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Abstract

In this paper we solve several problems concerning regularity and free boundary regu-
larity, below the continuous threshold, for positive solutions to the p-Laplace equation,
1 < p <∞, vanishing on a portion of the boundary of an Ahlfors regular NTA-domain. In
Theorem 1 of our paper we show that if Ω ⊂ Rn, n ≥ 2, is an Ahlfors regular NTA-domain
and u is a positive p-harmonic function in Ω∩B(w, 4r), with continuous boundary value 0
on ∂Ω∩B(w, 4r), then ∇u(x)→ ∇u(y) non-tangentially as x→y ∈ ∂Ω∩B(w, 4r), almost
everywhere with respect to surface area, σ, on ∂Ω ∩ B(w, 4r). Moreover, log |∇u| is of
bounded mean oscillation on ∂Ω∩B(w, r) with ‖ log |∇u|‖BMO(∂Ω∩B(w,r)) ≤ c. If, in ad-
dition, Ω is Reifenberg flat with vanishing constant and n ∈ VMO(∂Ω∩B(w, 4r)), where
n denotes the unit inner normal to ∂Ω in the measure theoretic sense, then in Theorem 2
we prove that log |∇u| ∈ VMO(∂Ω ∩B(w, r)). In Theorem 3 we prove the following con-
verse to Theorem 2. Suppose u is as in Theorem 1, log |∇u| ∈ VMO(∂Ω ∩ B(w, r)),
and that ∂Ω ∩ B(w, r) is (δ, r0)-Reifenberg flat. Then there exists δ̄ = δ̄(p, n) such
that if 0 < δ ≤ δ̄, then ∂Ω ∩ B(w, r/2) is Reifenberg flat with vanishing constant and
n ∈ VMO(∂Ω ∩ B(w, r/2)). Finally, in Theorem 4 we establish a two-phase version of
Theorem 3 without the smallness assumption on δ.
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1 Introduction

Recall that a Jordan domain Ω ⊂ R2 is called a chord arc domain if ∂Ω is locally rectifiable
and if there exists a constant λ, 0 < λ <∞, such that

σ(γ(w1, w2)) ≤ λ|w1 − w2| for all w1, w2 ∈ ∂Ω, w1 6= w2,

where γ(w1, w2) is the shortest arc in the boundary which joins w1 and w2 and σ(γ(w1, w2)) is
its length. Ω is called a vanishing chord arc domain if, in addition,

σ(γ(w1, w2))

|w1 − w2|
= 1 + o(1) uniformly on compact subset of ∂Ω as |w1 − w2| → 0.

Let ω(·) = ω(·, x) denote the harmonic measure associated to the Laplace operator and defined
with respect to Ω and x ∈ Ω. A classical result concerning the harmonic measure, due to
Lavrentiev [L], states that if Ω ⊂ R2 is a chord arc domain, then ω is mutually absolutely
continuous with respect to σ, i.e., dω = kdσ where k is the associated Poisson kernel. Moreover,
Lavrentiev [L] proved that log k is in the space of functions of bounded mean oscillation, defined
with respect to σ, on ∂Ω. Later Pommerenke [P] proved that Ω is vanishing chord arc if and
only if log k is in the space of functions of vanishing mean oscillation, defined with respect
to σ, on ∂Ω. Thus Pommerenke’s theorem gives a characterization of the set of all planar
vanishing chord arc domains in terms of the behaviour of the Poisson kernel. Concerning
higher dimensional analogues of the results of Lavrentiev and Pommerenke, such results have
recently been obtained by Kenig and Toro in a sequence of papers, see [KT,KT1-KT3]. In these
papers the authors establish a number of results concerning the regularity and free boundary
regularity, below the continuous threshold, for the Laplace equation in Reifenberg flat and
Ahlfors regular domains. In particular, as an analogue of Pommerenke’s result the authors
obtain a characterization, in terms of the behaviour of the Poisson kernel, of what they refer
to as ‘chord arc domains with vanishing constant.’

The purpose of this paper is to establish appropriate versions, valid for the p-Laplace equa-
tion, 1 < p <∞, of the results in [KT,KT1-KT3]. While the results in [KT,KT1-KT3] concern
harmonic functions and harmonic measure, i.e., the case p = 2, the results proved in this paper
are valid for 1 < p < ∞ and our results are completely new when p 6= 2. Consequently we
also establish versions, valid in all dimensions, for the p-Laplace equation, 1 < p < ∞, of the
classical results of Lavrentiev [L] and Pommerenke [P] mentioned above.

The results in this paper build on the techniques and results established in [LN,LN1-LN6].
In these papers we study the regularity and free boundary regularity of p-harmonic functions,
p 6= 2, 1 < p < ∞, in Lipschitz domains and in domains which are well approximated by
Lipschitz domains in the Hausdorff distance sense. To briefly outline these results we note
that in [LN] we established the boundary Harnack inequality for positive p-harmonic functions,
1 < p < ∞, vanishing on a portion of the boundary of a Lipschitz domain Ω ⊂ Rn and we
carried out an in depth analysis of p-capacitary functions in starlike Lipschitz ring domains. The
study in [LN] was continued in [LN1] where we proved Hölder continuity for ratios of positive
p-harmonic functions, 1 < p < ∞, vanishing on a portion of the boundary of a Lipschitz
domain Ω ⊂ Rn. In [LN1] we also studied the Martin boundary problem for p-harmonic
functions in Lipschitz domains. In [LN], [LN2] we established, in the setting of Lipschitz and
C1-domains the ‘ p-harmonic’ analogues, 1 < p <∞, of theorems proved for harmonic functions
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in [D], [JK], [J], [KT], [KT1] and [KT2] on regularity and free boundary regularity, below the
continuous threshold, for the Poisson kernel associated to the Laplace operator. The results in
this paper can be viewed as an extension of the results in [LN2] to Reifenberg flat and Ahlfors
regular domains. We refer to [LN3] for a survey of the results in [LN,LN1,LN2]. In [LN4]
we proved the boundary Harnack inequality and Hölder continuity for ratios of p-harmonic
functions vanishing on a portion of certain Reifenberg flat and Ahlfors regular NTA-domains
and we gave applications to the p-Martin boundary problem for these domains. Finally, in
[LN5,LN6] we generalized the results in [C,C1] concerning general two-phase free boundary
problems for the Laplace operator to the p-Laplace operator, 1 < p < ∞. In [LN5] we also
gave an application of our results to the free boundary-inverse type problem studied in [LN2].
Moreover, while the analysis in [LN2] is closely linked to [LN,LN1], and [LN5], this paper is
more in the flavour of [LN4] and [LN6].

