
Quasi-linear PDEs and low-dimensional sets

John L. Lewis∗†

Department of Mathematics, University of Kentucky
Lexington, KY 40506-0027, USA

Kaj Nyström‡

Department of Mathematics, Uppsala University
S-751 06 Uppsala, Sweden

August 21, 2015

Abstract

In this paper we establish new results concerning boundary Harnack inequalities and the
Martin boundary problem, for non-negative solutions to equations of p-Laplace type with
variable coefficients. The key novelty is that we consider solutions which vanish only on a
low-dimensional set Σ in Rn and this is different compared to the more traditional setting
of boundary value problems set in the geometrical situation of a bounded domain in Rn
having a boundary with (Hausdorff) dimension in the range [n− 1, n). We establish our
quantitative and scale-invariant estimates in the context of low-dimensional Reifenberg
flat sets.

2000 Mathematics Subject Classification. Primary 35J25, 35J70.

Keywords and phrases: boundary Harnack inequality, p-harmonic function, A-harmonic
function, variable coefficients, Reifenberg flat domain, low-dimensional sets, Martin bound-
ary.

∗email: johnl@uky.edu
†Lewis was partially supported by NSF DMS-1265996
‡email: kaj.nystrom@math.uu.se

1



1 Introduction

Let D ⊂ Rn, n ≥ 2, be a bounded domain, i.e., a bounded, open and connected set, and let K
be a compact subset of D. Let Ω := D \K, and let p, 1 < p < ∞, be fixed. Given D and K
the p-capacity of K relative D, Capp(K,D) for short, is defined as

Capp(K,D) = inf{
∫
D

|∇φ|pdy : φ ∈ C∞0 (D), φ ≥ 1 in K}. (1.1)

If Capp(K,D) > 0, then the set K is not removable for the p-Laplace equation and given
f ∈ W 1,p(Rn) ∩C(Ω̄) there exists a unique p-harmonic function u in Ω satisfying u = f on ∂Ω
in the weak sense. Furthermore, if all points on ∂Ω are regular in the Dirichlet problem for
the p-Laplace operator, then u ∈ C(Ω̄) and hence u = f continuously on ∂Ω. In particular,
assuming that Capp(K,D) > 0, and that all points on ∂Ω are regular, one can conclude that
there exists, given a non-negative function f ∈ C(∂D) which is not identically zero, a unique
positive p-harmonic function u in Ω such that u = f on ∂D and u = 0 on ∂K. A sufficient
condition for w ∈ ∂Ω being regular in this Dirichlet problem is that Rn \ Ω is p-thick at w in
the sense that

1∫
0

[
Capp((Rn \ Ω) ∩B(w, t), B(w, 2t))

Capp(B(w, t), B(w, 2t))

]1/(p−1)
dt

t
=∞. (1.2)

It is well known that if p > n then the p-capacity of a point is positive and for 1 < p ≤ n
conditions on the set K which imply Capp(K,D) = 0, can be formulated using Hausdorff
measure and Hausdorff dimension. In particular, if p = 2, n ≥ 3, and if the Hausdorff dimension
of K is m, then the only cases which are non-trivial occur when m ∈ (n−2, n]. Hence, focusing
on sets with integer dimension, the only non-trivial low-dimensional case is m = n − 1. For
more general p we see, assuming that the Hausdorff dimension of K is m, that given K the
set-up is interesting whenever p > n−m. In particular, all low-dimensional cases are interesting
as long as we consider p large enough. Phrased in another way, while the Laplace operator can
not be used as a vehicle for the extension of a function from a set of dimension n− 2 or lower,
to neighbourhoods of the set, the p-Laplace operator, for p sufficiently large, can always achieve
such an extension. The conclusion is that the p-Laplacian, and p-harmonic functions, can be
studied in many interesting geometrical situations beyond the traditional set up of a bounded
domain in Rn, having a (n− 1)-dimensional boundary.

The purpose of this paper is to pursue the lines of thoughts outlined above in one direc-
tion by establishing certain refined boundary Harnack estimates for non-negative solutions to
operators of p-Laplace type, assuming that the set K is well approximated by m-dimensional
hyperplanes in the Hausdorff sense. To further put our work into perspective we recall that
in [LN], [LN1], [LN2], see also [LN3], a number of results concerning the boundary behavior
of positive p-harmonic functions, 1 < p < ∞, in a bounded Lipschitz domain Ω ⊂ Rn were
proved. In particular, the boundary Harnack inequality and Hölder continuity for ratios of
positive p-harmonic functions, 1 < p <∞, vanishing on a portion of ∂Ω were established. Fur-
thermore, the p-Martin boundary problem at w ∈ ∂Ω was resolved under the assumption that
Ω is either convex, C1-regular or a Lipschitz domain with small constant. Also, in [LN4] these
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questions were resolved for p-harmonic functions vanishing on a portion of certain Reifenberg
flat and Ahlfors regular NTA-domains. The results and techniques developed in [LN], [LN1],
[LN2] and [LN4] concerning p-harmonic functions have also been used and further developed
in [LN5], [LN6], in the context of free boundary regularity in general two-phase free boundary
problems for the p-Laplace operator, and in [LN7] in the context of regularity and free bound-
ary regularity, below the continuous threshold, for the p-Laplace equation in Reifenberg flat
and Ahlfors regular NTA-domains. In addition, in [LLuN] boundary Harnack inequalities and
the Martin boundary problem was studied for more general operators of p-Laplace type with
variable coefficients in Reifenberg flat domains. Further generalizations and applications can
also be found in [ALuN], [ALuN1], [AN].

All papers mentioned above are set in the traditional geometrical situation of a bounded
domain in Rn having a boundary with dimension in the range [n−1, n). In this paper we begin
the development of the corresponding results in the rich low-dimensional geometrical setting
outlined above. This paper can be seen as a novel generalization of [LLuN] to the setting of
non-negative solutions, to equations of p-Laplace type, vanishing on low-dimensional Reifenberg
flat sets in Rn. To our knowledge this paper is the first serious attack on problems of this type.

1.1 A-harmonic functions

Points in Euclidean n-space Rn will be denoted by y = (y1, . . . , yn) or (y′, yn) where y′ =
(y1, . . . , yn−1) ∈ Rn−1. Sk will denote the unit sphere in Rk. We let Ē, ∂E, diam E, be the
closure, boundary, diameter, of the set E ⊂ Rn and we define d(y, E) to equal the distance
from y ∈ Rn to E. 〈·, ·〉 denotes the standard inner product on Rn and we let |y| = 〈y, y〉1/2 be
the Euclidean norm of y. B(y, r) = {z ∈ Rn : |z − y| < r} is defined whenever y ∈ Rn, r > 0,
and dy denotes Lebesgue n-measure on Rn. Let

h(E,F ) = max(sup{d(y, E) : y ∈ F}, sup{d(y, F ) : y ∈ E})

be the Hausdorff distance between the sets E,F ⊂ Rn. If O ⊂ Rn is open and 1 ≤ q ≤ ∞, then
by W 1,q(O) we denote the space of equivalence classes of functions f with distributional gradient
∇f = (fy1 , . . . , fyn), both of which are q th power integrable on O. Let ‖f‖1,q = ‖f‖q+‖ |∇f | ‖q
be the norm in W 1,q(O) where ‖ · ‖q denotes the usual Lebesgue q norm in O. Next let C∞0 (O)
be the set of infinitely differentiable functions with compact support in O and let W 1,q

0 (O) be
the closure of C∞0 (O) in the norm of W 1,q(O). By ∇· we denote the divergence operator.

Definition 1.1 Let p, β, α ∈ (1,∞) and γ ∈ (0, 1). Let A = (A1, ..., An) : Rn × Rn → Rn,
assume that A = A(y, η) is continuous in Rn× (Rn \ {0}) and that A(y, η), for fixed y ∈ Rn, is
continuously differentiable in ηk, for every k ∈ {1, ..., n}, whenever η ∈ Rn \ {0}. We say that
the function A belongs to the class Mp(α, β, γ) if the following conditions are satisfied whenever
y, x, ξ ∈ Rn and η ∈ Rn \ {0}:

(i) α−1|η|p−2|ξ|2 ≤
n∑

i,j=1

∂Ai
∂ηj

(y, η)ξiξj ≤ α|η|p−2|ξ|2, 1 ≤ i, j ≤ n,

(ii) |A(x, η)− A(y, η)| ≤ β|x− y|γ|η|p−1,

(iii) A(y, η) = |η|p−1A(y, η/|η|).

For short, we write Mp(α) for the class Mp(α, 0, γ).
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Definition 1.2 Let p ∈ (1,∞) and let A ∈ Mp(α, β, γ) for some (α, β, γ). Given a bounded
domain G we say that u is A-harmonic in G provided u ∈ W 1,p(G) and∫

〈A(y,∇u(y)),∇θ(y)〉 dy = 0, (1.3)

whenever θ ∈ W 1,p
0 (G) . We say that u ∈ W 1,p(G) is a A-subsolution (A-supersolution) in

G if (1.3) holds with = replaced by ≤ (≥) whenever θ ∈ W 1,p
0 (G), θ ≥ 0. If A(y, η) =

|η|p−2(η1, . . . , ηn), and u is a function satisfying (1.3), then u is said to be p-harmonic in G. As
a short notation for (1.3) we write ∇ · A(y,∇u) = 0 in G. Finally, A-subharmonic function
(A-superharmonic function) is a function which is upper (lower) semi-continuous and which
satisfies the standard comparison principle with respect to A-harmonic functions.

Remark 1.3 Let G ⊂ Rn be an open set, suppose that p, 1 < p < ∞, is given and let
A ∈ Mp(α, β, γ) for some (α, β, γ). Let F : Rn → Rn be the composition of a translation, a
rotation and a dilation z → rz, r ∈ (0, 1]. Suppose that u is A-harmonic in G and define
û(z) = u(F (z)) whenever F (z) ∈ G. Then û is Â-harmonic in F−1(G) and Â ∈ Mp(α, β, γ).
For a proof of this, see Lemma 2.15 in [LLuN].

1.2 Geometry: low-dimensional Reifenberg flat sets

Definition 1.4 Let n, m, be integers such that 1 ≤ m ≤ n − 1. Given w ∈ Rn we let Λm(w)
denote the set of all m-dimensional hyperplanes which pass through w.

Definition 1.5 Let n, m, be integers such that 1 ≤ m ≤ n − 1. Let Σ ⊂ Rn be a closed set
and let r0, δ > 0 be given. We say that Σ is (m, r0, δ)-Reifenberg flat (in Rn) if there exists,
whenever w ∈ ∂Ω and 0 < r < r0, a hyperplane Λ = Λm(w, r) ∈ Λm(w), such that

h(Σ ∩B(w, r),Λ ∩B(w, r)) ≤ δr.

Definition 1.6 Σ is (m, r0, δ)-Reifenberg flat (in Rn) for some r0, δ > 0. Let w ∈ Σ, 0 < r <
r0. We say that Σ ∩ B(w, r) is m-Reifenberg flat with vanishing constant if, for each ε > 0,
there exists r̃ = r̃(ε) > 0 with the following property. If x ∈ Σ ∩ B(w, r) and 0 < ρ < r̃, then
there exists a hyperplane Λ′ = Λ′m(x, ρ) ∈ Λm(x) such that

h(Σ ∩B(x, ρ),Λ′ ∩B(x, ρ)) ≤ ερ.

Remark 1.7 For our purposes the class of (m, r0, δ)-Reifenberg flat sets supply a rich class of
sets for our analysis. However, the literature devoted to this type of sets seems very limited.
We are only aware of one paper, see [PTT], where analytic question are considered in the same
framework as ours. In particular, in [PTT] the authors are concerned with the quantity

Rt(w, r) =
µ(B(w, tr))

µ(B(w, r))
− tm, (1.4)

where w ∈ Σ, r > 0, t ∈ (0, 1], and µ is a measure supported on Σ. The authors prove results
concerning the relation between the regularity and flatness of Σ and the asymptotic behavior of
Rt(w, r) as r → 0.

Remark 1.8 In [LLuN] all theorems were established for A-harmonic functions and in the
context of (n− 1, r0, δ)-Reifenberg flat domains in Rn Consequently, in this paper we will only
consider the case when Σ is (m, r0, δ)-Reifenberg flat (in Rn) for some m, 1 ≤ m ≤ n− 2.
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1.3 Main results

We here state the main results established in the paper and in light of Remark 1.8 we consider
A-harmonic functions, A ∈Mp(α, β, γ), and we assume that Σ is (m, r0, δ) -Reifenberg flat for
some m, 1 ≤ m ≤ n− 2. As it turns out, for m = 1 we are able to establish a complete analog
of the results in [LLuN] while for 2 ≤ m ≤ n− 2 we have to impose additional assumptions on
A. We first prove the following two theorems.

Theorem 1.9 Let m = 1, n ≥ 3, and let n− 1 < p <∞, be given. Let Σ ⊂ Rn be a closed set
and assume that Σ is (1, r0, δ)-Reifenberg flat (in Rn) for some r0, δ > 0. Let A ∈ Mp(α, β, γ)
for some (α, β, γ). Let w ∈ Σ, 0 < r < r0. Assume that u, v are positive A-harmonic functions
in B(w, 4r) \ Σ, continuous on B(w, 4r) with u = 0 = v on Σ ∩ B(w, 4r). Then there exist
δ̃ = δ̃(p, n,m, α, β, γ) > 0, c = c(p, n,m, α, β, γ) ≥ 1 and σ = σ(p, n,m, α, β, γ) > 0, such that
if 0 < δ < δ̃, then ∣∣∣∣log

u(y1)

v(y1)
− log

u(y2)

v(y2)

∣∣∣∣ ≤ c

(
|y1 − y2|

r

)σ
,

whenever y1, y2 ∈ B(w, r/c) \ Σ.

Theorem 1.10 Let n, m, be integers such that 2 ≤ m ≤ n− 2 and let p, n−m < p <∞, be
given. Let Σ ⊂ Rn be a closed set and assume that Σ is (m, r0, δ)-Reifenberg flat (in Rn) for
some r0, δ > 0. Let A ∈Mp(α, β, γ) for some (α, β, γ) and assume, in addition, that A satisfies
one of the following conditions.

(a) There exists 0 < λ <∞ such that |∂Ai
∂ηj

(y, η)− ∂Ai
∂ηj

(y, η′)| ≤ λ |η − η′||η|p−3

whenever y ∈ Rn, 1 ≤ i, j ≤ n and η, η′ ∈ Rn \ {0} with 1
2
|η| ≤ |η′| ≤ 2|η|.

(b) A(y, η) = κ(y, η) |〈C(y)η, η〉|p/2−1C(y)η, y ∈ Rn, η ∈ Rn \ {0}, where C(y) is a linear
transformation of Rn and κ(y, ·), is homogeneous of degree 0 in η, whenever y ∈ Rn.

Let w ∈ Σ, 0 < r < r0 and let u, v be as in Theorem 1.9 (relative to Σ). Then the conclusion of
Theorem 1.9 holds with the only difference that in case of (a), the constants may also depend
on λ.

Let n, m, be integers such that 1 ≤ m ≤ n − 2 and let p, n − m < p < ∞, be given.
Let Σ ⊂ Rn be a closed set and assume that Σ is (m, r0, δ)-Reifenberg flat (in Rn) for some
r0, δ > 0. Let A ∈ Mp(α, β, γ) for some (α, β, γ). Let w ∈ Σ, r and u, v be as in Theorem 1.9
(relative to Σ). Then there exist, see Lemma 3.7 stated below, positive Borel measures µ and
ν on Rn, with support contained in Σ ∩B(w, 4r), such that∫

〈A(y,∇u),∇φ〉 dx = −
∫
φdµ,

∫
〈A(y,∇v),∇φ〉 dx = −

∫
φdν, (1.5)

when φ ∈ C∞0 (B(w, 4r)). We deduce the following corollaries to Theorem 1.9 and Theorem
1.10.

Corollary 1.11 Let n, m, p, Σ, r0, A, be as above. Let w ∈ Σ, r and u, v be as in Theorem
1.9 or 1.10 (relative to Σ). Let µ and ν be measures associated to u, v, in the sense of (1.5).
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Let σ be as in the conclusion of Theorem 1.9, Theorem 1.10. Then dµ = k dν, for some
k ∈ L1(Σ ∩ B(w, 2r), dν), and there exists c ≥ 1, depending at most on p, n,m, α, β, γ, λ, such
that

|log k(y1) − log k(y2)| ≤ c

(
|y1 − y2|

r

)σ
, (1.6)

whenever y1, y2 ∈ Σ ∩B(w, r/c).

Corollary 1.12 Let n, m, p, Σ, r0, A, w, u, µ, be as in Corollary 1.11 and suppose that in
addition, Σ ∩B(w, 4r0) is m Reifenberg flat with vanishing constant. Then

lim
r→0

µ(B(x, tr))

µ(B(x, r))
= tm uniformly for x ∈ Σ ∩ B̄(w, r0) and t ∈ [1/2, 1].

We note that in the language of [PTT], a measure µ is said to be asymptotically optimally
doubling on Σ ∩ B̄(w, r0) if the conclusion of Corollary 1.12 holds.

Finally we prove a theorem which implies that the Martin boundary of B(w, 4r) \Σ agrees
with the topological boundary of this set when Σ ∩B(w, 4r) is (m, r0, δ) Reifenberg flat.

Theorem 1.13 Let n, m, be integers such that 1 ≤ m ≤ n − 2 and let p, n − m < p < ∞,
be given. Let Σ ⊂ Rn be a closed set and assume that Σ ∩ B(w, 4r) is (m, r0, δ) Reifenberg
flat. Let A ∈ Mp(α, β, γ) for some (α, β, γ) and assume, in addition, that either (a) or (b) of
Theorem 1.10 hold in the case 2 ≤ m ≤ n − 2. Then there exists δ∗ = δ∗(p,m, n, α, β, γ), or
δ∗ = δ∗(p,m, n, α, β, γ, λ), such that the following is true, whenever 0 < δ < δ∗, w ∈ Σ, 0 <
r < r0. Suppose that û, v̂ are positive A-harmonic functions in B(w, 4r) \ Σ, continuous on
B̄(w, 4r) \ {w} and û = 0 = v̂ on ∂(B(w, 4r) \ Σ) \ {w}. If 0 < δ < δ∗, then û(y) = τ v̂(y) for
all y ∈ B(w, 4r) \ Σ and for some constant τ .

Remark 1.14 We emphasize that Theorem 1.9-Theorem 1.13, are completely new and that
there is currently essentially no competing literature. Theorem 1.9, Theorem 1.10, Theorem
1.13, are proved in [LLuN] in the setting of (n−1, r0, δ)-Reifenberg flat domains in Rn, assuming
only that A ∈Mp(α, β, γ) for some (α, β, γ).

Remark 1.15 Theorem 1.10 applies in the case A(y, η) = |η|p−2(η1, . . . , ηn), i.e., in the case
of the p-Laplace operator. In particular, using [LN4], or [LLuN], and Theorem 1.9-Theorem
1.13, we can conclude that the conclusions of Theorem 1.9-Theorem 1.13 hold in the context of
p-harmonic functions whenever 1 ≤ m ≤ n− 1 and p, n−m < p <∞.

Remark 1.16 The condition in Theorem 1.10 (a) is an additional regularity condition on
A = A(y, η) in the η-variables. The condition in Theorem 1.10 (b) is a structural restriction
on A. In particular, if

∇ · A(y,∇u) = ∇ · ((A(y)∇u · ∇u)p/2−1A(y)∇u),

and A ∈ Mp(α, β, γ), then Theorem 1.10 (b) holds. The class Mp(α, β, γ) is invariant with
respect to translations, rotations and dilations z → rz, r ∈ (0, 1], as discussed in Remark 1.3.
The same applies to the classes which include the conditions in Theorem 1.10 (a) and (b).
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Remark 1.17 As discussed below, in the case 2 ≤ m ≤ n − 2, n −m < p < ∞, and in the
proof of Theorem 1.10, the additional assumption on A, beyond A ∈ Mp(α, β, γ), see Theorem
1.10 (a) and (b), is only used in one crucial estimate. Indeed, consider the geometrical baseline
configuration for our results

Σ = {x = (y′, y′′) : y′ = (y1, . . . , ym), y′′ = (ym+1, . . . , yn) = 0}, (1.7)

and let Cr(0) = {y = (y′, y′′) : |y′| < r, |y′′| < r} whenever r > 0. Let A ∈ Mp(α), i.e., A
has constant coefficients, and assume that u is a positive A-harmonic function in C4(0) \ Σ,
continuous on C4(0) with u = 0 on Σ∩C4(0). Assume that u(0, y′′) = 1 for some |y′′| = 1. We
then need to prove that there exists c ≥ 1, depending only on the data, such that

c−1|y′′|ξ ≤ u(y′, y′′) whenever y ∈ C1(0) \ Σ, (1.8)

and where ξ = (p− n+m)/(p− 1). In particular, the function |y′′|ξ gives a lower bound of the
growth away from the low-dimensional set Σ in analogy with the linear growth established in
the case m = n− 1 in the corresponding baseline configuration, see Lemma 2.8 in [LLuN]. The
estimate in (1.8) is the only place where we have been unable to push our arguments through in
the same generality as in [LLuN] and it is in the proof of (1.8) that Theorem 1.10 (a) and (b)
are used.

1.4 Outline of proofs and organization of the paper

As mentioned in Remark 1.14, Theorem 1.9, Theorem 1.10, Theorem 1.13 are proved in [LLuN]
in the more traditional setting of (n − 1, r0, δ)-Reifenberg flat domains Ω in Rn. In the intro-
duction in [LLuN] some effort is given to explain and expose the key steps in the proof, stated
as Step A-Step D in [LLuN]. The proof of our main results, in particular Theorem 1.9 and The-
orem 1.10, proceed, structurally, also along the lines of these steps but details are considerably
more involved and often require some ingenuity.

Section 2 and section 3 are motivated by the fact that many of the basic estimates used in
[LLuN] have to be derived in the low-dimensional case. For example, if δ is small enough, then a
δ-Reifenberg flat domain Ω in Rn is an NTA-domain in the sense of [JK]. In particular, from the
outer corkscrew condition it then immediately follows that Rn \ Ω satisfies a uniform capacity
density condition at every point w ∈ ∂Ω based on which one can conclude that the continuous
Dirchlet problem for A-harmonic functions is uniquely solvable and that weak solutions with
continuous boundary data are Hölder continuous up to the boundary. In our case, we first have
to find a substitute for this argument, due to the lack of complement, and in Lemma 2.9 we
prove, for n,m, p,Σ as in Theorem 1.9 or Theorem 1.10, that there exists δ̂ = δ̂(p, n,m) such
that if 0 < δ < δ̂, then Σ ∩B(w, 4r) is uniformly p-thick with constant η = η(p, n,m) > 0 (see
Definition 2.8) whenever w ∈ Σ. Using this result we can then establish, see Lemma 3.2 and
Lemma 3.3, Hölder continuity for A-harmonic functions up to Σ.

