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1 Introduction

Let x = (x1,29,...,2,) denote a point in R™. Then u : R"—=R is said to be p harmonic in
R™ 1 < p < o0, if u satisfies the p Laplace equation :

V- (|Vu[P~2Vu) = 0 on R" (1.1)

in a certain weak Sobolev sense, where Vu denotes the gradient of v and V- is the divergence
operator. It is well known (see for example ([D],[L1],[To],[W]) that weak solutions can be
redefined on a set of Lebesgue measure zero in R” to have Holder continuous partial derivatives
in x;,1 <i<mn. Also if Vu(zg) # 0, it follows from bootstrapping type arguments (see [GT,
chapter 6]) that w is infinitely differentiable in a neighborhood of zg. Finally one can apply
a theorem, apparently originally proved by Hépf [H] (see also [F],[M]), to deduce that u is
real analytic in a neighborhood of 29,1 < ¢ < n. In [L] the first author asked if this result
has a converse when 1 < p < oo,p # 2. That is if u is a real analytic solution to (1.1) in a
neighborhood of xy, when 1 < p < 0o, p # 2, is it true that necessarily Vu(xg) # 0. As noted
in [L] , it follows from translation and dilation invariance of the p Laplacian that to prove this
query it suffices to show there are no homogeneous polynomial solutions of degree > 2 to (2.1)
(in the next section) on R™ when 1 < p < 0o, p # 2. In [L] this statement is proved when n = 2
and also that there are no second degree homogeneous polynomial solutions to the p Laplace
equation in R”,n > 2, when 1 < p < oo, p # 2.
Recently in [T] Tkachev used nonassociative algebra arguments to prove

Theorem 1.1 There are no homogeneous polynomial solutions to (2.1) in R™ of degree three
when —oo0 < p < oo,p # 1,2.

In this note we use the ‘magic point’ introduced in [T] (see Lemma 2.1) and direct calculation
to show :

Theorem 1.2 All real homogeneous polynomials of degree 4 in R™, n > 3, which are solutions
to (2.1) when —oo < p < 0o,p # 1,2, are of the form,

Also there are no real homogeneous polynomials of degree 5 in R® which are solutions to (2.1)
when —oo < p < oo,p # 1,2.

In the process of proving Theorem 1.2, we shall reprove Theorem 1.1. Our calculations were
for us rather involved and so we have made frequent use of Maple-Mathematica to perform
algebraic manipulations, as well as make exact evaluations of some one variable polynomial
expressions. Thus the reader who wants to easily follow all our details, should have a computer
algebra system at hand.

2 Preliminary Reductions

The proof of Theorem 1.2 is by contradiction. To begin, suppose u is a homogeneous polynomial
solution to (1.1) on R™ of degree m > 1 for some p, —00 < p < 00, p # 1,2, at points in R™ where
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Vu # 0. We assume that u has a positive maximum on {z : |z| = 1} at say y, otherwise consider
—u. Using rotational invariance of the p Laplacian we may assume y = e, = (0,...,0,1).
From Euler’s equality for the partial derivatives of a homogeneous function, we deduce that
Vu(e,) # 0. Writing out (1.1) and dividing by |Vu[P~ it follows that in a neighborhood of e,,

(p—2) Z U U Uy, + | VUu? A = 0. (2.1)

,j=1

For ease of calculation we change notation somewhat by putting z = =z, and writing = for
(x1,...,2,_1). We regard u as a polynomial in z with coefficients that are homogeneous poly-
nomials in z. If m = 3,4,5 we claim that v can be written in the form,

Zm—2

(e, 2) = m;—m_l) + (; wa?) o+ P(0)2" 7 4 Q) 4 R@)am (22)

where a;,1 < i < n — 1, are real numbers while Q, R =0 if m = 3, and R = 0 if m = 4. Also
if £ 0, then P, @, R, are homogeneous of degrees 3, 4, 5, in © = (x1,...,2,_1), respectively. To
get (2.2) we may multiply u by a positive constant, if necessary, to obtain the first term on the
righthand side in the expansion of u. The coefficient in 2™~! vanishes since u has a maximum
on the unit sphere at z = 1,2; = 0,1 < ¢ < n — 1. Finally performing a rotation in the z
variable, if necessary, we may assume that the coefficient of 2™~2 has the desired form for some
choice of aq,...,a, 1. Next we use (2.2) to partially expand (2.1) as a polynomial of degree
3m —4 in z with coefficients that are homogeneous polynomials in x. For ease of calculation we
put

n—1 n—1

_ 2
M = E Uz Uy U, + 2 E Ug, UpUg, > + USU,
ij=1 i=1 (2.3)

= M; + My + M;

We first calculate the coefficients of z™~* down to 2>~ 7, in the expansion of M in descending

powers of z. If Sy, = Z;:ll afz? and d;; denotes the Kronecker delta we calculate,

n—1
M, = Z (2™ 2am; + 2™ PPy, + 2™ Qu, + 2" R,

,j=1

X (2" 2wy + 2" Py, 4+ 2" Qu, + 2R, ) (035022 + 2" PPy 4 2" Qe + 2" Raya))]

n—1 n—1
_ _ 2
= 23m68;  23m=T7| E ;%052 Py, + E 2a;7; Py, | + ...
ij=1 i—1

(2.4)



ale‘i‘zm Bsz_i_Zm 4Qx +Zm 5Rxl) ( L Lm= 1+( )Slzm—B

m
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A

+(m = 3)Pz""* + (m — 4)Q2"% + (m — 5)Rz"=9) (2™ 3(m — 2)a;z; + (m — 3) Py, 2™+

(m —4)Qyu, 2™ + (m — 5) Ry, 2™ %) = 23m=6 (22=1) G, 4 23m=T ( Zallexl +.

m—1

(2.5)
Also,

2
M3: <m11 m— 1+ (m 2) Sm— 35 +(m 3)P m— 4+(m_4)Qz(mf5)+(m_5>Rz(mf6))

X (mez + —(m_2)2(m_3) 27748+ (m = 3)(m — 4) P27 4 (m — 4)(m — 5)Qz(m°)

+(m —5)(m — 6)Rzm~7) = —(mll) Z3m=4 4 [(m(jf(’f)f) + (Z:?]Slz?’m’ﬁ—i-
m—3)(m—4 2 3 m—
(L (m>(1) L A=y padm=T
(2.6)
Adding (2.4) - (2.6) gives,
n—1
M — (mll) 3m— 4_,_{ (3/2)m (m(111)/2 m+5S + 2m 45 1+ S, }ZBm 6+{Zazxza]xjpfﬂ T
i,7=1
(2.7)
n—1 n—1

ZZG szxl+4m 102azxszl+(m 3)(”; 4)+2m 3) )P}ZSm 7 +.

