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1 Introduction

Let x = (x1, x2, . . . , xn) denote a point in Rn. Then u : Rn→R is said to be p harmonic in
Rn, 1 < p <∞, if u satisfies the p Laplace equation :

∇ · (|∇u|p−2∇u) = 0 on Rn (1.1)

in a certain weak Sobolev sense, where ∇u denotes the gradient of u and ∇· is the divergence
operator. It is well known (see for example ([D],[L1],[To],[W]) that weak solutions can be
redefined on a set of Lebesgue measure zero in Rn to have Hölder continuous partial derivatives
in xi, 1 ≤ i ≤ n. Also if ∇u(x0) 6= 0, it follows from bootstrapping type arguments (see [GT,
chapter 6]) that u is infinitely differentiable in a neighborhood of x0. Finally one can apply
a theorem, apparently originally proved by Höpf [H] (see also [F],[M]), to deduce that u is
real analytic in a neighborhood of x0, 1 ≤ i ≤ n. In [L] the first author asked if this result
has a converse when 1 < p < ∞, p 6= 2. That is if u is a real analytic solution to (1.1) in a
neighborhood of x0, when 1 < p < ∞, p 6= 2, is it true that necessarily ∇u(x0) 6= 0. As noted
in [L] , it follows from translation and dilation invariance of the p Laplacian that to prove this
query it suffices to show there are no homogeneous polynomial solutions of degree ≥ 2 to (2.1)
(in the next section) on Rn when 1 < p <∞, p 6= 2. In [L] this statement is proved when n = 2
and also that there are no second degree homogeneous polynomial solutions to the p Laplace
equation in Rn, n ≥ 2, when 1 < p <∞, p 6= 2.

Recently in [T] Tkachev used nonassociative algebra arguments to prove

Theorem 1.1 There are no homogeneous polynomial solutions to (2.1) in Rn of degree three
when −∞ < p <∞, p 6= 1, 2.

In this note we use the ‘magic point’ introduced in [T] (see Lemma 2.1) and direct calculation
to show :

Theorem 1.2 All real homogeneous polynomials of degree 4 in Rn, n ≥ 3, which are solutions
to (2.1) when −∞ < p <∞, p 6= 1, 2, are of the form,

u(x) = c (x2
1 + x2

2 + · · ·+ x2
k)

2, for p = (4− k)/3, 2 ≤ k ≤ n.

Also there are no real homogeneous polynomials of degree 5 in R3 which are solutions to (2.1)
when −∞ < p <∞, p 6= 1, 2.

In the process of proving Theorem 1.2, we shall reprove Theorem 1.1. Our calculations were
for us rather involved and so we have made frequent use of Maple-Mathematica to perform
algebraic manipulations, as well as make exact evaluations of some one variable polynomial
expressions. Thus the reader who wants to easily follow all our details, should have a computer
algebra system at hand.

2 Preliminary Reductions

The proof of Theorem 1.2 is by contradiction. To begin, suppose u is a homogeneous polynomial
solution to (1.1) on Rn of degree m ≥ 1 for some p,−∞ < p <∞, p 6= 1, 2, at points in Rn where
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∇u 6= 0. We assume that u has a positive maximum on {x : |x| = 1} at say y, otherwise consider
−u. Using rotational invariance of the p Laplacian we may assume y = en = (0, . . . , 0, 1).
From Euler’s equality for the partial derivatives of a homogeneous function, we deduce that
∇u(en) 6= 0. Writing out (1.1) and dividing by |∇u|p−4 it follows that in a neighborhood of en,

(p− 2)
n∑

i,j=1

uxiuxjuxixj + |∇u|2∆u = 0. (2.1)

For ease of calculation we change notation somewhat by putting z = xn and writing x for
(x1, . . . , xn−1). We regard u as a polynomial in z with coefficients that are homogeneous poly-
nomials in x. If m = 3, 4, 5 we claim that u can be written in the form,

u(x, z) =
zm

m(m− 1)
+ (

n−1∑
i=1

aix
2
i )
zm−2

2
+ P (x)zm−3 +Q(x)zm−4 +R(x)zm−5 (2.2)

where ai, 1 ≤ i ≤ n − 1, are real numbers while Q,R ≡ 0 if m = 3, and R ≡ 0 if m = 4. Also
if 6≡ 0, then P,Q,R, are homogeneous of degrees 3, 4, 5, in x = (x1, . . . , xn−1), respectively. To
get (2.2) we may multiply u by a positive constant, if necessary, to obtain the first term on the
righthand side in the expansion of u. The coefficient in zm−1 vanishes since u has a maximum
on the unit sphere at z = 1, xi = 0, 1 ≤ i ≤ n − 1. Finally performing a rotation in the x
variable, if necessary, we may assume that the coefficient of zm−2 has the desired form for some
choice of a1, . . . , an−1. Next we use (2.2) to partially expand (2.1) as a polynomial of degree
3m− 4 in z with coefficients that are homogeneous polynomials in x. For ease of calculation we
put

M =
n−1∑
i,j=1

uxiuxjuxixj + 2
n−1∑
i=1

uxiuzuxiz + u2
zuzz

= M1 +M2 +M3

(2.3)

We first calculate the coefficients of z3m−4 down to z3m−7, in the expansion of M in descending
powers of z. If Sk =

∑n−1
i=1 a

k
i x

2
i and δij denotes the Kronecker delta we calculate,

M1 =
n−1∑
i,j=1

[(zm−2aixi + zm−3Pxi + zm−4Qxi + zm−5Rxi)

×(zm−2ajxj + zm−3Pxj + zm−4Qxj + zm−5Rxj)(δijajz
m−2 + zm−3Pxixj + zm−4Qxixj + zm−5Rxixj)]

= z3m−6S3 + z3m−7[
n−1∑
i,j=1

aixiajxjPxixj +
n−1∑
i=1

2a2
ixiPxi ] + ...

(2.4)
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M2 = 2
n−1∑
i,j=1

(
zm−2aixi + zm−3Pxi + zm−4Qxi + zm−5Rxi

) (
1

m−1
zm−1 + (m−2)

2
S1z

m−3

+(m− 3)Pzm−4 + (m− 4)Qz(m−5) + (m− 5)Rz(m−6)
)

(zm−3(m− 2)aixi + (m− 3)Pxiz
m−4+

(m− 4)Qxiz
m−5 + (m− 5)Rxiz

m−6) = z3m−6
(

2m−4
m−1

)
S2 + z3m−7

(
4m−10
m−1

) n−1∑
i=1

aixiPxi + . . .

(2.5)
Also,

M3 =
(

1
m−1

zm−1 + (m−2)
2

zm−3S1 + (m− 3)Pzm−4 + (m− 4)Qz(m−5) + (m− 5)Rz(m−6)
)2

×
(
zm−2 + (m−2)(m−3)

2
zm−4S1 + (m− 3)(m− 4)Pzm−5 + (m− 4)(m− 5)Qz(m−6)

+(m− 5)(m− 6)Rz(m−7)
)

= 1
(m−1)2

z3m−4 + [ (m−2)(m−3)
2(m−1)2

+ (m−2)
m−1

]S1z
3m−6+

( (m−3)(m−4)
(m−1)2

+ 2(m−3)
m−1

)Pz3m−7 + . . .