In section 4 we consider solutions to elliptic PDEs whose degeneracy is given in terms of
an A2-weight λ (see (4.1)). In case λ = (|∇u| + |∇v|)p−2, where u, v are A-harmonic and
A ∈ Mp(α, β, γ), we in Lemma 4.7 prove the existence of δ̄ = δ̄(p, n,m, α, β, γ) > 0 and
c = c(n,m) ≥ 1, such that if 0 < δ < δ̄ and r̃ = r/c, then Σ∩B(w, 4r̃) is uniformly (2, λ)-thick
(see Definition 4.3) for some constant η = η(p, n,m, α, β, γ) > 0. Using results in [FJK] we can
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then guarantee Hölder continuity of solutions to these degenerate elliptic PDEs up to Σ. We
also prove, see Lemma 4.10, that if n,m, p, u, v,Σ, are as in Theorem 1.9 or Theorem 1.10, and
(a|∇u|+b|∇v|)p−2 is an A2-weight with A2-constant independent of a, b ∈ [0,∞), then Theorem
1.9 or Theorem 1.10 is valid. In subsection 4.2 we also list several other assumptions and prove
that these assumptions imply Theorem 1.9 and Theorem 1.10 when Σ is a m-dimensional plane.

In section 5 we prove, for A ∈ Mp(α) and Ã with Ãj = Am+j, 1 ≤ j ≤ n −m, p > n −m,
the existence and uniqueness of a ‘fundamental solution’, say ũ, to ∇ · Ã(∇ũ) = 0 with pole at
0 in Rn−m. It turns out that

ũ(z) = |z|ξ ũ(z/|z|), z ∈ Rn−m \ {0}, and |∇ũ|(z) ≈ ũ(z)/|z| ≈ |z|ξ−1, (1.9)

where ξ = (p− n+m)/(p− 1) and ≈ means the ratio of the two quantities is bounded above
and below by constants depending only on the data, i.e., the structure constants in Definition
1.1 and n,m, p. Let ū(y) = ũ(π(y)), when y ∈ Rn and where π(y) denotes the projection
of y onto z ∈ Rn−m. Then ū is an A-harmonic function on Rn = Rm × Rn−m, vanishing on
Rm × {0} ∈ Rm × Rn−m. In our arguments, ū plays the same role as the function yn does in
[LLuN].

In section 6 we prove Theorem 1.9 and Theorem 1.10 in the special case when A ∈ Mp(α)
and Σ is as stated in (1.7) in Remark 1.17. Indeed, let u, v be positive A-harmonic functions
in B(0, 4) \ Σ, continuous on B(0, 4) and u = 0 = v on Σ ∩ B(0, 4). Assume that u(0, y′′) ≈
v(0, y′′) ≈ 1 for some |y′′| = 1. The crucial estimate is to prove there exists c ≥ 1 (depending
only on the data) such that

c−1 ≤ u(y)/v(y) ≤ c whenever y ∈ C1(0) \ Σ, (1.10)

where the sets C·(0) were introduced in Remark 1.17. To prove (1.11) in the case m = 1 we use
an argument from [BL]. In fact, see Remark 6.3 below, this argument is also applicable in the
case of the p Laplace operator in the full range 1 ≤ m ≤ n− 2, but the proof in this case relies
heavily on the p-Laplacian being invariant under rotations. For general A ∈Mp(α), in the case
2 ≤ m ≤ n− 2, we first note, in view of (1.9), that to prove (1.10) it suffices to establish (1.10)
with v = ū, and in particular to establish the existence of c ≥ 1, depending only on the data,
such that

c−1|y′′|ξ ≤ u(y′, y′′) ≤ c|y′′|ξ whenever (y′, y′′) ∈ C1(0) \ Σ. (1.11)

To get the upper estimate in (1.11) we consider the function u′ which is defined to be A-
harmonic in B(0, 8) \ (Σ ∩ B̄(0, 4)) with continuous boundary values u′ ≡ 1 on ∂B(0, 8) and
u′ ≡ 0 on Σ ∩ B̄(0, 4). Then, using Harnack’s inequality we have u ≤ cu′, and we prove, see
(6.9), that u′ satisfies the fundamental inequality

c−1 u′(y)

d(y,Σ)
≤ |∇u′(y)| ≤ c

u′(y)

d(y,Σ)
, (1.12)

whenever y ∈ C1(0) \ Σ and where c ≥ 1 depends only on the data. Using (1.12) and (1.9) we
then conclude from our work in section 4 that (1.10) holds with u = u′ and v = ū, implying
the upper bound in (1.11).

To get the lower bound in estimate in (1.11), for a general A as in Definition 1.1, turns out to
be a more difficult problem and, as discussed in Remark 1.17, for 2 ≤ m ≤ n−2 this is the only
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place in proof of Theorem 1.10 where we require Theorem 1.10 (a) and (b). Our proof of the
lower estimate in (1.11) is based on the construction of appropriate A-subsolutions (barriers).
The constructions are rather subtle and make essential use of (1.10) and the ū introduced
above. In particular, in the case of Theorem 1.10 (a) and (b), both the constructions rely on
the function

f(y) = f(y′, y′′) = (1− |y′|2) (eū(y) − 1) = (1− |y′|2) (eū(0,y′′) − 1). (1.13)

Note that f has a product structure which facilitates computations.
In section 7 we prove Theorem 1.9 and Theorem 1.10 in general, as well as Corollaries

1.11, 1.12. Theorem 1.9 and Theorem 1.10, for A ∈ Mp(α, β, γ) and Σ as in (1.7), follow
from the corresponding results established in section 6 in the baseline configuration and by a
technique which can loosely be described as ‘freezing the coefficients’. Indeed, given our results
from section 6, as well as our preliminary work in sections 2-5, we at this stage can (with
modifications) invoke the A-harmonic machine developed in [LLuN]. In particular, based on
the validity of Theorem 1.9 and Theorem 1.10, in the case when Σ is as in (1.7), we can prove,
for u, v,Σ,m, n, p, δ, δ̃ as in Theorems 1.9 and 1.10, that (1.12) holds with ū replaced by u, v
in B(w, r/c) \ Σ, with c ≥ 1 depending only the data, provided δ̃ > 0 is small enough. We
then use this result to prove that (|∇u| + |∇v|)p−2 is an A2-weight with A2-constant bounded
independently of u, v. In view of this fact we can once again invoke boundary Harnack and
Hölder continuity results from [FJK1] to conclude Theorems 1.9 and 1.10 based on our work
in section 4. Finally, in section 7 we easily obtain Corollaries 1.11, 1.12, as a consequence of
Theorem 1.9 and Theorem 1.10. In the proof of Corollary 1.12 we also use a compactness and
blow up type argument for A-harmonic functions.

In section 8 we prove Theorem 1.13. To do this we first prove Theorem 1.13 in the baseline
case when Σ = Rm ∪ {0}. Once this is done we can use Theorems 1.9, 1.10, and Theorem 1.13
in the baseline case, to argue as earlier in order to eventually obtain Theorem 1.13.

Acknowledgement 1.18 The first author would like to thank Benny Avelin for some stimu-
lating conversations regarding the construction of the barrier in Theorem 1.10.

2 Geometry of (m, r0, δ)-Reifenberg flat sets in Rn

In this section we develop a number of results concerning the geometry of (m, r0, δ)-Reifenberg
flat sets in Rn. In particular, we assume 1 ≤ m ≤ n − 2 and we let Σ ⊂ Rn be a closed set
which is (m, r0, δ)-Reifenberg flat for some r0, δ > 0. Given w ∈ Rn and Λm(w) we can always
introduce coordinates y = (y′, y′′), y′ ∈ Rm, y′′ ∈ Rn−m, such that

Λm(w) = {y = (y′ + w′, y′′ + w′′) ∈ Rm × Rn−m : y′′ = 0},

where w = (w′, w′′). Using this coordinate system and r, 0 < r, we let aΛ(w, r) = (a′Λ(w, r), a′′Λ(w, r))
be any point satisfying a′Λ(w, r) = w′, |a′′Λ(w, r)− w′′| = r.

Lemma 2.1 Let 1 ≤ m ≤ n − 2 and suppose Σ ⊂ Rn is a closed set which is (m, r0, δ)-
Reifenberg flat for some r0, δ > 0. Then there exists δ0 = δ0(n,m) > 0, and a constant M =
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M(n,m) ≥ 2, such that the following is true whenever 0 < δ < δ0. Given w ∈ Σ, 0 < r < r0,
there is a point ar(w) ∈ (Rn \ Σ) such that

d(ar(w),Σ) > M−1r, M−1r < |ar(w)− w| ≤ r.

Proof. Consider w ∈ Σ, 0 < r < r0. Then using Definition 1.5 we see that there exists
Λ = Λm(w, r) ∈ Λm(w) such that

h(Σ ∩B(w, r),Λ ∩B(w, r)) ≤ δr.

For η ∈ (1/4, 1) fixed we now let, using coordinates with respect to Λ = Λm(w, r) as introduced
above,

ar(w) := aΛ(w, ηr). (2.1)

It then immediately follows that there exist δ0 = δ0(n,m) > 0, and a constant M = M(n,m),
such that the conclusion of the lemma holds whenever 0 < δ < δ0.

Lemma 2.2 Assume 1 ≤ m ≤ n−2, let Σ ⊂ Rn be a closed set and suppose that Σ is (m, r0, δ)-
Reifenberg flat (in Rn) for some r0, δ > 0. Then there exists δ0 = δ0(n,m) > 0 such that the
following is true whenever 0 < δ < δ0, 0 < r < r0/2. There exists c = c(n,m), 1 ≤ c < ∞,
such that

(i) h(Λm(w, r) ∩B(w, 1),Λm(w, r/2) ∩B(w, 1)) ≤ cδ,

(ii) h(Λm(w̃, r) ∩B(w̃, 1),Λm(w̃, r) ∩B(w̃, 1)) ≤ cδ (2.2)

whenever w, ŵ, w̃ ∈ Σ and r/2 ≤ |ŵ − w̃| ≤ 2r.

Proof. Let w ∈ Σ. Then, using Definition 1.5 we see that

(i′) h(Σ ∩B(w, r),Λm(w, r) ∩B(w, r)) ≤ δr,

(ii′) h(Σ ∩B(w, r/2),Λm(w, r/2) ∩B(w, r/2)) ≤ δr/2. (2.3)

Hence, using (2.3) (i′) and (ii′) we find that

h(Λm(w, r) ∩B(w, r/2),Λm(w, r/2) ∩B(w, r/2)) ≤ 2δr. (2.4)

(2.2) (i) now follows from (2.4) by scaling and elementary geometry. To prove (2.2) (ii) we first
note, using the definitions and the assumption r/2 ≤ |ŵ − w̃| ≤ 2r, ŵ, w̃ ∈ Σ, that

(i′′) h(Σ ∩B(ŵ, 4r),Λm(ŵ, 4r) ∩B(ŵ, 4r)) ≤ 4δr,

(ii′′) h(Σ ∩B(w̃, r),Λm(w̃, r) ∩B(w̃, r)) ≤ δr. (2.5)

Since B(w̃, r) ⊂ B(ŵ, 4r) we conclude from (2.5) that

h(Λm(ŵ, 4r) ∩B(w̃, r),Λm(w̃, r) ∩B(w̃, r)) ≤ 5δr. (2.6)

(2.2) (ii) follows from this observation, (2.2) (i), and scaling.
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Definition 2.3 Let Σ ⊂ Rn be a closed set. Given M ≥ 2, we say that a ball B(y, r), y ∈ Rn,
0 < r <∞, is a M-non-tangential ball (in Rn and with respect to Σ) if

M−1r < d(B(y, r),Σ) < Mr.

Furthermore, given y, y′ ∈ Rn \Σ we say that a sequence of M-non-tangential balls (in Rn and
with respect to Σ), B(y1, r1),..., B(yp, rp), is a M-Harnack chain of length p (in Rn and with
respect to Σ), joining y to y′, if y ∈ B(y1, r1), y′ ∈ B(yp, rp), and B(yi, ri) ∩ B(yi+1, ri+1) 6= ∅
for i ∈ {1, ..., p− 1}.

Lemma 2.4 Assume 1 ≤ m ≤ n−2, let Σ ⊂ Rn be a closed set and suppose that Σ is (m, r0, δ)-
Reifenberg flat (in Rn) for some r0, δ > 0. Then there exists δ0 = δ0(n,m) > 0, and a constant
M = M(n,m) ≥ 2, such that the following is true. Assume 0 < δ < δ0, w ∈ Σ, 0 < r < r̃0,
r̃0 = r0/M . Consider y ∈ B(w, r) \ Σ, let ε = d(y,Σ), and let ŷ ∈ Σ be such that ε = d(y, ŷ).
Then y, aε(ŷ), and a2ε(ŷ), can all be joined by M-Harnack chains (in Rn and with respect to
Σ), which are contained in B(ŷ,Mε) \ Σ and which have a length depending only on n, m.

Proof. Lemma 2.4 can be proved using Lemma 2.2 and elementary observations.

Lemma 2.5 Assume 1 ≤ m ≤ n−2, let Σ ⊂ Rn be a closed set and suppose that Σ is (m, r0, δ)-
Reifenberg flat (in Rn) for some r0, δ > 0. Then there exists δ0 = δ0(n,m) > 0, and a constant
M = M(n,m) ≥ 2, such that the following is true. Assume 0 < δ < δ0, w ∈ Σ, 0 < r < r̃0 and
r̃0 = r0/M . Consider y, y′ ∈ B(w, r) \Σ, such that d(y,Σ) ≥ ε, d(y′,Σ) ≥ ε, and d(y, y′) ≤ Cε,
for some ε > 0, C ≥ 1. Then there exists a M-Harnack chain (in Rn and with respect to Σ),
joining y and y′, which is contained in B(w,Mr) \Σ and which has a length depending only on
C,M , i.e., a length depending only on C, n,m.

Proof. Lemma 2.5 can be proved by proceeding along the lines of the proof in [KT] of the
corresponding statements in the more traditional setting of Reifenberg flat domains in Rn.

Remark 2.6 Let 1 ≤ m ≤ n− 2 be given. Throughout the paper we will always assume, given
a (m, r0, δ)-Reifenberg flat set Σ ⊂ Rn, that 0 < δ < δ0 with δ0 = δ0(n,m) > 0, so that Lemma
2.1, Lemma 2.4, and Lemma 2.5 are all valid. We will sometimes refer to M , r0, as parameters
defining (i) non-tangential approach regions to Σ as well as (ii) the connectivity of Rn \ Σ.

2.1 An estimate of p-capacity

Definition 2.7 Let O ⊂ Rn be open and let K be a compact subset of O. Given p, 1 < p <∞,
we let

Capp(K,O) = inf{
∫
O

|∇φ|p dy φ ∈ C∞0 (O), φ ≥ 1 in K}.

Capp(K,O) is referred to as the p-capacity of K relative to O. The p-capacity of an arbitrary
set E ⊂ O is defined by

Capp(E,O) = inf
E⊂G⊂O, G open

sup
K⊂G, K compact

Capp(K,O). (2.7)
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Definition 2.8 Let Σ ⊂ Rn be a closed set, let w ∈ Σ, 0 < r <∞. Let p, 1 < p <∞, be given
and assume that there exists a constant η > 0 such that

Capp(Σ ∩B(ŵ, r̂), B(ŵ, 2r̂))

Capp(B(ŵ, r̂), B(ŵ, 2r̂))
≥ η,

whenever ŵ ∈ Σ ∩ B(w, 4r), 0 < r̂ < r. We then say that Σ ∩ B(w, 4r) is uniformly p-thick
with constant η.

Lemma 2.9 Assume 1 ≤ m ≤ n−2, let Σ ⊂ Rn be a closed set and assume that Σ is (m, r0, δ)-
Reifenberg flat (in Rn) for some r0, δ > 0. Let p, n−m < p <∞, be given. Then there exists
δ̂ = δ̂(p, n,m) such that if 0 < δ < δ̂, then Σ ∩B(w, 4r) is uniformly p-thick for some constant
η = η(p, n,m) whenever w ∈ Σ, 0 < r < r0/4.

Proof. Let ŵ ∈ Σ∩B(w, 4r), 0 < r̂ < r, let δ̂ = δ̂(p, n,m) be a degree of freedom to be chosen
and consider 0 < δ < δ̂. As uniform p-thickness is invariant under translation and dilation, we
may in the following proof assume, without loss of generality, that ŵ = 0 and r̂ = 1. We may
also assume that p is fixed and that n −m < p < n −m/2, as Lemma 2.9 for other values of
p follows from this case and inclusion relations for Riesz capacities (see [AH] , Theorem 5.51).
To start the argument we note that there exists a hyperplane Λ = Λm(0, 1) such that

h(Σ ∩B(0, 1),Λ ∩B(0, 1)) ≤ δ ≤ δ̂. (2.8)

In the following argument we let N := δ̂−m/(1010A), where A ≥ 1 is a large but fixed degree
of freedom, depending on m, and to be chosen. Using (2.8) we find, for A large enough, that

B(0, 1/8) contains at least Ñ ≥ N disjoint balls of radius δ̂, {B(yi, δ̂)}Ñi=1, with yi ∈ Σ∩B(0, 1).
Let Γ1 denote a sub collection of these balls consisting of exactly N balls. In particular,
Γ1 = {B(zi, δ̂)}Ni=1 for some {z1, ..., zN} ⊂ {y1, ...., yÑ}. Given a ball B(zi, δ̂) in Γ1 we can now

repeat this construction with B(0, 1), B(0, 1/8), replaced by B(zi, δ̂), B(zi, δ̂/8). Doing this for
every ball in Γ1 the result is a new collection, denoted Γ2, of N2 balls of radius δ̂2. Inductively
we can in this way construct {Γl}∞l=1 where Γl is a collection of N l disjoint balls of radius δ̂l

and such that each ball in Γl+1 is contained in a ball in Γl. Furthermore, it follows, for δ̂ small
enough, that the closure of any ball in Γl is contained in B(0, 1/4).

Next let
El := {y ∈ Rn : d(y,Σ) ≤ δ̂l} ∩B(0, 1),

let l0 be a large but fixed integer, and let νl0 denote the n-dimensional Lebesgue measure
restricted to the balls in Γl0 . Then

νl0(El0 ∩B(0, 1)) = N l0 δ̂nl0γ(n), (2.9)

where γ(n) is the volume of the unit ball in Rn. Let ν̃l0 = νl0/νl0(El0 ∩B(0, 1)) and let

W
ν̃l0
1,p (y) =

∫ ∞
0

(
ν̃l0(B(y, t))

tn−p

)1/(p−1)
dt

t
, y ∈ Rn, (2.10)

denote the Wolff potential associated to ν̃l0 . We intend to prove for some small fixed δ̂ =
δ̂(p, n,m) > 0 that

W
ν̃l0
1,p (y) ≤ c whenever y ∈ Rn, (2.11)
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where c = c(p, n,m), 1 ≤ c < ∞. Using (2.11), the dual formulation of capacity proved in
Theorem 2.2.7 in [AH], as well as Theorem 4.5.4 in [AH], we can then conclude that

Capp(El0 ∩B(0, 1), B(0, 2)) ≥ ĉ−1,

for yet another ĉ = ĉ(p, n,m), 1 ≤ ĉ <∞. In particular, letting l0 →∞ we then deduce that

Capp(Σ ∩B(0, 1), B(0, 2)) ≥ ĉ−1/2.

Furthermore, since Capp(B(0, 1), B(0, 2)) ≈ 1 we see that Lemma 2.9, for n−m < p < n−m/2,
follows immediately once (2.11) is proved.

To start the proof of (2.11) we first note that

W
ν̃l0
1,p (y) ≤

∫ ∞
1

(
ν̃l0(B(y, t))

tn−p

)1/(p−1)
dt

t
+

∫ 1

δ̂l0

(
ν̃l0(B(y, t))

tn−p

)1/(p−1)
dt

t

+

∫ δ̂l0

0

(
ν̃l0(B(y, t))

tn−p

)1/(p−1)
dt

t

:= I1(y) + I2(y) + I3(y). (2.12)

Using ν̃l0(Rn) = 1 and integrating in I1(y) we obtain I1(y) ≤ c, since n −m < p < n −m/2.
Next, consider l ≤ l0, δ̂l ≤ t < δ̂l−1, and note, for y ∈ Rn, that if ν̃l0(B(y, t)) 6= 0, then B(y, t)
intersects at most c(n) balls in Γl−1. Moreover, each of these balls has νl0 measure at most
N l0−l+2δ̂nl0γ(n). Hence, using this and (2.9), we see that

ν̃l0(B(y, t)) ≤ c(n)N−l+2 = c(n)δ̂m(l−2)(1010A)l−2 ≤ (1010A)l−2

δ̂3m
tm, (2.13)

whenever δ̂l ≤ t < δ̂l−1, provided δ̂ is small enough. Furthermore, given ε ∈ (0, 1) it follows
from (2.13) that these exist δ̂ = δ̂(n,m, ε) and c = c(n,m, ε) ≥ 1, such that

ν̃l0(B(ŷ, r)) ≤ ctmε whenever δ̂l0 ≤ t ≤ 1. (2.14)

Let ε = (1 + (n− p)/m)/2 ∈ (0, 1) and fix δ̂ = δ̂(p, n,m) > 0 to be the largest number so that
the above inequalities hold. Then, using (2.14) we see that

I2(y) ≤
∫ 1

δ̂l0
t(mε+p−n)/(p−1)dt

t
≤ c(p, n,m).

Finally, using the trivial estimate νl0(B(y, t)) ≤ γ(n)tn, whenever 0 < t < δ̂l0 , we get

I3(y) ≤ c(N l0 δ̂nl0γ(n))1/(1−p)
∫ δ̂l0

0

tp/(p−1)dt

t
≤ c(p, n,m),

whenever n−m < p < n−m/2. Putting together the estimates for I1(y), I2(y), I3(y) we obtain
(2.11) in the case n −m < p < n −m/2. From our earlier remarks we now conclude Lemma
2.9.
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3 A-harmonic functions

In this section we first state and prove some fundamental estimates for non-negative A-harmonic
functions. Throughout the section we assume, unless otherwise stated, that

(i) p, n−m < p <∞, 1 ≤ m ≤ n− 2,

(ii) Σ ⊂ Rn is a closed set and Σ is (m, r0, δ)-Reifenberg flat,

(iii) A ∈Mp(α, β, γ) or A ∈Mp(α) for some (α, β, γ). (3.1)

Furthermore, assuming (3.1) we let δ̄ = min{δ0, δ̂} where δ0 is as stated in Lemma 2.1, Lemma
2.4, and Lemma 2.5, and where δ̂ is as stated in Lemma 2.9. Then δ̄ = δ̄(p, n,m). In particular,
when we in the following assume (3.1), and state that 0 < δ < δ̄, then we ensure that

(i) Lemma 2.1, Lemma 2.4, and Lemma 2.5 are valid for some M = M(n,m) ≥ 2, and

(ii) there exists η = η(p, n,m) > 0 such that Σ ∩B(w, 4r) is uniformly p-thick

with constant η whenever w ∈ Σ, 0 < r < r0/4. (3.2)

Concerning constants, unless otherwise stated, in this section, and throughout the paper, c
will denote a positive constant ≥ 1, not necessarily the same at each occurrence, depending at
most on p, n,m, α, β, γ, λ, which sometimes we refer to as depending on the data. In general,
c(a1, . . . , am) denotes a positive constant ≥ 1, which may depend at most on the data and
a1, . . . , am, not necessarily the same at each occurrence. If A ≈ B then A/B is bounded
from above and below by constants which, unless otherwise stated, depends at most on the
data. Moreover, we let max

B(z,s)
u, min

B(z,s)
u be the essential supremum and infimum of u on B(z, s)

whenever B(z, s) ⊂ Rn and whenever u is defined on B(z, s).