(
=1 =1

Likewise, if A\ = 327" a;, then at (z, 2)
n—1 n—1

(Z uil) Au = Z (Zm_Qaixi + zm_?’Pxi + zm_4Qxi + zm_5in)2
' i=1

X <zm’2(1 F )+ 2P BAP A+ 2 AQ + RS gy oS (AR A (m— 3)(m — 4)P)>

n—1

— (1 N)S, + T (1 4 (3 e + AP+
=1

(2.8)



Moreover,

m— 1

2
2Au_< gl 4 2 m=3G) 4 (g — 3) Py 4—|—(m—4)Qz(m_5)+(m—5)Rz(m_6))

x <zm_2(1 +A) + 2" BAP + 2 (AQ + = G ) 4 S (AR A+ (m — 3)(m — 4)p))

_ (rrlii\)z’ S3m—d 4 (mAj)z 23m=5 4 [(AQ + (m72)2(m73) 51)(mi1)2 + (1 + )\) (Z:f) Sl]ZSm—G

+[(AR+ (m = 3)(m — 4) P) iy + 223 p 4 BN PG 3T 4

(m )

(2.9)
Adding (2.8), (2.9) yields
V2 Au = HE oot | AP ooy
{(AQ+ =28 by + (L+ V[ o }2%m 0+
{(AR+ (m = 3)(m — 9)P) Lz + Z=BAPS, +2(1+ )= p (2.10)

(m—1)

)

n—1

21+ M) awiPy,) + SAPY T

i=1

Multiplying M by p — 2 in (2.7) and adding to (2.10) we obtain from (2.2) that the coefficients
multiplying powers of z must vanish. From z3m~%, 23"=% we deduce

n—1

A=) a;=1-pand AP =0. (2.11)

=1

Using (2.11) and putting the coefficients of 23™76 23™~T = () we find after some arithmetic that

(@) AQ+ UG, — —(p—2)(m — 1) { SRS, 4 G, 4 5, )

n—1
(b) AR+ (m—=3)(m—4)P=—(p—2)(m—1) [Z 10575 F iy + (2.12)
ij=1 '
n—1 n—1
Z 2a;1; Py, + (2721:18) Z a;x; Py, + W P
; i=1

For use in proving Theorem 1.2 we use the equation for AQ, AR, in (2.12) to rewrite the



expansion of Au as

m—2)(m—3 m— 3
Au=—(p—2) (zm_2 + 2" (m —1)2 [( 2(m>£ e )51 + ( )Sg + 531
n—1
2" (m [Zaxzaﬂigpm +Z2a A Zazx@P + (At p ) +...
i,7=1 =1

(2.13)

3m=8 in the expansion of (2.1) in powers of

Next we use (2.13) to calculate the coefficient of z
z. We find that

—_

n—

_Z3m—8 <52(m — 1)2 {( —_ 2)(m 3> 51 + (Z 3) 52 + SS] + (2aixi@ri + Pﬂ?)) +

2(m —1)2 .
(p—2)"'u2Au=
—z%m8 - — (m —2)(m —3) (m —3) 2m-8 (m— 2) 2
z <(m 2)(m—1)5 { 2m — 1) S1+ p— Sy + S| +22=3Q + 3?2
n—1 1
M, =4 z3m8 (Z (aia:iajijmj + 2aixiijPxixj) + 2(2%23%@9% + aiP;i)) T
ny=1 i=1
n—1
... 4 ,3m-8 _9y2 (@m—12) (2m —6) _,
My=---+z ((m 2) 5’1524-; (m — 1) aZ$ZQxi+—m—1 P2 +...
s (M =ABm=T)  (m—=2%(m=3) (m-27
Mo=re ( (m — 1) @+l 2(m —1) + 4 )ST |+

Adding the rows in (2.14) together and putting the resulting coefficient of 2*"~% = 0, we
conclude that

n—1 n—1
> (0i210;2Qur, + 20 P, Pra)) + > _[(207 + 222 0,)3,Qu, + (0 + 22 P2 ] 4 Dl
=1

= %(m —2)(m —5)S1Sy + (m — 1)(m — 2)5185 + (m — 1)(m — 3)S% + (m — 1)25,553.

(2.15)



3 Proof of Theorem 1.1 and Theorem 1.2 when m = 4

3.1 Proof of Theorem 1.1
If m =3, then @ = R =0 so from (2.11) we have

n—1

Zaizl—p (3.1)

=1

while from (2.12) (a) we get
S3=0 (3.2)

Note from (3.2) that necessarily,

a;=0for1 <i<n-—1. (3.3)

Using (3.3) in (3.2) we get p = 1, a contradiction. Thus there are no real homogeneous third
degree polynomials on R” that satisfy the p Laplace equation when —oo < p < co,p # 1, 2.