(2.6)
Adding (2.4) - (2.6) gives,

M = 1
(m−1)2

z3m−4 + { (3/2)m2−(11/2)m+5
(m−1)2

S1 + 2m−4
m−1

S2 + S3}z3m−6 + {
n−1∑
i,j=1

aixiajxjPxixj+

n−1∑
i=1

2a2
ixiPxi + 4m−10

m−1

n−1∑
i=1

aixiPxi + ( (m−3)(m−4)
(m−1)2

+ 2(m−3)
m−1

)P}z3m−7 + . . .

(2.7)

Likewise, if λ =
∑n−1

i=1 ai, then at (x, z)(
n−1∑
i=1

u2
xi

)
∆u =

n−1∑
i=1

(
zm−2aixi + zm−3Pxi + zm−4Qxi + zm−5Rxi

)2

×
(
zm−2(1 + λ) + zm−3∆P + zm−4(∆Q+ (m−2)(m−3)

2
S1) + zm−5(∆R + (m− 3)(m− 4)P )

)

= z3m−6(1 + λ)S2 + z3m−7 [2(1 + λ)(
n−1∑
i=1

aixiPxi) + S2∆P ] + . . .

(2.8)
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Moreover,

u2
z ∆u =

(
1

m−1
zm−1 + (m−2)

2
zm−3S1 + (m− 3)Pzm−4 + (m− 4)Qz(m−5) + (m− 5)Rz(m−6)

)2

×
(
zm−2(1 + λ) + zm−3∆P + zm−4(∆Q+ (m−2)(m−3)

2
S1) + zm−5(∆R + (m− 3)(m− 4)P )

)
= 1+λ

(m−1)2
z3m−4 + ∆P

(m−1)2
z3m−5 + [(∆Q+ (m−2)(m−3)

2
S1) 1

(m−1)2
+ (1 + λ) (m−2)

m−1
S1]z3m−6

+ [(∆R + (m− 3)(m− 4)P ) 1
(m−1)2

+ 2(1+λ)(m−3)
m−1

P + (m−2)
(m−1)

∆PS1]z3m−7 + . . .

(2.9)
Adding (2.8), (2.9) yields

|∇u|2 ∆u = 1+λ
(m−1)2

z3m−4 + ∆P
(m−1)2

z3m−5+

{(∆Q+ (m−2)(m−3)
2

S1) 1
(m−1)2

+ (1 + λ)[ (m−2)
m−1

S1 + S2]}z3m−6+

{(∆R + (m− 3)(m− 4)P ) 1
(m−1)2

+ (m−2)
(m−1)

∆PS1 + 2(1 + λ) (m−3)
(m−1)

P

+2(1 + λ)(
n−1∑
i=1

aixiPxi) + S2∆P}z3m−7 + . . .

(2.10)

Multiplying M by p− 2 in (2.7) and adding to (2.10) we obtain from (2.2) that the coefficients
multiplying powers of z must vanish. From z3m−4, z3m−5, we deduce

λ =
n−1∑
i=1

ai = 1− p and ∆P = 0. (2.11)

Using (2.11) and putting the coefficients of z3m−6, z3m−7 = 0 we find after some arithmetic that

(a) ∆Q+ (m−2)(m−3)
2

S1 = −(p− 2)(m− 1)2
{

(m−2)(m−3)
2(m−1)2

S1 + (m−3)
m−1

S2 + S3

}

(b) ∆R + (m− 3)(m− 4)P = −(p− 2)(m− 1)2

[
n−1∑
i,j=1

aixiajxjPxixj +

n−1∑
i=1

2a2
ixiPxi + (2m−8)

m−1

n−1∑
i=1

aixiPxi + (m−3)(m−4)
(m−1)2

P

]
(2.12)

For use in proving Theorem 1.2 we use the equation for ∆Q,∆R, in (2.12) to rewrite the
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expansion of ∆u as

∆u = −(p− 2)

(
zm−2 + zm−4(m− 1)2

[
(m− 2)(m− 3)

2(m− 1)2
S1 +

(m− 3)

m− 1
S2 + S3

]
+

zm−5(m− 1)2

[
n−1∑
i,j=1

aixiajxjPxixj +
n−1∑
i=1

2a2
ixiPxi + (2m−8)

m−1

n−1∑
i=1

aixiPxi + (m−3)(m−4)
(m−1)2

P

])
+ . . .

(2.13)
Next we use (2.13) to calculate the coefficient of z3m−8 in the expansion of (2.1) in powers of
z. We find that

(p− 2)−1

(
n−1∑
i=1

u2
xi

)
∆u = . . .

−z3m−8

(
S2(m− 1)2

[
(m− 2)(m− 3)

2(m− 1)2
S1 +

(m− 3)

m− 1
S2 + S3

]
+

n−1∑
i=1

(2aixiQxi + P 2
xi

)

)
+ . . .

(p− 2)−1 u2
z ∆u = . . .

−z3m−8

(
(m− 2)(m− 1)S1

[
(m− 2)(m− 3)

2(m− 1)2
S1 +

(m− 3)

m− 1
S2 + S3

]
+ 2m−8

m−1
Q+ (m−2)2

4
S2

1

)
+ . . .

M1 = · · ·+ z3m−8

(
n−1∑
i,j=1

(aixiajxjQxixj + 2aixiPxjPxixj) +
n−1∑
i=1

(2a2
ixiQxi + aiP

2
xi

)

)
+ . . .

M2 = · · ·+ z3m−8

(
(m− 2)2S1S2 +

n−1∑
i=1

(4m− 12)

(m− 1)
aixiQxi +

(2m− 6)

m− 1
P 2
xi

)
+ . . .

M3 = · · ·+ z3m−8

(
(m− 4)(3m− 7)

(m− 1)2
Q+ (

(m− 2)2(m− 3)

2(m− 1)
+

(m− 2)2

4
)S2

1

)
+ . . .

(2.14)
Adding the rows in (2.14) together and putting the resulting coefficient of z3m−8 = 0, we
conclude that

n−1∑
i,j=1

(aixiajxjQxixj + 2aixiPxjPxixj) +
n−1∑
i=1

[(2a2
i + 2 (m−5)

m−1
ai)xiQxi + (ai + (m−5)

m−1
)P 2

xi
] + (m−4)(m−5)

(m−1)2
Q

= 1
2
(m− 2)(m− 5)S1S2 + (m− 1)(m− 2)S1S3 + (m− 1)(m− 3)S2

2 + (m− 1)2S2S3.

(2.15)
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3 Proof of Theorem 1.1 and Theorem 1.2 when m = 4

3.1 Proof of Theorem 1.1

If m = 3, then Q ≡ R ≡ 0 so from (2.11) we have

n−1∑
i=1

ai = 1− p (3.1)

while from (2.12) (a) we get
S3 = 0 (3.2)

Note from (3.2) that necessarily,

ai = 0 for 1 ≤ i ≤ n− 1. (3.3)

Using (3.3) in (3.2) we get p = 1, a contradiction. Thus there are no real homogeneous third
degree polynomials on Rn that satisfy the p Laplace equation when −∞ < p <∞, p 6= 1, 2.