3.1 Basic estimates

Lemma 3.1 Given p, 1 < p < ∞, assume that A ∈ Mp(α, β, γ) for some (α, β, γ). Let u be a
positive A-harmonic function in B(w, 2r).Then

(i) rp−n
∫

B(w,r/2)

|∇u|p dy ≤ c ( max
B(w,r)

u)p,

(ii) max
B(w,r)

u ≤ c min
B(w,r)

u.

Furthermore, there exists σ = σ(p, n, α, β, γ) ∈ (0, 1) such that if x, y ∈ B(w, r), then

(iii) |u(x)− u(y)| ≤ c

(
|x−y|
r

)σ
max
B(w,2r)

u.

Lemma 3.2 Assume (3.1) and that 0 < δ < δ̄. Let w ∈ Σ and consider 0 < r < r0. Then,
given f ∈ W 1,p(B(w, 4r)) there exists a unique A-harmonic function u ∈ W 1,p(B(w, 4r) \ Σ)
such that u − f ∈ W 1,p

0 (B(w, 4r) \ Σ). Furthermore, let u, v ∈ W 1,p
loc (B(w, 4r) \ Σ) be an A-

superharmonic function and an A-subharmonic function in Ω, respectively. If inf{u − v, 0} ∈
W 1,p

0 (B(w, 4r) \ Σ), then u ≥ v a.e in B(w, 4r) \ Σ. Finally, every point ŵ ∈ Σ ∩ B(w, 4r) is
regular for the continuous Dirichlet problem for ∇ · A(x,∇u) = 0.
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Proof. The first part of the lemma is a standard maximum principle so we only prove the
statement that every point ŵ ∈ Σ∩B(w, 4r) is regular in the continuous Dirichlet problem for
∇ · A(x,∇u) = 0 and to prove this we use results established in section 6 of [HKM]. Indeed,
given ŵ ∈ Σ ∩B(w, 4r), from (3.1) and the assumption that 0 < δ < δ̄ we have, see (3.2), that
there exist rŵ > 0 and η = η(p, n,m) > 0 such that

Capp(Σ ∩B(ŵ, ρ), B(ŵ, 2ρ))

Capp(B(ŵ, ρ), B(ŵ, 2ρ))
≥ η,

whenever 0 < ρ < rŵ/2. In particular,

rŵ/2∫
0

[
Capp(Σ ∩B(ŵ, ρ), B(ŵ, 2ρ))

Capp(B(ŵ, ρ), B(ŵ, 2ρ))

]1/(p−1)
dρ

ρ
=∞

and hence ŵ is regular in the Dirichlet problem for ∇ · A(x,∇u) = 0.

Lemma 3.3 Assume (3.1), 0 < δ < δ̄, and that w ∈ Σ. Assume also that u is a positive
A-harmonic function in B(w, 4r)\Σ, continuous on B(w, 4r) and u = 0 on Σ∩B(w, 4r). Then

(i) rp−n
∫

B(w,r/2)

|∇u|p dy ≤ c ( max
B(w,r)

u)p.

Furthermore, there exists σ = σ(p, n,m, α, β, γ) ∈ (0, 1) such that if x, y ∈ B(w, r), then

(ii) |u(x)− u(y)| ≤ c

(
|x−y|
r

)σ
max
B(w,2r)

u.

Proof. (i) is a standard Caccioppoli inequality so we only prove (ii). We note, using Lemma
3.1, the triangle inequality and elementary arguments, that it suffices to prove there exist
1 ≤ c <∞ and σ = σ ∈ (0, 1), depending only on the data, such that

max
B(w,ρ)

u ≤ c

(
ρ

r

)σ
max
B(w,r)

u, whenever 0 < ρ ≤ r. (3.3)

To prove (3.3) we again use results established in section 6 in [HKM]. Indeed, using Theorem
6.18 in [HKM] we immediately see that there exists a constant c > 0, depending only on the
data such that

max
B(w,ρ)

u ≤ exp

(
−c

r∫
ρ

[
Capp(Σ ∩B(w, t), B(w, 2t))

Capp(B(w, t), B(w, 2t))

]1/(p−1)
dt

t

)
max
B(w,r)

u.

Furthermore, using (3.1) and the assumption that 0 < δ < δ̄, we have

exp

(
−c

r∫
ρ

[
Capp(Σ ∩B(w, t), B(w, 2t))

Capp(B(w, t), B(w, 2t))

]1/(p−1)
dt

t

)
≤ exp(−ĉ ln(r/ρ)).

Putting these inequalities together we obtain (3.3).
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Lemma 3.4 Assume (3.1) and that 0 < δ < δ̄. Assume also that u is a positive A-harmonic
function in B(w, 4r) \ Σ. There exists c = c(p, n,m), 1 ≤ c < ∞, such that if r̃ = r/c,
w1, w2 ∈ B(w, r̃) \ Σ, min{d(w1,Σ), d(w2,Σ)} > ε and |w1 − w2| ≤ Cε, for some ε > 0, then

u(w1) ≤ ĉu(w2) for some ĉ ≥ 1 depending only on the data and C.

Proof. The lemma is elementary and follows from Lemma 2.5 and Lemma 3.1.

Lemma 3.5 Assume (3.1) and that 0 < δ < δ̄. Assume also that u is a positive A-harmonic
function in B(w, 4r) \ Σ, continuous on B(w, 4r) and u = 0 on Σ ∩ B(w, 4r). There exists
c ≥ 1, depending only on the data, such that if r̃ = r/c, then

max
B(w,r̃)

u ≤ c u(ar̃(w)).

Proof. A proof of Lemma 3.5 for linear elliptic PDE can be found in [CFMS]. The proof uses
only analogues of Lemma 3.1, Lemma 3.3 and Lemma 3.4 for linear PDE. In particular, the
proof also applies in our situation.

Lemma 3.6 Assume (3.1) and that 0 < δ < δ̄. Let w ∈ Σ, 0 < r < r0, and suppose that u
is a non-negative A-harmonic function in B(w, 4r) \ Σ, continuous on B(w, 4r) and u = 0 on
Σ ∩ B(w, 4r). Then u has a representative in W 1,p(B(w, 4r)) with Hölder continuous partial
derivatives in B(w, 4r) \ Σ. Furthermore, there exists σ̂ ∈ (0, 1], depending only on p, n,m, α,
β, γ, such that if x, y ∈ B(ŵ, r̂/2), B(ŵ, 4r̂) ⊂ B(w, 4r) \ Σ, then

(i) c−1 |∇u(x)−∇u(y)| ≤ (|x− y|/r̂)σ̂ max
B(ŵ,r̂)

|∇u| ≤ c r̂−1 (|x− y|/r̂)σ̂ max
B(ŵ,2r̂)

u.

Furthermore, if A ∈Mp(α),

u(y)

d(y,Σ)
≈ |∇u|(y), y ∈ B(ŵ, 3r̂),

and if A also satisfies Theorem 1.10 (a), then u has continuous second derivatives in B(ŵ, 3r̂),
and there exists c̄ ≥ 1, depending only on the data such that

(ii) max
B(ŵ, r̂

2
)

n∑
i,j=1

|ûyiyj | ≤ c̄

(
r̂−n

∫
B(ŵ,r̂)

n∑
i,j=1

|ûyiyj |2 dy

)1/2

≤ c̄2 û(w̄)/d(w̄,Σ)2.

Proof. A proof of (i) can be found in [T]. (ii) follows from the first display, the added
assumptions, and Schauder type estimates (see [GT]).

Lemma 3.7 Assume (3.1) and that 0 < δ < δ̄. Let w ∈ Σ, 0 < r < r0, and suppose that
u is a non-negative A-harmonic function in B(w, 4r) \ Σ, continuous on B(w, 4r) and u = 0
on Σ ∩ B(w, 4r). There exists a unique finite positive Borel measure µ on Rn, with support in
Σ ∩B(w, 4r), such that whenever θ ∈ C∞0 (B(w, 4r)), then

(i)

∫
〈A(y,∇u(y)),∇φ(y)〉 dy = −

∫
φ dµ.

Moreover, there exists c = c(p, n,m, α, β, γ), 1 ≤ c <∞, such that if r̃ = r/c, then

(ii) c−1rp−nµ(Σ ∩B(w, r̃)) ≤ (u(ar̃(w)))p−1 ≤ c rp−n µ(Σ ∩B(w, r̃/2)).

Proof. See [KZ].
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3.2 Technical lemmas

To start this section, assume that 1 ≤ m ≤ n−2. Given 0 ∈ Rm×Rn−m, r1, r2, 0 < r1, r2 <∞,
we let

Cr1,r2(0) = {y = (y′, y′′) : |y′| < r1, |y′′| < r2}.

If r1 = r2 = r we simply write Cr(0). Given w ∈ Rm × Rn−m we assume that Σ = Λm(w).
Let T be the composition of a translation and a rotation, which maps 0 ∈ Rn to w and
{(y′, y′′) ∈ Rm × Rn−m, y′′ = 0} to Σ. Based on T we let

Cr1,r2(w) = T (Cr1,r2(0)), Cr(w) = T (Cr(0)). (3.4)

Furthermore, we let, whenever 0 < r1 <∞,

Σr1(w) = T ({y = (y′, y′′) : |y′| < r1, y
′′ = 0}). (3.5)

Lemma 3.8 Let p, n −m < p < ∞, 1 ≤ m ≤ n − 2, and assume that A1, A2 ∈ Mp(α, β, γ)
with

|A1(y, η)− A2(y, η)| ≤ ε|η|p−1 whenever y ∈ C1(0),

for some 0 < ε < 1/2. Let u2 be a non-negative A2-harmonic function in C1(0) \ Σ1(0),
continuous on the closure C1(0) \ Σ1(0), and with u2 = 0 on Σ1(0). Furthermore, let u1 be the
A1-harmonic function in C1/2(0)\Σ1/2(0) which is continuous on the closure of C1/2(0)\Σ1/2(0)
and which coincides with u2 on ∂(C1/2(0) \ Σ1/2(0)). Then there exist, given ρ ∈ (0, 1/16), c,
c̃, θ, and τ, all depending only on p, n, α, β, γ, such that

|u2(y)− u1(y)| ≤ cεθu2(a1/2(w)) ≤ c̃εθρ−τu2(y) whenever y ∈ C1/4(0) \ C1/4,ρ(0).

Proof. The statement of the lemma and its proof is similar to Lemma 3.1 in [LLuN] but we here
include a proof for completion. To start with we observe that the existence and uniqueness
of u1, as stated in the lemma and given u2, follows from Lemma 3.2. Next we note that if
y ∈ Rn, λ ∈ Rn, ξ ∈ Rn \ {0}, and A ∈Mp(α, β, γ), then

Ai(y, λ)− Ai(y, ξ) =
n∑
j=1

(λj − ξj)
1∫

0

∂Ai
∂ηj

(y, tλ+ (1− t)ξ)dt (3.6)

for i ∈ {1, .., n}. Using (3.6) and Definition 1.1 we see that

c−1 (|λ|+ |ξ|)p−2 |λ− ξ|2 ≤ 〈A(y, λ)− A(y, ξ), λ− ξ〉 ≤ c (|λ|+ |ξ|)p−2|λ− ξ|2. (3.7)

In particular, using (3.7) we deduce that if

I =

∫
C1/2(0)\Σ1/2(0)

|∇u2 −∇u1|pdy,
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then,

I ≤ cJ, J :=

∫
C1/2(0)\Σ1/2(0)

〈A1(y,∇u1(y))− A1(y,∇u2(y)),∇u2(y)−∇u1(y)〉dy, (3.8)

since p ≥ 2. As ∇ · (A1(y,∇u1(y))) = 0 = ∇ · (A2(y,∇u2(y))) whenever y ∈ C1/2(0) \ Σ1/2(0),

and as θ = u2 − u1 ∈ W 1,p
0 (C1/2(0) \ Σ1/2(0)), we see from the definition of J in (3.8) that

J =

∫
C1/2(0)\Σ1/2(0)

〈A2(y,∇u2(y))− A1(y,∇u2(y)),∇u2(y)−∇u1(y)〉dy. (3.9)

Hence, using (3.8), (3.9), the assumption on the difference |A1(y, η) − A2(y, η)| stated in the
lemma and Hölder’s inequality, we can conclude that

I ≤ cε

∫
C1/2(0)\Σ1/2(0)

(|∇u1|p + |∇u2|p)dx. (3.10)

Now from the observation above (3.9), (3.7) with ξ = 0, and Hölder’s inequality we see that∫
C1/2(0)\Σ1/2(0)

|∇u1|pdy ≤ c

∫
C1/2(0)\Σ1/2(0)

〈A1(y,∇u1(y)), ∇u2(y)〉dy

≤ (1/2)

∫
C1/2(0)\Σ1/2(0)

|∇u1|pdy + c

∫
C1/2(0)\Σ1/2(0)

|∇u2|pdy.

Thus, ∫
C1/2(0)\Σ1/2(0)

|∇u1|pdy ≤ c

∫
C1/2(0)\Σ1/2(0)

|∇u2|pdy. (3.11)

In particular, using (3.11) in (3.10), and Lemma 3.1, Lemma 3.3, Lemma 3.5, for u2, we obtain

I ≤ cε(u2(en/2))p. (3.12)

Next using the Poincáre inequality for functions in C1/2(0) \ Σ1/2(0)) we deduce from (3.12)
that ∫

C1/2(0)\Σ1/2(0)

|u2 − u1|p dy ≤ c

∫
C1/2(0)\Σ1/2(0)

|∇u2 −∇u1|p dy ≤ cε(u2(en/2))p. (3.13)

In the following we let η = 1/(p+ 2) and we introduce the sets

E = {y ∈ C1/2(0) : |u2(y)− u1(y)| ≤ εηu2(en/2)}, F = C1/2(0) \ E. (3.14)
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Moreover, for a measurable function f defined on C1/2(0) we introduce, whenever y ∈ C1/2(0),
the Hardy-Littlewood maximal function

M(f)(y) := sup
{r>0, Cr(y)⊂C1/2(0)\Σ1/2(0)}

1

|Cr(y)|

∫
Cr(y)

|f(z)|dz. (3.15)

Let

G = {y ∈ C1/2(0) : M(χF )(y) ≤ εη}, (3.16)

where χF is the indicator function for the set F . Then using weak (1,1)-estimates for the
Hardy-Littlewood maximal function, (3.13) and (3.14) we see that

|C1/2(0) \G| ≤ cε−η|F | ≤ cε−ηε−pηε = cεη, (3.17)

by our choice for η. Also, using continuity of u2(y)− u1(y) we find for y ∈ G that

|u2(y)− u1(y)| = lim
r→0

1

|B(y, r)|

∫
B(y,r)

|u2(z)− u1(z)|dz ≤ cεηu2(en/2). (3.18)

If y ∈ C1/4(0) \ G, then from (3.17) we see there exists ŷ ∈ G such that |y − ŷ| ≤ c(n)εη/n.
Using Lemma 3.1 and Lemma 3.3 we hence get that

|u2(y)− u1(y)| ≤ |u2(ŷ)− u1(ŷ)|+ |u2(y)− u2(ŷ)|+ |u1(y)− u1(ŷ)|
≤ c(εη + εση/n)u2(en/2). (3.19)

This completes the proof of the first inequality stated in Lemma 3.8. Finally, using the Harnack
inequality we see that there exists τ ≥ 1, depending only on the data such that u2(en/2) ≤
cρ−τu2(y) whenever y ∈ C1/4(0) \ C1/4,ρ(0).

Lemma 3.9 Let O ⊂ Rn be an open set, suppose 1 < p < ∞, and that A1, A2 ∈ Mp(α, β, γ).
Also, suppose that û1, û2 are non-negative functions in O, that û1 is A1-harmonic in O and that
û2 is A2-harmonic in O. Let ã ≥ 1, y ∈ O and assume that

1

ã

û1(y)

d(y, ∂O)
≤ |∇û1(y)| ≤ ã

û1(y)

d(y, ∂O)
.

Let ε̃−1 = (cã)(1+σ̂)/σ̂, where σ̂ is as in Lemma 3.6. If

(1− ε̃)L̂ ≤ û2

û1

≤ (1 + ε̃)L̂ in B(y, 1
100
d(y, ∂O))

for some L̂, 0 < L̂ <∞, then for c = c(p, n, α, β, γ) suitably large,

1

cã

û2(y)

d(y, ∂O)
≤ |∇û2(y)| ≤ cã

û2(y)

d(y, ∂O)
.

Proof. This is Lemma 3.18 in [LLuN] and we refer the reader to [LLuN] for the proof.
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4 Linear degenerate elliptic equations

Let w ∈ Rn, r > 0, and let λ(y) be a real valued, non-negative, Lebesgue measurable function
defined almost everywhere on B(w, 2r). λ(y) is said to belong to the class A2(B(w, r)) if there
exists a constant Γ such that

r̃−2n

∫
B(w̃,r̃)

λ dy ·
∫

B(w̃,r̃)

λ−1dy ≤ Γ, (4.1)

whenever w̃ ∈ B(w, r) and 0 < r̃ ≤ r. If λ(y) belongs to the class A2(B(w, r)) then λ is referred
to as an A2(B(w, r))-weight. The smallest Γ such that (4.1) holds is referred to as the constant
of the weight. Throughout the section we assume that

(i) 1 ≤ m ≤ n− 2,

(ii) Σ ⊂ Rn is a closed set and Σ is (m, r0, δ)-Reifenberg flat (in Rn) for some r0, δ > 0,

(iii) 0 < δ < δ0 where δ0 is as stated in Lemma 2.1, Lemma 2.4, and Lemma 2.5. (4.2)

We let w ∈ Σ, 0 < r < r0, and we consider the operator

L̂ =
n∑

i,j=1

∂

∂yi

(
âij(y)

∂

∂yj

)
, (4.3)

in B(w, 16r) \ Σ. We assume that the coefficients {âij(y)} are bounded, Lebesgue measurable
functions defined almost everywhere in B(w, 16r) and that

c−1λ(y)|ξ|2 ≤
n∑

i,j=1

âij(y)ξiξj ≤ c|ξ|2λ(y), (4.4)

for almost every y ∈ B(w, 16r), where λ ∈ A2(B(w, 8r)). By definition L̂ is a degenerate elliptic
operator (in divergence form) in B(w, 8r) with ellipticity measured by the function λ and c. If
O ⊂ B(w, 8r) \ Σ is open, then we let W̃ 1,2(O) be the weighted Sobolev space of equivalence
classes of functions v with distributional gradient ∇v and norm

‖v‖̃2
1,2 =

∫
O

v2λdy +

∫
O

|∇v|2λdy <∞. (4.5)

Let W̃ 1,2
0 (O) be the closure of C∞0 (O) in the norm W̃ 1,2(O). We say that v is a weak solution

to L̂v = 0 in O provided v ∈ W̃ 1,2(O) and∫
O

∑
i,j

âijvyiφyjdy = 0, (4.6)

whenever φ ∈ C∞0 (O). u ∈ W̃ 1,2(O) is called a subsolution of L̂ if (4.6) holds with = replaced
by ≤ for all φ ∈ W̃ 1,2(O) such that φ ≥ 0. u is called a supersolution if −u is a subsolution.

For the proof of the following lemma we refer to [FKS].
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Lemma 4.1 Let w ∈ Σ, 0 < r < r0 and let λ be an A2(B(w, 8r))-weight with constant Γ.
Suppose that v is a positive weak solution to Lv = 0 in B(w, 4r) \ Σ. Then there exists a
constant c = c(n,Γ), 1 ≤ c <∞ such that if ŵ ∈ Rn, 0 < r̂, B(ŵ, 2r̂) ⊂ B(w, 4r) \ Σ, then

(i) r̂2

∫
B(ŵ,r̂/2)

|∇v|2λdy ≤ c

∫
B(ŵ,r̂)

|v|2λdy,

(ii) max
B(ŵ,r̂)

v ≤ c min
B(ŵ,r̂)

v.

Furthermore, there exists α = α(n,Γ) ∈ (0, 1) such that if x, y ∈ B(ŵ, r̂), then

(iii) |v(x)− v(y)| ≤ c

(
|x−y|
r̂

)α
max
B(ŵ,2r̂)

v.

Definition 4.2 Let w ∈ Rn, 0 < r < r0, let O ⊂ B(w, 8r) be open, let K be a compact subset
of O and assume that λ is a real valued, non-negative, Lebesgue measurable function defined
almost everywhere on B(w, 8r). We define,

Cap2,λ(K,O) = inf{
∫
O

|∇φ|2λ dy φ ∈ C∞0 (O), φ ≥ 1 in K}.

Then Cap2,λ(K,O) is referred to as the (2, λ)-capacity K relative O. The (2, λ)-capacity of an
arbitrary set E ⊆ O is defined

Cap2,λ(E,O) = inf
E⊂G⊂O, G open

sup
K⊂G, K compact

Cap2,λ(K,O). (4.7)

Definition 4.3 Let Σ ⊂ Rn be a closed set, let w ∈ Σ, 0 < r < ∞, assume that λ is a real
valued, non-negative, Lebesgue measurable function defined almost everywhere on B(w, 8r).
Also assume there exists a constant η > 0 such that

Cap2,λ(Σ ∩B(ŵ, r̂), B(ŵ, 2r̂))

Cap2,λ(B(ŵ, r̂), B(ŵ, 2r̂))
≥ η

whenever ŵ ∈ Σ∩B(w, 4r), 0 < r̂ < r. We then say that Σ∩B(w, 4r) is uniformly (2, λ)-thick
with constant η.

Lemma 4.4 Let w ∈ Σ, 0 < r < r0, and suppose that λ is an A2(B(w, 8r))-weight. Further-
more, assume (4.2) and that Σ ∩ B(w, 4r) is uniformly (2, λ)-thick for some constant η > 0.
Then, given f ∈ W̃ 1,2(B(w, 4r)) there exists a unique weak solution u ∈ W̃ 1,2(B(w, 4r) \ Σ)
to L̂u = 0 in B(w, 4r) \ Σ such that u − f ∈ W̃ 1,2

0 (B(w, 4r) \ Σ). Furthermore, let u, v ∈
W̃ 1,2
loc (B(w, 4r) \ Σ) be a L̂-supersolution and a L̂-subsolution in B(w, 4r) \ Σ, respectively. If

inf{u − v, 0} ∈ W̃ 1,2
0 (B(w, 4r) \ Σ), then u ≥ v a.e in B(w, 4r) \ Σ. Finally, every point

ŵ ∈ Σ ∩B(w, 4r) is regular for the continuous Dirichlet problem for L̂u = 0.