3.2 Proof of Theorem 1.2 when m = 4
If m =4, then R =0, so (2.12) (b) and (2.15) become

n—1 n—1
Z 203w Py, + Z ;207 Ppp, = 0 (3.4)
i=1 ij=1

n—1 n—1

—(1/3)|VPP+ " 20;2:Py Pop, + Y a: P2

ij=1 i=1

n—1 n—1 n—1 (35)
+Z aixiajijmimj — (2/3) Z CLZZEZsz + 2 Z CL?IZQ%
ij=1 i=1 i=1
= —5155 + 9535, + 352 + 65,53
where we have collected terms in P, @ from (2.15) to facilitate further computation.
We claim that
P=0. (3.6)

To prove our claim we first take derivatives with respect to xy, z;, z, on the functions in
equation (3.4). We obtain

Q(Qi + al2 + ag + ar + aay + alar)kaxl:rr =0 (37)

From (3.7) and Schwarz’s inequality we see that Py, .., = 0 unless all of a;, a,, ar = 0. Thus if
A ={i:a; # 0}, then P has no nonzero terms containing an x; whenever i € A. Using this fact



we see that each of the four sums involving P in (3.4), (3.5) are zero. That is,

n—1 n—1
—(1/3)IVP]* + Z L0520 Que; — (2/3) Z%%Qu
ij=1 i=1

(3.8)

n—1
+2 Z af:p,Qxl == —3152 + 93352 + 3522 + 65153
=1

If ay =0, sol & A, then differentiating both sides of the above equation four times with
respect to x; and using the fact that P is homogeneous of degree three while () is homogeneous
of degree four, we obtain

—2|VP,[* =0. (3.9)
Thus in this case P has no terms of the form z?z) . Next taking four derivatives in (3.8), two
each with respect to I,7 € A and using (3.9) we obtain |V P,,,,|* = 0. Thus (3.6) is valid.

Using (2.13), P, R = 0, we continue our calculation of the rest of the coefficients in (2.1)
when m = 4. We obtain

n—1 n—1 n—1
Ml = + 22 22a2x1Q$] inzj + Z‘%Qil + Z QZL‘ZQQTJQ:EZCE]
ij=1 i=1 ij=1
n—1
M2 + M3 =+ 22 (SIZ 4CLZZEZQ% + Sf)
=1
n—1

(p—2)7 ' Vul?PAu=---— 2% [ (955 + 35, + 5)) Z 20;7;Q,, + S3(9S5 + 35, +51) + |[VQ?| .

i=1

—(955 + 35, + 51)|[VQ|?

(3.10)
Adding the rows of (3.10) together and putting the resulting coefficient of 2* = 0, we find
n—1 n—1 n—1
> 2Q4,0i5Qu, + Y aiQh, — [VQI? = SF(955 + 355) + (955 + 352 — $1)) _ 2a:2,Qs,
i,j=1 i=1 =1
(3.11)
while putting the constant term = 0, yields
n—1
> QuQu,Quin, = (955 + 352 + 1) VQJ? (3.12)

ij=1
If1 <kl r,qg<n—1weobtain in view of (3.6), after taking four derivatives of the lefthand
side of (3.8) with respect to xy, z;, z,, x4, that

Quyaraiz, 12(aka + aray + araq + o, + aag + aaq) + 2(ai + af + a2 + a2)
(3.13)
—(2/3)(ar + @+ ar +aq)} = (k. 1,7, q)
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where ¢(k, 1,7, q) denotes the derivative of the righthand side of (3.8) with respect to xy, z;, .., z,
and so = 0, unless there are two pairs of the four integers with each pair equal to a positive
integer.

From (2.11) we see that if a; = 0,1 < i < n — 1, then p = 1, a contradiction. Thus we
assume ay # 0. Then In (3.13) we first take r,¢ = k and [ # k. We get

(2/3)(9axa; + 18ai + 3a} — 3ay, — a1)Qqye3 = 0. (3.14)
Also taking r, ¢, = k in (3.13) we arrive at
(2/3)(30a}, — 4ax)Qu1 = 24ai(9aj, + 9ay — 1)

Clearly ay # % Since ay # 0, it follows that

9a2 4+ 9ay, — 1 9a2 4+ 9ay, — 1
— 7902 kTR T ) —18q2 [ Z=E TR ) 3.15
oy = 7204 ( 60ay — 8 ) “\ " 15aq, — 2 (8.15)
n—1
Next for ease of notation we put y = Q,4,ar = a,C = Z (a; — 1+ 6a)Q§ixz , and take
i=1,i#k

six derivatives of (3.11) with respect to xj. Dividing the resulting equality by 20, we obtain
v*(7a — 1) + 12a(a — 9a® — 3a®)y — 36(9a° + 3a*) + C = 0. (3.16)

We note that if Q.2 # 0, then from (3.14) with [ = i and the quadratic formula, we have

o 1-9a+4/(9a—1)2—12(18a2—3a) (3.17)
(2 6 .

We now let ar = a be the smallest of {a; #0:1 <7 <n—1}in (3.17). We claim that each

term in the sum defining C' is < 0 and < 0, unless either a; = 0,a; = 1/6, or QWG% =0.If

a; = 0, for some i then from (3.17) we see that a = 1/6 and thereupon from the minimality of

a that either a; = 0,1 # k, or szzz =0.If a; # 0 and Qwixi # 0, then since a < a; it follows

from (3.17) that a < 2/15. Using this inequality and (3.17) once again we find that

a; — 1+ 6a < 0if —864(a—1/6)* < 0.
From minimality, a # 1/6, so our claim is proved.
2 (81a* + 81a® — 9a?)

15a — 2
and multiplying by (15a — 2)? we obtain after dividing out a term in a* that

Next we note from (3.15) that y = . Using this value for y in (3.16)

A4(81a2 + 81a — 9)2(7a — 1) + 24(1 — 9a2 — 3a)(15a — 2) x
(3.18)
(81a% + 8la — 9) — 36(9a + 3)(15a — 2)% + a~4(15a — 2)2C = 0

Using Maple-Mathematica we calculated that the polynomial, say F, in a which one gets from
removing the term involving C' in (3.18) simplifies to

F(a) = —78732a° + 26244a* + 3499243 — 233284+
4860a — 324 = 324(3a — 1)3(—9a2 — 6a + 1)

9



so by the quadratic formula, F' has real roots at
—1/3 + (1/3)v/2 and 1/3 three times .