3.2 Proof of Theorem 1.2 when m = 4

If m = 4, then R ≡ 0, so (2.12) (b) and (2.15) become

n−1∑
i=1

2a2
ixiPxi +

n−1∑
i,j=1

aixiajxjPxixj = 0 (3.4)

−(1/3)|∇P |2 +
n−1∑
i,j=1

2aixiPxjPxixj +
n−1∑
i=1

aiP
2
xi

+
n−1∑
i,j=1

aixiajxjQxixj − (2/3)
n−1∑
i=1

aixiQxi + 2
n−1∑
i=1

a2
ixiQxi

= −S1S2 + 9S3S2 + 3S2
2 + 6S1S3

(3.5)

where we have collected terms in P,Q from (2.15) to facilitate further computation.
We claim that

P ≡ 0. (3.6)

To prove our claim we first take derivatives with respect to xk, xl, xr on the functions in
equation (3.4). We obtain

2(a2
k + a2

l + a2
r + akal + akar + alar)Pxkxlxr = 0 (3.7)

From (3.7) and Schwarz’s inequality we see that Pxkxlxr = 0 unless all of al, ar, ak = 0. Thus if
Λ = {i : ai 6= 0}, then P has no nonzero terms containing an xi whenever i ∈ Λ. Using this fact
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we see that each of the four sums involving P in (3.4), (3.5) are zero. That is,

−(1/3)|∇P |2 +
n−1∑
i,j=1

aixiajxjQxixj − (2/3)
n−1∑
i=1

aixiQxi

+2
n−1∑
i=1

a2
ixiQxi = −S1S2 + 9S3S2 + 3S2

2 + 6S1S3

(3.8)

If al = 0, so l 6∈ Λ, then differentiating both sides of the above equation four times with
respect to xl and using the fact that P is homogeneous of degree three while Q is homogeneous
of degree four, we obtain

−2|∇Px2l |
2 = 0. (3.9)

Thus in this case P has no terms of the form x2
l xk . Next taking four derivatives in (3.8), two

each with respect to l, r 6∈ Λ and using (3.9) we obtain |∇Pxrxl |2 ≡ 0. Thus (3.6) is valid.
Using (2.13), P,R ≡ 0, we continue our calculation of the rest of the coefficients in (2.1)

when m = 4. We obtain

M1 = · · ·+ z2

[
n−1∑
i,j=1

2aixiQxjQxixj +
n−1∑
i=1

aiQ
2
xi

]
+

n−1∑
i,j=1

QxiQxjQxixj

M2 +M3 = · · ·+ z2

(
S1

n−1∑
i=1

4aixiQxi + S3
1

)

(p− 2)−1|∇u|2∆u = · · · − z2

[
(9S3 + 3S2 + S1)

n−1∑
i=1

2aixiQxi + S2
1(9S3 + 3S2 + S1) + |∇Q|2

]
.

−(9S3 + 3S2 + S1)|∇Q|2
(3.10)

Adding the rows of (3.10) together and putting the resulting coefficient of z2 = 0, we find

n−1∑
i,j=1

2QxiajxjQxixj +
n−1∑
i=1

aiQ
2
xi
− |∇Q|2 = S2

1(9S3 + 3S2) + (9S3 + 3S2 − S1)
n−1∑
i=1

2aixiQxi

(3.11)
while putting the constant term = 0, yields

n−1∑
i,j=1

QxiQxjQxixj = (9S3 + 3S2 + S1)|∇Q|2 (3.12)

If 1 ≤ k, l, r, q ≤ n−1 we obtain in view of (3.6), after taking four derivatives of the lefthand
side of (3.8) with respect to xk, xl, xr, xq, that

Qxkxrxlxq {2(akal + akar + akaq + alar + alaq + araq) + 2(a2
k + a2

l + a2
r + a2

q)

−(2/3)(ak + al + ar + aq)} = φ(k, l, r, q)
(3.13)
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where φ(k, l, r, q) denotes the derivative of the righthand side of (3.8) with respect to xk, xl, xr, xq
and so = 0, unless there are two pairs of the four integers with each pair equal to a positive
integer.

From (2.11) we see that if ai = 0, 1 ≤ i ≤ n − 1, then p = 1, a contradiction. Thus we
assume ak 6= 0. Then In (3.13) we first take r, q = k and l 6= k. We get

(2/3)(9akal + 18a2
k + 3a2

l − 3ak − al)Qxlx
3
k

= 0. (3.14)

Also taking r, q, l = k in (3.13) we arrive at

(2/3)(30a2
k − 4ak)Qx4k

= 24a3
k(9a

2
k + 9ak − 1).

Clearly ak 6= 2
15
. Since ak 6= 0, it follows that

Qx4k
= 72 a2

k

(
9a2

k + 9ak − 1

60 ak − 8

)
= 18 a2

k

(
9a2

k + 9ak − 1

15 ak − 2

)
. (3.15)

Next for ease of notation we put y = Qx4k
, ak = a, C =

n−1∑
i=1,i 6=k

(ai − 1 + 6a)Q2
xix3k

, and take

six derivatives of (3.11) with respect to xk. Dividing the resulting equality by 20, we obtain

y2(7a− 1) + 12a(a− 9a3 − 3a2)y − 36(9a5 + 3a4) + C = 0. (3.16)

We note that if Qxix3k
6= 0, then from (3.14) with l = i and the quadratic formula, we have

ai =
1−9a±

√
(9a−1)2−12(18a2−3a)

6
. (3.17)

We now let ak = a be the smallest of {ai 6= 0 : 1 ≤ i ≤ n − 1} in (3.17). We claim that each
term in the sum defining C is ≤ 0 and < 0, unless either ai = 0, ak = 1/6, or Qxix3k

= 0. If
ai = 0, for some i then from (3.17) we see that a = 1/6 and thereupon from the minimality of
a that either al = 0, l 6= k, or Qxlx

3
k

= 0. If ai 6= 0 and Qxix3k
6= 0, then since a ≤ ai it follows

from (3.17) that a < 2/15. Using this inequality and (3.17) once again we find that

ai − 1 + 6a < 0 if − 864(a− 1/6)2 < 0.

From minimality, a 6= 1/6, so our claim is proved.

Next we note from (3.15) that y =
2 (81a4 + 81a3 − 9a2)

15a− 2
. Using this value for y in (3.16)

and multiplying by (15a− 2)2 we obtain after dividing out a term in a4 that

4(81a2 + 81a− 9)2(7a− 1) + 24(1− 9a2 − 3a)(15a− 2)×

(81a2 + 81a− 9) − 36(9a+ 3)(15a− 2)2 + a−4(15a− 2)2C = 0
(3.18)

Using Maple-Mathematica we calculated that the polynomial, say F, in a which one gets from
removing the term involving C in (3.18) simplifies to

F (a) = −78732a5 + 26244a4 + 34992a3 − 23328a2+

4860a− 324 = 324(3a− 1)3(−9a2 − 6a+ 1)
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so by the quadratic formula, F has real roots at

−1/3± (1/3)
√

2 and 1/3 three times .