Proof. The proof is essentially identical to the proof of Lemma 3.2, see also [FJK].

The following lemmas, Lemma 4.5 and Lemma 4.6, are tailored to our situation and based
on results in [FKS], [FJK] and [FJK1]. We note that these authors assumed L̂ to be symmetric,
i.e., âij = âji, 1 ≤ i, j ≤ n, but, as pointed out in [LLuN], this assumption was not needed in
the proof of these lemmas.
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Lemma 4.5 Let w ∈ Σ, 0 < r < r0, and suppose that λ is an A2(B(w, 8r))-weight. Let v be a
positive solution to L̂v = 0 in B(w, 2r)\Σ, continuous on B(w, 2r) and v = 0 on Σ∩B(w, 2r).
Furthermore, assume (4.2) and that Σ ∩ B(w, 4r) is uniformly (2, λ)-thick for some constant
η > 0. Then there exists c = c(n,Γ, η), 1 ≤ c <∞, such that the following holds with r̃ = r/c.

(i) r2

∫
B(w,r/2)

|∇v|2λdy ≤ c

∫
B(w,r)

|v|2λdy,

(ii) max
B(w,r̃)

v ≤ cv(ar̃(w)).

Moreover, there exists α = α(n,Γ, η) ∈ (0, 1) such that if x, y ∈ B(w, r̃), then

(iii) |v(x)− v(y)| ≤ c

(
|x−y|
r

)α
max
B(w,2r̃)

v.

Lemma 4.6 Let w ∈ Σ, 0 < r < r0, and suppose that λ is an A2(B(w, 8r))-weight. Also let
v1, v2, be two positive solution to L̂v = 0 in B(w, 2r)\Σ, continuous on B(w, 2r) and v1 = 0 = v2

on Σ∩B(w, 2r). Furthermore, assume (4.2) and that Σ∩B(w, 4r) is uniformly (2, λ)-thick for
some constant η > 0. Then there exist c = c(n,Γ, η), 1 ≤ c < ∞, and α = α(n,Γ, η) ∈ (0, 1),
such that ∣∣∣∣log

v1(y1)

v2(y1)
− log

v1(y2)

v2(y2)

∣∣∣∣ ≤ c

(
|y1 − y2|

r

)α
,

whenever y1, y2 ∈ B(w, r/c) \ Σ.

4.1 A-harmonic functions: linearization and weighted capacity

Recall that we are assuming (3.1) and 0 < δ < δ̄ so that also (3.2) holds, see (4.2). Assume
that û, v̂ are two positive A-harmonic functions in B(w, 4r) \ Σ, continuous on B(w, 4r) and
satisfying û = 0 = v̂ on Σ ∩B(w, 4r). We define

e(y) = û(y)− v̂(y) whenever y ∈ B(w, 2r), (4.8)

and put

u(y, τ) = τ û(y) + (1− τ)v̂(y) whenever y ∈ B(w, 2r) and τ ∈ [0, 1]. (4.9)

Clearly, e(y) = u(y, 1)− u(y, 0) and it follows from (3.6) that e is a weak solution to

L̂e :=
n∑

i,j=1

∂

∂yi

(
âij(y)

∂

∂yj

)
= 0 in B(w, 2r) \ Σ, (4.10)

where, whenever y ∈ B(w, 2r) \ Σ and 1 ≤ i, j ≤ n,

âij(y) =

∫ 1

0

aij(y, τ)dτ,

aij(y, τ) =
∂Ai
∂ηj

(∇u(y, τ)). (4.11)
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In particular, using the structure assumptions in Definition 1.1, we observe from (4.10), (4.11),
that e = û − v̂ is the solution to a divergence form PDE with ellipticity constant, at y ∈
B(w, 2r) \ Σ, estimated by

min{p− 1, 1}|ξ|2λ(y) ≤
n∑

i,j=1

âij(y)ξiξj ≤ max{p− 1, 1}|ξ|2λ(y), (4.12)

whenever ξ ∈ Rn. Here,

λ(y) =

∫ 1

0

|∇u(y, τ)|p−2dτ ≈
(
|∇û(y)|+ |∇v̂(y)|

)p−2

, (4.13)

whenever y ∈ B(w, 2r)\Σ. In (4.13) ≈ means that the constants of proportionality only depend
on p, n, α. We prove the following lemma.

Lemma 4.7 Assume (3.1) and that 0 < δ < δ̄. Also suppose that û, v̂ are two positive A-
harmonic functions in B(w, 4r) \ Σ, continuous on B(w, 4r) and satisfying û = 0 = v̂ on
Σ∩B(w, 4r). Let λ̂ = λ̂(y) = (|∇û(y)|+ |∇v̂(y)|)p−2 and suppose that λ̂ 6= 0, almost everywhere
in B(w, 4r). There exists c = c(n,m) ≥ 1, such that if r̃ = r/c then Σ ∩ B(w, 4r̃) is uniformly
(2, λ̂)-thick for some constant η = η(p, n,m, α, β, γ) > 0.

Proof. In the following we simply choose c = c(n,m) ≥ 1, r̃ = r/c, such that if ŵ ∈
Σ ∩B(w, 4r̃), 0 < r̂ < r̃, then ar̂(ŵ) and the point realizing supB(ŵ,4r̂) û can be connected with
a Harnack chain contained in B(w, r) and of length independent of ŵ, r̂. Using this choice for
r̃ we want to prove, for r̃ and η as stated, that

Cap2,λ̂(Σ ∩B(ŵ, r̂), B(ŵ, 2r̂))

Cap2,λ̂(B(ŵ, r̂), B(ŵ, 2r̂))
≥ η,

whenever ŵ ∈ Σ∩B(w, 4r̃), 0 < r̂ < r̃. By scaling we can assume that ŵ = 0, r̂ = 1 and hence
we want to bound the quotient

Cap2,λ̂(Σ ∩B(0, 1), B(0, 2))

Cap2,λ(B(0, 1), B(0, 2))
, (4.14)

from below, with a positive constant depending at most on only on p, n,m, α, β, γ. Furthermore,
in the following we can, without loss of generality, assume that

max{û(a1(0)), v̂(a1(0))} = û(a1(0)).

Let now φ ∈ C∞0 (B(0, 2)), φ ≥ 1 on Σ ∩ B(0, 1), be an admissible test function used in the
definition of Cap2,λ̂(Σ ∩B(0, 1), B(0, 2)). Then, using Lemma 3.7 we see that∫

〈A(y,∇û(y)),∇φ(y)〉 dy = −
∫
φ dµ̂. (4.15)

In particular,

µ̂(B(0, 1)) ≤
∫
|〈A(y,∇û(y)),∇φ(y)〉| dy ≤ c

∫
|∇û|p−1|∇φ| dy, (4.16)
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and hence, simply using the Hölder inequality, we find that

µ̂(B(0, 1)) ≤ c

(∫
|∇φ|2λ̂(y) dy

)1/2(∫
B(0,2)

|∇û|p dy
)1/2

.

Next, applying Lemma 3.1, the Harnack inequality and Lemma 3.5, we have(∫
B(0,2)

|∇û|p dy
)1/2

≤ û(a1(0))p/2.

Furthermore, using Lemma 3.7 (ii) and arguing as above we see that µ̂(B(0, 1)) ≈ û(a1(0))p−1.
In particular, using this fact and the above displays we deduce that

û(a1(0))p−2 ≤ c

(∫
|∇φ|2λ̂(y) dy

)
. (4.17)

Since φ is an arbitrary admissible test function used in the definition of Cap2,λ̂(Σ∩B(0, 1), B(0, 2)),
we conclude that

û(a1(0))p−2 ≤ cCap2,λ̂(Σ ∩B(0, 1), B(0, 2)), (4.18)

and this is a lower bound for Cap2,λ̂(B(0, 1), B(0, 2)).
Next, to establish an upper bound for Cap2,λ̂(B(0, 1), B(0, 2)) we simply note that∫

B(0,2)

|∇φ|2λ̂(y)dy =

∫
B(0,2)

|∇φ|2(|∇û|+ |∇v̂|)p−2dy

≤ c

(∫
B(0,2)

(|∇û|+ |∇v̂|)p dy
)1−2/p(∫

B(0,2)

|∇φ|p dy
)2/p

. (4.19)

Choosing φ as the p-capacitary function for B(0, 2) \B(0, 1) we can therefore conclude that

Cap2,λ̂(B(0, 1), B(0, 2)) ≤ c

(∫
B(0,2)

(|∇û|+ |∇v̂|)p dy
)1−2/p

≤ c

(
max{û(a1(0)), v̂(a1(0))}

)p−2

= cû(a1(0))p−2. (4.20)

(4.18) and (4.20) now give the bound from below for the quotient in (4.14) and hence the proof
of Lemma 4.7 is complete.

4.2 A-harmonic functions: estimates based on linearization

In the following we again assume (3.1) and 0 < δ < δ̄ so that also (3.2) holds. We also
put θ̃ = 1 when m = 1 and θ̃ = λ, as in Theorem 1.10, when 2 ≤ m ≤ n − 2. Let û, v̂,
λ̂ = λ̂û,v̂, be as in the statement of Lemma 4.7. Then, by Lemma 4.7 we see that there exists

c = c(n,m) ≥ 1, such that if %0 = r/c, then Σ ∩ B(w, 4%0) is uniformly (2, λ̂)-thick for some
constant η = η(p, n,m, α, β, γ) > 0. The analysis in this subsection is based on the following
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assumption.

Assumption 1. There exists c1 = c1(p, n,m, α, β, γ, θ̃) ≥ 1 such that if %1 = %0/c1, a, b ∈
[0,∞), and û, v̂ are as above, then λ̂(y) := λ̂(y, a, b, û, v̂) = (a|∇û(y)| + b|∇v̂(y)|)p−2 is an
A2(B(w, 4%1))-weight with constant Γ = Γ(p, n,m, α, β, γ, θ̃).

Lemma 4.8 Assume (3.1), 0 < δ < δ̄, and Assumption 1. Let û, v̂ and %1 be as in Lemma 4.7
with v̂ ≤ û. There exists c ≥ 1, c = c(p, n,m, α, β, γ,Γ) such that if %2 = %1/c, then

c−1 û(a%2(w))− v̂(a%2(w))

v̂(a%2(w))
≤ û(y)− v̂(y)

v̂(y)
≤ c

û(a%2(w))− v̂(a%2(w))

v̂(a%2(w))
,

whenever y ∈ B(w, %2) \ Σ.

Proof. We first prove the left hand inequality in Lemma 4.8. To do so we show the existence
of T, 1 ≤ T <∞, and ĉ ≥ 1, such that if %2 = %1/ĉ, and if

e(y) = T

(
û(y)− v̂(y)

û(a%1(w))− v̂(a%1(w))

)
− v̂(y)

v̂(a%1(w))
, (4.21)

for y ∈ B(w, %1) \ Σ, then

e(y) ≥ 0 whenever y ∈ B(w, 2%2) \ Σ. (4.22)

To do this, we initially allow T, ĉ ≥ 1 to vary in (4.21). T, ĉ, are then fixed near the end of the
argument. Put

u′(y) =
T û(y)

û(a%1(w))− v̂(a%1(w))
,

v′(y) =
T v̂(y)

û(a%1(w))− v̂(a%1(w))
+

v̂(y)

v̂(a%1(w))
.

Observe from (4.21) that e = u′ − v′. Let L be defined as in (4.10) using u′, v′, instead of û, v̂,
and let e1, e2 be the solutions to Lei = 0, i = 1, 2, in B(w, %1) \ Σ, with continuous boundary
values

e1(y) =
û(y)− v̂(y)

û(a%1(w))− v̂(a%1(w))
, e2(y) =

v̂(y)

v̂(a%1(w))
, (4.23)

whenever y ∈ ∂(B(w, %1) \ Σ). Note that by construction, and by Lemma 4.7 and Lemma 4.4,
that e1, e2 are well defined. Furthermore, now using Assumption 1 we see that Lemma 4.6 can
be applied and we get, for some c+ ≥ 1 and r+ = %1/c+, that

c−1
+

e1(ar+(w))

e2(ar+(w))
≤ e1(y)

e2(y)
≤ c+

e1(ar+(w))

e2(ar+(w))
(4.24)

whenever y ∈ B(w, 2r+) \ Σ. We now put

ĉ = c+, %2 = r+, and T = ĉ
e2(a%2(w))

e1(a%2(w))
,
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and we observe from (4.24) that

Te1(y)− e2(y) ≥ 0 whenever y ∈ B(w, 2%2) \ Σ. (4.25)

Let ê = T e1 − e2 and note from linearity of L that ê, e, both satisfy the same linear locally
uniformly elliptic sub-elliptic PDE in B(w, %1) \Σ and also that these functions have the same
continuous boundary values on ∂(B(w, %1) \ Σ). Hence, using the maximum principle for the
operator L, it follows that e = ê and then, by (4.25), that e(y) ≥ 0 in B(w, 2%2) \ Σ. To
complete the proof of the left-hand inequality in Lemma 4.8 we prove that

T ≤ c(p, n,m, α, β, γ,Γ) = c(p, n,m, α, β, γ). (4.26)

To do this, let L̂ denote the operator corresponding to û − v̂ and defined as in (4.10). Then
from the Harnack inequality in Lemma 4.1 (ii) for L̂, applied to û − v̂, and the definition of
%2, we deduce the existence of ζ ∈ ∂B(w, %1) \ Σ with d(ζ,Σ) ≥ r/c and such that e1 ≥ c−1

on ∂B(w, %1) ∩ B(ζ, d(ζ,Σ)/4). Using this we get, essentially just using Lemma 4.5 (iii) and
the Harnack inequality in Lemma 4.1 applied to the function e1, that e1(a%2(w)) ≥ c̄−1. Also
from Lemma 3.5 and the Harnack inequality applied to v̂ we get e2(a%2(w)) ≤ c̄ for some
c̄ = c̄(p, n,m, α, β, γ,Γ). Thus (4.26) is true and the proof of the left hand inequality in Lemma
4.8 is complete. To prove the right hand inequality in Lemma 4.8, one can proceed similarly
and in this case one needs to prove, for e1, e2 as above, that e1(a%2(w)) ≤ c̄ and e2(a%2(w)) ≥ c̄.
The proof of the second inequality follows, as above, essentially from Lemma 4.5 (iii) and the
Harnack inequality in Lemma 4.1 applied to the function e2. The first inequality follows from
Lemma 4.5 (iii), (ii) for L̂, applied to û − v̂, and the Harnack inequality. This completes the
proof of Lemma 4.8.

Lemma 4.9 Assume (3.1), 0 < δ < δ̄, and Assumption 1. Let û, v̂ and %1 be as in Lemma
4.7. There exists c ≥ 1, c = c(p, n,m, α, β, γ, θ̃,Γ) such that if %2 = %1/c, then

c−1 û(a%2(w))

v̂(a%2(w))
≤ û(y)

v̂(y)
≤ c

û(a%2(w))

v̂(a%2(w))
,

whenever y ∈ B(w, %2) \ Σ.

Proof. Note that we do not assume v̂ ≤ û in Lemma 4.9. Our proof is similar to the proof
of Lemma 4.8. To prove the left hand inequality in Lemma 4.9 we set

e(y) =
T û(y)

û(a%1(w))
− v̂(y)

v̂(a%1(w))
for y ∈ B(w, %1) \ Σ, (4.27)

and show that

e(y) ≥ 0 whenever y ∈ B(w, 2%2) \ Σ (4.28)

where T, ĉ, %2 are as in Lemma 4.9. In this case let

u′(y) =
T û(y)

û(a%1(w))
and v′(y) =

v̂(y)

v̂(a%1(w))
.
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Put e = u′ − v′ and let L be defined as in (4.10) relative to u′, v′. Repeating the argument in
Lemma 4.8 from above (4.23) through the discussion below (4.26) we get the lefthand inequality
in Lemma 4.9. To prove the righthand inequality in Lemma 4.9 we argue as above with û, v̂
interchanged. .

Lemma 4.10 Assume (3.1), 0 < δ < δ̄, and Assumption 1. Let û, v̂ be as in Lemma 4.7
and let %2 be as in Lemma 4.8. Then there exist c ≥ 1, c = c(p, n,m, α, β, γ, θ̃,Γ), and σ =
σ(p, n,m, α, β, θ̃, γ,Γ), σ ∈ (0, 1) such that if %3 = %2/c, then∣∣∣∣log

û(y1)

v̂(y1)
− log

û(y2)

v̂(y2)

∣∣∣∣ ≤ c

(
d(y1, y2)

r

)σ
,

whenever y1, y2 ∈ B(w, %3) \ Σ.

Proof. From Lemma 4.9, we have

c−1 ũ(a%2(w))

ṽ(a%2(w))
≤ ũ(y)

ṽ(y)
≤ c

ũ(a%2(w))

ṽ(a%2(w))
,

whenever y ∈ B(w, %2) \ Σ. Using this inequality we see that

û(y1)

v̂(y1)
≤ c

û(y2)

v̂(y2)
whenever y1, y2 ∈ B(w, %2) \ Σ. (4.29)

Next if ŵ ∈ B(w, %2/8) ∩ Σ, then we let

M(ρ) = sup
B(ŵ,ρ)

û

v̂
and m(ρ) = inf

B(ŵ,ρ)

û

v̂
,

whenever 0 < ρ < %2/2. We also let osc(ρ) := M(ρ)−m(ρ) for 0 < ρ < %2/2. Then, if ρ is fixed
we can apply Lemma 4.8, with m(ρ)v̂ replacing v̂ in B(w, ρ) \ Σ to find that if c∗ ≥ 1 is large
enough and ρ̃ = ρ/c∗, then

M(ρ̃)−m(ρ) ≤ c∗(m(ρ̃)−m(ρ)).

Likewise applying Lemma 4.8 with M(ρ)v̂, û, playing the roles of û, v̂, respectively we obtain
after multiplication by u/v in view of (4.29) that

M(ρ)−m(ρ̃) ≤ c∗(M(ρ)−M(ρ̃)).

Adding these inequalities we obtain after some arithmetic that

osc(ρ̃) ≤ c∗ − 1

c∗ + 1
osc(ρ) (4.30)

where c∗ has the same dependence as c in Lemma 4.10. Iterating (4.30) we conclude that

osc(s) ≤ c(s/t)φ osc(t) whenever 0 < s < t ≤ %2/2, (4.31)

for some φ > 0, c ≥ 1. For slightly more details in the proof of (4.31), see (6.16)-(6.20)
in [LLuN]. (4.31), (4.29), the arbitrariness of ŵ ∈ B(w, %2/8) ∩ Σ and the interior Hölder
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continuity-Harnack inequalities in Lemma 3.1 applied to û, v̂, are now easily seen to imply
Lemma 4.10.

Next we consider the following alternatives assumptions to Assumption 1 .
Assumption 1′. Let û, v̂ be as in Lemma 4.7. Assume that there exists ĉ1 = ĉ1(p, n,m, α, β, γ, θ̃) ≥
1 such that if %̂1 = %0/ĉ1, then for y ∈ B(w, 4%̂1) \ Σ:

ĉ−1
1

ũ(y)

d(y,Σ)
≤ |∇ũ(y)| ≤ ĉ1

ũ(y)

d(y,Σ)
for ũ ∈ {û, v̂} .

Assumption 1′′. Let û, v̂ be as in Lemma 4.7. Assume that there exists c̆1 = c̆1(p, n,m, α, β, γ, θ̃) ≥
1 such that if %̃1 = %0/c̆1, then for y ∈ B(w, 4%̃1) \ Σ :

(i) c̆−1
1

û(a%1(w))

v̂(a%1(w))
≤ û(y)

v̂(y)
≤ c̆1

û(a%1(w))

v̂(a%1(w))

(ii) c̆−1
1

û(y)

d(y,Σ)
≤ |∇û(y)| ≤ c̆1

û(y)

d(y,Σ)
.

We end the section by proving that Assumption 1′ as well as Assumption 1′′ imply Assump-
tion 1 when Σ is a m-dimensional plane and A ∈ Mp(α). Thus, in this particular case Lemma
4.10 is valid under either assumption.

Lemma 4.11 Assume (3.1), A ∈Mp(α), and that Σ is a m-dimensional plane. Assume either
Assumption 1′ or Assumption 1′′. Then Assumption 1 holds, for some c1,Γ, depending only on
the data and either ĉ1 or c̆1.

Proof. We first prove that Assumption 1′ implies Assumption 1. To do so, let x ∈ B(w, %̂1)\Σ
and consider 0 < ρ ≤ c−1

∗ %̂1 where c∗ ≥ 100, will eventually be chosen to depend only on the
data. If ρ ≤ 3d(x,Σ)/4, then from Assumption 1′, Lemma 2.4, and Harnack’s inequality in
Lemma 3.1 applied to û, v̂, we see that λ = (a|∇û|+ b|∇v̂|)p−2 satisfies∫

B(x,ρ)

λt dx ≈
(
aû(x) + bv̂(x)

d(x,Σ)

)t(p−2)

ρn, whenever a, b ∈ [0,∞) and t = ±1. (4.32)

If ρ ≥ 3d(x,Σ)/4 let z ∈ Σ with |x−z| = d(x,Σ) and put ρ̄ = c∗ρ. Let P be a (n−1)-dimensional
plane with z ∈ P and Σ ⊂ P. Let Ω be the component of B(z, ρ̄) \ P containing x and let
Ω′ = B(z, ρ̄)\Ω̄ be the other component. Choose y ∈ Ω∩∂B(z, ρ̄), y′ ∈ Ω′∩∂B(z, ρ̄) with ũ(y′) ≈
ũ(aρ̄(z)) ≈ ũ(y) whenever ũ ∈ {û, v̂}. Also choose ρ̂ ≈ ρ with B(y, 2ρ̂) ⊂ Ω and B(y′, 2ρ̂) ⊂ Ω′.
Existence of y, y′, ρ̂ follows from elementary geometry and Harnack’s inequality in Lemma 3.1
applied to û, v̂. Let u′, v′ be the A-harmonic functions in B(z, ρ̄) \ [P ∪ B̄(y, ρ̂)∪ B̄(y′, ρ̂)] with
continuous boundary values u′ = v′ = 0 on P ∪ ∂B(z, ρ̄) while u′ = û(aρ̄(z)) and v′ = v̂(aρ̄(z))
on ∂B(y, ρ̂) ∪ ∂B(y′, ρ̂).