Since C' = 0 when a = 1/6 and F'(1/6) # 0, we see that a # 1/6 in (3.18). Note from the above
zeros of F that F' is nonnegative only on (—oo, —(1++/2)/3] and [v/2—1)/3,1/3]. Since C < 0,
we conclude from (3.18) that if u exists, then necessarily a lies in one of the above intervals.
From (3.17) and the quadratic formula we deduce that if Q, 3 # 0,a # 1/6, then a; # 0 and

in order for a; to be real we must have —135a + 18a+1 > 0 s0 a &€ (—o0, —(1 + v/2)/3]. Also
from minimality, a < 2/15 so a ¢ [(v/2 — 1)/3,1/3]. Thus

Qupo2 =0, for i £ k. (3.19)

Armed with (3.19) we now note that C' = 0 and then from (3.18) that the only possible
values for a are the zeros of F. Next we differentiate both sides of (3.12) eight times with respect
to x. Using (3.19) we obtain after division by 560,

Qig = 2(9a® + 3a* + G)Qii (3.20)

We consider two cases, if Qxi = 0 then from (3.15) and the quadratic formula we deduce that

a = %ﬁ which is not a zero of F' and so leads to a contradiction. Thus Qfﬂi # 0 and from
(3.15), (3.20) we have

9a% +9a — 1
18a” <al5+a—iL2> IQIi:2(9a3+3a2+a)

Multiplying both sides of this equation by (15a — 2) and doing some arithmetic we find that

0 = —108a" 4 108a® — 36a” + 4a = —4a(3a — 1)°.

Since a # 0, we must have a = a, = 1/3.

Now suppose there exists a; # 0 with ¢ # k. Let a; be the smallest a; # 0 with i # k.
Then from (3.17) with a; = 1/3 and a replaced by a; we see that necessarily kax? = () since
otherwise a; = 0. Using this fact we can essentially repeat the argument given for a;, verbatim
with a = a; to get a@; = 1/3. Continuing this argument we obtain that either a; = 1/3 when
ieN#£DPora;=0¢A.

Next we show () so also u has no dependence on z, when r ¢ A. Indeed in this case we observe
from (3.16) with a = a, and the definition of y, C' that ),,3 = 0, when 1 < i < n — 1. Using
(3.11) and repeating the argument after (3.9) it follows that |VQy4,42,| = 0 when r,1,q & A.
Also from (3.13) we see that Qzparzi2, = 0 Whenever two of the indices are in A and two not in
A. From these facts and Euler’s formula we see that Qy,s,., = 0 whenever z,,z, ¢ A. Finally
using this equality and taking two derivatives with respect to z, € A on the functions in (3.11)
we get

(1/8) 3 @2, =0 .21

10



To get this equality we have used a; = 1/3,i € A and Euler’s formula to deduce that after
taking two derivatives with respect to x, on the lefthand sum in (3.11) we have

n—1 n—1
Z 4Qwi:praj$jerxi:pj = (4/3) Z Qxixrijxrzizj 8/3 Z szzT

i,j=1 6j=1

From (3.21) and our earlier observations we conclude that « has no terms with an z, in it when
re&A.

From this fact and an induction type argument we see that to complete the proof of Theorem
1.2 when m = 4 we may as well assume that a; = 1/3 for 1 < i < n — 1. Then from (2.11)
we see that p = (4 —n)/3. Continuing under this assumption we get from (3.15) that Qs = 2
while from (3.13) we calculate, Q2,2 = 2/3 for 1 < k,l <n—1. Also from earlier work we find
that Quya12,2, = 0 otherwise. We conclude from Taylor’s theorem that

1

This completes the proof of Theorem 1.2 when m = 4.

u(z,z) =

4  Proof of Theorem 1.2 when m = 5, n = 3.

Putting m = 5,n = 3, in (2.15) we get after a slight rearrangement of terms,

Z 203, Py, Py + Z a; P’ + Z 2022;Q,, + Z 4;%02Qua,

7,7=1 2,7=1 1,7=1
(4.1)
2
= 165,55 + 857 + 125,55 = Z (16a?a§? + 8a + 12a;a ) fx?
ij=1
Taking three derivatives in x) and one in z;,{ # k, on the functions in (4.1) we obtain
2
> (6 + 18ay, + 6a:) P,y Paaya, + (207 + 1207 + 60501) Q03 = 0 (4.2)
i=1
Now from (2.11), (2.12) (a), and the fact that n = 3,k # [, we deduce that
Using (4.3) in (4.2) we obtain
2
> (61 + 18ay, + 6a;) P,y Poyayo, + (207 + 1247 + 6a,a1) Q00 = 0. (4.4)

i=1

On the other hand, we can take three derivatives in z; and one in xj in order to get (4.2)
with x;, xj interchanged. Doing this and subtracting from (4.4) it follows that

0= ].0(Clk + al)(ak - al)Q:Bl Tk

11



so either a; = ap or a; = —ay or @3, = 0. a1 = —ay is not permitted as we see from (2.11).
If a1 = ag, then from (4.3) we deduce that the sum in (4.2) involving partial derivatives of P,
vanishes. Thus from (4.2), 20ai@ximl = 0. Now a; = 0 = ay is not allowed so in either case,

We continue under the assumption that
aq 7é 9. (46)

This assumption will be dealt with later. Then from harmonicity of P, (4.2), (4.3), (4.5), (4.6),
we see that either P, 2 = —P;3 =0 or P, ,2 = —F,3s = 0. Without loss of generality, suppose
that

Py =Py = 0. (4.7)