Since C = 0 when a = 1/6 and F (1/6) 6= 0, we see that a 6= 1/6 in (3.18). Note from the above
zeros of F that F is nonnegative only on (−∞,−(1+

√
2)/3] and [

√
2−1)/3, 1/3]. Since C ≤ 0,

we conclude from (3.18) that if u exists, then necessarily a lies in one of the above intervals.
From (3.17) and the quadratic formula we deduce that if Qxix3k

6= 0, a 6= 1/6, then ai 6= 0 and

in order for ai to be real we must have −135a2 + 18a+ 1 > 0 so a 6∈ (−∞,−(1 +
√

2)/3]. Also
from minimality, a < 2/15 so a 6∈ [(

√
2− 1)/3, 1/3]. Thus

Qxix3k
= 0, for i 6= k. (3.19)

Armed with (3.19) we now note that C = 0 and then from (3.18) that the only possible
values for a are the zeros of F. Next we differentiate both sides of (3.12) eight times with respect
to xk. Using (3.19) we obtain after division by 560,

Q3
x4k

= 2(9a3 + 3a2 + a)Q2
x4k

(3.20)

We consider two cases, if Qx4k
= 0 then from (3.15) and the quadratic formula we deduce that

a = −9−
√

117
18

which is not a zero of F and so leads to a contradiction. Thus Qx4k
6= 0 and from

(3.15), (3.20) we have

18 a2

(
9a2 + 9a− 1

15 a− 2

)
= Qx4k

= 2(9a3 + 3a2 + a)

Multiplying both sides of this equation by (15a− 2) and doing some arithmetic we find that

0 = −108a4 + 108a3 − 36a2 + 4a = −4a(3a− 1)3.

Since a 6= 0, we must have a = ak = 1/3.
Now suppose there exists ai 6= 0 with i 6= k. Let al be the smallest ai 6= 0 with i 6= k.

Then from (3.17) with ai = 1/3 and a replaced by al we see that necessarily Qxkx
3
l

= 0 since
otherwise al = 0. Using this fact we can essentially repeat the argument given for ak verbatim
with a = al to get al = 1/3. Continuing this argument we obtain that either ai = 1/3 when
i ∈ Λ 6= ∅ or ai = 0 6∈ Λ.

Next we showQ so also u has no dependence on xr when r 6∈ Λ. Indeed in this case we observe
from (3.16) with a = ar and the definition of y, C that Qxix3r

= 0, when 1 ≤ i ≤ n − 1. Using
(3.11) and repeating the argument after (3.9) it follows that |∇Qxlxrxq | = 0 when r, l, q 6∈ Λ.
Also from (3.13) we see that Qxkxrxlxq = 0 whenever two of the indices are in Λ and two not in
Λ. From these facts and Euler’s formula we see that Qxixrxq = 0 whenever xr, xq 6∈ Λ. Finally
using this equality and taking two derivatives with respect to xr 6∈ Λ on the functions in (3.11)
we get

(4/3)
n−1∑
i=1

Q2
xixr

= 0 (3.21)
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To get this equality we have used ai = 1/3, i ∈ Λ and Euler’s formula to deduce that after
taking two derivatives with respect to xr on the lefthand sum in (3.11) we have

n−1∑
i,j=1

4QxixrajxjQxrxixj = (4/3)
n−1∑
i,j=1

QxixrxjQxrxixj = (8/3)
n−1∑
i=1

Q2
xixr

.

From (3.21) and our earlier observations we conclude that u has no terms with an xr in it when
r 6∈ Λ.

From this fact and an induction type argument we see that to complete the proof of Theorem
1.2 when m = 4 we may as well assume that ai = 1/3 for 1 ≤ i ≤ n − 1. Then from (2.11)
we see that p = (4− n)/3. Continuing under this assumption we get from (3.15) that Qx4k

= 2
while from (3.13) we calculate, Qx2kx

2
l

= 2/3 for 1 ≤ k, l ≤ n− 1. Also from earlier work we find
that Qxkxlxrxq = 0 otherwise. We conclude from Taylor’s theorem that

u(x, z) =
1

12
(z2 + x2

1 + . . . x2
n−1)2.

This completes the proof of Theorem 1.2 when m = 4.

4 Proof of Theorem 1.2 when m = 5, n = 3.

Putting m = 5, n = 3, in (2.15) we get after a slight rearrangement of terms,

2∑
i,j=1

2aixiPxjPxixj +
2∑

i,j=1

aiP
2
xi

+
2∑
i=1

2a2
ixiQxi +

2∑
i,j=1

aixiajxjQxixj

= 16S2S3 + 8S2
2 + 12S1S3 =

2∑
i,j=1

(16a2
i a

3
j + 8a2

i a
2
j + 12aia

3
j)x

2
i x

2
j

(4.1)

Taking three derivatives in xk and one in xl, l 6= k, on the functions in (4.1) we obtain

2∑
i=1

(6al + 18ak + 6ai)Pxix2kPxixkxl + (2a2
l + 12a2

k + 6akal)Qxlx
3
k

= 0 (4.2)

Now from (2.11), (2.12) (a), and the fact that n = 3, k 6= l, we deduce that

Qxlx
3
k

= −Qx3l xk
, and Pxix2k = −Pxix2l . (4.3)

Using (4.3) in (4.2) we obtain

2∑
i=1

(6al + 18ak + 6ai)Pxix2lPxixkxl + (2a2
l + 12a2

k + 6akal)Qxkx
3
l

= 0. (4.4)

On the other hand, we can take three derivatives in xl and one in xk in order to get (4.2)
with xl, xk interchanged. Doing this and subtracting from (4.4) it follows that

0 = 10(ak + al)(ak − al)Qx3l xk

11



so either a1 = a2 or a1 = −a2 or Qx3l xk
= 0. a1 = −a2 is not permitted as we see from (2.11).

If a1 = a2, then from (4.3) we deduce that the sum in (4.2) involving partial derivatives of P,
vanishes. Thus from (4.2), 20a2

kQx3kxl
= 0. Now a1 = 0 = a2 is not allowed so in either case,

Qx31x2
= Qx32x1

= 0. (4.5)

We continue under the assumption that

a1 6= a2. (4.6)

This assumption will be dealt with later. Then from harmonicity of P, (4.2), (4.3), (4.5), (4.6),
we see that either Px2x21 = −Px32 = 0 or Px1x22 = −Px31 = 0. Without loss of generality, suppose
that

Px32 = −Px2x21 = 0. (4.7)

Using this equality in (2.12) (b) and taking third partials on ∆R we obtain

Rx52
= −Rx32x

2
1

= Rx2x41
. (4.8)

Taking four derivatives in x1 in (4.1) and using (4.5), (4.7), we see that

30a1P
2
x31

+ 20a2
1Qx41

− 2(192a5
1 + 240a4

1) = 0. (4.9)

Next we compute the coefficient of z6 in (2.1). In this calculation and subsequent calculations
we put

V = 16S3 + 8S2 + 3S1 and W =
2∑

i,j=1

16aixiajxjPxixj +
2∑
i=1

(8ai + 32a2
i )xiPxi + 2P .

