) = {

We now are in a position to essentially repeat the argument in case (a) from (4.6)

ri when |z —y;| + |7 —si|V/2 <y 1<i <
= 6(z,7, Fy), otherwise in R™.

on. More specifically we define ) as in case (a) relative to & and use (4.4), to show
that (4.6), (4.7) are valid. Let o4 € C§°(R"™) be a parabolic regularization of &
constructed so that (2.19) (a)—(c) are valid with o, & replaced by o, &, respectively.
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Define A;, B; as in (4.8) with o replaced by o4. Then as in the first case we see
from (4.6), (4.7), for ¢; large enough, that A;, B; satisfy the hypotheses of Lemma
2.1 with Qu(z,t) replaced by Q. (y, s) whenever @, (y,s) C Qa(x,t). Consequently,
Lemma 3.37 of chapter I, (3.1), and Lemma 3.6 are valid for w;. Next we define
¥, p,Q relative to o4 as in case (a). Let v be a solution to (1.1) corresponding to
A1, By. Then from (2.19) (b), (2.25)-(2.28), and the remark after Lemma A we see
that v o p satisfies (1.1) relative to some Az, By and Lemma 3.37 is valid for the
corresponding parabolic measure, wo. Next from (4.11)(c) and the definition of &
we see that Lemma 3.33 can be applied with K = UQGS Q. Applying this lemma
we get for some ¢”” > 1 having the same dependence as 7y,

"wo(d, z,t 4 2d2, Uges Q) > 1

Now as above we see from (4.16) and the induction hypothesis that for each i we
have cu(r!, z;, 7, +2(r})?) > 1. Using this fact and Harnack’s inequality we conclude
that there exists ¢* > 1, for which ¢c*uop > 1 on Qrg(zi,n- + 4(T§)2 ), 1 <i<lI.
Let ug be the solution to the continuous Dirichlet problem for (1.1), Ag, By, with
us = u o p on OU. From the previous inequality for u o p we deduce that

(4.17) Fug > wal,UQu (2, i + 4(r))%) ) -

Also from the above inequality for wy and Lemma 3.37 (3) we find for some ¢** > 1
with the same dependence as 7 that

(4.18) ¢ wa(d, @, t 4 2d%,UQy (21,1 +4(r)%) ) > 1.

Using (4.17), (4.18), we can now argue as in case (a) to get first (4.9) with F
replaced by Qs (2i, 7 4 4(rj)?) and then (4.10). As in case (a) we conclude
from (4.9), (4.10) that Lemma 4.1 is true when K* < K < (1 4+ n)K*. We put
no(K) = no(K*)n™*2 and observe for this value of 79, that Lemma 4.1 is true for
the above values of K. By induction we now obtain Lemma 4.1. O

To finish the proof of Theorem 1.10 we need to show the continuous Dirichlet
problem corresponding to A, B always has a unique solution. Indeed let B;(X,t) =
B(zo+j ' x,t) for j =1,2,..., and (X,t) € U. Now B; converges pointwise to B
almost everywhere as j—oo and A, B; satisfy the hypotheses of Lemma 4.1 when-
ever Qq(x,t) C R™ with constants independent of j since cu*[(0,d) x Qq(x,t)] >
1:[(0,d) x Qq(z,t)] for some ¢ = ¢(n) as follows from interchanging the order of
integration in the integral defining p.. Also since B; is essentially bounded we can
use the remark after (3.22) of chapter I and the same argument as in (i) — (iv) of
Lemma 3.37 in chapter I to deduce that the continuous Dirichlet problem for A, B;
always has a unique solution. From this fact and Lemma 4.1 we see that (3.1) holds
for the corresponding parabolic measures with constants that are independent of
j. Thus Lemma 3.2 is valid with Ay, B; replaced by A, B; and with constants that
are independent of j. Lemma 3.2 with uniform constants can be used to show that
the continuous Dirichlet problem corresponding to A, B has a unique solution (this
is the gist of (i) — (iv) of Lemma 3.37). We can now use Lemma 4.1 for A, B to
conclude first that (3.1) is true for the corresponding parabolic measure and second
from Lemma 3.6 that Theorem 1.10 is true. O

Proof of Theorem 1.13. Finally in this section we show that Theorem 1.10 im-
plies Theorem 1.13. We again prove a more general result for use in chapter III.
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Lemma 4.19. Let Ay, B1,w; be as in the hypotheses of Lemma 3.6 and let p > 1
be as in the conclusion of this lemma. If ¢ = p/(p — 1), then the LY(R™) Dirichlet
problem for Ai, Bi always has a unique solution in the sense of (I) and (II) of
Theorem 1.13.

Proof: To prove this lemma we note first from Harnack’s inequality that whenever
k>1and E C R" is a Borel set, then

wi(d, z,t 4 2d* E) < c(k,v, M,n)w (kd, z,t + 2k*d* E).
Since j;ils (kd,z,t+2k*d?,-) € ap(Qra(x,t)) with norm < cfor k = 1,2, ..., we see

that wy(d, z,t + 2d?,-) is absolutely continuous with respect to Lebesgue measure
on R" whenever d > 0 and (z,t) € R™. Thus if we put

dd;dls (d7$7t+ 2d27 ) = K(d7xat + 2d27 .)’

then

@) [ Kkt R g dyds < clQuata )]
Qra(w,t)

for some ¢ = ¢(vy1, M, no,m1,n) and k = 1,2,...,. For our estimates we shall use
the fact that (4.20) actually holds with p replaced by some p; > p and ¢ suitably
large(see[Gi, ch 5]). We suppose first that f € C§°(R™) N LI(R™) and set

u(X,t) = K(X,t,y,s) f(y,s)dyds,

R
whenever (X,t) € U. Clearly u is a weak solution to (1.1) in U. Now the continu-
ous Dirichlet problem for (1.1), Ay, By has a solution corresponding to f and this
solution is unique thanks to the maximum principle in Lemma 3.38 of chapter L.
Using basic functional analysis arguments we see that w is this solution so u extends
continuously to U and u = f on U. We prove (1) only for N f in (2.14) of chapter
I defined relative to parabolic cones with a = 1. The proof for general a > 0 is
similar. We assume as we may that f > 0. Given (z,t) € R" and (Y, s) € I'1(z,t),
we let d = yo. Next we choose a sequence of continuous functions on R™ with

(a) ¢o =1 on Qa4(x,t) and supp ¢g C Qua(x,t),

(b) ¢j =1on Q2j+1d(I7t)\Q2jd(I,t) fOI‘j: 1,...,
and supp ¢; C Qaiv2q(x,t) \ Qai-14(x,t) for j=1,...,
(¢) 0<¢; <1, forj=1,...,.

From Harnack’s inequality we observe that

ctu(Y,s) < u(d,z,t+2d%) < Z/ fo; dzdr
j=0 /B

(4.21)
=Y uj(dx,t +2d%),
§=0

where ¢ has the same dependence as the constant in (4.20). (4.21) is essentially the
same as (5.9) of chapter I. We can in fact repeat the argument after (5.9) to deduce
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first from Lemma 3.2 that
wj(d, ,t +2d*) < 279 u;(2973d, w, t + 22764%),
and second from (4.20) for p; > p that
wj(2713d, w,t + 22011 < c M(f7)(z,t)

where ¢; = plpil' Using the above inequalities in (4.21) and the Hardy - Littlewood

maximal theorem we see that (II) of Theorem 1.13 is valid when f € C§°(R™) N
Li(R™). The general case f € L1(R™) follows from the smooth case and the basic
estimates in Lemmas 3.3,3.4 of chapter I. (I) is easily deduced from (II) and the
fact that (I) is valid when f is continuous. Since this argument is well known we
omit the details.

To prove uniqueness, suppose u, v are both solutions to (1.1) satistying (I), (11)
relative to f € LP(R™). Then from (1.4) and our knowledge of parabolic pde’s with
constant coefficients we see there exists » > 0 such that v — v has a bounded
continuous extension to U \ @Q,(0,0) with u — v = 0 on U \ Q,(0,0). Next
given ¢ > 0 and (d,z,t + 2d?) € U we see from this fact and a measure the-
oretic argument (essentially Ergoff’s theorem) that there exists a compact set
K = K(e) € @-(0,0) ¢ R™ such that if v = (-, K U [R" \ @,(0,0)]) and
p(Y,s) = (yo + Pyyo¥(y,5),y,5),(Y,s) € U, then
(4.22)

(@) 1Q0,0\K| < e,

(b)  (u—v)opis continuous in U with (v —v)op=0on KU (R"\ Q,(0,0)).

We note that o < ¢(n)e'/*+1), Consequently for e small enough it follows from the
remark after Lemma A and (2.27)-(2.29) that (u— v) o p satisfies weakly in U a pde
of the form (1.1) corresponding to some As, By for which (1.2)-(1.4) are valid. We
also assume that c(n)e'/("+1) < d/2 so that (d/2,z,t + 2d?) € p(U). The idea now
is to construct w > 0 a solution to the Dirichlet problem for (1.1) corresponding to
Al, B1 with

(%) |(u—v)op| < wopon dU,
(4.23)
(%) For some fixed a > 0, ||[Now||pa(gn) = § where {—0 as e—0.

Here N, stands for the nontangential maximal function defined relative to a as in
(2.14) of chapter I. From (%) and the maximum principle in Lemma 3.38 of chapter
I we see that (u —v)op < wopon U. Using this fact and Harnack’s inequality we
deduce from (*x) that

lu —v|(d,z,t +2d*)? < w(d,x,t+ 2d?)?
< cd’(”“)/ wi(d, z,7) dzdT
Qd(w,t+4d2)

< cd—(n+1) HNawH ) < cd—(n+1) £a,

q
La(B"
where the ¢’s depend only on ~;, M, n. Since € > 0 and (d, z,t + 2d?) are arbitrary
we conclude that © = v. Thus uniqueness holds in Lemma 4.19 once we have proved
(4.23).
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To construct w we use a more or less standard argument. Given § > 0, let O be
an open set with O C @,.(0,0) \ K such that |(u —v) o p| < § on R™\ O. Existence
of O follows from (4.22). Let {Q;} be a Whitney decomposition of @,-(0,0)\ K into
parabolic rectangles with disjoint interiors and side lengths proportional to their
distance from K U 9@, (0,0). Let h > 0 be a continuous function on R" defined as
follows. If Q@ = Q#(9,5) € {Q;} and QN O # 0 let h = inf{§ + Ny(u —v)(z,7) :
(2,7) € Qra(§,8—7%/4) } = bon Qra(y, 8 —7*/4). Extend h continuously to the
rest of Q in such a way that h < b and h = 4§ on Q\Q,»./4(y,§f122/4). fQNO =10
we set h = 6 on Q. We also put h = § on K and Q2,(0,0) \ Q,(0,0). Finally we
extend h continuously to the rest of R™ in such a way that h is nonnegative with
supp h C Q4,(0,0). Let

w(Y,s) = c’/ Wz, T)K(Y,s,2,7)dzdr
Rn,

when (Y, s) € U. We reserve our choice of @ and ¢ until later. Then w is the solution

to the continuous Dirichlet problem for (1.1) corresponding to Ay, By with w = ¢ h

on QU. To prove (*) we observe first from positivity of h that
0=I(u—v)op| < wopon KU(R\Q0,0)).

If Q#(7,8) € {Qi}, then there exists Q,(y',s') € {Q;} with s’ < § — 72 and

Q- (y',s") N Q#Y,8) # 0. From the definition of h,w we find for (y,s) € Q#(7,3)

and a, ¢’ large enough (depending only on 1, M, 19,71, n) that

woplys) = ¢ [ K(ply.s) s (e r)dzdr
Q. (y',8")

v

c |(u—v)op|(y, s)/ K(p(y,s),z,7)dzdr
Q,rya(y’ ' —(r")2/4)

%

[(u—wv)opl(y,s).
Here we have used (3.1) with E = Q,//4(y/,s' — (r')?/4) and Harnack’s inequality.
Thus (%) is true. (#x) follows from (II) and properties of the Lebesgue integral.
The proof of Lemma 4.19 is now complete. O

To prove Theorem 1.13 we simply observe from Theorem 1.10 and Lemma 4.1
that we may replace A;, By by A, B in the hypotheses of Lemma 4.19. O

Remark. It would be interesting to know if Lemma 4.1 has a simpler proof when
E = Qq(x,t). This special case of Lemma 4.1 is all that was needed to prove Hélder
continuity for solutions vanishing continuously on Q4(z,t) in Lemma 3.2. Perhaps
Lemma 3.2 is even valid with less restrictive assumptions on A. More specificallly
is the conclusion of Lemma 3.2 valid if we assume only that A, B satisfy (1.2)-(1.4)
and B satisfies (1.5)7

As regards the doubling property of w mentioned in the remark after the state-
ment of Theorem 1.10, we note that if V- B = 0 weakly, then the adjoint pde (3.1)
is similar to (1.1), so for example Lemma 3.2 holds with (1.1) replaced by (3.1).
In this case we have managed to use the method in [FS] to prove that parabolic
measure corresponding to (1.1) is doubling. We omit the details of the proof in this
memoir. For further remarks concerning parabolic doubling see the remarks after
sections 10 and 11 of this memoir.
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CHAPTER III

ABSOLUTE CONTINUITY AND THE LP DIRICHLET PROBLEM:
PART 2

1. INTRODUCTION

In this chapter we consider parabolic generalizations of a theorem of [FKP]. To this
end, recall that throughout this memoir we have considered weak solutions u to
pde’s of the form

(1.1) Lu=u—V-(AVu) — BVu=0

in U under the following structure assumptions on A, B.