Using this equality in (2.12) (b) and taking third partials on AR we obtain
Ry = —Rygp2 = Ryt (4.8)
Taking four derivatives in z; in (4.1) and using (4.5), (4.7), we see that
30a1 Py + 20a1Q,1 — 2(192a3 + 240a7) = 0. (4.9)

Next we compute the coefficient of 2% in (2.1). In this calculation and subsequent calculations
we put

2 2
V =1655 + 855 +3S; and W = Z 16a;w;a;0; Py + Z(8ai + 32a?) z; Py, + 2P .

ij=1 i=1

Using (2.4)-(2.6) and (2.13) with m = 5,n = 3, we calculate

2 2 2
My=---+28 (22 a?mini + Z ;020 Ry, + Z 2a;P,,Q.,
i=1

ij=1 i=1

2

ij=1

2

i=1

2 2 2
(p—2)7" (Z w2 )Au=---—2° <Z2ai$szi + Z (2a;,2;V +2Q., ) Py, + WSg) +...

i=1 =1
(=27 u2hu = = 2 (W + P(16S, + 88, +951)) +..
(4.10)

12



Adding the rows in (4.10) and putting the resulting coefficient of 26 = 0, we find that

2

2 2
Z[2a?miRmi — %%%Rzi] + Z aiT;057 Ry, + Z 2025 (Qu, Prio; + PoiQuicr; )

i=1 i,j=1 i,j=1
2 2
1,j=1 i=1

2 2
+(28; — 1655) P + (381 — 245, — 3283)()  ajw; Pr,) — (248) + 325,) (D) _ala;Py,) = 0
i=1 i=1
(4.11)
Taking five derivatives in xo on the functions in (4.11) and using (4.5), (4.7), we find

(30a5 — Zas)Ry5 = 0 (4.12)
Also taking two derivatives in z1, and three in z9, we obtain in view of (4.5), (4.7), that

(1243 + 647 + 12a1a3 — 3as — a1) Ryg,2 = 0 (4.13a)

while taking four derivatives in x; and one in x, we get
(2047 — 2ay + 2435 — a3/2 + 8ayaz) Rya,, = 0 (4.13b)
We use (4.12), (4.13), and (4.8) to show that
Ry = —Ryp2 = Rypps = 0. (4.14)

Indeed if any of the terms in (4.14) are zero, then all are zero thanks to (4.8), so it suffices to
consider the case when the expressions in parentheses in (4.12),(4.13) all vanish. In this case
from (4.12) we have ap = 0 or 5. If a3 = 0 then from (4.13a) we find that either a; = 0 or %.
a1 = as = 0 is not allowed since p # 1. Also from (4.13b) it follows that a; = 15 # & when
ay = 0. So as = % and using this value in the equation resulting from (4.13a) we conclude
a1 = £15. Neither value is permissible, since a; # as and p # 1. Thus (4.14) is true. Finally we
take five derivatives in z; on the functions in (4.11) and use (4.5), (4.7), to get

0 = (3003 — Sa1) Ryg + (=5760a} — 4640a} + 220a3) Py + 30P% + (12001 — 5) Py Q..
(4.15)
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Next we compute the coefficient of 2% in (2.1). We get

2
M= +2° (Z 2052 Py, Ry, + 2(05%5 Ry + Py, Qu, ) Prya)

i,7=1

2 2

i,j=1 i=1

2

=1

+(65; + 251)Q + 6P? + 2155} + ...

2 2
(p—2)~" (Z“ii)A“ — ... (Z[(QWaixi + 2R, + VPP, + (Qu, + 20,2,V .S)Qy,] > +
=1 =
(4.16)
(p—2) 2 Au="--- =25 (PW +4P*+35,Q + (257 + LQ)V) +

Adding the rows of (4.16) and then putting the coefficient of 2° = 0 it follows that

2

0=> (2a; — 1)P,,R,, + 22 ;2 Ry, Prrar, + 22 02 Py, Ryva, + Z )Q2,

=1 1,j=1 3,j=1

2

+2) " 0;2iQu,Que, + (—3285 — 1655+ 651)> _ a;xiQy, + (292 — 855)Q

ij=1 i=1

+Z 2P, Qi Prve, + Z Py, Py Quia; + Z (381 — 1655 — 855) P,z + PZ 8a; — 32a2)x; Py,

4,j=1 4,j=1

2 2 2
_ (Z a;z; Py.) 322 ;%00 Py, + 22(64%2 + 16a;)x; P,

i,j=1 i=1

2
— ZlGPaixiajijmwj — 365%53 — 185%52
ij=1
(4.17)
Taking six derivatives in x; on the functions in (4.17) and using (4.5), (4.7), we have

0 = 15(14ay — 1) Py Rys + (140a; — 10)Q2, + (780a? — 2160a} — 3840a1)Q,1 + 210P%Q,s

+(1020a1 — 8160a3 — 25920a3) P2 — (2592043 + 12960ay).
(4.18)
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Next we compute the coefficient of z* in (2.1). We calculate

2 2
M, =+ 2 (Z (20;2,Qq; + Po, Py,)Rayo; + Z 20, R, Q..

ij=1 i=1

2

1,7=1

2
My + Mz =+ 24> _[(3Qu, + 951052:) R, + (951 Py, + 16Pa;)Qq, + 8PP2 + 10a3; Py, Q)

=1

+(5Q + £LSHP} + ...