Using (2.4)-(2.6) and (2.13) with m = 5, n = 3, we calculate

M1 = · · ·+ z6

(
2

2∑
i=1

a2
ixiRxi +

2∑
i,j=1

aiajxixjRxixj +
2∑
i=1

2aiPxiQxi

+
2∑

i,j=1

[(PxiPxj + 2aixiQxj)Pxixj + 2aixiPxjQxixj ]

)
+ . . .

M2 +M3 = · · ·+ z6

(
2∑
i=1

[3
2
aixiRxi + 15S1aixiPxi + 3

2
PxiQxi ] + P (12S2 + 21

2
S1)

)
+ . . .

(p− 2)−1 (
2∑
i=1

u2
xi

)∆u = · · · − z6

(
2∑
i=1

2aixiRxi +
2∑
i=1

(2aixiV + 2Qxi )Pxi +WS2

)
+ . . .

(p− 2)−1 u2
z∆u = · · · − z6

(
3
4
S1W + P (16S3 + 8S2 + 9S1)

)
+ . . .

(4.10)
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Adding the rows in (4.10) and putting the resulting coefficient of z6 = 0, we find that

2∑
i=1

[2a2
ixiRxi − 1

2
aixiRxi ] +

2∑
i,j=1

aixiajxjRxixj +
2∑

i,j=1

2ajxj(QxiPxixj + PxiQxixj)

+
2∑

i,j=1

[PxiPxj − (16S2 + 12S1) aixiajxj]Pxixj +
2∑
i=1

(2ai − 1
2
)PxiQxi

+(2S2 − 16S3)P + (3S1 − 24S2 − 32S3)(
2∑
i=1

aixiPxi)− (24S1 + 32S2)(
2∑
i=1

a2
ixiPxi) = 0

(4.11)
Taking five derivatives in x2 on the functions in (4.11) and using (4.5), (4.7), we find

(30a2
2 − 5

2
a2)Rx52

= 0 (4.12)

Also taking two derivatives in x1, and three in x2, we obtain in view of (4.5), (4.7), that

(12a2
2 + 6a2

1 + 12a1a2 − 3
2
a2 − a1)Rx32x

2
1

= 0 (4.13a)

while taking four derivatives in x1 and one in x2 we get

(20a2
1 − 2a1 + 2a2

2 − a2/2 + 8a1a2)Rx41x2
= 0 (4.13b)

We use (4.12), (4.13), and (4.8) to show that

Rx52
= −Rx32x

2
1

= Rx2x41
= 0. (4.14)

Indeed if any of the terms in (4.14) are zero, then all are zero thanks to (4.8), so it suffices to
consider the case when the expressions in parentheses in (4.12),(4.13) all vanish. In this case
from (4.12) we have a2 = 0 or 1

12
. If a2 = 0 then from (4.13a) we find that either a1 = 0 or 1

6
.

a1 = a2 = 0 is not allowed since p 6= 1. Also from (4.13b) it follows that a1 = 1
10
6= 1

6
when

a2 = 0. So a2 = 1
12

and using this value in the equation resulting from (4.13a) we conclude
a1 = ± 1

12
. Neither value is permissible, since a1 6= a2 and p 6= 1. Thus (4.14) is true. Finally we

take five derivatives in x1 on the functions in (4.11) and use (4.5), (4.7), to get

0 = (30a2
1 − 5

2
a1)Rx51

+ (−5760a4
1 − 4640a3

1 + 220a2
1)Px31 + 30P 3

x31
+ (120a1 − 5)Px31Qx41

.

(4.15)
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Next we compute the coefficient of z5 in (2.1). We get

M1 = · · ·+ z5

(
2∑

i,j=1

[2aixiPxjRxixj + 2(aixiRxj + PxiQxj)Pxixj ]

+
2∑

i,j=1

(2aixiQxj + PxiPxj)Qxixj +
2∑
i=1

(2aiPxiRxi + aiQ
2
xi

)

)
+ . . .

M2 +M3 = · · ·+ z5{
2∑
i=1

[PxiRxi + 6S1P
2
xi

+ 12S1aixiQxi + 20PPxiaixi + 1
2
Q2
xi

]

+(6S2 + 9
2
S1)Q+ 6P 2 + 27

4
S3

1}+ . . .

(p− 2)−1 (
2∑
i=1

u2
xi

)∆u = · · · − z5

(
2∑
i=1

[(2Waixi + 2Rxi + V Pxi)Pxi + (Qxi + 2aixiV S)Qxi ]

)
+ . . . .

(4.16)
(p− 2)−1u2

z ∆u = · · · − z5
(
PW + 4P 2 + 3S1Q+ (9

4
S2

1 + 1
2
Q)V

)
+ . . .

Adding the rows of (4.16) and then putting the coefficient of z5 = 0 it follows that

0 =
2∑
i=1

(2ai − 1)PxiRxi + 2
2∑

i,j=1

ajxjRxiPxixj + 2
2∑

i,j=1

aixiPxjRxixj +
2∑
i=1

(ai − 1
2
)Q2

xi

+2
2∑

i,j=1

ajxjQxiQxixj + (−32S3 − 16S2 + 6S1)
2∑
i=1

aixiQxi + (2S2 − 8S3)Q

+
2∑

i,j=1

2PxjQxiPxixj +
2∑

i,j=1

PxjPxiQxixj +
2∑
i=1

(3S1 − 16S3 − 8S2)Px2i + P
2∑
i=1

(8ai − 32a2
i )xiPxi

− (
2∑
i=1

aixiPxi)

[
32

2∑
i,j=1

aixiajxjPxixj +
2∑
i=1

(64a2
i + 16ai)xiPxi

]

−
2∑

i,j=1

16PaixiajxjPxixj − 36S2
1S3 − 18S2

1S2.

(4.17)
Taking six derivatives in x1 on the functions in (4.17) and using (4.5), (4.7), we have

0 = 15(14a1 − 1)Px31Rx51
+ (140a1 − 10)Q2

x41
+ (780a2

1 − 2160a3
1 − 3840a4

1)Qx41
+ 210P 2

x31
Qx41

+(1020a1 − 8160a2
1 − 25920a3

1)P 2
x31
− (25920a5

1 + 12960a4
1).

(4.18)
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Next we compute the coefficient of z4 in (2.1). We calculate

M1 = · · ·+ z4

(
2∑

i,j=1

(2aixiQxj + PxiPxj)Rxixj +
2∑
i=1

2aiRxiQxi

+
2∑

i,j=1

[(2PxiQxj + 2aixiRxj)Qxixj +QxiQxjPxixj + 2PxiRxjPxixj ]

)
+ . . .

M2 +M3 = · · ·+ z4
1{

2∑
i=1

[(1
2
Qxi + 9S1aixi)Rxi + (9S1Pxi + 16Paixi)Qxi + 8PP 2

xi
+ 10aixiPxiQ]

+(5Q+ 45
2
S2

1)P}+ . . .