We remark that linear functions are A-harmonic when A ∈ Mp(α). Using this remark, and
either Lemma 2.8 in [LLuN] or just the barrier argument in this lemma, we deduce, for c∗ large
enough, that

u∗(ŷ)/d(ŷ, P ) ≥ c−1ũ(aρ̄(z))/ρ̄ whenever ŷ ∈ B(z, 4ρ) \ P, ũ ∈ {û, v̂} and u∗ ∈ {u′, v′}, (4.33)
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where c depends only on p, n, α. With c∗ now fixed we use (4.33) and the maximum principle
for A-harmonic functions to find that

ũ(ŷ) ≥ u∗(ŷ) ≥ c−1d(y, P ) ũ(aρ̄(z))/ρ̄ ≥ c−2 d(y, P ) ũ(aρ(z))/ρ, ŷ ∈ B(z, 4ρ) \ P. (4.34)

Let
E = E(P ) = {ŷ ∈ B(z, 4ρ) \ P : d(ŷ, P ) ≥ 1

4
d(ŷ,Σ)}.

Using (4.34), Assumption 1′ and the fact that p > 2, we see that∫
E

λ−1dx ≤ c

(
aû(aρ(z)) + bv̂(aρ(z))

ρ

)2−p

ρn . (4.35)

Using basic geometry we can choose (n− 1)-dimensional planes P1, . . . , PN , where N = N(n),
so that B(z, 4ρ) \ Σ ⊂ ∪Ni=1E(Pi). Using this fact, and that B(x, ρ) ⊂ B(z, 4ρ), we conclude
from (4.35) that ∫

B(x,ρ)

λ−1dx ≤ c′
(
aû(aρ(z)) + bv̂(aρ(z))

ρ

)2−p

ρn, (4.36)

where c′ depends only on p, n,m, α. Finally observe from Lemmas 3.3, 3.5 for û, v̂, and Hölder’s
inequality that ∫

B(x,ρ)

λ dx ≤
∫
B(z,4ρ)

λ dx ≤ c′′
(
aû(aρ(z)) + bv̂(aρ(z))

ρ

)p−2

ρn, (4.37)

where c′′ has the same dependence as c′ . Combining (4.36) (4.37) we find, in view of (4.32)
and the arbitrariness of x that Lemma 4.11 is true when Assumption 1′ holds.

To prove Lemma 4.11 under Assumption 1′′ we assume, as we may, that

û(a%̃1(w)) = v̂(a%̃1(w)) = 1, (4.38)

since otherwise we can multiply û, v̂ by appropriate constants to get (4.38) and then observe
that the resulting functions satisfy the same PDE as û, v̂. From (4.38) and Assumption 1′′ we
see that

c−1
+ ≤

û(y)

v̂(y)
≤ c+ in B(w, ρ1), (4.39)

where c+ ≥ 1 depends only on c̆1 in Assumption 1′′‘. Hence if ū = 2c+û, then

v̂ ≤ ū/2 ≤ c2
+v̂. (4.40)

Let now {u(·, τ)}, 0 ≤ τ ≤ 1, be the sequence of A-harmonic functions in B(w, %̃1) with
continuous boundary values,

u(y, τ) = τ ū(y) + (1− τ)v̂(y), for y ∈ ∂(B(w, %̃1) \ Σ), 0 ≤ τ ≤ 1. (4.41)

Existence of u(·, τ), τ ∈ (0, 1), is a consequence of Lemma 3.2. Also using the maximum
principle for A-harmonic functions in Lemma 3.2, Assumption 1′′, (4.40), and (4.41), we find
for some c̃, depending on c̆1 and the data, that

c̃−1 u(·, τ1) ≤ u(·, τ2)− u(·, τ1)

τ2 − τ1

≤ c̃u(·, τ1) (4.42)
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on B(w, ρ̃1) \ Σ, whenever 0 ≤ τ1 < τ2 ≤ 1. Let ε0 = ε̃ where ε̃ is as in Lemma 3.9. From
(4.42) we find the existence of ε′0, 0 < ε′0 ≤ ε0, with the same dependence as ε0, such that if
|τ2 − τ1| ≤ ε′0, then

1− ε0/2 ≤
u(·, τ2)

u(·, τ1)
≤ 1 + ε0/2 in B(w, ρ1) \ Σ. (4.43)

Let ξ1 = 0 < ξ2 < ... < ξl = 1 and consider [0,1] as divided into {[ξk, ξk+1]}, 1 ≤ k ≤ l − 1.
We assume that all of these intervals have a length of ε′0/2 with the possible exception of the
interval containing ξl = 1 which is of length ≤ ε′0/2.

Using Assumption 1′′, u(·, ξ1) = ū = 2c+û, and (4.43) we see that Lemma 3.9 can be applied
with û1 = u(·, ξ1) and û2 = u(·, ξ2). Doing this we first find, for some c− ≥ 1 depending only
on c̆1 and the data, that

c−1
−
u(y, ξ2)

d(y,Σ)
≤ |∇u(y, ξ2)| ≤ c−

u(y, ξ2)

d(y,Σ)
, (4.44)

whenever y ∈ B(w, ρ̃1/200)\Σ. Hence Assumption 1′ applies to u(·, ξ1), u(·, ξ2) with %̂1 replaced
by ρ̃1/200. Second from the first part of our proof it follows that Assumption 1 is satisfied for
these functions, so we can use Lemma 4.10 to conclude that∣∣∣∣log

(
u(y1, ξ2)

u(y1, ξ1)

)
− log

(
u(y2, ξ2)

u(y2, ξ1)

)∣∣∣∣ ≤ c

(
|y1 − y2|

ρ̃

)σ
whenever y1, y2 ∈ B(w, ρ̃/c), (4.45)

where c depends on p, n,m, α, θ̃, c̆1. We can now continue by induction, as in the proof of (4.24)
- (4.28) in Theorem 2 of [LN1] to eventually obtain (see [LN1] Lemma 4.28) that (7.54) holds
wirh u(·, ξ2) replaced by u(·, ξl) = v̂ whenever y ∈ B(w, ρ̃/c̄). Here c̄ depends only on c̆1 and
the data. Thus û, v̂ satisfy the hypotheses of Assumption 1′ and so Assumption 1 is also valid.
The proof of Lemma 4.11 is now complete.

5 Existence and uniqueness of fundamental solutions

Let n, m, be integers such that 1 ≤ m ≤ n − 2 and let p, n − m < p < ∞, be given. In
this section we assume that A ∈ Mp(α) for some α ∈ [1,∞), i.e., we consider operators with
constant coefficients. Furthermore, we consider coordinates y = (y′, y′′) ∈ Rm × Rn−m, we let
Σ = {y = (y′, y′′) ∈ Rm × Rn−m : y′′ = 0}. We are here interested in constructing u = un−m
defined on Rn such that u ∈ W 1,p

loc
(Rn \Σ), u is continuous on Rn, u = 0 on Σ, u > 0 on Rn \Σ,

and such that u is a weak solution to ∇ · A(∇u) = 0 in Rn \ Σ. To start the construction
we in the following let k = n − m and we define Ã = (Ã1, ..., Ãk) : Rk → Rk, by setting
Ãj(η) = Am+j(0, η) whenever η ∈ Rk and for j ∈ {1, ..., k}. Then also Ã ∈ Mp(α) in the sense
of Definition 1.1 but with Rn replaced by Rk. In the following points in Rk will be denoted by
z = (z1, ..., zk). We now say that ũ is a fundamental solution to the equation ∇ · Ã(∇ũ) = 0 in
Rk, with pole at 0 ∈ Rk, if

(i) ũ ∈ W 1,p

loc
(Rk), ũ is continuous in Rk, ũ(0) = 0, ũ > 0 in Rk \ {0},

(ii) θ ∈ C∞0 (Rk), then

∫
〈Ã(∇ũ(z)),∇θ(z)〉 dz = −θ(0). (5.1)
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Note that (5.1) (ii) implies that ũ is a weak solution to ∇ · Ã(∇ũ) = 0 in Rk \ {0}. We first
prove the following lemma.

Lemma 5.1 Let k be an integer, 2 ≤ k < ∞, and let p, k < p < ∞, be given. Let ξ =
(p− k)/(p− 1). Assume that Ã ∈Mp(α) for some α ∈ [1,∞) with Rk as the underlying space.
Then there exists a fundamental solution ũ to the equation ∇ · Ã(∇ũ) = 0 in Rk, with pole at
0 ∈ Rk, in the sense of (5.1), and a constant c = c(p, k, α), 1 ≤ c <∞, such that

(i′) c−1|z|ξ ≤ ũ(z) ≤ c|z|ξ,
(ii′) c−1|z|ξ−1 ≤ |∇ũ(z)| ≤ c|z|ξ−1, (5.2)

whenever z ∈ Rk \ {0}.

Proof. Assume that ũ is a fundamental solution to the equation ∇ · Ã(∇u) = 0 in Rk, with
pole at 0, i.e., ũ is a Ã-harmonic function in Rk \ {0} satisfying (5.1) (i), (ii). Using p > k,
ũ(0) = 0, we find as in Lemma 3.7 with Σ replaced by {0} that there exists a unique finite
positive Borel measure µ̃ on Rk, with support at {0}, such that∫

〈Ã(∇ũ(z)),∇θ(z)〉 dz = −
∫
θ dµ̃, (5.3)

whenever θ ∈ C∞0 (Rk). In particular, from uniqueness and (5.1) (ii) we find that µ̃(Rk) =
1. Also using Lemma 3.7 we immediately deduce that ũ satisfies (5.2) (i′). In particular,
any fundamental solution to the equation ∇ · Ã(∇ũ) = 0 in Rk, with pole at 0, satisfies, by
construction, (5.2) (i′). Hence, in the following it suffices to prove the existence of a ũ satisfying
(5.1) (i), (ii), and (5.2) (ii′). Note that in the following all balls B(0, %) are standard Euclidean
k-dimensional balls. To start the proof of the existence of ũ we in the following let, for ε > 0
given and small,

Ã(η, ε) =

∫
Rk
Ã(η − ζ)θε(ζ)dζ whenever η ∈ Rk, (5.4)

where θ ∈ C∞0 (B(0, 1)) with
∫
Rk θdζ = 1 and θε(ζ) = ε−kθ(ζ/ε) whenever ζ ∈ Rk. Using the

definition of the class Mp(α) and standard properties of approximations to the identity, we
deduce for some c = c(p, k) ≥ 1, that

(i) (cα)−1(ε+ |η|)p−2|ξ|2 ≤
k∑

i,j=1

∂Ãi
∂ηj

(η, ε)ξiξj,

(ii)

∣∣∣∣∣∂Ãi∂ηj
(η, ε)

∣∣∣∣∣ ≤ cα(ε+ |η|)p−2, 1 ≤ i, j ≤ k, (5.5)

whenever η ∈ Rk, ξ ∈ Rk. Moreover, Ã(·, ε) is, for fixed ε, infinitely differentiable. We
now let w(·, ε) be the unique solution to ∇ · (Ã(∇w(z, ε), ε)) = 0 in B(0, 1) \ {0} which is
continuous on the closure of B(0, 1), and satisfies w(·, ε) = 1 on ∂B(0, 1), w(0, ε) = 0. Note
that, using [T], [T1], [Li], it follows that w(·, ε) is in C1,σ̂(B(0, 1) \ {0}) for some σ̂ > 0 with
constants independent of ε. Letting ε→0, using the definition of the class Mp(α), one can
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prove that subsequences of {w(·, ε)}, {∇w(·, ε)}, converge pointwise to w, ∇w on B(0, 1) and
B(0, 1) \ {0}, respectively, where w is the unique solution to ∇ · (Ã(∇w)) = 0 in B(0, 1) \ {0}
which is continuous on the closure of B(0, 1), and satisfies w = 1 on ∂B(0, 1), w(0) = 0. To
proceed we let

Ã∗ij(z, ε) = 1
2
(ε+ |∇w(z, ε)|)2−p

[
∂Ãi
∂ηj

(∇w(z, ε), ε) +
∂Ãj
∂ηi

(∇w(z, ε), ε)

]
,

whenever z ∈ B(0, 1) \ {0} and 1 ≤ i, j ≤ k. From (5.5) (ii) and Schauder type estimates we
see that w(·, ε) is a classical solution to the non-divergence form uniformly elliptic equation,

L∗ζ =
n∑

i,j=1

Ã∗ij(z, ε)ζzizj = 0, (5.6)

for z ∈ B(0, 1) \ {0}. Note also from (5.5) that the ellipticity constant for (Ã∗ij(z, ε)) and the

L∞-norm for Ã∗ij(z, ε), 1 ≤ i, j ≤ k, in B(0, 1) \ {0}, depend only on p, k, α. To continue we
again note that it follows from the assumption p > k that points are uniformly p-thick. In
particular, using this, the Harnack inequality, Lemma 3.3, and Lemma 3.5, we immediately see
that

c(1− w(z, ε)) ≥ 1 whenever z ∈ B(0, 1/2), (5.7)

for some c = c(p, k, α), 1 ≤ c <∞. We now let

ψ(z) =
e−N |z|

2 − e−N

e−N/4 − e−N
, (5.8)

whenever z ∈ B(0, 1)\B(0, 1/2) and where N is a non-negative integer. Then ψ is a subsolution
to L∗ in B(0, 1) \ B(0, 1/2) if N = N(p, n, α) is sufficiently large, and ψ ≡ 1 on ∂B(0, 1/2)
while ψ ≡ 0 on ∂B(0, 1). Hence, using the comparison principle we see that

c(1− w(z, ε)) ≥ ψ(z) on B(0, 1) \B(0, 1/2). (5.9)

where c is independent of ε. Furthermore, it is easily seen that

cψ(z) ≥ 1− |z| on B(0, 1) \B(0, 3/4), (5.10)

for some c = c(p, k, α). We can therefore conclude that

ĉ(1− w(z, ε)) ≥ (1− |z|) on B(0, 1) \B(0, 3/4), (5.11)

for some ĉ = ĉ(p, k, α). Furthermore, letting ε→ 0 we also have, by the above argument, that

ĉ(1− w(z)) ≥ (1− |z|) on B(0, 1) \B(0, 3/4). (5.12)

Next, given R ≥ 1 let w̃R be the unique solution to ∇ · (Ã(∇w̃R)) = 0 in B(0, R) \ {0}
which is continuous on the closure of B(0, R), and satisfies w̃R = 1 on ∂B(0, R), w̃R(0) = 0.
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We observe, using Definition 1.1 (iii) for Ã, and the maximum principle in Lemma 3.2, that
w(z/R) = w̃R(z), z ∈ B(0, R). Thus we can apply (5.12) to conclude that

ĉ(1− w̃R(z)) ≥ (R− |z|)
R

on B(0, R) \B(0, 3R/4). (5.13)

Using (5.13) and the comparison principle it follows, for λ > 1 given, that

w̃R(λz)− w̃R(z)

λ− 1
≥ c−1w̃R(z), (5.14)

in B(0, R/λ) \ {0} and for some constant c which can be chosen independent of λ whenever
1 < λ < 9/8. Next, letting λ→ 1 in (5.14) we obtain that

|z|〈∇w̃R(z), z/|z|〉 ≥ c−1w̃R(z) whenever z ∈ B(0, R) \ {0}. (5.15)

Let ŵR = w̃R/w̃R(1, 0, . . . , 0). From Harnack’s inequality and Hölder 1 − k/p continuity of
Sobolev functions in W 1,p when p > k, as well as the basic estimates in section 3, we see that
a certain subsequence of (ŵR) converges uniformly on compact subsets of Rk to u′ satisfying
(5.1) (i) and ∇ · Ã(∇u′) = 0 in Rk \ {0}, weakly. Arguing as in (5.3) it now follows that
ũ = cu′ satisfies (5.1) (i), (ii) for some c = c(p, k, α). Also the lower bound in (5.2) (ii′) is
a consequence of (5.15). The upper bound follows immediately from (5.2) (i′) and interior
regularity, see Lemma 3.6. This completes the proof of Lemma 5.1.

Lemma 5.2 Let k be an integer, 2 ≤ k < ∞, and let p, k < p < ∞, be given. Let ξ =
(p− k)/(p− 1). Assume that Ã ∈Mp(α) for some α ∈ [1,∞) with Rk as the underlying space.
Then there exists a unique fundamental solution ũ to the equation ∇ · Ã(∇ũ) = 0 in Rk, with
pole at 0 ∈ Rk, in the sense of (5.1). Furthermore, there exist σ = σ(p, k, α), σ ∈ (0, 1), and
ψ ∈ C1,σ(Sk) such that u(z) = |z|ξψ(z/|z|) whenever z ∈ Rk \ {0}.

Proof. By Lemma 5.1 we have the existence of a fundamental solution ũ to the equation
∇ · Ã(∇ũ) = 0 in Rk, with pole at 0 ∈ Rk, in the sense of (5.1), satisfying also (5.2). We want
to prove that ũ is the unique fundamental solution in the sense of (5.1). To do this let ṽ be
another fundamental solution to ∇ · Ã(∇ṽ) = 0 in Rk, with pole at 0 ∈ Rk, in the sense of
(5.1). Then, as in the proof of Lemma 5.1 with Σ replaced by {0}, we see that ṽ also satisfies
(5.2) (i′). In particular, ũ ≈ ṽ in Rk. Using this fact and (5.2) (ii′) for ũ we observe that ũ, ṽ
satisfy the hypotheses of Assumption 1′′ in Rk \ {0}. Using this observation and arguing as in
the proof of Lemma 4.11 it follows first that ṽ also satisfies (5.2) (ii′), with constants depending
only on the data, and thereupon that λ(·, a, b, u, v) = (a|∇ũ|+ b|∇ṽ|)p−2 is an A2-weight on Rk

with constants independent of a, b ∈ [0,∞). Now arguing as earlier, we get that Lemma 4.10
holds on Rk \ {0} with û, v̂ replaced by ũ, ṽ. Exponentiating both sides of the inequality in this
lemma we conclude the existence of c ≥ 1, c = c(p, k, α), and σ = σ(p, k, α), σ ∈ (0, 1), such
that ∣∣∣∣ ũ(z′′)

ṽ(z′′)
− ũ(z′)

ṽ(z′)

∣∣∣∣ ≤ c(|z′′ − z′|/R)σ max
∂B(0,R)

ũ

ṽ
≤ c2(|z′′ − z′|/R)σ, (5.16)

whenever z′, z′′ ∈ B(0, R/4) \ {0}. In particular, letting R →∞ we see that ũ ≡ ṽ on Rk and
this completes the proof of uniqueness in Lemma 5.2. To prove the structural statement in this
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lemma, let ũ be as in the statement of the lemma, and let ṽ(z) = ũ(tz) for some t > 0. Then,
again using homogeneity in Lemma 1.1 (iii) we see that ∇ · Ã(∇ṽ) = 0 weakly in Rk \ {0}
and also we easily deduce for fixed t ∈ (0,∞), that t−ξũ(tz) satisfies both conditions in (5.1).
Hence, by uniqueness we have ũ(tz) = tξũ(z) whenever z ∈ Rk \ {0} or equivalently

ũ(z) = |z|ξũ(z/|z|) whenever z ∈ Rk \ {0}. (5.17)

The proof of Lemma 5.2 is now complete.

Lemma 5.3 Let n, m, be integers such that 1 ≤ m ≤ n − 2 and let p, n − m < p < ∞, be
given. Let ξ = (p − n + m)/(p − 1). Assume that A ∈ Mp(α) for some α ∈ [1,∞), consider
coordinates y = (y′, y′′) ∈ Rm ×Rn−m and let Σ = {y = (y′, y′′) ∈ Rm ×Rn−m : y′′ = 0}. Then
there exists a function ū = un−m, defined on Rn, which satisfies

(i) ū ∈ W 1,p

loc
(Rn \ Σ), ū is continuous on Rn,

(ii) ū = 0 on Σ, ū > 0 on Rn \ Σ,

(iii) ū is a weak solution to ∇ · A(∇ū) = 0 in Rn \ Σ, (5.18)

and the quantitative estimates

(i′) c−1|y′′|ξ ≤ ū(y) ≤ c|y′′|ξ,
(ii′) c−1|y′′|ξ−1 ≤ |∇ū(y)| ≤ c|y′′|ξ−1, (5.19)

for some constant c = c(p, n,m, α), 1 ≤ c < ∞, whenever y ∈ Rn \ Σ. Moreover, ū(y) =
|y′′|ξψ(y′′/|y′′|) for all y ∈ Rn \ Σ where σ = σ(p, n,m, α), σ ∈ (0, 1), and ψ ∈ C1,σ(Sn−m).

Proof. To construct ū = un−m we simply let

ū(y) = ū(y′, y′′) := ũ(y′′) whenever y ∈ Rn \ Σ,

where ũ is as in Lemma 5.2. Then obviously ū satisfies (5.18) and (5.19). Also the last statement
of the lemma follows from Lemma 5.2.

6 Proof of Theorems 1.9 and 1.10 in the baseline case

In this section we prove Theorem 1.9 and Theorem 1.10 in the special case when Σ is an m-
dimensional hyperplane, passing through 0, and A ∈ Mp(α), i.e., we consider only operators
with constant coefficients. We note that if h is a weak solution to ∇ · A(∇h) = 0 in Rn \ Σ,
and T is a rotation of Rn = Rm × Rn−m which maps Rm × {0} onto Σ, then, as follows by
straightforward calculation, h̃(x) = h(Tx) is a weak solution to a PDE, ∇ · Ã(∇h̃) = 0, in
Rn \ (Rm × {0}), with Ã ∈ Mp(α). Thus, in the following we can assume that Σ = Rm × {0}
since otherwise we can change coordinate systems. As usual we write y = (y′, y′′) when y ∈ Rn

where y′ ∈ Rm and y′′ ∈ Rn−m. Furthermore, given w = (w′, w′′) ∈ Rn, r1, r2, 0 < r1, r2 < ∞,
we let Cr1,r2(w) be as defined as in (3.4) and if r1 = r2 = r, then we write Cr(w).
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Lemma 6.1 Let n, m, be integers such that 1 ≤ m ≤ n−2 and let p, n−m < p <∞, be given.
Let Σ = Rm × {0}, 0 < r < ∞, and assume that A ∈ Mp(α). Let u, v be positive A-harmonic
functions in C4r(0) \ Σ, continuous on C4r(0), with u = 0 = v on Σ ∩ C4r(0). If m = 1, then
there exists c = c(p, n,m, α), 1 ≤ c <∞, such that

c−1u(ar(0))

v(ar(0))
≤ u(y)

v(y)
≤ c

u(ar(0))

v(ar(0))
whenever y ∈ Cr(0) \ Σ. (6.1)

If 2 ≤ m ≤ n−2, and if Theorem 1.10 (a) or (b) hold, then there exists c, 1 ≤ c <∞, depending
at most on p, n,m, α, λ, such that (6.1) holds.

Lemma 6.2 Theorems 1.9 and 1.10 are valid for p, n,m,A, u, v as in Lemma 6.1.

Proof. Theorem 1.9 and Theorem 1.10 in this baseline case follow immediately from Lemma
6.1, Lemma 5.3, Lemma 4.11, and Lemma 4.10.