2 2 2
i=1 i=1 i=1
(p—2)"WAu = — 2" ((3Q + §SHW + 4PQ + 6PS, V) +
(4.19)
Adding the rows in (4.19) and putting the resulting coefficient of 2% = 0, we get

2 2 2

4,j=1 i,j=1 i=1

(?)Sl — 16S2 — 3253 Z a;T; R:):Z + Z 2P11sz Qx,xJ + {Qlex] (8Q + 365%)@Z$ZCL]$]}P@”Z%]

i,7=1
2 2 2
+Y (381 — 3285 — 165) Py, Qu, + > _(12Pa;2:Qq, + 6a;2:Q Py, — 16Qalx;Py,) + Y  6PP2
i=1 i=1 i=1
2 2 2
—SfZ(lSaZ + 72a2) 7 Py, ZP2 + 2a;2,Q.,) Z 16a;z;0;7; Py 0, + Z(SQ@? + 8a;)x; P,
Py ij=1 i=1

(965 + 4855)S, P =
(4.20)
Taking 7 derivatives with respect to x; in (4.20) and using (4.5), (4.7), we obtain

0 = 420P% Ryg + (56001 — 192) Qu1 Ry + 210(3a? — 164} — 32a}) Ry + 560P,Q%,

—(67200a} + 16800a7 — 3570a1) PysQ s + 5(54 — 2160, — 1728a1)P — 840(528a1 + 102a7) P,3.

(4.21)
Next we show that (4.9), (4.15), (4.18), (4.21), imply

Py =0. (4.22)
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To make our notation less bulky we put a1 = a, Ps = 64, Q1 = 24C, R, = 120G and rewrite
the above equations in A, C, G. We then divide the equation corresponding to (4.9) by 4 | = 24,
the equation corresponding to (4.15) by 5! = 120, the equation corresponding to (4.18) by 6!
= 720, and the one corresponding to (4.21) by 7! = 5040. We deduce the following equations
listed in the same order as the corresponding display:

(a) 45aA% +20a?C — 16a° — 20a* = 0
(b) (30a* — 3a)G + (—288a* — 232a® + 11a%) A + 54 A3 + (144a — 6)AC =0
(¢) (2100 — 15)AG + (1124 — 8)C2 + (264 — 72a° — 128a%)C + 252A4°C
+ (5la — 408a% — 12960 A2 — (36a° + 18a*) = 0
(d) 360A2G + (3204 — 30) CG + (15a® — 80a® — 160a*)G + 384AC?

—(1920a? + 48002 — 102a)AC + (54 — 216a — 1728a?) A% — (528a* + 102a%)A = 0.
(4.23)
To begin the proof of (4.22) first suppose a = 0 and A = P,3/6 # 0. Then from (4.23) (b) we
see that C' = 9A2. Using this equality in (4.23) (c¢) we deduce that G = 108A43. Substituting
for G,C in (4.23) (d) we find that 40824 A° + 54 A% = 0, which implies A* < 0, a contradiction.
Thus in proving (4.22) we may assume, a # 0.
Using (a) of (4.23) and a # 0, it follows that

A? = —2aC + Ba* + 26 s0 aC < 1a* + d® (4.24)
Using (4.24) in (4.23) (b) we find that
(30a® — 2a)G = —54A(—5aC + 2a' + 5a°)
+ A(288a* + 232a% — 11a%) — (144a — 6)AC (4.25)
= A(4a* 4+ 208a® — 11a*) — (120a — 6)AC.
Multiplying (4.23)(c) by 30a? — 2a and using (4.25) to substitute for G' we see that
0 = {(210a — 15) A*((£24a* + 208a® — 11a?) — (120a — 6)C)} + {(30a® — 3a)[(112a — 8)C?
+ (26a% — 72a® — 128a*)C + 252A42%C + (51a — 408a? — 1296a®) A? — (36a® + 18a*)]}

= T1 -+ TQ.
(4.26)
Substituting for A? from (4.24) in T} and multiplying out the resulting expression we have

Ty = (40a — 13600 + 11200a%)C? + (—34048a5 — 8320045 4 L2244 — 33043)C

(4.27)

220 5
3a.

1 2 7 47072 4
+ 0035 9+ 587 76 8_'_ 07 a7 7036 CL6+
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Also, substituting for A% from (4.24) we find that
Ty = (30a* — 3a)[(112a — 8)C? + (26a® — T2a® — 128a*)C+

(252C + 5la — 408a® — 1296a%)(—2aC + 8a* + a?) — (364° + 18a%)]

(4.28)
= (—240a” + 20a)C? + (16128a° + 5296a° — L80q* — B4?)C
—13824a” — 20480a® — 222047 + 638a° — 224°.
Adding (4.27), (4.28) it follows from (4.26) that
0 = (11200a® — 1600a* + 60a)C? 4 (—17920a® — 93245 + 32884 — 28243)C
—|—31§326L9 + 28(1)276a8 + 3425))52(17 _ 513ﬁa6 + %(IS. (4'29)

Multiplying (4.23) (d) by (30a®> — 3a), dividing out an A and using (4.24), (4.25) as in the
derivation of (4.29) yields

0 = [360(—2aC + 12a* + 5a®) + (320a — 30)C + (154 — 80a® — 160a")]
x [184a* + 208a® — 11a? — (120a — 6)C] + (30a* — 3a)[384C* — (1920a® + 480a* — 102a)C'+
(54 — 216a — 1728a%)(—5aC + 12a* + §a®) — (528a* + 102a%)] =

— 135168 48 _ 8960a” + 4992a° + 1412a° + 30a*

5

(+12288a° + 6784a* — 6020a® + 225a?)C + (—7680a* + 3600a — 180)C?
(4.30)
Note that (4.29), (4.30) give us two quadratic equations in the variable C' with coefficients
that are polynomials in a. To study these equations, let

hi = 371589120a® + 55296000a® — 109541120a* + 2646912043 — 218518442 + 59280a + 25
g1 = 5376043 + 6731242 — 9864a + 365)
fi = 120(560a2 — 80a + 3)

hy = —679477248a° + 280756224a° + 160989184a* — 111109120a® + 23476240a>
—2124360a + 72225

go = 12288a® + 6784a2 — 6020a + 225
fo = 120(12842 — 60a + 3)

exn = a*(gr + Vhe)/fe,  éra = a*(gr — Vhi)/fr, for k=1,2.
(4.31)
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We note from the quadratic formula and (4.29), (4.30) that éj 1, éx 2, are the solutions to (4.29),
when k£ = 1 and to (4.30) when k& = 2. We shall prove for A,a # 0 that the inequalities,