(p− 2)−1(
2∑
i=1

u2
xi

)∆u = · · · − z4

(
2∑
i=1

[(2Qxi + 2V aixi)Rxi + 2V PxiQxi ] +
2∑
i=1

(P 2
xi

+ 2aiQxi)W

)
+ . . .

(p− 2)−1u2
z∆u = · · · − z4

(
(1

2
Q+ 9

4
S2

1)W + 4PQ+ 6PS1V
)

+ . . .
(4.19)

Adding the rows in (4.19) and putting the resulting coefficient of z4 = 0, we get

2∑
i,j=1

(2Qxiajxj + PxiPxj)Rxixj +
2∑

i,j=1

(2PxiPxixj + 2aixiQxixj)Rxj +
2∑
i=1

(2ai − 3
2
)QxiRxi+

(3S1 − 16S2 − 32S3)
2∑
i=1

aixiRxi +
2∑

i,j=1

[2PxiQxjQxixj + {QxiQxj − (8Q+ 36S2
1)aixiajxj}Pxixj ]

+
2∑
i=1

(3S1 − 32S3 − 16S2)PxiQxi +
2∑
i=1

(12PaixiQxi + 6aixiQPxi − 16Qa2
ixiPxi) +

2∑
i=1

6PP 2
xi

−S2
1

2∑
i=1

(18ai + 72a2
i )xiPxi − (

2∑
i=1

P 2
xi

+ 2aixiQxi)

[
2∑

i,j=1

16aixiajxjPxixj +
2∑
i=1

(32a2
i + 8ai)xiPxi

]

−(96S3 + 48S2)S1P = 0.
(4.20)

Taking 7 derivatives with respect to x1 in (4.20) and using (4.5), (4.7), we obtain

0 = 420P 2
x31
Rx5k

+ (560a1 − 105
2

)Qx41
Rx51

+ 210(3a2
1 − 16a3

1 − 32a4
1)Rx5k

+ 560Px31Q
2
x41

−(67200a3
1 + 16800a2

1 − 3570a1)Px31Qx41
+ 70

3
(54− 216a1 − 1728a2

1)P 3
x31
− 840(528a4

1 + 102a3
1)Px31 .

(4.21)
Next we show that (4.9), (4.15), (4.18), (4.21), imply

Px31 = 0. (4.22)
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To make our notation less bulky we put a1 = a, Px31 = 6A,Qx41
= 24C,Rx41

= 120G and rewrite
the above equations in A,C,G. We then divide the equation corresponding to (4.9) by 4 ! = 24,
the equation corresponding to (4.15) by 5! = 120, the equation corresponding to (4.18) by 6!
= 720, and the one corresponding to (4.21) by 7! = 5040. We deduce the following equations
listed in the same order as the corresponding display:

(a) 45aA2 + 20a2C − 16a5 − 20a4 = 0

(b) (30a2 − 5
2
a)G+ (−288a4 − 232a3 + 11a2)A+ 54A3 + (144a− 6)AC = 0

(c) (210a− 15)AG + (112a− 8)C2 + (26a2 − 72a3 − 128a4)C + 252A2C

+ (51a− 408a2 − 1296a3)A2 − (36a5 + 18a4) = 0

(d) 360A2G+ (320a− 30)CG+ (15a2 − 80a3 − 160a4)G+ 384AC2

−(1920a3 + 480a2 − 102a)AC + (54− 216a− 1728a2)A3 − (528a4 + 102a3)A = 0.
(4.23)

To begin the proof of (4.22) first suppose a = 0 and A = Px31/6 6= 0. Then from (4.23) (b) we

see that C = 9A2. Using this equality in (4.23) (c) we deduce that G = 108A3. Substituting
for G,C in (4.23) (d) we find that 40824A5 + 54A3 = 0, which implies A2 < 0, a contradiction.
Thus in proving (4.22) we may assume, a 6= 0.

Using (a) of (4.23) and a 6= 0, it follows that

A2 = −4
9
aC + 16

45
a4 + 4

9
a3 so aC ≤ 4

5
a4 + a3 (4.24)

Using (4.24) in (4.23) (b) we find that

(30a2 − 5
2
a)G = −54A(−4

9
aC + 16

45
a4 + 4

9
a3)

+ A(288a4 + 232a3 − 11a2)− (144a− 6)AC

= A(1344
5
a4 + 208a3 − 11a2)− (120a− 6)AC .

(4.25)

Multiplying (4.23)(c) by 30a2 − 5
2
a and using (4.25) to substitute for G we see that

0 = {(210a− 15)A2((1344
5
a4 + 208a3 − 11a2)− (120a− 6)C)}+ {(30a2 − 5

2
a)[(112a− 8)C2

+ (26a2 − 72a3 − 128a4)C + 252A2C + (51a− 408a2 − 1296a3)A2 − (36a5 + 18a4)]}

= T1 + T2.
(4.26)

Substituting for A2 from (4.24) in T1 and multiplying out the resulting expression we have

T1 = (40a− 1360a2 + 11200a3)C2 + (−34048a6 − 83200
3
a5 + 11224

3
a4 − 340

3
a3)C

+100352
5

a9 + 587776
15

a8 + 47072
3
a7 − 7064

3
a6 + 220

3
a5.

(4.27)
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Also, substituting for A2 from (4.24) we find that

T2 = (30a2 − 5
2
a)[(112a− 8)C2 + (26a2 − 72a3 − 128a4)C+

(252C + 51a− 408a2 − 1296a3)(−4
9
aC + 16

45
a4 + 4

9
a3)− (36a5 + 18a4)]

= (−240a2 + 20a)C2 + (16128a6 + 5296a5 − 1360
3
a4 − 25

3
a3)C

−13824a9 − 20480a8 − 12520
3
a7 + 638a6 − 35

3
a5.

(4.28)

Adding (4.27), (4.28) it follows from (4.26) that

0 = (11200a3 − 1600a2 + 60a)C2 + (−17920a6 − 67312
3
a5 + 3288a4 − 365

3
a3)C

+31232
5
a9 + 280576

15
a8 + 34552

3
a7 − 5150

3
a6 + 185

3
a5.

(4.29)

Multiplying (4.23) (d) by (30a2 − 5
2
a), dividing out an A and using (4.24), (4.25) as in the

derivation of (4.29) yields

0 = [360(−4
9
aC + 16

45
a4 + 4

9
a3) + (320a− 30)C + (15a2 − 80a3 − 160a4)]

×[1344
5
a4 + 208a3 − 11a2 − (120a− 6)C] + (30a2 − 5

2
a)[384C2 − (1920a3 + 480a2 − 102a)C+

(54− 216a− 1728a2)(−4
9
aC + 16

45
a4 + 4

9
a3)− (528a4 + 102a3)] =

−135168
5

a8 − 8960a7 + 4992a6 + 1412a5 + 30a4

(+12288a5 + 6784a4 − 6020a3 + 225a2)C + (−7680a2 + 3600a− 180)C2

(4.30)
Note that (4.29), (4.30) give us two quadratic equations in the variable C with coefficients

that are polynomials in a. To study these equations, let

h1 = 371589120a6 + 55296000a5 − 109541120a4 + 26469120a3 − 2185184a2 + 59280a+ 25

g1 = 53760a3 + 67312a2 − 9864a+ 365)

f1 = 120(560a2 − 80a+ 3)

h2 = −679477248a6 + 280756224a5 + 160989184a4 − 111109120a3 + 23476240a2

−2124360a+ 72225

g2 = 12288a3 + 6784a2 − 6020a+ 225

f2 = 120(128a2 − 60a+ 3)

êk,1 = a2(gk +
√
hk)/fk, êk.2 = a2(gk −

√
hk)/fk, for k = 1, 2.