(1.2) (AX, 1€, €) > mle?

for some 1 > 0, almost every (X,t) € U and all n x 1 matrices &.
n—1 n—1

(1.3) S wolBil + Y Ayl | (X, t) < M < oo
i=0 i,j=0

for almost every (X,t) € U. For some large p > 0,
(1.4) A = constant matrix in U \ @,(0,0).

We also assume for given A, B satisfying (1.2)-(1.4) and some A\,;p, 1 < A\, p < 00
that
(1.5)

(a) The continuous Dirichlet problem for (1.1), A, B has a unique solution,

(b) If w is parabolic measure for (1.1), A, B, then \w(d, x,t + 2d?, Qq(x,t)) > 1,

(C) ”ﬁ(dvxat + 2d23 ')”ap(Qd(w,t)) <A< oo,

for all (z,t) € R",d > 0. Next given (X,t) € U and A, As, By, By satisfying
(1.2)-(1.4) put

(X, 1) = esssup {5 |Ar — AP (Y, 5) + 20 (1B + | Baf?) (Y, 5)

(Y, 5) € Qupy2(X, 1) } dXdt.
We assume that v is a Carleson measure on U with
(L6) Wl < 8 < .

With this notation we prove in sections 1 and 2, the following parabolic analogue
of Theorem 2.3 in [FKP].

Theorem 1.7. Let Ay, Aa, By, Ba, satisfy (1.2)-(1.4) and (1.6). If (1.5) holds for
Ay, By and some A1, p1, then there exists Ao, pa > 1 such that (1.5) is valid with
79



A, B, A\, p replaced by As, Ba, Ao, pa. Moreover, if go = pa/(p2 — 1), then for

80
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g2 < q < 00, the LY(R™) Dirichlet problem for (1.1), As, Ba, always has a unique
solution in the sense of (I),(II) of Theorem 1.13 in chapter 2.

Remark 1) We note that Nystrom [N] has obtained analogues of theorems in [FKP]
for pde’s of the form (1.1) when B =0 in Lip ( 1, 1/2 ) domains. He does this by
first showing that the argument in [FS] (see chapter I) can be generalized to Lip
(1, 1/2) domains in order to obtain that the corresponding parabolic measures are
doubling. After getting doubling, he is able to use a proof modeled on the one of
[FKP]. Our situation is quite different as we have not been able to prove that (1.5)
implies w is doubling, which is an important ingredient in the proof of [FKP]. Again
the main reason we cannot prove doubling (as in Theorem 1.10 of chapter II) is
because we cannot prove basic estimates for the adjoint pde corresponding to (1.1).
This lack of doubling considerably complicates our proofs. For example we were not
able to get an L" bound for the area function in terms of the nontangential maximal
function or vice versa (as concerns solutions to (1.1) corresponding to Ay, By) and
thus were forced to devise a proof different from [FKP] which does not use these
bounds.

2) As for a proof we follow the general strategy of Theorem 1.10 of chapter II and
first show that this theorem is valid when a certain measure involving A; — As and
Bj — By satisfies a Carleson measure condition similar to the one considered in [Fe]
and [FKP], with small Carleson norm. In order to do this we begin by proving
existence and making some basic estimates for the Green’s function corresponding
to A1, By (see Lemma 2.2). We then study solutions to the equation Lu = V- F + f
in Lemmas 2.6, 2.10. Finally we use these lemmas, as well as Picard iteration, to
first prove Lemma 2.23 and second in Lemma 2.42 that Theorem 1.7 is valid in this
special case.

3) After proving the above special case we consider the general case of Theorem 1.7.
Our argument in this case is necessarily more complicated than the one in [FKP].
To see why we note that these authors get the large Carleson norm special case
considered in [Fe| (see Theorem 2.4 in [FKP]) simply by applying their estimates in
the small norm case to t —tAs+ (1 —t)A;, 0 <t < 1, on short intervals depending
on the Carleson norm. This argument works because the above authors have basic
estimates for their pde’s which involve constants depending only on the ellipticity
constants for A;, A;. Unfortunately our basic estimates depend in addition to the
ellipticity constants on A in (1.5)(b). Thus our estimates can vary with ¢ and so
could conceivably blow up for some ¢ < 1.

To overcome this difficulty we extract the case when either A; = Ay, Bo =0 or
B; =0, from the special case mentioned in 1), by an induction type argument sim-
ilar to the one we use in proving Theorem 1.10 of chapter II. Again the comparison
lemmas for parabolic measure in section 3 of chapter II will play an important role
in the proof (see the remark after the statement of Theorem 1.10). The above two
cases are easily seen to imply Theorem 1.7.

4) Theorem 1.7 is proved in sections 2 and 3. For possible generalizations of this
theorem see the remark at the end of section 3.

5) For elliptic operators we can prove a stronger version of Theorem 1.7. In order to
state this theorem let A, Ao, By, By satisfy (1.2) — (1.4) with (X, ¢) replaced by X
and suppose that (1.5) is also valid with (x,t + 2d?), Qq(x,t), replaced by x, By(x)
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and w = elliptic measure corresponding to A, B;. Set
dr(X) = esssup {z5"' [A1 — A32(Y) + w0 (|B1 — Bo|*)(Y)

1Y € BIO/Q(X) } dXdt.
We assume that 7 is a Carleson measure on U with
(1.8) 7] < B < oo.

With this notation we prove in section 4, the following analogue of Theorem 2.3 in
[FKP].

Theorem 1.9. Let Ay, As, By, By, be as above. Then there exists Ao, po > 1 such
that (1.5) is valid with A, B, \,p, (x,t), ap(Qa(x,t)) replaced by As, B2, A2, D2, T,
B5(Ba(z)). Moreover, if go = pa/(p2 — 1), then for g2 < q < oo, the LY(R" 1)
Dirichlet problem always has a unique solution in the sense of (I), (IT) of Theorem
1.15 of chapter II.

Remark. 1) Theorem 1.9 when B; = By = 0 is equivalent to Theorem 2.3 in
[FKP]. Our proof of Theorem 1.9 is different than [FKP] even in the case when
B;1 = Bs = 0. As mentioned in remark 1) after Theorem 1.10, our proof avoids the
use of S and N functions. Also when By or By # 0, we are forced to give a more
complicated argument in the large Carleson norm case of Theorem 1.9 (see remark
3) after Theorem 1.7). The reader is invited to compare the two arguments.
2) Note that (1.8) is a weaker assumption than (1.6). Again we can prove a stronger
theorem in the elliptic case mainly because in Lemma 4.6 we shall show that an el-
liptic measure satisfying (1.8) is necessarily doubling. Our proof of doubling differs
from the usual proof where one estimates w(d, x, B,.(y)) in terms of r2~"G(d, x,r,y)
when Bs,.(y) C By(z), by choosing an appropriate test function and using essen-
tially subsolution estimates in (—r,7) x B,.(y). This proof is not available in our
situation so instead we use an iterative procedure to obtain the above estimate.
Finally in section 4 we prove Theorems 1.14-1.15 stated in chapter II. For a closing
remark on parabolic doubling see the remark at the end of section 4.

The authors would like to thank Carlos Kenig and Jill Pipher for sharing their
work with them at an early stage (see the remark following the statement of The-
orem 1.14 in chapter II).

2. PROOF OF THEOREM 1.7 IN A SPECIAL CASE

As mentioned in section 1, the proof of Theorem 1.7 will proceed in the same way
as the proof of Theorem 1.10. That is we first prove this theorem in a special case
(Lemma 2.42) and then in section 3 extrapolate the general case from this special
case using Lemmas 3.6, 3.22, and 3.33 of chapter II. On the one hand Lemma 2.42
is more difficult to prove than Theorem 2.13 in chapter I in the sense that we do
not know to begin with whether it suffices to consider only smooth Ay, B;.As, Bs.
Thus we must review our basic estimates in section 3 of chapter I and establish the
existence of the Green’s function as well as some of its properties for (1.1) corre-
sponding to A, B;. On the other hand once we do our preliminary investigations,
most of the remainder of the proof (see Lemma 2.23) will involve estimating the
terms in a certain iterative sequence wheareas the proof of Theorem 2.13 involved
numerous integrations by parts. We note as in section 1 that our proof manages to
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avoid any LP(9U) estimates of Su in terms of Nu. In fact we have not been able to
determine whether such estimates are valid for solutions u to (1.1) (corresponding
to Aj, B1) with LP(OU) nontangential limits. The essential difficulty in trying to
prove such estimates as in [DKJ], is that we do not know whether parabolic mea-
sure corresponding to Ay, B; restricted to a parabolic sawtooth domain is doubling,
so that we cannot apply Lemma 3.22 of chapter II. Luckily for our extrapolation
scheme to work we do not need such estimates.

To begin let A, B satisfy (1.2)-(1.4) and suppose that the continuous Dirichlet
problem for (1.1), A, B, always has a unique solution. If w denotes the correspond-
ing parabolic measure we assume for some positive ¢* < oo that

(2.1) cFw(d, w,t+2d%, Qq(x,t)) > 1

whenever d > 0 and (x,t) € R". Our first lemma is

Lemma 2.2. Let A, B be as above and suppose that w satisfies (2.1). There exists
G : U x U—R with the following properties. If (X,t),(Y,s) € U, (X,t) # (Y, s),
and r =|X = Y|+ |s — t|'/2, then for some ¢ > 1,0 < 0 < % (depending only on
v1, M, n,c*), we have

(a) G(X,t,Y,s) < er™™0<r<yo/2,

(b) G(X,t,Y,s) < cyy"w(X,t,Qr (2,7)) for (2,7) € Qyy /16y, 5),
T >y0/2,90/4 <71 < Yo,

(c) G(X,t,Y,s) < c(zo/r)? G(X,f,Y,s) forr > xg and

X = (zo+7,0,...,0), t =t +2r2,

(d) G(,Y,s) and G(Y,s,-) are weak solutions to(1.1),(3.1)
respectively (see chapter I) in U\ {(Y,s)},

(e) If 0 < dy,d2 < min {r/100n, yo/2, x0/2}, then G(-, -) is
Hélder continuous on Qg, (X,t) X Qa, (Y, s), with exponent
independent of dyi,ds, (X, t), (Y, s).

Proof: Recall that in section 3 of chapter I (see (3.6), (3.7)) we defined the Green’s
function G relative to A, B satisfying (1.2)-(1.4) when either B = 0 or A, B are
smooth. Moreover (d), (¢) were valid with G replaced by G. Also for (V,s) € U
the functions G(Y,s,-),G(-, Y, s) had a continuous extension to U \ {(Y,s)} with
G(Y,s,-) = G(-,Y,s) = 0 on dU. We note that (a) of Lemma 2.2 holds with G
replaced by G and ¢ by a constant depending only on n as well as the constants in
(1.2), (1.3) for A, B. In fact the proof of (a) of Lemma 2.2 in the smooth case for
r &2 yo was given in (3.23), (3.24) of chapter I. The proof for other values of r is
the same.

We shall essentially get G as a certain weak limit of smooth Green functions.
However to prove (b), (¢) of Lemma 2.2 we need to carefully choose the sequence.
For this purpose, let A;(X,t) = A(zo + j ', z,t), Bj(X,t) = B(zo + j %, x,1)
for j = 3,4,..., and (X,t) € {(Y,s) : yo > —j '} Then A;, B; satisfy (1.2)
- (1.4) and for fixed j, B; is essentially bounded by Mj. Now we can choose
sequences of smooth functions which satisfy (1.2) - (1.4) (with uniform constants)
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and converge pointwise on U to A;, B;. Using the basic estimates in Lemmas 3.3 -
3.5 of chapter I we see for fixed (Y, s) € U and j that a subsequence involving smooth
G(-,-) converges uniformly in a certain Holder norm on Qg, (X,t) X Qa,(Y,s) to
G,(-,-). Here dy,ds, (X,t),(Y,s) are as in (e) of Lemma 2.2. We can also choose this
subsequence so that for each (Y, s) € U, the sequences involving G(, Y, s), G‘(Y, 8,°)
converge weakly in L?(—d? + 7,d* + T, Hlloc (Qd(Z, 7)) to G;(-,Y,s),G,;(Y,s,-),
whenever Qq(Z,7) C U\ {(Y,s)}, where E = {X : (X,t) € E for some t €
R}. From the above remarks we observe that (a) of Lemma 2.2 (with a constant
depending only on 71, M,n) and (d), (¢) of Lemma 2.2 are valid for G; (with an
exponent depending only on 1, M, n). Now since || B, ||Loo(U) < Mj we can further
choose A, B in our sequences so that (3.13) of chapter I holds uniformly in rectangles
of small side length which touch OU. From this fact and the remark after (3.22) in
chapter I we see that Lemma 3.9 of chapter I holds for /Al, B with uniform Holder
exponent and constant. Using this fact, Harnack’s inequality, and (a) of Lemma
2.2 for the Green’s functions in the sequence, we deduce that (¢) of Lemma 2.2 is
valid for G; with a constant which may depend on j.