Below we give the proof of Lemma 6.1 divided into cases. As the PDE’s satisfied by u, v are
invariant under dilation and scaling, we may, without loss of generality and to this end, assume
that

r = 1, u(a1(0)) = 1 = v(a1(0)). (6.2)

Hence, we want to prove that there exists c ≥ 1, depending only on the data, such that

c−1 ≤ u(y)/v(y) ≤ c whenever y ∈ C1(0) \ Σ. (6.3)

In light of Lemma 5.3 it is sufficient to prove (6.3) with v replaced by ū = un−m. Equivalently,
it suffices to establish the existence of c ≥ 1, depending only on the data, such that

c−1|y′′|ξ ≤ u(y) ≤ c|y′′|ξ whenever y ∈ C1(0) \ Σ. (6.4)

6.1 The case m = 1

In this case we can complete the proof without making use of the explicit structure of v = ū.
Indeed, to estimate u/v, suppose u/v ≥ ζ on ∂C1(0) for some large ζ > 0. Let s ∈ (1, 3) and
observe from Harnack’s inequality for A-harmonic functions that for ζ large enough, we have
u/v > ζ at some point in ∂Cs(0) with y′ = ±s. This observation implies there exists a closed
interval I ⊂ [1, 3] ∪ [−3,−1] of length 1 such that for all t ∈ I there exists y′′ = y′′(t) with
|y′′| ≤ 1 and (u/v)(t, y′′) > ζ. Indeed, if we for some z′ ∈ (1, 2)∪(−2,−1) have (u/v)(z′, z′′) ≤ ζ,
whenever |z′′| ≤ 2, then we can apply the above analysis to cylinders of radius 2 whose boundary
contains {(z′, z′′) : |z′′| ≤ 2} in order to conclude the existence of I ⊂ [2, 3]∪[−3,−2]. Otherwise
we choose I = [1, 2].

Let µ, ν be the measures corresponding to u, v as in Lemma 3.7. Note from (ii) of Lemma
3.7, and Harnack’s inequality for u, v that µ, ν are doubling measures in the sense that

θ(B(y, 2s)) ≤ c θ(B(y, s)) whenever y = (y′, 0) with |y′|+ 4s < 4 and θ ∈ {µ, ν}. (6.5)
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Given t ∈ I, choose y′′(t) as above and put ρ(t) = |y′′(t)|, τ = (t, 0). Using Lemma 3.7 (ii) we
deduce, for some c ≥ 1 depending only on p, n, α, that

ζp−1 ≤
(
u(t, y′′(t))

v(t, y′′(t))

)p−1

≤ c
µ(B(τ, ρ(t))

ν(B(τ, ρ(t))
. (6.6)

Using a standard covering lemma we see there exists {tj}, 0 < tj < 1/2, for which (6.6) holds
with t, y′′(t), ρ(t), τ replaced by tj, y

′′(tj), ρ(tj), τj. Also

I ⊂
⋃
j

B(τj, ρj) and B(τk, ρk/5) ∩B(τl, ρl/5) = ∅ when l 6= k. (6.7)

From (6.5), (6.6), (6.7) and Lemma 3.7 it follows, for some c̃ ≥ 1 depending only on the data,
that

1 ≈ ν(B(0, 7/2)) ≤ c̃ν(
⋃
J

B(τj, ρj))

≤ c̃2ζ1−pµ(
⋃
J

B(τj, ρj/5)) ≤ c̃2ζ1−pµ(B(0, 7/2)) ≈ ζ1−p . (6.8)

Thus ζ cannot be too big (depending on the data). This completes the proof of Lemma 6.1
when m = 1.

Remark 6.3 We remark that Lemma 6.1 can be proved, using the above argument, also when
u, v are solutions to the p-Laplace equation and 1 ≤ m ≤ n − 2. Indeed in this case one can
construct p-harmonic ṽ, ũ that are rotationally symmetric in y′, y′′ and satisfy u ≤ cũ, ṽ ≤ cv.
Then, using the two dimensional character of ũ, ṽ, one can essentially repeat the above argument
to get Lemma 6.1 for ũ, ṽ and so also for u, v. We emphasize that this argument uses heavily
that the p-Laplacian is invariant under rotations.

6.2 The upper bound in (6.4) for 1 ≤ m ≤ n− 2

For 1 ≤ m ≤ n−2, and A ∈Mp(α), let u′ be the A-harmonic function in B(0, 8)\ (Σ∩B(0, 4))

with continuous boundary values u′ ≡ 1 on ∂B(0, 8) and u′ ≡ 0 on Σ ∩ B(0, 4). We will first
prove, for some c̆ = c̆(p, n,m, α), that

c̆−1u
′(y)

|y′′|
≤ |∇u′|(y) ≤ c̆

u′(y)

|y′′|
when y ∈ C4(0) \ Σ. (6.9)

In order to prove (6.9) we observe from Lemma 3.3, and Harnack’s inequality applied to 1−u′,
that 1−u′ ≥ c−1 in B(0, 6). Using this fact, and a barrier argument as in (5.7)-(5.12), we obtain
that

1− u′(y) ≥ c̄−1d(y, ∂B(0, 8)) when y ∈ B(0, 8) \B(0, 6). (6.10)

Given x̂ ∈ Σ ∩ B̄(0, 4), put u+(y) = u′(x̂+ y)− u′(x̂) when y ∈ Ω := {z : z + x̂ ∈ B(0, 8)}. Let
Σ′ = {z : z + x̂ ∈ Σ ∩ B̄(0, 4)}. Since A-harmonic functions, A ∈ Mp(α), are invariant under
translation and dilation it follows first that u+ is A-harmonic in Ω\Σ′ and second that if s > 1,
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then the function y→u+(sy) is A-harmonic in Ω(s) where Ω(s) = {y ∈ Ω : sy ∈ Ω \ Σ′}. Using
(6.10) and comparing boundary values we deduce, for 1 < s < 1.01, that

u+(sy)− u+(y)

s− 1
≥ c−1u+(y) when y ∈ ∂Ω(s), (6.11)

where c depends on p, n,m, α. From the maximum principle for A-harmonic functions we see
that (6.11) holds in Ω(s). Letting s→1 and using Lemma 3.6 we find that

〈∇u′(y), y − x̂〉 ≥ c−1u′(y) for y ∈ B(0, 8) \ Σ . (6.12)

From arbitrariness of x̂ ∈ Σ ∩ B(0, 4), (6.12), and the fact that |y′′| = d(y,Σ), we deduce that
the left hand inequality in (6.9) is valid. The right hand inequality in (6.9) follows from Lemma
3.6. Thus (6.9) is valid.

Next, let ξ be as in Lemma 5.3 and let ū = un−m denote the A-harmonic function in this
lemma. Then u′, ū satisfy the hypotheses of Assumption 1′ in section 4. Hence, using Lemma
4.10 and Lemma 4.11, we have

c−1
∗ ≤

u′(y)

|y′′|ξ
≤ c∗, (6.13)

whenever y ∈ C1/ĉ(0) for some c∗ depending only on p, n,m, α. Repeating this argument with

C1(0) replaced by C1(w), whenever w ∈ Σ ∩ B(0, 1), and using Harnack’s inequality again it
follows that (6.13) holds for y ∈ C1(0), with c∗ replaced by a larger constant also depending
only on the data. Moreover, if u is as in (6.3), then u ≤ cu′ in C4(0) so the right hand inequality
in (6.13) holds with u′ replaced by u. In particular, we can conclude the validity of the upper
bound in (6.4) for 1 ≤ m ≤ n− 2.

6.3 The lower bound in (6.4): A as in Theorem 1.10 (a)

Let 2 ≤ m ≤ n − 2, A ∈ Mp(α), and assume that A ∈ Mp(α) satisfies Theorem 1.10 (a). We
here prove the lower bound in (6.4), i.e., assuming (6.2) we prove that

|y′′|ξ ≤ c u on C1(0) \ Σ. (6.14)

This then completes the proof of Lemma 6.1 in the case considered. To prove (6.14) we first
observe, by the same argument as in (4.33), (4.34), that

d(y,Σ) = |y′′| ≤ c̃1u(y) when y ∈ C1(0) \ Σ, (6.15)

for some c̃1 = c̃1(p, n,m, α) ≥ 1. Let ū = un−m be as in Lemma 5.3, and put

f(y) = (1− |y′|2) (eū(y) − 1), (6.16)

whenever y ∈ C1(0). We claim that

f ≤ c̃2u on C1(0) \ Σ, (6.17)

and for some c̃2 = c̃2(p, n,m, λ) ≥ 1. To prove this claim we first observe that f ≤ cu on
∂(C1(0) \ Σ), as follows from the facts that u(a1(0)) = 1 and that f(y) ≡ 0 when |y′| = 1 or
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y ∈ Σ ∩B(0, 1). Hence, using this, (6.15), the maximum principle and Lemma 3.6, we see that
in order to prove (6.17) it suffices to show, for some c̃3 = c̃3(p, n,m, α, λ), that if

y ∈ C1(0) \ Σ and f(y) ≥ c̃3|y′′|, (6.18)

then
∇ · A(∇f)(y) ≥ 0, (6.19)

where the latter inequality is taken in the strong or classical sense. In order to prove that (6.18)
implies (6.19) we let c̃3 be a degree of freedom to be fixed and depending only on p, n,m, α, λ.

Let

∇′f(y) =

(
∂f

∂y1

, . . . ,
∂f

∂ym

)
(y) and ∇′′f(y) =

(
∂f

∂ym+1

, . . . ,
∂f

∂yn

)
(y), (6.20)

when y ∈ C1(0) \ Σ. We write ∇f(y) = (∇′f(y),∇′′f(y)). Note that

∇ · A(∇f)(y) =
n∑

i,j=1

∂Ai
∂ηj

(∇f(y))fyiyj = T1 + T2 + T3, (6.21)

where

T1 :=
∑̂

i,j

∂Ai
∂ηj

(∇f(y))fyiyj ,

T2 :=
∑

m+1≤i,j≤n

(
∂Ai
∂ηj

(∇f(y))− ∂Ai
∂ηj

(0,∇′′f(y))

)
fyiyj ,

T3 :=
∑

m+1≤i,j≤n

∂Ai
∂ηj

(0,∇′′f(y)) fyiyj , (6.22)

where
∑̂

i,j means that the sum is taken over all i, j for which at least one of i, j ≤ m. To
estimate T1 we note that if either i and/or j ≤ m, then we obtain from Lemma 5.3 that

|fyiyj | ≤ c|y′′|ξ−1 when y ∈ C1(0) \ Σ. (6.23)

Hence, from (6.23) and Definition 1.1 (i) it follows that

|T1| ≤ c|y′′|ξ−1|∇f(y)|p−2. (6.24)

We next estimate T2 and T3. From the definition of f , Lemma 5.3, and (6.18) we see that

1− |y′|2 ≥ c−1 c̃3 |y′′|1−ξ, (6.25)

where c ≥ 1 depends only on p, n,m, α. From (6.25) and Lemma 5.3 we observe that

|∇′f(y)| ≤ c′ |y′′|ξ and |∇′′f(y)| ≥ c̃3/c
′, (6.26)

where c′ has the same dependence as c in (6.25). From (6.26) and condition (a) in Theorem
1.10, with η = (∇′f(y),∇′′f(y)), and η′ = (0,∇′′f(y)), we see that if c̃3 is large enough, then∣∣∣∣∂Ai∂ηj

(∇f(y))− ∂Ai
∂ηj

(0,∇′′f(y))

∣∣∣∣ ≤ λ |∇′f(y)||∇f(y)|p−3

≤ λ (c∗/c̃3) |y′′|ξ |∇f(y)|p−2, (6.27)
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where again c∗ depends only on p, n,m, α. Note that

fyiyj = eū (1− |y′|2) ( ūyiūyj + ūyiyj ), (6.28)

whenever y ∈ C1(0) \ Σ and m + 1 ≤ i, j ≤ n. Using Lemma 3.6, (6.28), and Lemma 5.3 we
find that

|fyiyj | ≤ c|y′′|ξ−2(1− |y′|2) when y ∈ C1(0) \ Σ and m+ 1 ≤ i, j ≤ n. (6.29)

Hence, using (6.27) and (6.29) we see that

|T2| ≤ (c/c̃3)(1− |y′|2)|y′′|2ξ−2|∇f(y)|p−2. (6.30)

To estimate T3 we first deduce, using (6.28), Lemma 5.2 and Lemma 5.3, as well as (p − 2)
homogeneity of derivatives of A, at y, that

T3 = (1− |y′|2) eū
∑

m+1≤i,j≤n

∂Ai
∂ηj

(0,∇′′f) ūyiūyj . (6.31)

Now, using Definition 1.1 (i), Lemma 5.3, (6.26), and the above equality it follows, for some
c = c(p, n,m, α, λ) ≥ 1, that

T3 ≥ c−1(1− |y′|2)|∇ū(y)|2|∇′′f(y)|p−2 ≥ c−2 (1− |y′|2) |y′′|2ξ−2|∇f(y)|p−2. (6.32)

In view of (6.30), (6.32), and (6.25) we see for c̃3 large enough, depending on p, n,m, α, λ,
that ∑

m+1≤i,j≤n

∂Ai
∂ηj

(∇f(y))fyiyj = T2 + T3 ≥ c−1(1− |y′|2)|y′′|2ξ−2|∇f(y)|p−2

≥ c̃3c
−2|y′′|ξ−1|∇f(y)|p−2. (6.33)

Combining (6.24) and (6.33) we conclude that if c̃3 is sufficiently large, depending only on
p, n,m, α, λ, then (6.19) holds. As a consequence, (6.17) is valid. (6.17) implies (6.14).

6.4 The lower bound in (6.4): A as in Theorem 1.10 (b)

Let 2 ≤ m ≤ n − 2, A ∈ Mp(α), and assume that A ∈ Mp(α) satisfies Theorem 1.10 (b). To
complete the proof of Lemma 6.1 in the case we again have to prove (6.14). Since A now has
constant coefficients in the y variable we write C for C(y) and κ for κ(y, ·). In the proof we
assume, as we may, that C is a symmetric linear transformation since otherwise we can replace
C by (C + Ct)/2, where Ct denotes the transpose of C, and note that the weak formulation
of solutions is unchanged. Also since rotations preserve Mp(α), and functions homogeneous
of degree 0, we may assume that C has a representation in the standard basis as a diagonal
matrix. Finally, observe that dilations in the coordinate directions change Mp(α) into Mp(α̃)
with α̃ ≈ α while κ remains homogeneous of degree 0. Thus we assume, as we may, that C is
the identity transformation so that

A(η) = κ(η)|η|p−2η and ∇ · (κ(∇v)|∇v|p−2∇v) = 0 in C4(0) \ Σ, weakly. (6.34)
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Let ũ(y′′) = |y′′|ξ. Since this function is also a solution to the p-Laplace equation in Rn−m \
{0} we see from (6.34) that

∇ · (κ(∇ũ)|∇ũ|p−2∇ũ) = 〈∇κ(∇ũ),∇ũ〉|∇ũ|p−2 at y′′ ∈ Rn−m \ {0}. (6.35)

Moreover, using the degree zero homogeneity of κ, and Euler’s equation, it follows that

〈∇κ(∇ũ),∇ũ〉|∇ũ|p−2 = ξ|y′′|(ξ−2)〈∇κ(y′′), y′′〉|∇ũ|p−2 = 0 at y′′ ∈ Rn−m \ {0}. (6.36)

In particular, ũ is A-harmonic in Rn−m \ {0} and we can conclude, by uniqueness in Lemma
5.2, that if un−m is the fundamental solution on Rn−m in Lemma 5.3, relative to the A in (6.34),
then

un−m(y′′) = c|y′′|ξ, y′′ ∈ Rn−m, (6.37)

for some c = c(n,m, p).
We now proceed as in the proof lower bound in (6.4) in the case of Theorem 1.10 (a). Indeed,

in this case we let, based on (6.37), ū(y) = |y′′|ξ and we define f as in (6.16) using this ū. Again
we prove (6.17), for sufficiently large c3 = c3(p, n,m, α), by proving that (6.19) is valid for A as
in (6.34). In this case we let, using (6.28)

∇ · A(∇f)(y) =
n∑

i,j=1

∂Ai
∂ηj

(∇f(y))fyiyj = S1 + S2 + S3, (6.38)

where now

S1 :=
∑̂

i,j

∂Ai
∂ηj

(∇f(y))fyiyj ,

S2 := (1− |y′|2) eū
∑

m+1≤i,j≤n

∂Ai
∂ηj

(∇f(y)) ūyiyj ,

S3 := (1− |y′|2) eū
∑

m+1≤i,j≤n

∂Ai
∂ηj

(∇f(y)) ūyiūyj , (6.39)

where again
∑̂

i,j means the sum is taken over all i, j for which at least one of i, j ≤ m. Arguing
as in the proofs of (6.24), (6.32), we see that

|S1| ≤ c|y′′|ξ−1|∇f(y)|p−2, (6.40)

and
S3 ≥ c−1 (1− |y′|2) |y′′|2ξ−2|∇f(y)|p−2, (6.41)

at y ∈ C1(0) \ Σ, respectively.
To estimate S2 we note, for 1 ≤ i, j ≤ n, that ∂Ai

∂ηj
(∇f(y)) = bij(y) + cij(y), where at y,

bij = κ(∇f)|∇f |p−4[(p− 2)fyifyj + δij|∇f |2],

cij = |∇f |p−2κηj(∇f)fyi .
(6.42)
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In (6.42), δij denotes the Kronecker delta. We write at y ∈ C1(0) \ Σ,

S2 = (1− |y′|2)eū
∑

m+1≤i,j≤n

bijūyiyj + (1− |y′|2)eū
∑

m+1≤i,j≤n

cijūyiyj = S21 + S22. (6.43)

Since ū is also a solution to the p-Laplace equation it follows that, at y ∈ C1(0) \ Σ,

S21 = (1− |y′|2)eū|∇′f |2|∇f |p−4
∑

m+1≤i,j≤n

ūyiyi , (6.44)

where ∇′f was defined in (6.20). Using (6.26) and (6.29) in (6.44) we obtain, for y ∈ C1(0)\Σ,
that

|S21(y)| ≤ (c/c3)2 (1− |y′|2)|∇f |p−2|y′′|3ξ−2. (6.45)

To estimate S22 we first observe, for m+ 1 ≤ i, j ≤ n, that

ūyi = ξ yi|y′′|ξ−2 and ūyiyj = ξ(ξ − 2) yi yj|y′′|ξ−4 + ξδij|y′′|ξ−2. (6.46)

We rewrite (6.46) as

ūyiyj = e−2ū(y)(1− 2/ξ) (1− |y′|2)−2|y′′|−ξ fyi fyj + ξ δij|y′′|ξ−2. (6.47)

Putting this expression for ūyiyj into S22, and using the definition of cij, we have

S22 = |∇f |p−2 e−ū(y)(1− 2/ξ) (1− |y′|2)−1|y′′|−ξ
∑

m+1≤i,j≤n

κηj(∇f) f 2
yi
fyj

+|∇f |p−2 eū(y) ξ (1− |y′|2)|y′′|ξ−2

n∑
i=m+1

κηi(∇f)fyi , (6.48)

whenever y ∈ C1(0) \ Σ. Now using Definition 1.1 (i) it is not difficult to show that

|k(η)|+ |η|
n∑
i=1

|κηi| ≤ c

where c depends only on p, n,m, α. From this fact, 0 homogeneity of κ, and (6.26) we see that∣∣∣∣∣
n∑

i=m+1

κηi(∇f)fyi

∣∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

κηi(∇f)fyi

∣∣∣∣∣ ≤ (c/c3)|y′′|ξ. (6.49)

Using (6.49) in (6.48) we arrive at

|S22| ≤ (c/c3)|(1− |y′|2)|y′′|2ξ−2|∇f |p−2 for y ∈ C1(0) \ Σ. (6.50)

Putting (6.50) and (6.45) into (6.43) we find (6.50) holds with S22 replaced by S2. We can now
complete the proof as in the proof of the lower bound in (6.4) in the case Theorem 1.10 (a).
We omit further details.

Remark 6.4 Note that if A, for fixed y, satisfies Theorem 1.10 (b), then A does not in general
give rise to a rotationally symmetric solution in y′, y′′ even when C(y) = I = the identity
transformation. However, as explored in the proof, the fundamental solution in Lemma 5.2 for
C(y) = I is a radial solution having an extension to Rn that is symmetric in y′, y′′.
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7 Proof of Theorems 1.9, 1.10 and Proof of Corollaries

1.11, 1.12

In this section we prove Theorem 1.9, Theorem 1.10 and Corollary 1.11. The proofs of Theorem
1.9, Theorem 1.10 are based on the following two lemmas: Lemma 7.1 and Lemma 7.2.

Lemma 7.1 Assume (3.1) and 0 < δ < δ̄ so that also (3.2) holds. If 2 ≤ m ≤ n− 2, assume
in addition that either Theorem 1.10 (a) or (b) hold. Let w ∈ Σ, 0 < r < r0. Assume that
u is a positive A-harmonic functions in B(w, 4r) \ Σ, continuous on B(w, 4r) and u = 0 on
Σ ∩ B(w, 4r). Then there exist δ̂ = δ̂(p, n,m, α, β, γ, λ), ĉ = ĉ(p, n,m, α, β, γ, λ) and λ̄ =
λ̄(p, n,m, α, β, γ, λ), such that if 0 < δ ≤ δ̂, then

λ̄−1 u(y)

d(y,Σ)
≤ |∇u(y)| ≤ λ̄

u(y)

d(y,Σ)
,

whenever y ∈ B(w, r/ĉ) \ Σ.

Lemma 7.2 Assume (3.1) and 0 < δ < δ̄ so that also (3.2) holds. If 2 ≤ m ≤ n−2, assume in
addition that either Theorem 1.10 (a) or (b) hold. Let w ∈ Σ, 0 < r < min{r0, 1}. Assume that
u, v, are positive A-harmonic functions in B(w, 4r)\Σ, continuous on B(w, 4r) and u = 0 = v
on Σ ∩ B(w, 4r). Then there exist δ′ = δ′(p, n,m, α, β, γ, λ), and c = c(p, n,m, α, β, γ, λ) ≥ 1
such that if 0 < δ < δ′, and r̂ = r/c, then λ̂u,v := (|∇u| + |∇v|)p−2 is an A2(B(w, r̂))-weight
with constant depending only on p, n,m, α, β, γ, λ.

7.1 Non-degeneracy of |∇u|: proof of Lemma 7.1

Given w = (w′, w′′) ∈ Rn, r1, r2, 0 < r1, r2 < ∞, recall the notation introduced in (3.4), (3.5).
Also as in section 4, θ̃ = 1 when m = 1 and θ̃ = λ when 2 ≤ m ≤ n− 2. Using Lemma 3.8 and
Lemma 3.9 we first prove the following lemma in the baseline case.