€11 = €am, aéyy; < a®+ (4/5)a* for some m,l € {1,2} (4.32)

have no real solutions. To see this we first show that

4304 —60521
h2<0f0ra210—and

< . 4
000 “ = 700000 (4.33)

In fact the fifth derivative of hs is easily seen to be negative on (1%, o0). Working backward using

Maple to calculate derivatives exactly at 14—0 and elementary calculus we get that the fourth -

first derivatives of h, are negative on -5, 00). Thus hs is decreasing on (55, 00) and using Maple

we found hy(7295) < 0 (exactly) so (4.33) is valid for a > 23 . We can use the same argument

to prove (4.33) for a € (—o0,—.60521], only now successive derivatives alternate in sign. We
omit the details.
Next we show that
hy <0 on (—.7,—.0004154). (4.34)

To see this note that the fifth derivative of h; is negative on some [—.7, zq), o < 0, and positive

on (xg,0]. Since d:a]il(—.ﬂ > 0 while d;;ﬁf (0) < 0 it follows from elementary calculus that
dthy

22 > 0 on some [—.7,21), 21 < 79 and < 0 on (z1,0) . Likewise, d;;é}(—.?) <0, d;a}? (0) >0,

SO % < 0 on some (—.7,x3),x2 < x1, and > 0 on (z5,0). Continuing this argument we find
that %(—.7) < 0, %(O) > 0 and thereupon that L4 < 0 on some [—.7,23), 25 < s,

da?
and > 0 on (z3,0]. Finally since 92(—.7) < 0,%1(0) > 0, we see that h; decreases on some
[—.7,24], 24 < x3 and increases on [x4, 0] From this fact and hy(—.7) < hy(—.0004154) < —.003
(evaluated exactly), we conclude that (4.34) is true.

Note that (4.33), (4.34), show for the intervals listed that at least one of the equations in
(4.33), (4.34) has only complex solutions. Consequently the equations in (4.32) have no real
solutions on the intervals listed in (4.33), (4.34).

To continue the proof of nonexistence for the inequalities in (4.32) we now show that if

exr = éxyf/a*, a#0,1 <k, <2 then

A 1 45
e1,1 > e12 > 1+ za at real values when — < a <

— 4.
12 — 100 (4:35)

To prove (4.35) we first note from (4.31) that f; > 0 for all a, so clearly e;; > e at real
values. Second we note again from (4.31) that g; — (14 % a) f; = 77924 — 552a + 5 > 0 for all

a > .07 since this quadratic has zeros at % + ﬁ\/ 2326 < .07. So the righthand inequaliy in
(4.35) is equivalent to showing that

ki =hi — (g1 — (14 2a) f1)* = 864a(12a — 1)(64a” + 24a — 25)(3 + 560a* — 80a) < 0

(4.36)
on (1—12, f‘—&}, which is easily checked.
Next we show that
€21 > 1+ 2a at real values when 0 < a < & and €55 > €5 at real values in [15’6*2@, =]
4.37)
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Indeed it follows from the quadratic formula that f, = 0 at 1= ‘/ﬁ ~ .056909 and 15+‘/ﬁ
.4118409. Using this fact, (4.31), and ballpark estimates we deduce first that f, < 0 on
[13=v120 6F, ). Second, arguing as in the proof of (4.33)- (4.35), we see that g, < 0 on [£=¥122 ‘/ﬁ, =].

Thus the second inequality in (4.37) is valid. We divide the proof of the first inequality in (4.37)
into the subcases (a) [%@, 7] and (b) [0, 2= ‘/ﬁ] To prove subcase (a) first observe that
(1+ %(Z)fg — go = 2816a% — 892a + 135 > 0 for all a so since fo < 0, on [@ ], it suffices

64 10
to show in subcase (a) that

Jo=hy —[(1+ Zgla)f2 — ) =

(4.38)
— 144(128a2 — 60a + 3)(36864@4 + 2048a® — 8208a? + 1860a — 125) <0
on this interval or in view of the above remark that
] = 36864a* + 2048a> — 8208a> + 1860a — 125 < 0 on 0, 110] (4.39)

which is easily shown. On the other hand if a € [0, (15 — +/129)/64]. then fo > 0 so it suffices
in subcase (b) to show j, in (4.38) > 0 or that (4.39) holds on [0, ;5] which we have already
stated is true. Thus (4.37) is valid. Next we show that

ea1 > 1.2 at real values in [-.0004154, 0] while e; 5 < e;; < 1.1 at real values in this interval.
(4.40)

To prove the first inequality we recall that fo > 0 for a < 0 and note that (2)f; — g2 =

—12288a® + 11648a? + 207 — 2620a > 0 on [—.0004154, 0). So it suffices to show that

ha — (12) fo — g2)? = —192(128a — 60a + 3))(33792a* — 72324° — 25924 + 785a — 51) > 0

n [—.0004154, 0], which follows easily from ballpark type estimates. To handle the second
inequality, we point out once again that e; s < e;; at real values since f; > 0 for all a. Also
%fl — g1 = 31 — 696a + 6608a® — 53760a® > 0 on [—.0004154,0]. Thus to prove the second
inequality in (4.40) it suffices to show

11
— (1—0 fi —g1)? = —24(3 + 560a* — 80a))(187392a* — 30208a® + 11648a* — 1076a + 13) < 0

n [—.0004154, 0], which is clearly true. Finally we show that

15 — /129

e22 < 0 < e < ey at real values of alll three functions in [—.0004154, T] (4.41)

Indeed since f; > 0 on [—.0004154, 15= */ﬁ] it suffices to show for the left hand inequality that
g5 — ha = (96(22a + 5)(128a* — 60a + 3)(3072a° + 320a> — 640a — 15) < 0

or just that 3072a® + 320a% — 640a — 15 < 0 on [—.0004154, 2=¥12) The latter inequality is
easily proven so we omit the details. Finally, e;o < €5 is now 0bV1ouS and also g; > 0 on

[—.0004154, %@] is easily shown so to prove e; o > 0 on this interval it suffices to show that

— hy = 48(3 — 80a + 560a?)(93696a* + 280576a> + 172760a* — 25750a + 925) > 0
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or just that ¢ = 93696a* + 2805764 + 172760a> — 25750a + 925 > 0 on
[—.0004154, %@]. To prove this inequality we note that

q > 172760a* — 25750a + 925

and this quadratic has roots at 324557552 + ng’?gf > 15_6‘1@ so is positive on the given interval.
Thus (4.41) is valiid.