We now use Lemmas 3.3 - 3.5 of chapter I to argue as in the above smooth
case and get G satisfying (a), (d),(e) of Lemma 2.2, as a certain weak limit of
a subsequence of {G;}. Let w;(X,t, ) = w(zo + i Y a,t,), for (X,t) € U.j =
3,4,...,. Then w? is a weak solution to (1.1) in U relative to A;, B; and from (2.1)
as well as (a) of Lemma 2.2 we find

(2:3) G;(-,Y,8) <eyo " Wil @ (2,7))

on 0Qy, /100n (Y, s) whenever yo > i Y (z,7) € Qyo/16(y, 8), and yo/4 < r1 < yo.
From (c¢) of Lemma 2.2 for G; we see that G;(-,Y,s) has continuous boundary
value zero. Using this fact, (2.3), and the maximum principle (see the remark after
Lemma 3.38 of chapter I) for solutions to (1.1) we conclude that (2.3) holds in
U\ Qyy/100n(Y; s) with a constant independent of j = 1,2,...,. Letting j—o0 in
(2.3) we get (b) of Lemma 2.2. (¢) of Lemma 2.2 is a consequence of (b), Lemma
3.2 for A, B, of chapter II and the fact that w(-, @, (z, 7)) has continuous boundary
value zero at points of R\ Q,, (z,7). The proof of Lemma 2.2 is now complete. O

Next suppose that either Q@ = U or Q@ = Qq(X,t) NU for some d > 0, (X,t) € U

and also that v € L*(=T,T,HY__ (U)),0 < T < oo, satisfies

(2.4) /U[<A*VU+F, V&) — (B*Vo 4+ f) —v&]dYds=0

whenever £ € C§°(Q2) and A*, B* satisfy (1.2)-(1.4). Here F = (Fp,...,F,_1) and
f, F; € L3(U) for 0 < i < n — 1. Also f, F; each vanish outside of a compact set
K C U. We say that v is a weak solution to L*v = V - F + f in Q where L* is
as in (1.1) relative to A*, B*. Let di < d2 and Qg,(Y,s) C Q. We shall need the
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Cacciopoli inequality:
/ |Vo|? dZdr
Qa, (Ys8)

(2.5) < c/ IF? + (do — d0)? f2]dZ dr
Qay (Yss)

—2 2
+ C(d1 — dg) deg(sz)\le (Y,s) vedZdr.

Here ¢ depends on n, the distance of Qg,(Y,s) to 9Q and the constants in (1.2)-
(1.3). If do < yo/2, then ¢ can be chosen to depend only on n and the constants
in (1.2), (1.3). (2.5) follows easily from (2.4) by using Cauchy’s inequality with €’s
and routine juggling, once it is shown that ve~* times a certain cutoff function can
essentially be used as a test function (see [A]). Let O be an open set with K C O
and O C U. By a solution to the Cauchy problem Lu = V- F + f, u|py = g, where
g is continuous and bounded on AU, we mean a function u € L*(=T,T, Hlloc (0))
for 0 < T' < oo which is bounded outside of O, satisfies (2.4) in U (with A*, B*
replaced by A, B) and is continuous on U with u = g on OU. With this terminology
we prove

Lemma 2.6. Let A, B,w,G be as in Lemma 2.2 and f,F as in (2.4). Then for a
given continuous, bounded g on AU, the Cauchy problem, Lu = V-F + f, ulogv = ¢
has a unique solution:

u(X,t) = /8U gdw(X,t,-) + /(J[*(F, VzG(X,t,)) + fG(X,t,-)]dZdr.

Proof: Put u*(X,t) = [, gdw(X,t,-) and
U**(X,t) = /[_<Fa VZG(X7t7)> + fG(thv)]dZdT
U

for (X,t) € U. We first consider u**. Replace G, f, F by G, f, F in the definition of
u**, where G is as above, and call the resulting function 4. We assume that f 7}:_'
have support in O. Then from Schauder type estimates we deduce for smooth f , a
that 4 is the unique solution to the Cauchy problem La=V-F + f, iloy = 0,
where L is defined as in (1.1) relative to A, B. Choose 0 < dy < da,(Y,s) so
that O C Qg,(Y,s) and Qg,(Y,s) C U. Recall that Lemma 3.9 of chapter I held
uniformly for the sequence we used to define G; (with constants that could depend
on j). Thus we can use (a) — (¢) of Lemma 2.2 and Lemma 3.3 of chapter I for G
as well as (1.4) to conclude that @ is uniformly bounded on U \ Qg (Y, s). Using
this fact, (2.5), and essentially Poincare’s inequality, we deduce that

(2.7) lallz2(@u, (v < e(lfllzw)y + 1 F 2@y )-

Here ¢ depends on j,n,ds — dq, the distance of Qg4,(Y,s) to OU and the con-
stants in (1.2)-(1.3). Next from (2.5), (2.7) we see that 4 is locally bounded in
L*(-T,T, Hlloc(U)), 0 < T < oo, with constants having the same dependence as
¢ above. Approximating f, F' by smooth f , I whose supports are all contained in
O and taking a weak limit as in Lemma 2.2 we get a solution @; to the Cauchy
problem, L;i; = V- F + f, 4 |so = 0, where L; is defined as in (1.1) relative
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to A;, B;. From our construction of G;(-,-) as a certain weak limit and estimates
using (a) — (¢) of Lemma 2.2, Lemma 3.3 of chapter I, it can be deduced that

(2.8)  i,(X,t) = /U[—(F, V2 Gy(X,0)) + fG(X.t,-)] dZdr, (X,1) € U.

Also from (2.3) and Lemma 3.3 of chapter I for G; we see that we can use (2.5) for
Jj large to get (2.7) with @ replaced by @, and constants independent of j. Thus we
can take a subsequence of the subsequence of j’s used to define G so that the corre-
sponding subsequence of {i;} converges weakly in L?(—T,T, Hlloc(U))7 0<T < oo,
to 4, a solution to the Cauchy problem L = V - F + f, @t|]sy = 0. Finally from
(2.8), weak convergence, Lemma 3.3 of chapter I, and (a) of Lemma 2.2 it can be
shown that @ = u** almost everywhere on U. To complete our analysis of u** we
note from (c) of Lemma 2.2 and Lemma 3.3 for G that v**(X, t)—0 as o—0. As for
u*, we see by an easy functional analysis type argument, that this function is the
solution to the Dirichlet problem for (1.1), A, B with boundary function g. Thus
u = u* + u** is the desired solution. Uniqueness of u follows from the maximum
principle in Lemma 3.38 of chapter 1. O

Next we put

(2.9) E; = E;(X,t) = Qaige (X, 1)\ Qoi-1,,(X,t) for j =0,=£1,...,

and with this notation prove
Lemma 2.10. Let f, F,v be as in (2.5) relative to A, B,Q) = Quq, (X, t)NU. Then

/E Vo2 G(X,t,-)dYds < c||vx||2oo(U) + cllox| L= @) /UG(X,t,-)|f|Xdes
0
+ elfoxllz= ) (/ VG(X,t,)| |Fly dYds +cm51/ G(X,t,-)|F|Xdes)
U U

4 c/ G(X,t,) |F[2 x dYds,
U
where x denotes the characteristic function of Qaouz,(X,t) \ Qqgy/a(X,1).

Proof: Recall formula (3.6a) of chapter I for smooth A, B, G. Taking a limit as
above we see for ¢ € C§°(R™!) and fixed j, that
(2.11)

H(X,1) :/U [(A;V6,Vy Gy (X,1,)) + Gy(X,1,-) (65 — B; V)] dYds

+ ¢(y?8) de(X,t,y,S),
ou

whenever (X,t) € U, where w; is parabolic measure defined relative to A;, B;. Let
Q = Q200 (X, 1) \ Qz,/4(X,t) and let 6 € C5°(Q) with

2o |VO|(Y,s) + 2§ |26|(Y,s) < c(n) for (Y,s) € Q

while 0 = 1 on Q, (X, 1)\ Qy,/2(X,t). Next let x be an even function in C§°[(—1,1)]
with [, kdx =1 and first derivatives bounded by ¢(n). Let x5(7) = ! k(7/4) for
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given § > 0 and if g is an integrable function on R let g * ks denote convolution
of g with xs. If h is a real valued function defined on a subset of R"*! we put
hs(Y,s) = h(Y,-) x ks(s) whenever the convolution makes sense. Finally we extend
G;(X,t,-) to a continuous function on R"™*\ {(X,¢)} by putting G;(X,¢,-) =0 in
R\ UL

For v as in Lemma 2.10 we assume, as we may, that [[vx|z~@) < oo and
put v;(Y,s) = v(yo + 37" y,8), [i(Y,s) = flyo+ 5" y,s), FI(Y,s) = F(yo +
71, y,5). Then for j large enough we find that

(i) v, satisfies (2.4) relative to A;, By, f;, F? in
Q; ={(Z,7): (Z,7) € Q34 (X,t) and zp > —j ' },

(2.12) (#i) v, is Holder continuous in a neighborhood of @ N U,

(133) |VG|(X,t,-) has square integrable distributional derivatives on
Q4z0(Xa t) \ on/s(X, t)'

(1) is a consequence of Lemma 3.4 of chapter I for v and the fact that f, F' have
compact support. (4ii) follows from || By < Mj and the same argument as
in (3.18) of chapter I. Approximating by smooth functions and using (2.12) we see
that the function £ defined by

€{ [(vj)s 0% G;(X,t,) s on UNQ,
T 1 0inQ\U

can be used as a test function in (2.4) for v;. Putting this function in (2.4) we get
after some rearranging that if w = (v;)s, and V = Vy, then
(2.13)

b= [ (4905, Vwe? 6,(X.t.)]) aYds
Q

= ‘/Q(B]'V’Uj)g wGQGj(X,t,)des—i—/Q(fj)gw92Gj(X7t7)des

_/Q<Fg,v<w92Gj(X,t,-))>des— ;/Q 2 (4?)02 G, (X, 1, ) dY ds

=D + Iz + 14+ Is.

We note that
(2.14)

I :/ <Aij,Vw>9QG(X,t,-)des+/ (A;Vw, V02 wG (X, t,)dYds
Q Q

+§/Q<AjV<w 0)%, VG(X,t,-))6%) dYds — /Q< AjV0,VG(X,t,-) jw? 6dY ds

+/ ((A;Vvj)s — A;Vw,VI[wb? G;(X,t,-)])dYds
Q

=11 + 1o+ Lz + Lia + Iis.
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Also
(2.15)

I = %/QBJV(wH)ZGj(X,t,~)des - /QBj VO w20 G;(X,t,-)dYds

+/[(Bva)5 — B;jVw)|w6*G;(X,t,-)dYds
Q

= Ip1 + Izp + Ip3.

From (1.2) we see that
(2.16) / |Vw|?6? G(X,t,-)dYds < cIi; .
Q

Using Cauchy’s inequality with € > s we deduce that
(2.17)
12| + [L1a] + |T22]

S illl + C||U’2XH%oo(U) mol(/Qyol Gj(thv') + |VG](X,t,)|de8)
We also observe that

I, = —/ (F{, Vw)6?G;(X,t,-)dYds
Q

/Q<F§,V(02)>ij(X,t,.)des/Qw92<Fg,VGj(X,t,.)>des

=141 + Iy + Iu3.