Lemma 7.3 Assume p, n −m < p < ∞, 1 ≤ m ≤ n − 2. Assume that A ∈ Mp(α, β, γ) for
some (α, β, γ). If 2 ≤ m ≤ n− 2, assume in addition that either Theorem 1.10 (a) or (b) hold.
Let Σ = Rm×{0} and suppose that u is a positive A-harmonic function in C1(0)\Σ, continuous
on the closure of C1(0) \Σ, and that u = 0 on Σ. Then there exist ĉ = ĉ(p, n,m, α, β, γ, θ̃) and
λ̄ = λ̄(p, n,m, α, β, γ, θ̃), such that

λ̄−1 u(y)

d(y,Σ)
≤ |∇u(y)| ≤ λ̄

u(y)

d(y,Σ)
whenever y ∈ C1/ĉ(0) \ Σ.

Proof. Let A ∈ Mp(α, β, γ), A = A(y, η), be given as in the statement of the lemma. Put
A2(y, η) = A(y, η), A1(η) = A(0, η). Clearly, A1, A2 ∈ Mp(α, β, γ). We first note that Lemma
7.3 holds for the operator A1. Indeed, assume that u is a positive A1-harmonic function in
C1(0) \ Σ, continuous on the closure of C1(0) \ Σ, and that u = 0 on Σ. Let û1(y′, y′′) =
ū(y′, y′′) = un−m(y′, y′′) be as in Lemma 5.3. Then û1 is A1-harmonic in C1(0) \ Σ and û1 = 0
on Σ. Let û2 = u. Then, as a consequence of Lemma 6.2 applied to the pair û1, û2, we see that∣∣∣∣log

(
û1(y1)

û2(y1)

)
− log

(
û1(y2)

û2(y2)

)∣∣∣∣ ≤ c|y1 − y2|σ, (7.1)
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whenever y1, y2 ∈ C1/16(0)\Σ. Exponentiation of this inequality yields the equivalent inequality∣∣∣∣ û1(y1)

û2(y1)
− û1(y2)

û2(y2)

∣∣∣∣ ≤ c′
û1(y2)

û2(y2)
|y1 − y2|σ, (7.2)

whenever y1, y2 ∈ C1/16(0) \ Σ and for some c′ depending at most on p, n,m, α, θ̃. Let O =
C1/16(0) \ Σ and note that if y2 ∈ C1/32(0) \ Σ then, see Lemma 5.3,

1

ã

û1(y2)

d(y2, ∂O)
≤ |∇û1(y2)| ≤ ã

û1(y2)

d(y2, ∂O)
, (7.3)

for some ã = ã(p, n,m, α). Let r be defined through the relation c′rσ = 1
2
ε̃ where ε̃ is as in

Lemma 3.9. Using (7.2) we then see that

(1− ε̃/2)
û1(y2)

û2(y2)
≤ û1(y1)

û2(y1)
≤ (1 + ε̃/2)

û1(y2)

û2(y2)
, (7.4)

whenever y1 ∈ B(y2, r). From (7.3), (7.4), and Lemma 3.9 we conclude that Lemma 7.3 holds
for the operator A1.

Using the established conclusion for A1 we now establish Lemma 7.3 for the operator A2

using comparison principles. We let % ∈ (0, 1/16) and %̄ ∈ (0, 1/8) be degrees of freedom to be
chosen below. Let û1 be the A1-harmonic function in C%̄/2(0) \ Σ which is continuous on the
closure of C%̄/2(0) \Σ and which satisfies û1 = u on ∂(C%̄/2(0) \Σ). Then, using Lemma 7.3 for

the operator A1, we see that there exist λ1 = λ1(p, n,m, α, θ̃), ĉ1 = ĉ1(p, n,m, α, θ̃) ≥ 1, such
that

λ−1
1

û1(y)

d(y,Σ)
≤ |∇û1(y)| ≤ λ1

û1(y)

d(y,Σ)
whenever y ∈ C%̄/ĉ1(0) \ Σ. (7.5)

Moreover, using Definition 1.1 (iii) we have

|A2(y, η)− A1(y, η)| ≤ ε|η|p−2 with ε = 2β%̄γ whenever y ∈ C%̄(0). (7.6)

Let û2 = u. Using Lemma 3.8 we see there exist c′, θ, τ, each depending only on p, n,m, α, β, θ̃,
such that

|û2(y)− û1(y)| ≤ c′εθ%−τ û2(y) whenever y ∈ Cδ̄/4(0) \ C%̄/4,%%̄(0). (7.7)

Let ε̃ be as in the statement of Lemma 3.9 relative to λ1 and put % = 1/(32ĉ1). Fix %̄ subject
to c′εθ%−τ = c′ (2β%̄γ)θ%−τ = min{ε̃/2, 10−8}. In particular, we note that %̄ = %̄(p, n,m, α, β, θ̃).
Then from (7.7) we see that

1− ε̃ ≤ û2(y)

û1(y)
≤ 1 + ε̃ whenever y ∈ C%̄/4(0) \ C%̄/4,%%̄(0). (7.8)

Using (7.5), (7.8), and Lemma 3.9 we therefore conclude that

λ−1
2

û2(y)

d(y,Σ1(0))
≤ |∇û2(y)| ≤ λ2

û2(y)

d(y,Σ1(0))
whenever y ∈ C%̄/ĉ1(0) \ Cρ̄/ĉ1,2%%̄(0), (7.9)
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for some λ2 = λ2(p, n,m, α, β, γ, θ̃). Moreover, if y ∈ C%̄/ĉ1,2%%̄(0), then we can also prove that
(7.9) is valid at y by essentially repeating the previous argument and by making use of the
invariance of the class Mp(α, β, θ̃), as well as of the conditions in Theorem 1.10 (a) and (b),
with respect to translations and dilations. This completes the proof of Lemma 7.3.

Proof of Lemma 7.1. Let A ∈ Mp(α, β, γ), A = A(y, η), be given as in the statement
of the lemma. Let w ∈ Σ, 0 < r < r0, suppose that u is a positive A-harmonic function in
B(w, 4r) \ Σ, continuous on B(w, 4r) and u = 0 on Σ ∩ B(w, 4r). We use Lemma 7.3 and
Lemma 3.8 to prove Lemma 7.1. Let c1 = ĉ be as in Lemma 7.3 and choose c′ ≥ 100c1 so that
if ŷ ∈ B(w, r/c′) \ Σ, s = 4c1d(ŷ,Σ), and z ∈ Σ with |ŷ − z| = d(ŷ,Σ), then

max
B(z,4s)

u ≤ cu(ŷ), (7.10)

for some c = c(p, n,m, α, β, γ). Using Definition 1.5 with w, r replaced by z, 4s, we see that
there exists a m-dimensional hyperplane Λ = Λm(z, 4s), z ∈ Λ, such that

h(Σ ∩B(z, 4s),Λ ∩B(z, 4s)) ≤ 4δs. (7.11)

For the moment we allow δ̂ in the statement of the lemma to vary but shall later fix it as
a number satisfying several conditions. First, using that the class Mp(α, β, γ), as well as the
conditions in Theorem 1.10 (a) and (b), are invariant under rotations, we again see that we
may without loss of generality assume that z = 0, Λ = {(y′, y′′) ∈ Rm × Rn−m, y′′ = 0} and

h(Σ ∩B(0, 4s),Λ ∩B(0, 4s)) ≤ 4δs. (7.12)

Given Λ we consider cylinders Cr1,r2(0) adapted to Λ and we let s′ be the largest s′ such that
C4s′(0) ⊂ B̄(0, 4s). Then, using (7.12) we see that

h(Σ ∩ C4s′(0),Λ ∩ C4s′(0)) ≤ 4c′δs, (7.13)

for some harmless constant c′. Next, we let v be a non-negative A-harmonic function in C4s′(0)
with continuous boundary values on ∂C4s′(0) \ Λ defined as follows. We construct v such that
v = 0 on C4s′(0) ∩ Λ,

v(y) = u(y) whenever y ∈ ∂C4s′(0) \ ∂C4s′,30c′δs(0),

v(y) = 0 whenever y ∈ ∂C4s′(0) ∩ ∂C4s′,20c′δs(0),

and

v ≤ u on ∂C4s′(0) ∩ (∂C4s′,30c′δs(0) \ ∂C4s′,20c′δs(0)).

Then, by construction, using Lemma 3.3, we see that

u ≤ v + cδσu(ŷ) on ∂(C4s′(0) \ C4s′,20c′δs(0)), (7.14)

and hence the same holds, again by the maximum principle for A-harmonic functions, in C4s′(0)\
C4s′,20c′δs(0). Similarly,

v ≤ u+ cδσu(ŷ) on C4s′(0) \ C4s′,20c′δs(0). (7.15)
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In particular, using the Harnack inequality we can conclude that

(1 + cδσ)−1 ≤ u(y)

v(y)
≤ (1− cδσ)−1 whenever y ∈ B(ŷ, d(ŷ,Σ)/4). (7.16)

Furthermore, using Lemma 7.3, and the construction, we have

λ̂−1 v(ŷ)

d(ŷ,Σ)
≤ |∇v(ŷ)| ≤ λ̂

v(ŷ)

d(ŷ,Σ)
, (7.17)

for some λ̂ = λ̂(p, n,m, α, β, γ, θ̃). In particular, from (7.16), (7.17), we see, if 0 < δ < δ̂ and if
we fix δ̂ = δ̂(p, n,m, α, β, γ) to be small enough, that the hypotheses of Lemma 3.9 are satisfied
with O = B(ŷ, d(ŷ,Σ)/4) and ã = λ̂. Now, using Lemma 3.9 we can conclude that

λ̄−1
1

u(ŷ)

d(ŷ,Σ)
≤ |∇u(ŷ)| ≤ λ̄1

u(ŷ)

d(ŷ,Σ)
,

for some λ̄ = λ̄(p, n,m, α, β, γ, θ̃). As ŷ ∈ B(w, r/c′) \Σ is arbitrary, the proof of Lemma 7.1 is
complete.

7.2 (|∇u|+ |∇v|)p−2 is an A2-weight: proof of Lemma 7.2

Our proof of Lemma 7.2 is based on the following lemma.

Lemma 7.4 Assume (3.1) and 0 < δ < δ̄ so that also (3.2) holds. If 2 ≤ m ≤ n− 2, assume
in addition that either Theorem 1.10 (a) or (b) hold. Let w ∈ Σ, 0 < r < r0. Assume that
u is a positive A-harmonic functions in B(w, 4r) \ Σ, continuous on B(w, 4r) and u = 0 on
Σ ∩ B(w, 4r). Then there exist, for ε∗ > 0 given, δ̂ = δ̂(p, n,m, α, β, γ, θ̃, ε∗) > 0, δ̂ ≤ δ̄, and
c = c(p, n,m, α, β, γ, θ̃, ε∗), 1 ≤ c <∞, such that

c−1

(
r̂

r

)ξ(1+ε∗)

≤ u(ar̂(w))

u(ar(w))
≤ c

(
r̂

r

)ξ(1−ε∗)
whenever 0 < δ ≤ δ̂, 0 < r̂ < r/4, and where ξ = (p− n+m)/(p− 1).

Proof. In the more traditional setting of Reifenberg flat domains in Rn a version of Lemma
7.4 is proved in Lemma 4.8 in [LLuN]. The proof is based on some rather straightforward,
but still delicate, comparisons of non-negative solutions. Let A ∈ Mp(α, β, γ), A = A(y, η),
be given as in the statement of the lemma. Set A2(y, η) = A(y, η), A1(η) = A(w, η). Then
A1, A2 ∈ Mp(α, β, γ). Let u be a A2-harmonic function as in the statement of the lemma.

Observe, using Definition 1.5, that it suffices to prove Lemma 7.4 for δ = δ̂. Moreover, we can
without loss of generality assume that r = 4, w = 0 and u(a1(0)) = 1. In the following we let δ̌,
δ̌ ≤ δ̂, and % be small constants to be chosen below. In particular, δ̌, % will be fixed to depend
only on p, n,m, α, β, γ, θ̃. For % fixed we can again, without loss of generality, also assume that

h(Σ ∩B(0, 4%),Λ ∩B(0, 4%)) ≤ 4δ̌%,
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and where Λ = {(y′, y′′) ∈ Rm×Rn−m, y′′ = 0}. In particular, we see that to prove Lemma 7.4
it suffices to prove that

c−1r̂ξ(1+ε∗) ≤ u(ar̂(0)) ≤ cr̂ξ(1−ε
∗) whenever 0 < r̂ < %. (7.18)

To begin the proof of (7.18) we introduce an auxiliary function u+. In particular, we define u+

to be A2-harmonic in C%(0) \ Λ with continuous boundary values on ∂(C%(0) \ Λ) defined as
follows. We let u+ = 0 on C%(0) ∩ Λ,

u+(y) = u(y) if y ∈ ∂(C%(0)) \ ∂(C%,16δ̌%(0)),

u+(y) = 0 if y ∈ ∂(C%(0)) ∩ ∂(C%,8δ̌%(0)).

Furthermore, on ∂(C%(0)) ∩ (∂(C%,16δ̌%(0)) \ ∂(C%,8δ̌%(0))) we define u+ so that u+ ≤ u. Now,
arguing as in the proof of (7.14), (7.15), we see that

u ≤ u+ + cδ̌σu(a%/4(0)), u+ ≤ u+ cδ̌σu(a%/4(0)) on C%(0) \ C%,8δ̌%(0), (7.19)

for some σ = σ(p, n,m, α, β, γ), σ ∈ (0, 1). Using Definition 1.5 (iii) we next note that

|A2(y, η)− A1(y, η)| ≤ ε|η|p−1 whenever y ∈ C%(0), ε = 2β%γ. (7.20)

To proceed we let ū+ be the A1-harmonic function in C%/2(0) \ Λ which is continuous on
the closure of C%/2(0) \ Λ and which coincides with u+ on ∂(C%/2(0) \ Λ). Finally, we define
v+(y) := |y′′|ξ whenever y ∈ Rn. To prove the right hand inequality in (7.18), we first see, using
(7.20) and Lemma 3.8, that

u+(y) ≤ (1− c̃εθδ̌−τ )−1ū+(y) for y ∈ C%/4(0) \ C%/4,4δ̌%(0), (7.21)

for constants c̃, θ, τ , depending only on p, n,m, α, β, γ. Then, as a consequence of Lemma 6.2
and Lemma 5.3, see (6.4), we can conclude that there exists a constant c̄ = c̄(p, n,m, α, θ̃),
1 ≤ c̄ <∞, such that

u+(y) ≤ (1− c̃εθδ̌−τ )−1ū+(y) ≤ c(1− c̃εθδ̌−τ )−1 ū+(a%/4(0))
v+(y)

%ξ
, (7.22)

whenever y ∈ C%/c̄(0)\C%/c̄,4δ̌%(0). In particular, using (7.19), (7.22) and the Harnack inequality
we see that

u(y) ≤ c(1− c̃εθδ̌−τ )−1 ū+(a%/8(0))
v+(y)

%ξ
+ cδ̌σu(a%/8(0)), (7.23)

whenever y ∈ C%/c̄(0) \ C%/c̄,4δ̌%(0). We now let δ̃ be defined through the relation

δ̃ξ = max{δ̌ξ, δ̌σ} (7.24)

Note that δ̃ ≥ δ̌ and applying (7.23) for y = a8δ̃%(0) we see, as long as

a8δ̃%(0) ∈ C%/c̄(0) \ C%/c̄,4δ̌%(0), (7.25)
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that

u(a8δ̃%(0)) ≤ c(1− c̃εθδ̌−τ )−1 ū+(a%/8(0))(8δ̃)ξ + cδ̌σu(a%/8(0))

≤
(
c(1− c̃εθδ̌−τ )−1(8δ̃)ξ + cδ̃ξ

)
u(a%/8(0)), (7.26)

where we have also used that ū+(a%/8(0)) ≈ u(a%/8(0)). In particular, simply using the Harnack
inequality once more, and the normalization u(a1(0)) = 1, we see that

u(aδ̃%(0)) ≤
(
c(1− c̃εθδ̌−τ )−1(8δ̃)ξ + cδ̃ξ

)
. (7.27)

Next, let δ̌ < 1/(16c̄) and let % be defined though the relation

1/2 = c̃εθδ̌−τ = c̃(2β%γ)θ δ̌−τ . (7.28)

Then % = %(p, n,m, α, β, γ, θ̃, δ̌) = %(p, n,m, α, β, γ, θ̃, δ̃) and

u(aδ̃%(0)) ≤ ĉδ̃ξ. (7.29)

We now proceed by induction and we suppose that we have shown, for some k ∈ {1, 2, ...}, that

u(aδ̃k%(0)) ≤ (ĉδ̃ξ)k, (7.30)

for some ĉ depending at most on p, n,m, α, β, γ, θ̃. Then, again using Definition 1.5 we see there
exists Λ′ ∈ Λm(0) such that

h(Σ ∩B(0, 4δ̃k%),Λ′ ∩B(0, 4δ̃k%)) ≤ 4δ̌δ̃k%.

We can now repeat the above argument with Λ replaced by Λ′ and 4 replaced by 4δ̃k and with
cylinders of size defined by δ̃k% instead of %. As a result we see that

u(aδ̃k+1%(0)) ≤ ĉδ̃ξu(aδ̃k%(0)) ≤ (ĉδ̃ξ)k+1, (7.31)

by the induction hypothesis. In particular, by induction we see that the inequality in (7.30) is
true for all positive integers k. Next we fix δ̃ through the relation

δ̃−ξε
∗

= ĉ, (7.32)

where ĉ is the constant in (7.31). Then δ̃, as well as ρ, depend only on p, n,m, α, β, γ, λ and ε∗.
Moreover, given 0 < r̂ < %, let k be the smallest integer such that δ̃k% ≤ r̂. Then, simply using
the Harnack inequality, (7.30), and our choice of δ̃ in (7.32) we see that u(ar̂(0)) ≤ cr̂ξ(1−ε

∗), for
some c = c(p, n,m, α, β, γ, λ, ε∗) and hence the proof of the right-hand side inequality in (7.18)
is complete.

To prove the left-hand side inequality in (7.18) we argue in a similar manner. Indeed, in
this case we first see that

u(y) ≥ u+(y)− cδ̌σu(a%/4(0)) ≥ (1 + c̃εθδ̌−τ )−1ū+(y)− cδ̌σu(a%/4(0)), (7.33)
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for y ∈ C%(0)\C%,8δ̌%(0) and then, again as a consequence Lemma 6.2 and Lemma 5.3, see (6.4),
and familiar arguments, we deduce that

u(a32δ̃%(0)) ≥ ĉ−1δ̃ξ, (7.34)

for some ĉ depending only on p, n,m, α, β, γ, λ. The left-hand side inequality in (7.18) then
follows as above by induction. We omit further details.

Proof of Lemma 7.2. Assume (3.1) and 0 < δ < δ̄ so that also (3.2) holds. Let w ∈ Σ,
0 < r < min{r0, 1}. Assume that u, v, are positive A-harmonic functions in B(w, 4r) \ Σ,
continuous on B(w, 4r) and u = 0 = v on Σ ∩ B(w, 4r). We want to prove that there exist
δ′ = δ′ and c ≥ 1 depending only on the data (i.e, p, n,m, α, β, γ, θ̃ ) such that if 0 < δ < δ′,
and r̂ = r/c, then λ̂u,v(y) := (|∇u(y)| + |∇v(y)|)p−2 is an A2(B(w, r̂))-weight with constant
depending only on the data. To start the proof we first see, using Lemma 7.1 that there exist
δ̂, ĉ and λ̄, depending on the data such that if 0 < δ ≤ δ̂, then

λ̄−1λ̃u,v ≤ λ̂u,v ≤ λ̄λ̃u,v, whenever y ∈ B(w, r/ĉ) \ Σ, (7.35)

and where

λ̃u,v(y) :=

(
u(y)

d(y,Σ)
+

v(y)

d(y,Σ)

)p−2

. (7.36)

We now simply let r̂ = r/(100ĉ2) and we consider w̃ ∈ B(w, r̂) and r̃ ≤ r̂. We want to prove

Γ(w̃, r̃) := r̃−2n

∫
B(w̃,r̃)

λ̂u,v dy ·
∫

B(w̃,r̃)

λ̂−1
u,v dy ≤ c∗ (7.37)

where c∗ depends only on the data. To do this we first note from Harnack’s inequality that if
d(w̃,Σ) ≥ 2r̃, then Γ(w̃, r̃) ≤ c, and hence we can assume that d(w̃,Σ) ≥ 2r̃. In the latter case
we let ŵ ∈ Σ be such that |w̃ − ŵ| = d(w̃,Σ). Now, from the definition of λ̂u,v Lemma 3.1 -
Lemma 3.5, and Hölder’s inequality it follows that∫

B(w̃,r̃)

λ̂u,v dy ≤ cÃ r̃n+2−p, (7.38)

where Ã := (u(ar̃(ŵ))p−2 + v(ar̃(ŵ))p−2). Next, we let

η = min{1, (n−m+ (1− ξ)(p− 2))/(ξ(p− 2))}/20.

Then, using Lemma 7.4 we see, for δ̂, small enough, that

cũ(y) ≥ ũ(ar̃(ŵ))

(
d(y,Σ)

r̃

)ξ(1+η)

, ũ ∈ {u, v} (7.39)

whenever y ∈ B(ŵ, 50r̃) \ Σ. Using (7.39) and (7.35), we deduce that∫
B(w̃,r̃)

λ̂−1
u,v dy ≤ cr̃ξ(1+η)(p−2)Ã−1

∫
B(ŵ,50r̃)

d(y,Σ)(1−ξ(1+η))(p−2) dy. (7.40)
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In particular from (7.37), (7.38), we see that

Γ(w̃, r̃) ≤ cr̃−2nr̃n+2−pr̃ξ(1+η)(p−2)

∫
B(ŵ,50r̃)

d(y,Σ)(1−ξ(1+η))(p−2) dy. (7.41)

To complete the estimate in (7.41) we define

I(z, s) =

∫
B(z,s)

d(y,Σ)(1−ξ(1+η))(p−2) dy,

whenever z ∈ Σ ∩B(w, r/100), 0 < s < r/100. Let

Ek = B(z, s) ∩ {y : d(y, ∂Ω) ≤ δks} for k = 1, 2, . . .

and recall that 1 ≤ m ≤ n − 2, Σ ⊂ Rn is a closed set, Σ is (m, r0, δ)-Reifenberg flat (in Rn)
for some r0, δ > 0. We prove that∫

Ek

dy ≤ ck+δ
(n−m)ksn for k = 1, 2, . . . . (7.42)

Indeed, using that Σ is (m, r0, δ)-Reifenberg flat we see that E1 can be covered by at most
c/δm balls of radius 100δs, and with centers in Σ∩B(z, s), and hence (7.42) follows readily for
k = 1. One can then repeat this argument in each of the balls to get that (7.42) holds for E2.
Continuing in this way, arguing by induction, we get (7.42) for all positive integers k. Using
(7.42) and writing I(z, s) as a sum over Ek \ Ek+1, k = 1, 2, . . . we get

I(z, s) ≤ csn+(1−ξ(1+η))(p−2) +
∞∑
k=1

(ck+δ
(n−m)ksn)(δks)(1−ξ(1+η))(p−2)

≤ c̃sn+(1−ξ(1+η))(p−2), (7.43)

where c̃ = c̃(p, n,m), provided δ′ is small enough by the choice of η. Using this estimate with
s = r̃, we can continue our calculation in (7.41) and conclude that

Γ(w̃, r̃) ≤ cr̃−2nr̃n+2−pr̃ξ(1+η)(p−2)r̃n+(1−ξ(1+η))(p−2) ≤ c (7.44)

The proof of Lemma 7.2 is now complete.