From (4.33)-(4.41) we conclude that (4.32) has no real solutions when A # 0. Thus (4.22)
is true under assumption (4.6).

To continue the proof of Theorem 1.2 under assumption (4.6) we observe from (4.22), (4.7),
and AP = 0 that P = 0. Using this fact in (2.4)-(2.9) we calculate the coefficient of z* in the
expansion of (2.1) in powers of z. We get

2 2
M=+ 23 (Z 202 Ra) Reo, + Qi Qay Quia) ] + Y aiRi> ...
=1

ij=1
2
My+ My=---+2° (Z(?’SIQ?“ + 8Qa;7;Q,, + 9QST) + Q2> + ... (4.42)
=1
2
(p—2)7" Y VuPAu=---— 23 (Z(VQ; +R2)+3Q8V + Q2> +...
=1

Adding the rows in (4.42) and putting the resulting coefficient of z*> = 0 we have

2
0= Z [2aixiR1‘j inx]- + szQza QIWH_

i,7=1

2 (4.43)
+ [(a; — DRZ, — (1655 + 85)Q2, + 8Qa;x;Qy,]
i=1
—QS51 (4855 + 245,)
Taking eight derivatives on z; in (4.43) and using (4.5), (4.8), (4.14), (4.22), we get
(630a; — 70)R%; + 560Q3 — 1120(16a; + 8aj — 2a1)Q% — (1680)(48a} + 24a7)Q,4 = 0 (4.44)

Using once again Rys = 120G, Q1 = 24C, a1 = a, rewriting (4.44) in terms of G, C and dividing
the resulting expression by 8! = 40, 320, we find that

(225a — 25)G? + 192C* — (256a® + 1284 — 32a)C? — (48a* + 24a*)C' = 0. (4.45)

Armed with (4.45) we now consider several possibilities for a and eventually obtain a con-
tradiction to our assumption that w exists. First suppose a; # 0. Then from (4.23) (b) with
A = 0, we see that either G = 0 or a = 1/12. If a = 1/12, then from (4.32) (a) we have
C = 2(55)* + (35)* = 1/135. Using this value for C' in (4.23) (c¢) we obtain a rational number
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~ 1.77748 # 0. Thus G = 0 when a # 0. If a # 0,C # 0, then we can divide (4.45) by C' to get
a quadratic in C. Using C' = 3a® + a” in the resulting equation and also in (4.23) (¢) we obtain
after dividing by a3, a®, respectively the equations,

(o) 192a(fa+ 1)? — (256a* 4+ 128a — 32)(3a + 1) — (48a + 24)

— L (20484 — 128042 + 1040a + 200) = 0.
(4.46)
(8) @ '[(112a = 8)($a + 1)* + (26 — 720 — 128a%)(Za + 1) — (36a + 18)]

= 2= (—768a* — 288a + 300) = 0

. . . o 34+/109 . .
Using the quadratic formula in (4.46) (3) we get a = —>=7—. Putting these values of a into

(4.46) (o) we obtain %@ =0, a contradiction. On the other hand if a # 0,C' = 0, then
from (4.23) (a) we have a = —5/4 while from (4.23) (¢) we deduce a = —1/2. Hence a = 0 and
from (4.23) (¢) we deduce C' = 0 while from (4.45) we have G = 0. From A = C = G = 0, the
definition of these letters, (4.5), (4.8), (4.14), and (2.12) (a), (b) with m = 5, we deduce that
P =@ = R = 0. From these equalities and (4.1) it follows that either a; = 0 or ay = —%. as =0
is not allowed since p # —1. Moreover from (4.17) we have either a; = 0 or ay = —%, which
contradicts the above. We have now considered all possible cases and reached a contradiction
in each case (when a; # as) to our assumption that u is a solution to (2.1).

It remains to remove assumption (4.6). If (4.6) holds, i.e, a; = as, then (2.1) is invariant
under rotations in the = variable, so we can choose the z; axis in such a way that the maximum
of Pin {z : 2 + 23 < 1} occurs at ; = 1,29 = 0. Then necessarily, P(r) = c(z? — 3x3x)
for some ¢ > 0. Thus we do not need (4.6) to prove (4.7). The only other places we used
a; # as was in the derivation of (4.14) to rule out the possibility that a; = a; = 1/12 and
in the use of (4.14) to derive (4.44). In fact all equations in (4.12), (4.13) reduce to 0 = 0
when a; = as = 1/12, so we cannot use (4.14). However, (4.23) (a) — (d) are still valid. Using

a=1/12in (4.23) (b) we see that if A # 0, then from (4.25) we have

1
S 11(=)? = —
) (12) ] 2880
On the other hand from (4.24) we have C' < (4/5)(%)* + (&)? = 1/135 &~ .007407. Since the
two inequalities contradict each other we conclude that A = 0. It follows that C' = 1/135. Using
a=1/12,C =1/1351n (4.23)(c) we arrive as earlier at a postive rational number ~ 1.77748 = 0,
a contradiction to our assumption that a; = as = 1/12. This concludes the proof of Theorem 1.2.

1

~ .014236 .
12

C= (1/4)[(1344/5)(%)4 + 208(
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