Moreover,

(2.18)
Lo |+ +|Luo| + Lz < 21 + c/ |FI20%2G;(X,t,-)dYds
Q

+elwbllimn [ 1P (55 Gy(X.1) + 019G, (6,1, Vs

Next approximating by smooth functions and using (2.12) we deduce that (2.11) is
valid with ¢ = (wf)?. From (2.11) and (a) of Lemma 2.2 we find that

(2.19) | =Tz + Io1 + I5| < C||w0||2L°°(U)'

Finally we note that the constants in (2.16)-(2.19) depend at most on the con-
stants for A, B in (1.2)-(1.4). We first let 6—0 and use (2.12) (i4¢) to conclude that
I15 + Is3—0. Then we let j—oo through values used in the sequence defining G.
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We deduce from (2.13)-(2.19) that
(2.20)
/ | Vo 202 G(X,t, ) dYds
Q

< el Moy [ 7! (57 G051+ IVGX )] avs]
+elolimw) [ GOEIISIavds+ e [ [F]IVGX. L]y
Q Q

+eag ol e [ IFIGX ) aYds + ¢ [ [FPGXE ) dYds.
Q Q

Now from (a) — (d) of Lemma 2.2 and Lemma 3.3 we see by the same argument as
in (3.30) of chapter I that

/ 0(z7 G(X.t,) + [VG(X,1,7) ) dZdr < ez0w(X,t,Quy (7)),
Qyg/16(Ys8)
whenever (z,7) € Q,,/16(Y,s). This inequality implies that

/ (25" G(X,t,) + |VG(X,t,-)|)dZdr
Q
(2.21)
S C/ y()_(n+1) w(X7t7Qy0/2(y, S)) deS S cxg-
Qoo (X,t)

In (2.21) the lefthand inequality is obtained from writing the first integral as a sum
over Whitney rectangles and using the above inequality. The righthand inequality
follows from interchanging the order of integration in the second integral. Putting
(2.21) into (2.20) we conclude the validity of Lemma 2.10. O

Armed with Lemma 2.10 we are ready to begin the proof of the special case of
Theorem 1.7 mentioned at the beginning of this section. To begin we assume only
that A, By satisfy (1.5) (a), (b) and not necessarily (c) of this display. That is,

(a) The continuous Dirichlet problem for (1.1), A1, By
always has a unique solution,

(b) If wy denotes the corresponding parabolic measure, then
>\1 U(Jl(d,.’L',t + 2d27 Qd(w7t)) Z L.

Let G be the Green’s function corresponding to (1.1), Ay, B;. We assume that
(2.22)
Either the backward Harnack inequality in Lemma 3.11 holds for Gy or Ay = A;.

Put
di(Y,s) = yg ! esssup {[|As — A1|> + 23 |B2 — B1|)(Z,7) :
(Za T) € QyO/IG(K S)}deS,

e}
g(ya S) = / d?/fis (Z()vy78> dZ() .
0
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‘We prove

Lemma 2.23. Let A;, B; satisfy (2.1)-(2.3) fori = 1,2. Suppose that A1, By satisfy
(1.5)(a), (b), and that (2. 22) is valid. There exists e3 > 0 depending on v1, M,n, A\
such that if ||&||Le@ny < €3, then the Dirichlet problem for (1.1) corresponding
to g (continuous and bounded on OU), Ay, Bo has a unique solution u given for
(X,t) e U by

U(X,t) = Ul(X,t) + -/U<(A2 —Al)Vu, VGl(X,t,)>deS

+/ (By — By) VuG1(X, t,-)dYds.
U

uy is the solution to the continuous Dirichlet problem for (1.1), Ay, By with u; =g
on OU. Moreover,

lu —u1llpoey < c(y1, M,n, A1) €3 |9l Lo (o)

Proof: Note that Lemma 2.23 does not make a Carleson measure asuumption
on By, By individually, as in Theorem 1.7. We first prove Lemma 2.23 under the
assumption that

(+) There exist 6 > 0 such that Ay = Ay and By =B in UN{(Z,7):20 < 6 }.

To show the existence of u satisfying the above integral equation, we use Picard
iteration. Put

uk»Jrl(X, t) = Ul(X, t) + / <(A2 — Al)Vuk y VGl(X,t, ) > dYds
U
/ (By — By) Vug G1(X, t,-)dY ds

= uy (X, 1) / Hp(X,t,-)dYds,
for k =1,2,..., whenever these integrals make sense. We write,
(ug —uy)(X,t) = Z / Hy(X,t,Y,s)dYds
j=—00

where Fj is as in (2.9) relative to (X,t). We note from ||7| < €% that
(2.24) ||A2 — A1||Loo(U) + Hl‘o (B2 — Bl)HLoc(U) S c(n) €3.

We also note that the interior estimates in Lemmas 3.3 - 3.5 of chapter I hold for
weak solutions to (1.1) in U corresponding to Ay, By, as we see once again from
approximating such solutions by smooth solutions and taking limits. Let 3 be the
exponent of Holder continuity in Lemma 3.4 of chapter I corresponding to (1.1),
A1, By. It j < —1 we deduce from (2.24), (a) — (¢) of Lemma 2.2, and Lemmas 3.3,
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3.4 of chapter I that

/ \HL|(X,t,-) dYds < ceg/ V| [y Gr(Xot ) + [VGL (X, t,-)|] dYds
E. .

J EJ

1/2
< ce3 (/ |Vu1|2des> (/ Yo 2G3(X,t,-) + |VG1(X,t,~)|2des>
E; E;

< ce3 299 |Juy|| ey < €329 ||g|l Lo o),

1/2

where the last inequality is a consequence of the maximum principle in Lemma 3.38
of chapter I. Summing over j < —1, it follows that

(2.25) / H (X, 1) dYds < ces|lg]l o= o0 -
Qwo/Q(X‘rt)

If j >0, put X; = (27w, 2),t; =t + 497523 for j = 0,1,...,. To avoid
confusion we indicate the dependence of E; on (X, t). We claim that
(2.26)

1/2
/ |H1|(X7tv') dYds < 6632ija / |VU1‘2G1(Xj,tj,') dYds
E;(X,t) Eo(Xj,t;)

where « is the exponent in Lemma 3.2 of chapter II relative to A, By. To prove
(2.26) we put
dp

in {|-——
,T){‘

@ =alZm) = dY ds

, m VAV, s

o 12(Y.5))

and note that if (Z,7) € E;(X,t),j = 0,1,..., then from (2.22), Lemma 2.2,
Lemma 3.2 of chapter II, and Lemmas 3.5, 3.3 of chapter I, we get for z5/1000 <
r < z0/64, that

(2.27)

|(A2 — A1)VU1| |VGl(X7t, )‘deS
Qr(Z,1)

1/2
< caz(gnﬂ)/2 G1(X,t, Z, 7 — 22/322%) (/ |Vuy|? des)
Q

’V‘(Z7T)

1/2
< ca27e 2" Gy (Xt Z, 7 — 22/322) </ Vg |2 des>
Q

i (Z7T)

1/2 1/2
< 02—ja (/ yo_lGl(Xj,tj, )dﬁ) (/ |V’U,1|2G1(Xj,tj, )deS)
Qr(Z,7) Qr(Z:7)

Next we divide E; into Whitney rectangles {Q,, (Z;, 7;)} with disjoint interiors and
such that if Q:(Z,7) € {Qy,(Z1,7)}, then £/1000 < r < Z,/64. Using (2.27) with
Q. (Z, ) replaced by the above Whitney rectanges, summing and using Cauchy’s
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inequality we obtain

/ (As — A)Vur| [VGL (X, t,-)|dYds <
E.f(X7t)
1/2
(228) CZ_ja (/ yO_1 Gl (Xja tja ) dD(Ya 8))
Eo(Xj,t5)

1/2
. </ ‘VU1|2 Gl(Xj,tj, )deS) .
Eo(X;:t5)

We note that Lemma 2.2 (b) holds for 0 < r < yp/4, provided we allow ¢ in
this equality to also depend on 77, as follows easily from the proof of Lemma 2.2.
Using this new version of Lemma 2.2 (b) for 1 = r1(n) > 0 sufficiently small and
interchanging the order of integration in the first integral on the righthandside of
(2.28) we get

/ yal G1(Xj,t;,-)do(Y,s) < ¢ &(y, s) dwi(z,t,y, s)
Eo(X;,t;) R"

(2.29)
< ce3.

Using (2.29) in (2.28) we see that

/ (As — AV | [VGL (X, 1, )| dY ds
E;(X,t)

1/2
< 02_ja63 / |VU1|2 Gl(Xj,tj,~)de8 .
Eo(X;,t5)
By a somewhat easier argument we also find that

/ |(B2 — B1)Vuy| G1(X, t,-)dY ds
EJ'(X’t)

1/2
< CQijOCEg / |VU1|2 Gl(Xj,tj,')deS .
Eo(Xj,t5)

From the above inequalities we deduce that claim (2.26) is true. From the fact that
u1 is a weak solution to Liu; = 0, Lemma 2.10, and the maximum principle we
get with (X, ¢) replaced by (Xj,¢;),
(2.30) [ vuP Gt dvds < clgl o,

Eo(X:t5)
Using (2.30) in (2.26) and summing we obtain
(231) / || Gr(X,t,) dYds < ces lgll 0w,

U\Qag/2(Xt)

Combining (2.31) and (2.25) we see that

(2.32) lug — u1ll oy < cesllgllne=(avy -
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Note from assumption (+) and Lemma 2.6 that ug is the solution to the Cauchy
problem Ljus = V- F; + f; where L; is the operator in (1.1) defined relative to
Al, Bl and

fi= (Bz - Bl)vul

F1 = (AQ - Al) Vul.

Using this note, Lemma 2.10, and (2.32) we see that u in L?(=T,T, H. (U)), 0 <
T < co. We also assert for 0 < r < x/2 and (X,t) € U that for some ¢ > 1, we
have

(2.33)

O(r,uz —uy) = 7“_”/ ( [V (uz —w)PdYds < ¢ (r/z0)” € ||l o (o0) »
QT X’t)

where again § is the constant in Lemma 3.4 for weak solutions to (1.1), Ay, Bj.
To prove (2.33) we observe from (2.5), (2.24), (2.32), and the above note that if
x0/100 < r < z0/2, then

S(r,uz —wr) < cdrn / Vs dYds + e} llgl3 on
Qzr/2(X,t)

< e |9l ov) -

Thus (2.33) holds for the above values of r. To prove this inequality for 0 < r <
20/100, we write us — u; = Cy 4+ Dy, where for (Z,7) € U,Q = Q,-(X,t), and
G, = G1(Z,7,+), we have

Cl(Z,T) :/<(A2—A1)VU1,VG1>CZYCIS+/(BQ—Bl)Vul G dYds,
Q Q

Dl(Z, T) = / < (A2 — A1)VU1, VGl > dYds + / (Bg — Bl) Vul Gl dYds.
U\Q U\@

Arguing as in the display above (2.25) we see for some ¢ = ¢(y1, M,n) > 1 that
CL(Z,7)| < cez(r/0) 9llL=(ov), for (Z,7) € U\ Qar(X, ).

Using this inequality, the fact that ®(r,u;) < ¢(r/x¢)??, and (2.5) for C; it follows

that there exists ¢* = ¢*(y1, M,n) > 1 for which

(2.34) O(r,C1) < €5 (r/20)* |9l < orr)- < ¢* € (r/20)" l9l L (ov)-

Next we note from Lemma 2.6 that D; is a weak solution to (1.1) corresponding
to Ay, By in Q. We claim for 0 < 100r; < r, that there exists ¢ = é(y1, M,n) > 1
such that

(2.35) ®(r1,Dy) < é(ri/r)?P ®(r/2, Dy).

To prove this statement we observe from Lemmas 3.3, 3.4 of chapter I that if
r/8 < p < r/4 and a denotes the average of D on Q,(X,t), then

O(ry, Dy) < c(ryfr)? =42 / (Dy — a)*dYds.
Qp(Xt)
So to complete the proof of (2.35) it suffices to show that the integral involving
D; — a times =72 is less than or equal to ¢ ®(r/2, D;). This estimate does not
follow directly from Poincare’s inequality since the gradient of D; is only in the
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space variable. However choosing an appropriate test function in (2.5) with u
replaced by D it is not difficult to show for some p as above and t —p? < s < t+p?

that if a(s) denotes the average of D; with respect to Lebesgue n measure on
Qp(X,t) N (R™ x {s}), then

la(s) — a| < c¢®(r/2,D1).