7.3 The final proof of Theorem 1.9 and Theorem 1.10

Assuming (3.1) and 0 < δ < δ̄, and using Lemma 7.2, we see that Theorem 1.9 and Theorem
1.10 follow immediately from Lemma 4.10.
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7.4 Proof of Corollary 1.11

Proof. Let u, v, n,m, p,Σ, w, r0, A, σ be as in Theorem 1.9 or Theorem 1.10 and let µ, ν, be
the corresponding measures as in (1.5). If z ∈ B(w, 2r0) \Σ, then from these theorems with w
replaced by z, we see that ∣∣∣∣u(x)

v(x)
− u(y)

v(y)

∣∣∣∣ ≤ c
u(x)

v(x)

(
|x− y|
r

)σ
(7.45)

whenever x, y ∈ B(z, r)\Σ and 0 < r ≤ r0/c. From (7.45) we deduce that 0 < f(z) = lim
y→z

u(y)

v(y)

exists and (7.45) holds with u(y)
v(y)

replaced by f(z). So there exists c′ depending only on the data

such that if 0 < s < r and x ∈ B(z, s) \ Σ, then

u(x)(1− c′(s/r)σ) < f(z) v(x) < u(x)(1 + c′(s/r)σ). (7.46)

Set

τ1 =
f(z)

(1 + c′(s/r)σ)
, ṽ(x) = τ1v, and h = u− ṽ > 0 in B(z, s) \ Σ.

If ψ ∈ C∞0 (B(z, s)) and θ1, θ2, are small positive numbers we put φ = max{h − θ1, 0}θ2ψ.
Arguing as in (3.8) we see that

0 ≤
∫
〈A(x,∇u)− A(x,∇ṽ),∇(max{h− θ1, 0}θ2)〉ψ dx (7.47)

Also from the usual limiting argument we find that φ can be used as a test function in the weak
formulation of A harmonicity for both u, ṽ. Doing this, using (7.47), and letting first θ1→0, and
then θ2→0, we conclude from (7.47) and (1.5) that∫

ψ (τ p−1
1 dν − dµ) ≤

∫
B(z,s)

〈A(x,∇u)− A(x,∇ṽ),∇ψ〉 dx ≤ 0, (7.48)

where we have also used p− 1 homogeneity of A in Definition 1.1 (iii) to deduce the measure
corresponding to ṽ. From arbritrariness of ψ it follows that τ p−1

1 ν ≤ µ on B(z, s)∩Σ. Similarly

if τ2 = f(z)
(1−c′(s/r)σ)

then µ ≤ τ p−1
2 ν. on B(z, s) ∩ Σ. From this discussion we see that µ, ν are

mutually absolutely continuous on B(w, 4r0) and if dµ = k dν, then

τ p−1
1 ≤ k(ẑ) ≤ τ p−1

2 when ẑ ∈ B(z, s) ∩ Σ and k(z) = f(z)p−1. (7.49)

Taking logarithms it follows that

c−1(s/r)σ ≤ | log(k(ẑ)/k(z))| ≤ c(s/r)σ (7.50)

for some c ≥ 1 depending only on the data. From (7.50) and arbitrariness of s, z we conclude
that Corollary 1.11 is valid.
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7.5 Proof of Corollary 1.12

Proof. The proof of Corollary 1.12 is by contradiction. If this corollary is false there exists
tj ∈ [1/2, 1], xj ∈ Σ ∩ B̄(w, r0), 0 < rj ≤ 10−jr0, for j = 1, . . . , and ε > 0 for which

ε ≤
∣∣∣∣µ(B(xj, tjrj))

µ(B(xj, rj))
− tmj

∣∣∣∣ . (7.51)

We assume as we may that xj→x̂ ∈ Σ ∩ B̄(w, r0) as j→∞ and tj→t ∈ [1/2, 1] as j→∞. Let

uj(x) =
u(xj + rjx)

u(arj(xj))
when x ∈ Ωj = {x : xj + rjx ∈ B(w, 2r0) \ Σ}.

Let Aj(x, η) = A(xj + rjx, η) when x, η ∈ Rn. From p − 1 homogeneity of A in Definition 1.1
we see that uj is a weak solution to ∇ · Aj(x,∇uj) = 0 in Ωj. Note that Aj has the same
structure constants as A in (i), (iii), of Definition 1.1 while β in (ii) is replaced by βrγj . From
the vanishing Reifenberg flat assumption in Corollary 1.12 we see that for a subsequence of (Ωj)
(also denoted (Ωj)), we have ∂Ωj→Λ, an m dimensional plane through 0, as j→∞, uniformly
in the Hausdorff distance sense on compact subsets of Rn. From Lemmas 3.1, 3.3, and 3.4, as
well as Harnack’s inequality, and the NTA property of Ωj we see that given R > 0, there exists
j0 such that uj is Hölder continuous with exponent σ and uniformly bounded Hölder norm in
B(0, R) when j ≥ j0. Also given K, a compact subset of Rn \ Λ, we find from Lemma 3.6 that
∇uj is σ̂ Hölder continuous on K with a uniformly bounded Hölder norm for j large enough.
Moreover from these Lemmas, we conclude that (uj) is bounded in the norm of W 1,p(B(0, R)).

Using these facts we obtain from Ascoli’s theorem that subsequences of (uj), (∇uj) (also
denoted (uj), (∇uj)), converge uniformly on compact subsets of Rn,Rn \ Λ, to û,∇û. From
weak compactness of W 1,p we may also assume that uj→û weakly in W 1,p(B(0, R)) for each
R > 0. Then û is σ Hölder continuous in Rn and û ≡ 0 on Λ. Also it is easily seen that û is
Â harmonic in Rn \ Λ with Â(η) = A(x̂, η), η ∈ Rn \ {0}. To reach a contradiction we assume,
as we may, that Λ = Rm × {0}, since otherwise we first rotate the coordinate system so that Λ
becomes Rm × {0} and û becomes u′ a weak solution to ∇ · A′(∇u′) = 0. Then we apply the
following argument to u′.

We claim that û is a constant multiple of un−m in Lemma 5.3. This claim is proved by first
applying Theorem 1.9 or 1.10 with u, v replaced by û, un−m and then letting r→∞. Using our
claim and Lemma 5.3 we deduce that the measure, say µ̂, corresponding to û, is a constant
multiple of Lebesgue measure on Rm × {0}. Let µj be the measure corresponding to uj, for
j = 1, 2, . . . Using the above convergence results, we easily deduce that µj→µ̂ weakly as
measures. Thus

lim sup
j→∞

µj(B(0, tj))

µj(B(0, 1))
≤ µ̂(B̄(0, t))

µ̂(B(0, 1))
= tm ≤ lim inf

j→∞
µj(B(0, tj))

µj(B(0, 1))
. (7.52)

Finally we note from p− 1 homogeneity of A that

µj(B(0, tj))

µj(B(0, 1))
=
µ(B(xj, tjrj))

µj(B(xj, rj))
for j = 1, 2, . . . (7.53)

Using (7.51) - (7.53) we deduce that

ε ≤ lim
j→∞

∣∣∣∣ µ(B(xj, tjrj))

µ(B(xj, rj))
− tmj

∣∣∣∣ = lim
j→∞

∣∣∣∣ µj(B(0, tj))

µj(B(0, 1))
− tmj

∣∣∣∣ = 0. (7.54)
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We have reached a contradiction. Hence Corollary 1.12 is valid.

8 Proof of Theorem 1.13

Proof. To begin the proof of Theorem 1.13 we assume that Σ is (m, r0, δ) is Reifenberg flat with
0 < δ < δ̃ where δ̃ is the constant in Theorem 1.9 or 1.10. We make several key observations.
If û, v̂, w, r,Σ are as in the statement of Theorem 1.13, then there exists K > 0 such that

K ≤ u/v ≤ cK in B(w, r) \ Σ (8.1)

where c depends only on the data. Indeed, suppose û/v̂ is unbounded in B(w, r) \ Σ. Then

from the maximum principle for A harmonic functions we see that sup
∂B(w,s)\Σ

û

v̂
→∞ as s→0.

From Theorem 1.9 or 1.10 and Harnack’s inequality it follows that

sup
∂B(w,s)\Σ

û

v̂
≤ c inf

∂B(w,s)\Σ

û

v̂
→∞ as s→0. (8.2)

The maximum principle for A harmonic functions then implies that v̂ ≡ 0 in B(w, r). From
this contradiction and the same argument as in (8.2) we conclude the validity of (8.1). Second
suppose 0 < s << 4r < r̃0, where r̃0 = min{r0, 1}, and suppose that ū is an A-harmonic
function in B(w, 4r) \ (Σ ∪ B(w, s)) with ū = 0 continuously on Σ \ B̄(w, s). We can apply
Lemma 7.1 to conclude that there exist δ∗, 0 < δ∗ < 1, c̄, λ̄ ≥ 1, depending only on the data
such that if 0 < δ ≤ δ∗, and ŷ ∈ Σ ∩B(w, 2r) \B(w, 2s), then the ‘fundamental inequality’,

λ̄−1 ū(y)

d(y,Σ)
≤ |∇ū(y)| ≤ λ̄

ū(y)

d(y,Σ)
(8.3)

holds whenever y ∈ B(ŷ, |ŷ − w|/c̄) \ Σ. Using this fact we see that if 0 < δ ≤ δ∗ then there
exists η̃, depending only on the data such that if we define a non-tangential approach region at
w, denoted Ω̃(w, η̃), by Ω̃(w, η̃) = {y ∈ B(w, r̃0) : d(y,Σ) ≥ η̃|y − w|}, then

ū satisfies (8.3) for y ∈ B(w, 2r) \ [Ω̃(w, η̃) ∪B(w, 2s)]. (8.4)

Using (8.1) - (8.4) we now use essentially the same proof scheme as in Theorems 1.9, 1.10.
That is we first prove this theorem in the baseline case when Σ = Rm × {0} and then derive
the general case from this case. We shall need the following lemma.

Lemma 8.1 Under the structure assumptions of either Theorem 1.9 or Theorem 1.10 suppose
0 < s < r/100, w = 0, Σ = Rm × {0}, A ∈ Mp(α). Let u be A harmonic in Ω = B(0, 4r) \
[Σ∩ (B̄(0, s)∪B(0, 4r) \B(0, 2s))] with continuous boundary values: u = 0 on ∂Ω \ B̄(0, s) and
u = 1 on ∂B(0, s). Then for some λ̄, depending only on the data, (8.3) is valid with ū replaced
by u in Ω ∩ [B(0, 2r) \B(0, 2s)].

Proof. We first argue as in the derivation of (5.13). If λ > 1, and near enough 1 we assert that

u(x)− u(λx)

λ− 1
≥ c−1u(x) for x ∈ Ω(λ) = {x ∈ Ω : λx ∈ Ω}. (8.5)
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Indeed from basic geometry one sees that this inequality holds trivially at points of ∂Ω(λ) \
B̄(0, s) since u ≡ 0 on ∂Ω\ B̄(0, s). To handle the case when x ∈ ∂Ω(λ)∩∂B(0, s) we note that

1− u ≥ c−1 on ∂B(0, 7s/4) (8.6)

as we see from Lemma 3.3 applied to u and Harnack’s inequality for 1− u. As in (5.8) we set

ψ̂(z) =
eN |z|

2 − eN

e49N/16 − eN
, (8.7)

whenever z ∈ B(0, 7/4) \ B(0, 1) where N is a non-negative integer. Put ψ(x) = ψ̂(x/s) when
x ∈ B(0, 7s/4) \ B̄(0, s). Using (8.6), (8.7), and repeating the argument leading to (5.13) we
see for some c+ ≥ 1, depending only on the data that

c+(1− u(z)) ≥ ψ(z) ≥ c−1
+

d(z, ∂B(0, s))

s
for z ∈ B(0, 7s/4) \ B̄(0, s). (8.8)

If x ∈ ∂B(0, s) we can use (8.8) with z replaced by λx to obtain that (8.5) is also valid on
∂B(0, s). From the maximum principle for A harmonic functions, we conclude that (8.5) holds
in Ω(λ).

Letting λ→1 in (8.5) we have

−〈x,∇u(x)〉 ≥ c−1u(x) for x ∈ B(0, 2r) \B(0, 2s) . (8.9)

In view of (8.9), (8.4) and basic geometry we conclude the validity of Lemma 8.1.

8.1 Proof of Theorem 1.13 in the baseline case when A ∈Mp(α).

Next we prove

Lemma 8.2 Theorem 3 is valid when w = 0,Σ = Rm × {0}, and A ∈Mp(α).

Proof. Let uk be the A harmonic function in Lemma 8.1 with w = 0, A ∈ Mp(α), and s
replaced by sk = 10−4kr, k = 1, 2, . . . Set ũk = uk/uk(ar(0)) for k = 1, 2, . . . From Lemma 8.1
and our work in sections 3 and 4 we deduce as in the proof of Corollary 1.12 that subsequences of
(ũk), (∇ũk), converge uniformly on compact subsets of B(0, 4r)\{0}, B(0, 4r)\Σ, respectively to
an A harmonic function ũ in B(0, 4r)\Σ with ũ(ar(0)) = 1.Moreover the fundamental inequality
(8.3) holds for ũ in B(0, 2r) \Σ and ũ ≡ 0 continuously, on the boundary of B(0, 4r) \Σ except
at {0}.

Fix s, 0 < s < 10−4r, A ∈ Mp(α), recall that Σ = Rm × {0}, and let v̄ 6≡ 0 be A harmonic
in D = B(0, 4r) \ [Σ ∪ B̄(0, s)]. Assume also that v̄ has continuous boundary values with
v̄ ≡ 0 on ∂D \ ∂B(0, s). We use the fundamental inequality for ũ, and the same argument
as in the proof of Lemma 4.11 under assumption 1′′ to show first that if 0 < c′s ≤ r/100,
D1 = B(0, 4r) \ [B(0, c′s) ∪ Σ], and c′ is large enough, then

(8.3) is valid with ū replaced by v̄ and with constants depending only on the data in D1∩B(0, r).
(8.10)
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Second if t ∈ (0, r),

m(t) = inf
∂B(0,t)

ũ

v̄
, M(t) = sup

∂B(0,t)

ũ

v̄
, and osc (t) = M(t)−m(t),

and s is as above, then for some c̆ ≥ 1, a ∈ (0, 1), depending only on the data,

osc (t) ≤ c̆
(s
t

)a
osc (s) when s ≤ t ≤ r. (8.11)

To prove (8.10) and (8.11) we assume as we may by the same argument as in (8.1) that

2 ≤ ũ/v̄ ≤ c+ in D \B(0, 2s) where c+ depends only on the data. (8.12)

Also let u(·, τ), τ ∈ [0, 1], be A-harmonic functions in D2 = B(0, 4r) \ [Σ ∪ B̄(0, 2s)] with
continuous boundary values,

u(y, τ) = τ ũ(y) + (1− τ)v̄(y), for y ∈ ∂D2, 0 ≤ τ ≤ 1. (8.13)

Existence of u(·, τ), τ ∈ (0, 1), is a consequence of Lemma 3.2. Using the maximum principle
for A-harmonic functions and (8.12) we find for some c̃ ≥ 1 depending only on the data that

c̃−1 u(·, τ1) ≤ u(·, τ2)− u(·, τ1)

τ2 − τ1

≤ c̃u(·, τ1) (8.14)

in D2 whenever 0 ≤ τ1 < τ2 ≤ 1. Copying the argument after (4.42) we deduce, since ũ satisfies
the fundamental inequality in D2, that there exists ε′0, depending only on the data, such that
if ξ2 = 1− ε′0, then

c−1
−
u(y, ξ2)

d(y,Σ)
≤ |∇u(y, ξ2)| ≤ c−

u(y, ξ2)

d(y,Σ)
(8.15)

whenever y ∈ D2. Using (8.15), as well as the fundamental inequality for ũ, and arguing as in
the proof of Lemma 4.11 under Assumption 1′ we find that Assumption 1 in section 4 holds
with û, v̂, replaced by ũ, u(·, ξ2) in D2\B(0, 2s), and with constants depending only on the data.
Next we use this fact and argue as in (4.30), (4.31), to obtain (8.11) with v̄ replaced by u(·, ξ2)
and s by 2s. Continuing this argument by induction as in the proof of (4.45) we eventually get
(8.10) in D ∩B(0, r) \B(0, c′s) and then (8.11) with s replaced by 2c′s, where c′ depends only
on the data. Since osc (·) is decreasing on (0, r) we also have (8.11).

To prove Lemma 8.2, suppose ṽ is an A harmonic Martin function in B(0, 4r) \Σ. For fixed
0 < s, as above let v̄ denote the restriction of ṽ to D. Applying (8.11) and letting s→0 in this
inequality we obtain that ṽ is a constant multiple of ũ.

8.2 Final Proof of Theorem 1.13

Finally to prove Theorem 1.13 in the general case, when A ∈ Mp(α, β, γ) and û, v̂ are A
harmonic Martin functions relative to w in B(w, 4r)\Σ, we note that for some b ∈ (0, 1), c ≥ 1,
depending only on the data,

u∗(at2(w)) ≤ c(t1/t2)b u∗(at1(w)) whenever 0 < t1 < t2 < 4r (8.16)
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and u∗ ∈ {û, v̂}. Also from Harnack’s inequality we have for some b̂ ≥ 2, depending only on the
data, that

u∗(at2(w)) ≥ (t1/t2)b̂ u∗(at1(w)) whenever 0 < t1 < t2 < 4r (8.17)

and u∗ ∈ {û, v̂}. Let c̄ be a large positive constant with 0 < c̄s ≤ s1 ≤ r and let u1, v1 be A1

harmonic functions in D3 = B(w, c̄s) \ (Σ∪ B̄(w, s)) where A1(η) = A(w, η), η ∈ Rn \ {0}. Also
u1, v1 have continuous boundary values, u1 = û, v1 = v̂ on ∂D3. We first show that if c̄ is large
enough, then there exist c1, c2 ≥ 1, such that for u∗ ∈ {u1, v1},

c−1
1

u∗(y)

d(y,Σ)
≤ |∇u∗(y)| ≤ c1

u∗(y)

d(y,Σ)
when y ∈ B(w, 6c2s) \ [Σ ∪B(w, 2c2s)] . (8.18)

To outline the argument suppose w = 0 and

h[B(0, c̄s) ∩ Σ, B(0, c̄s) ∩ (Rm × {0})] ≤ 2c̄δs.

For u∗ as above let v∗ ≥ 0 be the A1 harmonic function in D3 = B(0, c̄s) \ [Rm×{0} ∪ B̄(0, s)]
with continuous boundary values, v∗ ≡ 0 on ∂D3 \ ∂B(0, s) while v∗ ≤ u∗ on ∂B(0, s) and
v∗ ≡ u∗ at points z in this set with d(z,Rm × {0}) ≥ 20c̄δs. Using (8.16) and Lemma 3.3, we
deduce for c large enough, depending only on the data, that

u∗ ≤ c[(c̄)−b + (c̄δ)σ]u(as(0)) + v∗ and v∗ ≤ c(c̄δ)σu∗(as(0)) + u∗ on D3. (8.19)

Also using (8.17) and arguing as in (7.16) we see that if c2 << c̄ is large enough, depending
only on the data, then

min{v∗(x) : x ∈ Ω̃(w, η̃/2) ∩B(0, 8c2s) \B(0, c2s)} ≥ (c2)−2b̂u∗(as(0)). (8.20)

Also we assume that c2 > 2c′, where c′ is the constant in (8.10). Then the fundamental inequlity
in (8.10) holds for v∗ in D3 ∩ [B(0, c̄s/4) \B(0, c2s)] with c̄s playing the role of 4r. With c2 now
fixed, we observe from (8.19), (8.20), that the ratio of u∗/v∗ in Ω̃(w, η̃/2)∩[B(0, 8c2s)\B(0, c2s)]
can be made arbitrarily close to 1 by first choosing c̄ large and then δ < δ∗ small enough
depending on c̄. In view of (8.10) for v∗, we see that in fact these constants can be chosen, to
depend only on the data and in such a way that Lemma 3.9 can be applied to u∗, v∗ in order
to conclude (8.18) for u1, v1 in Ω̃(w, η̃)∩B(0, 6c2s) \B(0, 2c2s). From this conclusion and (8.4)
we obtain (8.18).

Armed with (8.18) we can now repeat the argument in Lemma 3.8 with A1, A2 replaced by
A,A1, and cylinders by balls in order to conclude that

|u1(x)− û(x)| ≤ (1 + csθ1)u1(x), x ∈ Ω̃(w, η̃/2) ∩ B̄(w, 6c2s) \ [B(w, 2c2s) ∪ Σ], (8.21)

for some c, θ, depending only on the data. (8.21) also holds for v1, v̂. From (8.21), and Lemma
3.9 we obtain for s1 small enough that (8.18) is valid for û, v̂ on Ω̃(w, η̃)∩ [B(w, 5c2)\B(w, 3c2)]
with c1 replaced by c4 ≥ c1, depending only on the data. Using this fact and once more (8.4)
we get the fundamental inequality for û, v̂ on B(w, 5c2s) \ [B(w, 3c2s) ∪ Σ] provided s1 ≤ r/c∗

and c∗ is large enough.
From arbitrariness of s we deduce that the fundamental inequality holds for û, v̂ in B(0, r/c)\

Σ with constants depending only on the data. This deduction and Theorems 1.9, 1.10, easily
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imply that if a, b ∈ (0,∞), then (a|∇û| + b|∇v̂|)p−2 is an A2 weight on cubes ⊂ B(0, r/c) \
B(0, s), 0 < s ≤ r/c, with constants that can be chosen independent of a, b. Using this fact and
the same argument as in the derivation of (8.11) we see that if

m(t, w) = inf
∂B(w,t)

û

v̂
, M(t, w) = sup

∂B(w,t)

û

v̂
and osc (t, w) = M(t, w)−m(t, w),

then for some ĉ ≥ 1, and â ∈ (0, 1), depending only on the data,

osc (t, w) ≤ ĉ
(s
t

)â
osc (s, w), s ≤ t ≤ r. (8.22)

Theorem 1.13 follows from (8.22) for A ∈Mp(α, β, γ), if we let s→0.
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