(4.31)
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We note from the quadratic formula and (4.29), (4.30) that êk,1, êk,2, are the solutions to (4.29),
when k = 1 and to (4.30) when k = 2. We shall prove for A, a 6= 0 that the inequalities,

ê1,l = ê2,m, a ê1,l ≤ a3 + (4/5)a4 for some m, l ∈ {1, 2} (4.32)

have no real solutions. To see this we first show that

h2 < 0 for a ≥ 4304

10000
and a ≤ −60521

100000
. (4.33)

In fact the fifth derivative of h2 is easily seen to be negative on ( 4
10
,∞). Working backward using

Maple to calculate derivatives exactly at 4
10

and elementary calculus we get that the fourth -
first derivatives of h2 are negative on [ 4

10
,∞). Thus h2 is decreasing on ( 4

10
,∞) and using Maple

we found h2( 4304
10000

) < 0 (exactly) so (4.33) is valid for a ≥ 4304
10000

. We can use the same argument
to prove (4.33) for a ∈ (−∞,−.60521], only now successive derivatives alternate in sign. We
omit the details.

Next we show that
h1 < 0 on (−.7,−.0004154). (4.34)

To see this note that the fifth derivative of h1 is negative on some [−.7, x0), x0 < 0, and positive

on (x0, 0]. Since d4h1
da4

(−.7) > 0 while d4h1
da4

(0) < 0 it follows from elementary calculus that
d4h1
da4

> 0 on some [−.7, x1), x1 < x0 and < 0 on (x1, 0) . Likewise, d3h1
da3

(−.7) < 0, d
3h1
da3

(0) > 0,

so d3h1
da3

< 0 on some (−.7, x2), x2 < x1, and > 0 on (x2, 0). Continuing this argument we find

that d2h1
da2

(−.7) < 0, d2h1
da2

(0) > 0 and thereupon that d2h1
da2

< 0 on some [−.7, x3), x3 < x2,

and > 0 on (x3, 0]. Finally since dh1
da

(−.7) < 0, dh1
da

(0) > 0, we see that h1 decreases on some
[−.7, x4], x4 < x3 and increases on [x4, 0] From this fact and h1(−.7) < h1(−.0004154) < −.003
(evaluated exactly), we conclude that (4.34) is true.

Note that (4.33), (4.34), show for the intervals listed that at least one of the equations in
(4.33), (4.34) has only complex solutions. Consequently the equations in (4.32) have no real
solutions on the intervals listed in (4.33), (4.34).

To continue the proof of nonexistence for the inequalities in (4.32) we now show that if
ek.l = êk,l/a

2, a 6= 0, 1 ≤ k, l ≤ 2, then

e1,1 > e1,2 > 1 + 4
5
a at real values when

1

12
< a ≤ 45

100
(4.35)

To prove (4.35) we first note from (4.31) that f1 > 0 for all a, so clearly e1,1 > e1,2 at real
values. Second we note again from (4.31) that g1 − (1 + 4

5
a)f1 = 7792a2 − 552a+ 5 > 0 for all

a > .07 since this quadratic has zeros at 69
1948
± 1

1948

√
2326 < .07. So the righthand inequaliy in

(4.35) is equivalent to showing that

k1 = h1 − (g1 − (1 + 4
5
a)f1)2 = 864a(12a− 1)(64a2 + 24a− 25)(3 + 560a2 − 80a) < 0

(4.36)
on ( 1

12
, 45

100
], which is easily checked.

Next we show that

e2,1 > 1 + 4
5
a at real values when 0 ≤ a ≤ 1

10
and e2,2 > e2,1 at real values in [15−

√
129

64
, 1

10
]

(4.37)
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Indeed it follows from the quadratic formula that f2 = 0 at 15−
√

129
64

≈ .056909 and 15+
√

129
64

≈
.4118409. Using this fact, (4.31), and ballpark estimates we deduce first that f2 < 0 on

[15−
√

129
64

, 1
10

]. Second, arguing as in the proof of (4.33)- (4.35), we see that g2 < 0 on [15−
√

129
64

, 1
10

].
Thus the second inequality in (4.37) is valid. We divide the proof of the first inequality in (4.37)

into the subcases (a) [15−
√

129
64

, 1
10

] and (b) [0, 15−
√

129
64

]. To prove subcase (a) first observe that

(1 + 4
5
a)f2 − g2 = 2816a2 − 892a+ 135 > 0 for all a so since f2 < 0, on [15−

√
129

64
, 1

10
], it suffices

to show in subcase (a) that

j2 = h2 − [(1 + 4
5
a)f2 − g2]2 =

− 144(128a2 − 60a+ 3)(36864a4 + 2048a3 − 8208a2 + 1860a− 125) < 0
(4.38)

on this interval or in view of the above remark that

j = 36864a4 + 2048a3 − 8208a2 + 1860a− 125 < 0 on [0, 1
10

], (4.39)

which is easily shown. On the other hand if a ∈ [0, (15−
√

129)/64]. then f2 > 0 so it suffices
in subcase (b) to show j2 in (4.38) > 0 or that (4.39) holds on [0, 1

10
] which we have already

stated is true. Thus (4.37) is valid. Next we show that

e2,1 > 1.2 at real values in [-.0004154, 0] while e1,2 < e1,1 ≤ 1.1 at real values in this interval.
(4.40)

To prove the first inequality we recall that f2 > 0 for a ≤ 0 and note that (12
10

)f2 − g2 =
−12288a3 + 11648a2 + 207− 2620a > 0 on [−.0004154, 0). So it suffices to show that

h2 − ((12
10

)f2 − g2)2 = −192(128a2 − 60a+ 3))(33792a4 − 7232a3 − 2592a2 + 785a− 51) > 0

on [−.0004154, 0], which follows easily from ballpark type estimates. To handle the second
inequality, we point out once again that e1,2 < e1,1 at real values since f1 > 0 for all a. Also
11
10
f1 − g1 = 31 − 696a + 6608a2 − 53760a3 > 0 on [−.0004154, 0]. Thus to prove the second

inequality in (4.40) it suffices to show

h1 − (
11

10
f1 − g1)2 = −24(3 + 560a2 − 80a))(187392a4 − 30208a3 + 11648a2 − 1076a+ 13) < 0

on [−.0004154, 0], which is clearly true. Finally we show that

e2,2 < 0 < e1,2 < e1,1 at real values of alll three functions in [−.0004154,
15−

√
129

64
] (4.41)