This inequality and Poincéare’s inequality applied in Q,(X,t) N (R™ x {s}) for t —
p? < s < t+ p? give the desired inequality. Thus (2.35) is valid. We now use
(2.34) and (2.35) to prove (2.33). We shall show that if (2.33) holds for some
r,0 < r < x0/100, with ¢t replaced by ¢, then for ¢ large enough there exists
0 =0(v,M,[3,n),0<6 <1, for which this inequality also holds at #r. That is,

(2.36) ©(0r,uz —u1) < &€5(0r/20)” |92 o0

Iterating (2.36) (starting with r» = 2¢/100) and using the fact that ®(p,us —u1) <
c®(r,uz — uq), for Or < p <r, we get (2.33). Hence we need only prove (2.36). As
for (2.36) we see from (2.34), (2.35) with r; = 6r, that

D(Or,ug —uy) < 2[0(0r,Cy) + ®(0r,D1)]
< 207" ®(r,C1) + 2¢6%° ®(r/2,Dy)
< (207" 4272028 6) D(r,Cy) + 272 ¢0% D (rup — up)
< (2677 +27428) ¢ + 2922620 2] (/o) € 12w o
We first choose # so that 2"+2¢60° = 1/2. We next put
E=207° (267" 42n2¢8) ",
From the above inequality we see for these values of ¢,6 that (2.36) is true. From

the remark following (2.36) we conclude that assertion (2.33) is true.
Next we show that

(2.37) / V(2 — )2 G1(X, 1, )dY ds < e g2 o0 -
EO(X,t)

To prove (2.37) we use (2.32) and Lemma 2.10 to write for v; = ug — uy,
(2.38)

[Voi? Gi(X,t,)dYds < cei]|gllFe (o0
Eo(X,t)

+ees gl [ Gr(X.t) il xdYds
U
+ ces ||g||Loo(aU) (/ [|VGl(X7t,)| + 5[;61 GI(X,t7~)] |F1XdeS>
U

4 c/ Gr(X,t,) A2 x dYds
U

= c& 9013 < o0y + cesllglli=(ov) (T1 +T2) + T,
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where f1, Fi, are as below (2.32). Arguing as in (2.27)-(2.29) and using (2.30) we
get that

T+ 1| < c/ (By — B1)Vua| G1 (X, t, ) dYds
Eo(X,t)

+c/ |(Az — A1)V | [|[VG1(X,t, )| + 25t G1(X,t,-)]dY ds
Eo(X,t)

1/2
§ Ce€s </ |Vu1|2G1(X1,t1,~)des> S Ces ||gHLoo(aU).
Eo(X1,t1)
Also from (2.24) we have
Tl <cd [ [VuP Gt )avds £ od gl o).
Eo(X1,t1)

Putting these estimates for the T’s into (2.38) we get (2.37).
We now proceed by induction. Put vy = ugy1 —ug for k =1,2,..., and suppose
for 1 < k <[ that we have shown

(a) [vell Loy < (e1e3)¥|lgllLe(ov),

(0) ®(r,vx) < (r/20)? (1 63)2k||9||%oo(3U)
(2.39) for (X,t) e U and 0 <r < x0/2,

© [ Vel ards < e ol
Eo(X,t)
whenever (X,t) € U.

Note from (2.32), (2.33), and (2.37) that (2.39) is valid when k = 1 for ¢; sufficiently
large. Using the induction hypothesis, we shall prove that (2.39) holds when k =
[ + 1 provided ¢; = ¢1(y1, M,n, A1,p1) is large enough (independent of ). We
proceed as in the case k = 1. In fact from (2.39) (b) with k& = | we get as in the
display above (2.25) that for some ¢ > 1

XU His — H(X,1,)dYds < (¢es) (e1 es) gl ov.
Qug/2(X,t)

Also using (2.39) (c¢) for k =1 and arguing as in the proof of (2.27)- (2.31) we find
that

(2.41) / Hip — H|(X,t,)dYds < (ees) (1 e3)! gl e o0).
U\Quq/2(X,t)

Combining (2.40) and (2.41) we get (2.39) (a) when k = [+ 1 provided ¢; > ¢ We
note from assumption (4) and Lemma 2.6 that vy is the solution to the Cauchy
problem Li v, = V- F 4+ fr where L; is the operator in (1.1) defined relative to
Aq,Bq and for k> 1,

frx = (B2 — B1)Vug_1

Fk = (Ag — Al) V’kal.
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For k =1, f1, F} are as defined earlier. Using this note, (2.5), and (2.39) for k = [,
we see that v in L?>(=T,T,H. (U)), 0 < T < oo. Moreover, using (2.5) and
(2.39), we find as in (2.33) whenever (X,t) € U and x¢/100 <r < z4/4,

O(r,vi41) < ce3 ®(3r/2,u1) + (c*es)” (cres)” gll7 (o0

< (c**e3)? (cre3)? ||9||%vc(8U) :

If r < 20/100, we put v;41 = Ci41 + Diy1, where for (Z,7) € U,Q = Q-(X, 1),
and G; = G1(Z,T,-), we have

Cin(zr) = [

< (A2 - Al)Vvl, VGl > dYds + / (B2 - Bl) V’Ul G1 des,
Q

Q

Dl+1(Z7T) = / <(A2 —Al)Vvl,VG1>des+/ (B2 —Bl)V’l}l G1 dYds.
U\@ U\Q

Arguing as in the proof of (2.34) we deduce first from (2.39) with k£ = [ that

|C141(Z,7)| < ces(r/z0)?? (c1€3) |9l = (ov), for (Z,7) € U\ Qar(X, 1),

and second from this inequality, as well as (2.39), that
®(r,Cry1) < c* € (r/z0)” (cres)” llgllE ov)-

Using this inequality, (2.35) with D; replaced by D;11, and arguing as in the proof
of (2.36) we obtain (2.39) (b) for k = [+ 1 with (c1e3)?*2 replaced by c* €2 (c1e3)?.
Since (X,t) € U is arbitrary and we can cover Q,(X,t), zo/4 < r < x(/2, by at
most ¢(n) rectangles of side length x4/8, we conclude that (2.39) (b) holds for ¢y
large enough. Finally to prove (2.39)(c) for k =1+ 1, we use (2.40), (2.41), and
Lemma 2.10 to get as in (2.38) that

[ DuaR e gavds < e e g
Eo(X,t)

1/2
[Vui|> G (X1, t1,-)dY ds
0(X1,t1)

+ (c—e3)* (cres)t | gll Lo o) (/
E

< (c_€3)? (cre3)? ||g||2Loo(8U)’

where the last inequality was obtained from (2.39)(c) for k = . Thus (2.39)(c) is
true for ¢; > c_ when k = [+ 1 and so (2.39) is true. By induction we conclude
that (2.39) holds for k a positive integer.

From (2.39) we see that u = kli_}m()o uy, exists in L2(=T,T, H}

loc(U)) N LOO<U) for
0 < T < oo. From the definition of uy and (+) it follows that w is the solution to
the integral equation in Lemma 2.23. Note from this equation, (+), and Lemma
2.6 that u is a weak solution to Lyu = V - F' + f where f = (By — B1)Vu and
F = (A3 — A1) Vu or equivalently u is a weak solution to Lou = 0 where Lo is
defined as in (1.1) relative to As, Ba. Moreover from the definition of u; and (c)
of Lemma 2.2 we conclude first that « — w; has limit zero at each point in U
and second that us is a solution to the continuous Dirichlet problem for Lo with
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boundary function g. Uniqueness of u is a consequence of the maximum principle
in Lemma 3.38. Next we observe from (2.39) that for €5 sufficiently small, we have

Ju— w1l Lo @) < 2c1€39llL=(ov)-
Hence Lemma 2.23 is true under assumption (+). To conclude the proof of Lemma
2.23 we approximate Ay, Bo by A, Bj,j =1,2,..., where A;—A,, Bj— B, point-

wise as j—o0. Furthermore, flj, Ej satisfy the hypotheses of Lemma 2.23 and (+)
holds for j = 1,2,... . For example, if (X,t) € U let

N B AQ(X,t) for g > jil
A;(X.8) = { Ai(X,t) for zg < j1
and define Bj similarly for j = 1,2,...,. From Lemma 2.23 we deduce first that

parabolic measure can be defined for each member of the above sequence. Second
we deduce that the conclusion of Lemma 2.23 is valid with As, By replaced by Aj, Bj
and with constants independent of j. From this deduction, (1.5)(b) for wq, and the
definition of parabolic measure we find that parabolic measure corresponding to
each member of the above sequence satisfies (1.5) (b) with constants independent
of j. Using this fact, Lemma 3.2 of chapter II and the same argument as in Lemma
3.37 of chapter I we get after letting j—oo that the continuous Dirichlet problem for
(1.1), As, By has a solution. Again uniqueness follows from the maximum principle
in Lemma 3.38. Finally it is easily checked that the last inequality in Lemma 2.23
is still valid. O

Let ws be parabolic measure defined relative to Az, By, Next suppose in addition
to (1.5) (a), (b) that wy satisfies (1.5)(c). That is

(C) || j;:jls (dvxat + 2d2a ')Hapl (Qalz,t)) < )\1 < 0.

Using Lemma 2.23 we can now easily prove the following special case of Theorem
1.7.

Lemma 2.42. Let A;, B; be as in Lemma 2.28 for i = 1,2, and suppose also
that (1.5)(c) holds for wi,A\1,p1 > 1. Then (1.5) also holds for wy and some Ao =
/\2(71,M,n,/\1,p1,€3), P2 = p2(717M7n,)\1ap1,63) > 1. Also qu > p2/(p2 - 1)a
then the LY(R™) Dirichlet problem always has a unique solution in the sense of (I)
and (II) of Theorem 1.13.

Proof: To prove Lemma 2.42 we observe as above that the conclusion of Lemma
2.23 holds with uy,u replaced by wy (-, F'), wa(+, F'), whenever F is a Borel measur-
able subset of QU. We note that the reverse Holder assumption on wy in (1.5) (¢)
implies (3.1) of chapter II for wy. That is, there exist 1y, n; > 0 depending only on
Y1, M, A1, n,p1 such that if £ C Q,(y,s) and E is Borel, then

|E|/|QT(yas)| Z 17770 = Wl(ra%5+2r2>E) Z -

From (3.1) of chapter II for w; and the conclusion of Lemma 2.23 for wy,ws, we
deduce that wy also satisfies (3.1) of chapter IT with constants g, 11/2, provided
€3 is small enough. Using this fact and Lemma 3.6 of chapter II we find that ws
also satisfies (1.5) with constants having the same dependence as 79, 1. The last
sentence in Lemma 2.23 (solution and uniqueness of the LI(R™) Dirichlet problem
for ¢ > pa /(p2 — 1)) follows from (1.5) for A, Ba,ws, and Lemma 4.19 of chapter
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II. The proof of Lemma 2.42 is now complete. O

Remark We write w; for w;(d, z,t+2d?,-) wheni = 1,2 and d > 0, (z,t) € R" are
fixed. If wy,wy are doubling measures, then from Lemma 2.23, [CF], and Lemma
3.10 of chapter I it is easily seen that wy,ws are A> weights with respect to each
other on Qg(x,t). In the general case when neither w; or wy may be doubling,
we can use Lemma 2.23 and mimic the proof of Lemma 3.6 of chapter II with
Lebesgue measure replaced by wy. Doing this one can first show that wy is absolutely
continuous with respect to wy on Qg4(x,t) so dws = f dw;. Second if Q2. (y',s") C
Qa(x,t), then one can prove that there exists, § = 0(y1, M, n, A1, e3) > 0, such that

146
f dwl] )

where ¢ depends on the same quantities as 6 and also on the ratio of w1 [Q2, (¥, 8')]
to wi[Qy/2(y', 8" + 2(1’)?)]. We omit the details.

/ P dw < cwi(d, o, t+2d%, Qo (Y, 8'))° l/
Q. (y',s")

27/ (y',8")

3. PROOF OF THEOREM 1.7

As in section 2 we shall need to do some preliminary investigations before we
can begin the proof of Theorem 1.7, in general. To this end suppose as in section 2
that the continuous Dirichlet problem corresponding to A, B (satisfying (1.2)-(1.4))
always has a unique solution and (1.2) holds for w, the corresponding parabolic
measure. That is, for some constant ¢* > 1 we have

(3.1) c*w(d, x,t 4 2d*, Qq(x,t)) > 1

whenever (z,t) € R™ and d > 0. Let F© C R™ be a compact set and recall from
section 2 of chapter II (see (2.19)) the definition of the parabolic distance function
(-, F). Let ¥ = 06(-, F') where 6 > 0 and let

p(X,1) = (w0 + Pyooth(x, 1), 2,1), (X, 1) €U,
be as in sections 2-4 of chapter II, where v is chosen so small that this mapping is
one to one from U onto p(U) C U. If u satisfies (1.1) relative to A, B, then from

(2.19), (2.27), (2.28) of chapter II we see once again that & = uop is a weak solution
to (1.1) for some A, B satisfying (1.2)-(1.4). We shall prove that

Lemma 3.2. Let A, B,w,p be as above. Then the continuous Dirichlet problem
corresponding to (1.1),[1,B always has a unique solution. Moreover if W denotes
the corresponding parabolic measure, then for some ¢ = &(y1,M,0,c*,n) > 1 we
have

e(d,x,t +2d%, Qulx, ) > 1,
whenever (x,t) € R™ and d > 0.

Proof: Let A;(X,t) == A(zo + 7', z,t), Bj(X,t) = B(zo+j ', x,t), for j =
1,2,..., and all (X,t) € U. We first show that estimates similar to the ones in
Lemma 3.9 of chapter I are valid for Aj,Bj, 7 =1,2,..., with constants that are
independent of j. To this end let i; be a solution to (1.1) corresponding to A, B;
in (0,27) x Q2,(y, s) with «; vanishing continuously on Q2. (y, s). We observe that if
Q3r/2(y,s) C U\ F, then |B| < ¢M/r on (0, 5r)x @3,(y, s). From this observation
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and the remark after (3.22) of chapter I we conclude that in this case Lemma
3.9 of chapter I is valid with u replaced by %; and constants independent of j.
Otherwise, let h = w(:, Q3,/2(y,5) \ Qor/s(y, 5)), h = ho p, and put iLj(X, t) =
iz(xo +ji7 Yo, t)for j=1,2,..., and (X,t) € U. We observe that flj is a solution to
(1.1) corresponding to flj, Bj in U. Moreover i~zj >0 on Q2.-(y,s) and ¢ i~zj >1on
J =90, 2r) x @s3,(y,s)] thanks to (3.1) and Harnack’s inequality. Then from the
maximum principle (see the remark after Lemma 3.38 of chapter I) and Lemma 3.2
of chapter II for A, B, h we have for (X,{) € (0,7) x Q,(y, s) that

ﬂJ(X,f) < c(maXJﬁj) iLJ(X,f)
(3.3)
< ¢ (max[j~, 4o, 6(2,%, F)]/r)" .

If

&g < (100n) 6 (2,1, F) = 7
we observe that |B| < eM/# on (0,47) X Qun (&, 7). Thus if I = 8[(0,2F) x Qo7 (£, 1)]
we can again use the remark after (3.22)of chapter I to conclude that

(X, 1) < c(mjaxﬁj) (max[j 1, &o]/7)*.

Combining this inequality with (3.3) of chapter I we get

(X, 1) < ¢ (max ii;) (max[j ™1, &o]/r)®.

Using the above inequality we can now argue as in the proof of Lemma 3.37 of
chapter I (see () — (iv) of this lemma) to get first that the continuous Dirichlet
problem corresponding to A, B has a unique solution and second that Lemma 3.9
of chapter I is valid with A, B replaced by A, B. From Lemma 3.9 with u =1 — @
we see that Lemma 3.2 is true. O

Next we put

H(X,t) = ess sup {[yal\Al — As|? + yo|B2 — B1|](Y,s) : (Y, s) € Quo/2(X, 1)}
L(X,t) = ess sup {[yy '[A1 — A2|* +y0|B2 — B1[*](Y, ) : (Y, 5) € Quyy16(X, 1)}

dv*(X,t) = H(X,t)dXdt

when (X, t) € U. As in section 6 we shall need the following lemma.

Lemma 3.4. Let Ay, By, As, Bs satisfy (2.1)-(2.3) and (2.22). Suppose also that
the continuous Dirichlet problem corresponding to (1.1), Ay, By always has a unique
solution and that (1.5) holds for wy. If 0 < ¢4 < €3 is small enough (depending
on 1, M,n,p, N\ e3) and v*[(0,d) x Qq(z,t)] < €4|Qu(x,t)|, then there exists ny =
No(es), m = mles), 0 < Mo, < 1/2, such that the following statement is true.
Let u,0 < u < 2, be a solution to (1.1) in U, corresponding to As, By which is
continuous on U. If u = 1 on some closed set E C Qq(x,t) with

‘E| > (1 _770) |Qd(x’t)|’
then
u(d, z,t +2d%) > n,.
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Proof: We note that Lemma 3.1 is similar to Lemma 2.1 of chapter II. In fact we
can repeat essentially verbatim the argument in case (*) of Lemma 2.1 in chapter
IT to get F closed, F' C Q4(z,t) such that if

5= 6411/[100(71—&-2)]

0 = {(Z,’T) S U:ZO > 6(277-7F)}7

then for e, sufficiently small we have

(3.5) Qa(z,t) \ F| < 6]Qa(x,1)]

and
/2

(3.6) / L(20,2,7)dzg < § whenever (z,7) € Qq(z,t).
6(z,7,F)

Let A’ = As, B’ = By on QN[(0,d/2) X Qq(z,t)] and A’ = Ay, B’ = By, otherwise.
Then from (3.6) we see that the hypotheses of Lemma 2.42 are satisfied for ey
sufficiently small. Thus the continuous Dirichlet problem corresponding to (1.1),
A’, B’ has a unique solution and if w’ denotes the corresponding parabolic measure,
then (1.5) holds for w’ provided A, p are replaced by X ,p’ > 1. Let ¢ = &(-, F') and
define p relative to ¢ as in the display following (3.1). Then p maps U one to one
and onto Q. Let v’ be a weak solution to (1.1), A’, B’ and put 4 = u'op. Then 4 is a
weak solution to (1.1) corresponding to some A, B satisfying (1.2)-(1.4). From our
remarks on A’, B’ we see that Lemma 3.2 can be used with A, B replaced by A’, B’
to conclude that the continuous Dirichlet problem corresponding to (1.1), fl, B has
a unique solution. Let % denote the solution to the continuous Dirichlet problem
for A, B with boundary values & = uo p on OU. we claim that if Q,.(y, s) C Qq(x,1),
and |Qr(y,s) \ (ENF)| <46|Qr(y, s)|, then for some c_ > 1 we have

(3.7) a(r,y, s +2r?) > o(r,y,s+2r2, ENF) > ¢ *

provided €4 > 0 is small enough. Here c_ has the same dependence as ¢4 in Lemma
3.2. To prove (3.7) we use Lemma 3.2 and argue as in the proof of (2.22). Choose
E' C ENF with E' C Q,(y, s) closed and with |Q..(y, s)\ E’| < 2|Q..(y, s)\(ENF)]|.
Let {Q;} C @ be a Whitney decomposition of Q,(y, s)\ E’ into parabolic rectangles
with side length s(Q;) in the space variables satisfying (300)™" 6(Q;, F)) < s(Q;) <
100~ "6(Q;, F) for each i. Then from (1.5) for v’ and the maximum principle we
see that if Q; denotes the rectangle with the same center as ; and twice the side
length in the space and time directions, and if

w(Z,7,K)=uw'(p(Z,7),K), K = Borel set C R",

then cw* (-, Qj) > 1 on Q;. Also this function is a weak solution to (1.1) relative to
A, B so from the maximum principle we have

cw (1, Q) 2 &(-Q;) .-

Using the reverse Hélder condition for w’ (i.e (1.5)(c)) in a now well known way
and Lemma 3.2 for @, Q,(y, s), we conclude for some ¢ > 1 and § > 0 small enough
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that if # = r(1 4 ¢/ (1)) then

B(r,y,s+2r%,Qr(y,s) \ (ENF)) < ¢ w*(ry,s+2r%,Q;)
J

< cw*(r,y,s+2r2,Q7:(y,5)\F’) § %(D(r,y,s+2r2,Qr(y,s)).

From this inequality and Lemma 3.2 we get the righthand inequality in claim (3.7).
The lefthand inequality follows from the definition of parabolic measure and the
boundary values of u.

Next we note that @,u o p satisfy the same pde in (0,d/16) x Qg/2(x,t) and
have the same continuous boundary values on QU. Using this fact, Lemma 3.2, and
Lemma 3.2 of chapter IT we find the existence of ¢ = ¢(e4) > 1, such that if r = d/c,
then

(3.8) c_|a—wop|(ry, s+2r?) < 1/2,

where c_ is as in (3.7). Combining (3.8), (3.7) and using Harnack’s inequality we
conclude the validity of Lemma 3.4. O

Extrapolation Revisited. To get Theorem 1.7 we shall essentially repeat the
argument in section 4 of chapter II. We prove

Lemma 3.9. Remove (2.22) from the statement of Lemma 3.4 and replace eq, v* by
K, v in this lemma, where v is as defined above (1.6). Then this amended version of
Lemma 3.4 remains valid whenever 0 < K < oo, provided n; = 1;(K,~v1, M, \1,p1,n),
are defined suitably for i =0, 1.

Proof: Note that Lemma 3.9 is similar to Lemma 4.1 in chapter II. We claim that
it suffices to prove Lemma 3.9 under the assumption that one of (x), () are valid

(*) Al = A27 BQ = 0,

(%) B; =0.

Indeed to prove Lemma 3.9 in general we can first use (*) to reduce the proof of this
lemma to the situation when By = 0. We then obtain Lemma 3.9 from (**). We
continue under the assumption that either (*) or (**) holds and observe in either
case that (2.22) is valid (thanks to Lemmas 3.11 and 3.14 of chapter I). We put

H(X,t) = esssup {[yy |41 = Aof* +yo(|Ba| + [ B1])?](Y, 9)
: (Yv 8) € Qfﬁo/Q(th)}

L(X,t) = esssup {[yo'|41 — 42> + yo (|1B2| + |B1])?](Y, 5)

(Y, 8) € Quoy16(X, 1)}

when (X,t) € U and note that dv(X,t) = H(X,t)dXdt. As in Lemma 4.1 of
chapter II, we shall prove Lemma 3.9 by an induction type argument on K. From
the remark following (**) and Lemma 3.4, we see that Lemma 3.9 is valid for
K < e4(v1, M, A1,p1,n). Suppose that whenever ~;, M, \1, p; are given as above
we have shown that Lemma 3.9 holds for K < K* and K* > e4(y1, M, \1,p1,n)
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where K* = K*(y1, M, \,p1,n). We assume as we may that M, \;, are both
> 100. We then put

30n
n = |: €2 ’ylaM )\171)17 ) :|2
AL+ M)A+ K*)ey(n)
(3.10)
20
5 = |: €2 717M )\]Jplﬂ ) :|
)\1 + M 1+K*)cl(n)

and shall show for ¢; = ¢1(n) > 1 large enough that Lemma 3.9 is valid for K <
(1 4+ n)K* provided n; = n;(K),4 = 0,1 are defined suitably for K* < K <
(14+n)K*. We then get Lemma 3.9 by induction. To this end choose N such that
2-(N+1) < §5 < 2=N and suppose first that

(3.11) /22Nd / » T)dzdr)dzg > nK*|Qqa(x,t)|.

Then as in the argument after (4.3) of chapter II we get that Lemma 3.9 holds
for K* < K < (1 +n)K* provided no(K) < co(n)™t 6100+ no(K*), ni(K) <
c3(v1,6, M,n)~! i (K*) and co, c3 are large enough.

Next suppose that (3.11) is false. We again divide Qq(x,t) into subrectangles
by the bisection method. Let G,, be the closed rectangles obtained in the m th
subdivision for m = 1,2,..., . Then the rectangles in G, have disjoint interiors
and side length 2'=™ d, 2'=2™d? in the space and time variables respectively. Let
S be the subcollection of rectangles Qa-mg(y, s) in Gy, with

d
/ / H(Z,7)dzdrdz
2N+ d JQy—j,4(y,8) N Qalz,t)

(3.12)
< (1007)19% 1) K* |Qq-44 (y, 5|

= N K" |Q2-1a (y,5)|
for j=1,2,...,m — 1, while

d
(3.13) / / H(Z,7)dzdrdzy > 7 K" |Qo-ma(y,s) |
2—(N+m)d Qo—m g (4,8)NQa(x,t)

Using the fact that (3.11) is false and a Calderon-Zygmund type argument, we get
as in section 4 of chapter I, a family of closed rectangles, S = |J Sy, with disjoint
interiors. Moreover if (y,s) & UQeS @, then (3.12) holds for j = 1,2,..., . Put

F* = Qq(z,t)\ (UQes Q) . We consider two cases :  (a)|F*| > 2n|Qa(z,t)| and

(O)|F*| < 27|Qa(w, ).

If (a) holds, we suppose 7o (K) < n/2 for K* < K < (1 4+ n)K* and set
dy = d[1- 4(++1)] We observe that there exists F' closed, FF C F* N EN Qq, (x,t)
with |F| > n|Qa(x,t)]. Next we use (3.12) and argue as in previous proofs (see
(4.6)-(4.7) of chapter II) to get

d
(3.14) / L(z0,2,7)dz < 0
66 (z,1,F)
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as well as

(3.15) 20 L(Z,7) < § on QNJ[(0,3d/4) x Qa(x,t)].

Set
Y = 5&(7F)1

Q={(Z,7):20 >9Y(2,7)},

p(Z,7) = (20 + Py ¥(2,7),2,7),

when (Z,7) € U. If (*) holds in the display below Lemma 3.9, we put A’ = A5, B’ =
0on Q and A’ = Ay, B = By, otherwise in U. If (**) holds, let A’ = Ay, B’ = By
on (0,d/2) x Qq(x,t) and A’ = A; otherwise in U. From (3.14) and the observation
following (**) we see that Lemma 3.4 can be applied with Ay, By replaced by
A’ B’. We get that the corresponding parabolic measure, w’, satisfies (1.5) for
some X, p’ > 1 and so also (3.1) of chapter II. Let v’ be a solution to the Dirichlet
problem for (1.1), A’, B’. Then from (2.27) - (2.29) of chapter I1,(3.15) and Lemma
A in chaper I, we see that u’ o p satisfies (1.1) for some A, B satisfying (1.2)-(1.4),
as well as (3.13) of chapter I. Thus we can apply Lemma 3.37 of chapter I to obtain
that the continuous Dirichlet problem corresponding to (1.1), A, B has a unique
solution and if @ denotes the corresponding parabolic measure, then @ is a doubling
measure in the sense of this lemma. From this discussion we see that the hypotheses
of Lemma 3.22 in chapter II are satisfied with w1, ws replaced by w’,&. From this
lemma we find for some ¢’ > 1, that

do(d,x,t+2d* F) > 1.