Indeed since f2 > 0 on [−.0004154, 15−
√

129
64

] it suffices to show for the left hand inequality that

g2
2 − h2 = (96(22a+ 5)(128a2 − 60a+ 3)(3072a3 + 320a2 − 640a− 15) < 0

or just that 3072a3 + 320a2 − 640a − 15 < 0 on [−.0004154, 15−
√

129
64

]. The latter inequality is
easily proven so we omit the details. Finally, e1,2 < e1,1 is now obvious and also g1 > 0 on

[−.0004154, 15−
√

129
64

] is easily shown so to prove e1,2 > 0 on this interval it suffices to show that

g2
1 − h1 = 48(3− 80a+ 560a2)(93696a4 + 280576a3 + 172760a2 − 25750a+ 925) > 0
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or just that q = 93696a4 + 280576a3 + 172760a2 − 25750a+ 925 > 0 on
[−.0004154, 15−

√
129

64
]. To prove this inequality we note that

q > 172760a2 − 25750a+ 925

and this quadratic has roots at 2575
34552

±
√

238505
34552

> 15−
√

129
64

so is positive on the given interval.
Thus (4.41) is valiid.

From (4.33)-(4.41) we conclude that (4.32) has no real solutions when A 6= 0. Thus (4.22)
is true under assumption (4.6).

To continue the proof of Theorem 1.2 under assumption (4.6) we observe from (4.22), (4.7),
and ∆P = 0 that P ≡ 0. Using this fact in (2.4)-(2.9) we calculate the coefficient of z3 in the
expansion of (2.1) in powers of z. We get

M1 = · · ·+ z3

(
2∑

i,j=1

[2aixiRxjRxixj +QxiQxjQxixj ] +
2∑
i=1

aiR
2
xi

)
+ . . .

M2 +M3 = · · ·+ z3

(
2∑
i=1

(3S1Q
2
xi

+ 8QaixiQxi + 9QS2
1) +Q2

)
+ . . .

(p− 2)−1|∇u|2∆u = · · · − z3

(
2∑
i=1

(V Q2
xi

+R2
xi

) + 3QS1V +Q2

)
+ . . .

(4.42)

Adding the rows in (4.42) and putting the resulting coefficient of z3 = 0 we have

0 =
2∑

i,j=1

[2aixiRxjRxixj +QxiQxjQxixj ]+

+
2∑
i=1

[(ai − 1)R2
xi
− (16S3 + 8S2)Q2

xi
+ 8QaixiQxi ]

−QS1(48S3 + 24S2)

(4.43)

Taking eight derivatives on x1 in (4.43) and using (4.5), (4.8), (4.14), (4.22), we get

(630a1 − 70)R2
x51

+ 560Q3
x41
− 1120(16a3

1 + 8a2
1 − 2a1)Q2

x41
− (1680)(48a4

1 + 24a3
1)Qx41

= 0 (4.44)

Using once again Rx51
= 120G,Qx41

= 24C, a1 = a, rewriting (4.44) in terms of G,C and dividing
the resulting expression by 8! = 40, 320, we find that

(225a− 25)G2 + 192C3 − (256a3 + 128a2 − 32a)C2 − (48a4 + 24a3)C = 0. (4.45)

Armed with (4.45) we now consider several possibilities for a and eventually obtain a con-
tradiction to our assumption that u exists. First suppose a1 6= 0. Then from (4.23) (b) with
A = 0, we see that either G = 0 or a = 1/12. If a = 1/12, then from (4.32) (a) we have
C = 4

5
( 1

12
)3 + ( 1

12
)2 = 1/135. Using this value for C in (4.23) (c) we obtain a rational number
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≈ 1.77748 6= 0. Thus G = 0 when a 6= 0. If a 6= 0, C 6= 0, then we can divide (4.45) by C to get
a quadratic in C. Using C = 4

5
a3 + a2 in the resulting equation and also in (4.23) (c) we obtain

after dividing by a3, a5, respectively the equations,

(α) 192a(4
5
a+ 1)2 − (256a2 + 128a− 32)(4

5
a+ 1)− (48a+ 24)

= 1
25

(−2048a3 − 1280a2 + 1040a+ 200) = 0.

(β) a−1[(112a− 8)(4
5
a+ 1)2 + (26− 72a− 128a2)(4

5
a+ 1)− (36a+ 18)]

= 1
25

(−768a2 − 288a+ 300) = 0

(4.46)

Using the quadratic formula in (4.46) (β) we get a = −3±
√

109
16

. Putting these values of a into

(4.46) (α) we obtain −81±27
√

109
25

= 0, a contradiction. On the other hand if a 6= 0, C = 0, then
from (4.23) (a) we have a = −5/4 while from (4.23) (c) we deduce a = −1/2. Hence a = 0 and
from (4.23) (c) we deduce C = 0 while from (4.45) we have G = 0. From A = C = G = 0, the
definition of these letters, (4.5), (4.8), (4.14), and (2.12) (a), (b) with m = 5, we deduce that
P ≡ Q ≡ R ≡ 0. From these equalities and (4.1) it follows that either a2 = 0 or a2 = −5

4
. a2 = 0

is not allowed since p 6= −1. Moreover from (4.17) we have either a2 = 0 or a2 = −1
2
, which

contradicts the above. We have now considered all possible cases and reached a contradiction
in each case (when a1 6= a2) to our assumption that u is a solution to (2.1).

It remains to remove assumption (4.6). If (4.6) holds, i.e, a1 = a2, then (2.1) is invariant
under rotations in the x variable, so we can choose the x1 axis in such a way that the maximum
of P in {x : x2

1 + x2
2 ≤ 1} occurs at x1 = 1, x2 = 0. Then necessarily, P (x) = c(x3

1 − 3x2
2x1)

for some c > 0. Thus we do not need (4.6) to prove (4.7). The only other places we used
a1 6= a2 was in the derivation of (4.14) to rule out the possibility that a1 = a2 = 1/12 and
in the use of (4.14) to derive (4.44). In fact all equations in (4.12), (4.13) reduce to 0 = 0
when a1 = a2 = 1/12, so we cannot use (4.14). However, (4.23) (a)− (d) are still valid. Using
a = 1/12 in (4.23) (b) we see that if A 6= 0, then from (4.25) we have

C = (1/4)[(1344/5)(
1

12
)4 + 208(

1

12
)3 − 11(

1

12
)2] =

41

2880
≈ .014236 .

On the other hand from (4.24) we have C ≤ (4/5)( 1
12

)3 + ( 1
12

)2 = 1/135 ≈ .007407. Since the
two inequalities contradict each other we conclude that A = 0. It follows that C = 1/135. Using
a = 1/12, C = 1/135 in (4.23)(c) we arrive as earlier at a postive rational number≈ 1.77748 = 0,
a contradiction to our assumption that a1 = a2 = 1/12. This concludes the proof of Theorem 1.2.
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4. [H] E. Hopf Über den funktionalen,insbesondere den analytischen charakter der lösungen
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