Using this inequality we can now use the maximum principle and argue as above
(4.9) of chapter IT to deduce the existence of ¢4 > 1, having the same dependence

as 1o such that if 0 < r < nd/cs, and dy = d(1 — ﬁ), then

da(r,y,s, F) > 1 for some (y,s) € Qa,(z,1).

Let @ be the weak solution to (1.1) corresponding to A, B with @ = u o p on dU.
Then since « > 1 on F it follows from the definition of & that (3.7) holds with ¢~
replaced by ¢’ and (r,y, s) as above. Next we observe that u o p, @ satisfy the same
pde in (0,d/8) x Qq(x,t), as we see from the definition of A’, B’ and (2.27)-(2.29)
of chapter II. Since & — u o p vanishes on QU we can apply Lemma 3.2 of chapter
II to conclude that (3.8) holds for all (y,s) € Qu,(x,t) with c_ replaced by ¢ and
r < nd/c, where ¢ has the same dependence as 79. Combining (3.8), (3.7) it follows
that Lemma 3.9 is valid in case (a) when K* < K < (1+n)K*.

Next we consider case (b). Arguing as in the proof of claim (4.11) of chapter II
we first get a finite subcollection S” of S such that if Q € S’ and 7’ ]
then

— n
= T100n)on>
27N 5(Q)
(a) / /H(Z,s)dszdzo < (1-7)K*|Q|,
0 Q
G106 w) Y1el = v Qa0
Qes’

() 6(Q,Q") = 4n max{s(Q), s(Q") } .
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If no(K) < mo(K*)n"™2 for K* < K < (1+n)K*, then arguing as in the proof of
(4.16) of chapter I we get the existence of a finite subset S = { Q. (y;, s;) }} of S’

T

and Qg (2i,7i) C Qr, (Yi, si) such that for 1 <i <, we have in < 2 <npand

(i / H(Z,7)dZdr < K*|Qui(z17)],
(O:TQ)XQ%(ZI',‘H)

(i) [ENQy(zi,m)| = (1 = 10(K™))|@r (26, 7))l

(3.17) !
(i) Y |Qu(ziim)| = 172 |Qalx, 1)),
=1

(iv) Either r > nd/100n for some Q,(y,s) € S or
UQgS‘ Q C Qd1 (xat)'

First suppose there exists Q. (y;,s;) € S with r; > 7d/100n. Then from (3.17)
(i), (44) and the induction hypothesis we see that cu(r}, z;, 7; +2(r})?) > 1 for some
¢ having the same dependence as 19. From this inequality and Harnack’s inequality
we conclude that Lemma 3.9 is valid for K* < K < (14 n)K*. Thus we assume
that the second alternative in (3.17) (iv) occurs.

Put . = {(ys,9) : Qr,(yi,5:) € S} and let

G(z,7) = {

Define v, €, p as following (3.15) with &(-, F') replaced by &. Then from (3.12) we
see that (3.14), (3.15) are valid. Next we define A’, B’ relative to Ay, By, A, Ba,
as in case (a). From (3.14), (3.15) we see that once again we can use Lemma 3.4
to get that w’ satisfies (1.5). We define A, B relative to A, B’,p as in in case
(a). We then get that Lemma 3.37 of chapter I holds for @. Next from (3.16) (c)
and the definition of & we see that Lemma 3.33 of chapter II can be applied with
K = Uges Q. Applying this lemma we get for some ¢’ > 1 having the same
dependence as 7y,

(318) C//‘D(dazat+2d27UQe,§'Q) Z 1

r; when |z —y;| + |7 — si|1/2 <r,1<i<l,
= 6(z,7,F}), otherwise in R™.

Now as earlier in case (b) we see from (3.17) and the induction hypothesis that for
each i we have cu(r!, z;, 7;+2(r})?) > 1. Using this fact and Harnack’s inequality we
conclude that there exists ¢* > 1, for which ¢*uop > 1 on Q. (zi, 7 +4(r})?2), 1<
i <. Let @ be as in case (a). Then from the previous inequality for v o p we deduce
that

(3.19) i > O(,UQy (21,1 +4(r)?) ) .

Also from (3.18) for @ and Lemma 3.37 () of chapter I we find for some ¢** > 1
with the same dependence as 7y that

(3.20) ¢ (d @yt + 2d%,UQ (21,7 + 4(rf)?) ) > 1.

Using (3.19), (3.20) we can now argue as at the end of case (a) to get first (3.7) with
F replaced by | Qy (i, 7i + 4(r!)?) and then (3.8). We put n9(K) = no(K*) n"*2
and for this value of 7y conclude from (3.7), (3.8) as in case (a) that Lemma 3.9 is



PARABOLIC OPERATORS WITH SINGULAR DRIFT TERMS 105
true when K* < K < (1 + 7n)K*. By induction we obtain Lemma 3.9. O

Proof of Theorem 1.7. We now prove Theorem 1.7. First we apply Lemma 3.9
to find that (3.1) of chapter II holds whenever d > 0 and Q4(z,t) C R™. From (3.1)
and Lemma 3.6 of chapter II we deduce the validity of Theorem 1.7. O.

Remark. We conjecture that Theorem 1.7 remains valid with v replaced by v*.
That is Theorem 1.7 is valid if instead of assuming zo(|B1|? + |Be|?) dXdt is a
Carleson measure we assume only that xo(|By — B2|?) dXdt is a Carleson measure.
In fact if we could prove that @ as in Lemma 3.2 is always a doubling measure,
then it is easily seen that this stronger verion of Theorem 1.7 is valid. If one is un-
able to prove doubling for such parabolic measures, then another way to prove this
conjecture would be to generalize Lemmas 3.22; 3.33 of chapter II to nondoubling
measures and also to do away with assumption (2.22) in Lemma 2.23. Finally we
note from section 1 that the elliptic verion of the above conjecture is true as we
shall show in section 4.

4. ELLpTIC RESULTS

In this section we prove our elliptic results. For ease of notation we shall always
assume that n > 2. We first prove some basic estimates similar to those in Lemma
2.2. To begin let A, B satisfy (1.2)-(1.4) with (X,t) replaced by X in U = {X :
xo > 0} and suppose that the continuous Dirichlet problem for A, B, relative to the
pde
(4.1) V- (AVu)+BVu =0
always has a unique weak solution. If w denotes the corresponding elliptic measure
we assume for some positive ¢* < oo that
(4.2) cfw(d,z,Bg(z)) > 1

whenever d > 0 and x € R™. Here By(z) = {y : |y — x| < d}. We shall also denote
the ball in R™ of radius d about X by By;(X) when there is chance of confusion.
First we prove an analogue of Lemma 2.2.

Lemma 4.3. Let A, B be as above and suppose that w satisfies (4.2). There exists

G : U x U—R with the following properties. If X,Y € U, X Y, and r = | X -Y],
then for some c>1,0< 60 < % (depending only on 1, M,n,c*), we have

(@) 1?2 < G(X,Y) < er? "0 <r <wyo/2,
(b) G(X,Y)< cygfnw(X, By, (2)) for z € By, j16(y), 7 > y0/2,y0/4 < 71 < y0,
(¢) G(X,Y) < c(xo/r)! G(X,Y) forr >z and X = (zg +1,0,...,0),

(d) G(-,Y) is a weak solution to (4.1) and G(Y,-) is a weak solution to
V. [ATVG(Y,) — BG(Y, )] =0 in U\ {¥},

(e) If0 < di,de <min{r/100n, yo/2, z0/2}, then G(-, -) is Holder
continuous on By, (X) x Bg,(Y'), with exponent independent of 11,12, X,Y.
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Proof: The proof of this lemma is somewhat different than in the parabolic case
so we include some details. Let (¢ denote the Green’s function defined relative to a
‘smooth’ A, B satisfying (1.2)-(1.4) with (X, ¢) replaced by X. Then from Schauder’s
theorem, (1.4), and the divergence theorem applied in U \ B.(X), r < x0/2, we
deduce for some ¢ = ¢(y1, M,n) > 1 that

1= fpur IVGITH{VE, AVG)(X,0,y)dy

= fop.x) X =YITHX =Y, AVy G(X,Y))do(Y).

Here do denotes surface area and 0 < s < x(/2. Integrating this inequality over
s € (r/16,7/8), using the elliptic analogue of Lemma 3.3 in chapter I, as well as
Holder’s and Harnack’s inequalities, we get for some ¢ = ¢(1, M,n) > 1 that

(4.4) 1 <c|X-Y]P"G(X,Y) for 0 < |[X = Y| < x/2.

We note that (4.4) is just the reverse of the inequality obtained in the parabolic
case by a similar argument.

As in section 2 we put 4;(X) = A(zo + j~ 1, ), Bj(X) = B(zg + j~,z) for
j=34,...,and X € {Y : yo > —j'}. Then A;, B, satisfy (1.2) - (1.4) and
for fixed j, B; is essentially bounded by Mj. Clearly we can choose sequences of
smooth A, B which converge pointwise to A;, B; on U and satisfy (1.2)-(1.4) with
uniform constants. We can also choose this sequence so that (3.13) of chapter I
holds (with (X, t) replaced by X) uniformly in cylinders of height and side length
~ €1 (M3j)~1 which touch dU. Thus an elliptic analogue of Lemma 3.10 in chapter
I is valid (with uniform constants depending on j). Using elliptic analogues of the
basic estimates in Lemmas 3.3 - 3.5 and Lemma 3.10 of chapter I, we see for fixed
Y € U and j that a subsequence involving smooth G‘(, -) converges uniformly in a
certain Hélder norm on By, (X)X Bq,(Y) to G;(-,-). Here d1,ds, X, Y are asin (e) of
Lemma 4.3. Also we can choose this sequence so that for each Y € U, the sequences
involving G(-,Y), G(Y,-) converge weakly in H1loc (Ba(2)) to G,(-,Y),G;(Y, ),
whenever B4(Z) C U\ {Y}. From the above remarks and (4.4) we observe that the
lefthand inequality in (a) of Lemma 4.3 is valid (with a constant depending only on
v1, M, n) while from the elliptic version of Lemma 3.10 we see that the righthand
inequality in (a) of Lemma 4.3 holds with a constant that in addition to the above
quantities may also depend on j. Also (d), (e) of Lemma 4.3 are valid for G; (with
an exponent depending only on 1, M,n). Next from the remark after (3.22) in
chapter I we observe that the elliptic analogue of Lemma 3.9 holds in cylinders of
height and radius ~ €; (Mj)~! with constants depending only on ~;, M,n. That
is, suppose z € R"10 < d < ¢ (Mj)™!, and v > 0 is a weak solution to (4.1)
in (0,2d) x Baq(z) (with A, B replaced by A;, B;), which vanishes continuously on
Bsi(z). Then there exists a = a(y1, M,n) > 0 and ¢ = ¢(v1, M, n) such that

(4.5) uw(Y) < c(yo/d)™ u(d, z)

whenever Y € (0,d) x Bg(z). From (4.5) and the same argument as in Lemma
3.37 of chapter I we see that the continuous Dirichlet problem correponding to
Aj, B; always has a unique solution. Let w; denote elliptic measure corresponding
to Aj, Bj and set wi(Z,-) = w(z +j',2,-) when Z € U. Then w* is a weak
solution to (4.1), with A, B replaced by A;, B;. From the maximum principle, (4.2),
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Harnack’s inequality and the definition of elliptic measure we have for some ¢** > 1,
Wi (- R" 1\ Baa(2)) = wj(-, R"\ Baa(2))

whenever d > ¢; (Mj)~!. From this inequality and the elliptic analogue of Lemma
3.2 of chapter II for A, B we find for some ¢ = c(y1, M,n,c*) > landd > ¢ (Mj)~!
that
wi (Y, R"1\ Ba(2)) < c(yo/d)”

for Y € (0,d) x By(z). From (4.5) if follows that the above inequality actually
holds whenever 0 < d < oo. Using this inequality for y, small enough, Harnack’s
inequality, and the fact that w;(-, B2q(2)) + w;(-, R"™'\ Bag4(z)) = 1, we conclude
that (4.2) holds with w replaced by w;. We can now use the elliptic version of
Lemma 3.2 of chapter II to get that (4.5) holds for j = 3,4,..., with constants
independent of j.

Next suppose that v is the solution to the continuous Dirichlet problem for (4.1),
Aj, B; with v = g on OU where 0 < g < 1 is continuous on U with support in
Bayo(x) and g = 1 on By, (). Then from (4.5), Lemma 3.2 of chapter II, and
essentially Poincare’s inequality we see for some ¢’ = ¢/(y1, M, n,c*) > 1, that

p? < c’/ |V [?dZ.
(zo/c"sw0/2)X Bay ()

From this inequality and the elliptic analogue of Lemma 2.10 for A;, B; we obtain
that if m is the minimum of G,(X, ) on (z¢/c, x0/2) X Bg,(x), then

may < CI/ Gi(X,)|Vv|?dZ < e
(zo/c"y20/2) X Bz ()

This inequality and Harnack’s inequality imply that the righthand inequality in
Lemma 4.3 (a) holds for r = d/2 with a constant independent of j. To obtain this
inequality for other values of r one can use classical elliptic estimates similar to
those in section 3. One proof for example would be to assume that the righthand
inequality in (a) of Lemma 4.3 holds for r = ry < yp/2 and some constant ¢. Let
G'(-,Y) denote the Green’s function for B,,(Y") with pole at Y defined relative to
(1.1), A;, B;. Then from properties of the Green’s function similar to those listed
in (3.6), (3.7) of chapter I we see that G;(-,Y) < G'(-,Y) + érg~" in B, (Y).
Scaling to a ball of radius yy and using the same argument as above we find first
that G’ < crg~™ on B,, s2(Y’) and thereupon that the righthand inequality in (a)
of Lemma 4.3 is true for ¢ large enough, whenever r = r¢/2. Thus (a) of Lemma
4.3 holds with constants independent of j. Using (a) of Lemma 4.3, letting j—oo,
and arguing as in the proof of Lemma 2.2 we get G satisfying (a) — (e) in Lemma
4.3. 0

Next we prove an elliptic analogue of Lemma 3.10 in chapter 1.

Lemma 4.6 Let A, B,w, G be as in (4.1)-(4.2) and Lemma 4.3. If Bo,(y) C By(x),
then for some ¢ = ¢(y1, M,n,c*) > 1, we have

clr 2 G(d,2,ry) < w(d,w, Br(y))

< cw(d,z, Bor(y)) < 21" 2G(d,z,r,y)

whenever x € R ' and d > 0.
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Proof: Clearly the top inequality involving G,w is implied by Lemma 4.3 (b).
To prove the rest of this inequality we first show for given € > 0 the existence of
c(e) = c(e,y1, M,n,c*) > 0 such that

(47) w(,BT(y)) < EW(',BQT(ZJ)) + C(G) Tn72 G(',T, y)

in U\ [(0,3r/2) x By 2(y)]. The proof of (4.7) is essentially the same as the proof
of (3.7) in chapter IT except that instead of using ws (-, E) we use r" 2 G(-,r,y) to
make our comparisons, which is permissible thanks to the lefthand inequality in (a)
of Lemma 4.3. We omit the details. O

We note from (4.2) and (a) of Lemma 4.3 that Lemma 4.6 is true when r ~ d.
Thus we assume r/d = 2= for some large positive integer N. Iterating (4.7) we
see that

w(d, z, B, (y)) < ew(d,x, Bar(y)) + c(e) " 2 G(d, z,7,y)

< €w(d,x, Bar(y)) + ecle) (2r)" 2 G(d, z,2r,y) + c(e) " 2 G(d, z,7,y)

<< eNcu(d7 z, Bzd(x)) + C<6) [211

1) 2G(d, 2,2 e y) = T
From Harnack’s inequality and (a) of Lemma 4.3 we see for e sufficiently small
that there exists ¢; having the same dependence as the constant in Lemma 4.6
with 7' < ¢; 7"~ 2G(d, x,7,7y). In view of the above inequality we conclude for some
¢ > 1 that
w(d,z, B (y)) < cr" 2 G(d, z,1,y).

Thus w(d,z, B.(y)) ~ cr" 2G(d,z,r,y) which along with Harnack’s inequality
implies Lemma 4.6. O

Next let 5 (-, F') denote the Euclidean distance from the compact set F' C R"~L.
Let A, B be as in (4.1) and put v = 65(-, F) where § > 0. Define p relative to
¥ as in section 3 and note that if u is a weak solution to (4.1), corresponding to
A, B, then u o p is a weak solution to (4.1) corresponding to some A, B satisfying
(1.2)-(1.4) with (X, t) replaced by X. We prove

Lemma 4.8. Let A, B,w be as in (4.1), (4.2) and p, A, B as above. Then the
continuous Dirichlet problem corresponding to (1.1), A, B always has a unique so-
lution. Moreover if @ denotes the corresponding elliptic measure, then for some
¢ =2¢é(y1, M,n,c*) > 1 we have

(a) o(r,y, Br(y)) > 1, whenever r >0 and y € R" 1,

(b) Lemma 4.6 holds with G, w replacedbe~C~v',&), where G is the
Green’s function corresponding to A, B.

Proof: (a) of Lemma 4.8 is just the elliptic analogue of Lemma 3.2 and is proved
in the same way as this lemma. (b) of Lemma 4.8 follows from (a), Lemma 4.3 for
G, and Lemma 4.6. O

Proof of Theorem 1.9 To prove Theorem 1.9 we repeat the argument in sec-
tions 2 and 3. Assumption (2.22) can now be done away with. Also assumptions
(%), () following (3.9) are unnecessary. In fact we needed (%), () only to assure
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that (2.22) held and that certain parabolic measures obtained from using the p
mapping were doubling so that Lemmas 3.22, 3.33 of chapter II could be applied.
From Lemmas 4.6, 4.8 we see that the corresponding elliptic measures are always
doubling so that we can use elliptic analogues of Lemmas 3.22, 3.33 in chapter II in
our proof. In fact we can essentially just use the result in [DJK] mentioned earlier.
Doing this we get Theorem 1.9. O

Proof of Theorems 1.14, 1.15. To prove TheoArem 1.14 of chapter II we first
consider elliptic pde’s for which (1.2)-(1.4) hold in U and

(4.9) AeC™ (f]) is lower triangular, Ago =1, B =0, and 5| VA(Y)| <é¢ e U.

We shall show that if z € R"~,d > 0, and ¢ > 0 is small enough, then dw/dy (d, z, -)
€ B5(Bg(x)) where w = w(d, z,-) is elliptic measure corresponding to A. Indeed let
g(d,z,-) be the corresponding adjoint Green’s function with pole at (d,z). Then
V- (A'Vy g(d,z,Y)) = 0 when Y # (d,z) where A! is the transpose of A. We
note that A’ is upper triangular and A, = Agy = 1. Differentiating the pde for
g = g(d, x,-) with respect to y; and using this note we see for 1 <[ <n — 1 that

V- (A'Vg,,) + V- (4, Vg) =0

where A! Vg does not involve any term in gy,. If u = (gy,,...,9y,_,), then the

above system has the same structure as (3.1) in chapter I and u = 0 on U. Tt is
easily seen for é > 0 small enough that the argument in (3.15)-(3.17) of chapter I
can be repeated with minor modifications to get the Cacciopoli inequality in (3.18)
of chapter I. Using (3.18) for u, and Lemma 3.14 of chapter I we find for z € By(x)
and 0 < r < d/4 that

r 2r
(4.10) / / |Vu?dY < er™? / / lul>dY < cr"*g*(d, x,3r, ).
0 JBr(z) 0 Bar ()

Now we can use the pde for g to estimate gy,,, pointwise in terms of |ul,|Vul.
Doing this, using (4.10), and making estimates by way of either Hardy’s inequality
or (3.16) of chapter I we see that

2r
| / P a¥ < [ vupay < et a3,
B, (x) Bar(x)

Finally from this inequality, Cauchy’s inequality, (3.18) and Lemma 3.14 of chapter
I for g, we conclude that

/ 1900200, ) dy < / 90 2(r,y) dy
B, (x) x)

r

—|—cr/ / |gy0y0| dY + cr~ / / |gy0|2dY

< er"3¢%(d, x, 3r,x) < er'T"w(B,(x))]2.

This inequality and dw/dy(0,y) ~ |Vg|(d,z,0,y), for y € U are easily seen to
imply that dw/dy € 85 (Bg(z)). Thus Theorem 1.14 is valid in this case.

Next we use Theorem 1.9 and the above special case to deduce that Theorem
1.14 is valid when (1.2)-(1.4) hold, B satisfies (1.5) of chapter II, and A is as in
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(4.9). Moreover we observe that if u, B, A smooth satisfy V - (AVu) + BVu = 0
where A, B satisfy (1.2)-(1.7) of chapter II with (X,t),dXdt replaced by X,dX
then this equation can be rewritten in the form V - (AVU) + BVu = 0 where A is
lower triangular, Agg = 1, and A, B satisfy (1.2)-(1.7). Moreover if 9|V A| is small
in U, then so also is x0|V/~1|. Thus Theorem 1.14 is vald when A, B are smooth,

(4.11) A, B satisfy (1.2)-(1.7) and x|V A| is sufficiently small in U.

We remove the smoothness assumption on A, B by the same argument as the one
after (4.4).

To continue the proof of Theorem 1.14 of chapter II, we prove an analogue of
Lemma 2.1 in chapter II. In this lemma, i1, fio are as in Theorem 1.14 of chapter II.

Lemma 4.12. Let A, B satisfy (1.2)-(1.4) in U and suppose for somex € R"™1 d >
0,e1 > 0 small that

(¢)  (1.7) of chapter IT with dXdt replaced by dX is valid in (0,00) x Bg(x).
(#6)  [[(0,d) x Bq(z)] < €1|Ba(z)| where either i = fiy + fiz or (b) i = p1 + po
and (**) of Theorem 1.10 in chapter II is valid.

If €1 > 0 is small enough (depending only on 1, M,n,A and possibly Ay ), there
exists g = no(er), m = m(er), 0 < mo,m < 1/2, suchAthat the following statement
is true. Let u,0 < u < 2, be a solution to (1.1) in U, corresponding to A, B as
above, which is continuous on U. If u =1 on some closed set E C By(z,t) with
[E| = (1 —n0)|Qa(x,t)],
then
u(d,x) > m.

Proof: Let L(X) = x| B(z)|? + 79| VA|? and if F ia closed, F C By(x) set
5 (1/11000(n+2)]
=€

o(z,F) = inf{lz—y|: ye F}

QO ={ZcU:z>do(zF).
We claim that for €; > 0 sufficiently small there exists F' as above with

(+) [Ba(x) \ F| < §|Ba(x)]

(++) 20 L(Z) < 60 for Z € QNJ[(0,3d/4) x By(x)]
(4.13)

3d/4
(+++) / L(z0,2)dzg < 0% for a.e z € By(x).
64 o(z,F)

To prove (4.13) we can essentially copy the argument in Lemma 2.1 of chapter 1T
except that now we do not have to worry about the integration by parts hypothesis
(1.9) of chapter II or showing that A is near a constant matrix. We omit the details.
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Let Py(z) = A"P(z/\) where P € C§°(B1(0)) with [,._. P(z)dz = 1. Set
p(X) = (xg + Pyo(z, F),z). Using (4.13) and (2.27)- (2.31) of chapter II, we see
that u o p satisfies a pde with coeficients A, B for which (1.2)-(1.7) of chapter
IT hold in U and 20|V A| is small in (0,d/2) x Bgja(x) when €; > 0 is small. Let
$,0< ¢ <1,bein C§°(—d/4,d/4) with ¢ = 1 on (—d/8,d/8). Let Ay be the average
of wop on (d/8,d/4) x Byya(x) and put Ay (X) = (A—Ao)(X)d(z) ¢(x0) + Ao while
Bi(X) = B(X) whenever X € U. Then Ay, B; satisfy (4.11) in U for ¢, > 0 small
enough. Let u; be the solution to the Dirichlet problem for Ay, By guaranteed by
Theorem 1.9 with u; = u o p on OU. From (4.11) for Ay, By we see that Lemma
4.12 is valid with u replaced by u;. Lemma 4.12 for u; implies Lemma 4.12 for u
as in (2.24) of chapter II. O.

We can now extrapolate Theorem 1.14 from Lemma 4.12 just as Theorem 1.10
was extrapolated from Lemma 2.1 (see section 4 of chapter IT). Again the argument
is somewhat easier since we do not have to worry about the integration by parts
hypothesis (1.9). O

Theorem 1.15 is deduced from Theorem 1.14 in the same way that Theorem 1.13
was deduced from Theorem 1.10. O.

Remark. In Lemma 4.6 we showed that elliptic measure satisfying (4.2) is always
doubling. We would not be surprised if a corresponding result held in the para-
bolic case. The chief obstacle to adapting the proof in [F'S] to parabolic equations
satisfying (1.1), (3.1) of chapter I is, as mentioned earlier, that we have not been
able to obtain basic estimates for the adjoint pde in (3.1). Thus for example since
constants do not need to be solutions to (3.1) of chapter I, we cannot use the the
maximum principle in proving an inequality such as (3.27) of chapter I for the ad-
joint Green’s. function. Also given (3.27) one appears to need Holder continuity of
the adjoint Green’s function near QU in order to complete the proof of Lemma 3.4
in chapter I. Finally we point out (as mentioned in the remarks after Theorem 1.10
in chapter IT and in the remark at the end of section 2) that Lemma 4.6, the elliptic
version of Lemma 2.42, and [CF] imply a weak version of Theorem 2.5 in [FKP].
Still though one cannot use this theorem as in [FKP] to pass from the small norm
R. Fefferman condition to the large norm R. Fefferman condition (Theorem 2.4 in
[FKP]) because our basic estimates also depend on A and not just on the ellipticity
constants. Thus the extrapolation argument used in the proof of Theorem 1.7 is
also needed in the elliptic case (Theorem 1.9).
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