To properly state the results in this paper we need to introduce some notation. Points in
Euclidean n-space Rn are denoted by x = (x1, . . . , xn) or (x′, xn) where x′ = (x1, . . . , xn−1) ∈
Rn−1. We let Ē, ∂E, diam E, be the closure, boundary, diameter, of the set E ⊂ Rn and we
define d(y, E) to equal the distance from y ∈ Rn to E. 〈·, ·〉 denotes the standard inner product
on Rn and we let |x| = 〈x, x〉1/2 be the Euclidean norm of x. B(x, r) = {y ∈ Rn : |x− y| < r}
is defined whenever x ∈ Rn, r > 0, and dx denotes Lebesgue n-measure on Rn. Let

h(E,F ) = max(sup{d(y, E) : y ∈ F}, sup{d(y, F ) : y ∈ E})

be the Hausdorff distance between the sets E,F ⊂ Rn. If O ⊂ Rn is open and 1 ≤ q ≤ ∞, then
by W 1,q(O) we denote the space of equivalence classes of functions f with distributional gradient
∇f = (fx1 , . . . , fxn), both of which are q th power integrable on O. Let ‖f‖1,q = ‖f‖q+‖ |∇f | ‖q
be the norm in W 1,q(O) where ‖ · ‖q denotes the usual Lebesgue q norm in O. Next let C∞0 (O)
be the set of infinitely differentiable functions with compact support in O and let W 1,q

0 (O) be
the closure of C∞0 (O) in the norm of W 1,q(O).

Given a bounded domain G, i.e., a connected open set, and 1 < p < ∞, we say that u is
p-harmonic in G provided u ∈ W 1,p(G) and∫

|∇u|p−2 〈∇u,∇θ〉 dx = 0 (1.1)

whenever θ ∈ W 1,p
0 (G) . Observe that if u is smooth and ∇u 6= 0 in G, then

∇ · (|∇u|p−2∇u) ≡ 0 in G (1.2)

and u is a classical solution in G to the p-Laplace partial differential equation. Here, as in the
sequel, ∇· is the divergence operator.

In the following the notion of NTA-domains introduced in [JK1] will be important. We
note that (iii) in our definition of NTA-domains below is different but equivalent to the usual
Harnack chain condition given in [JK1] (see [BL], Lemma 2.5). We choose this definition in
order to emphasize the dependence of Ω on M. M, r0, will be called the NTA-constants of Ω.
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Definition 1.1 A domain Ω is called non-tangentially accessible (NTA) if there exist M ≥ 2
and r0 such that the following are fulfilled:

(i) corkscrew condition: for any w ∈ ∂Ω, 0 < r < r0, there exists ar(w) ∈ Ω satisfying

M−1r < |ar(w)− w| < r, d(ar(w), ∂Ω) > M−1r,

(ii) Rn \ Ω̄ satisfies the corkscrew condition,

(iii) uniform condition: if w ∈ ∂Ω, 0 < r < r0, and w1, w2 ∈ B(w, r) ∩ Ω, then there exists a

rectifiable curve γ : [0, 1]→Ω with γ(0) = w1, γ(1) = w2, and such that

(a) H1(γ) ≤ M |w1 − w2|,
(b) min{H1(γ([0, t])), H1(γ([t, 1])) } ≤ M d(γ(t), ∂Ω).

Given a domain Ω ⊂ Rn, w ∈ ∂Ω, 0 < r <∞, we let ∆(w, r) = ∂Ω ∩B(w, r).

Definition 1.2 Let Ω ⊂ Rn be a domain and r0, δ > 0. Then Ω and ∂Ω are said to be (δ, r0)-
Reifenberg flat provided that there exists, whenever w ∈ ∂Ω and 0 < r < r0, a hyperplane
P = P (w, r) containing w such that

(a) h(∆(w, r), P ∩B(w, r)) ≤ δr

(b) {x ∈ Ω ∩B(w, r/2) : d(x, ∂Ω) ≥ 2δr} ⊂ one component of Rn \ P.

For short we say that Ω and ∂Ω are δ-Reifenberg flat if Ω and ∂Ω are (δ, r0)-Reifenberg flat
for some r0 > 0. We note that an equivalent definition of Reifenberg flat domains is given in
[KT]. As in [KT] one can show that a δ-Reifenberg flat domain is a NTA-domain with constant
M = M(n), provided 0 < δ < δ̂, and δ̂ = δ̂(n) is small enough.

Definition 1.3 Let Ω ⊂ Rn be a (δ, r0)-Reifenberg flat domain for some (δ, r0), 0 < δ < δ̂, r0 >
0, and let w ∈ ∂Ω, 0 < r < r0. We say that ∆(w, r) is Reifenberg flat with vanishing constant
if there exists, if for each ε > 0, r̃ = r̃(ε) > 0 with the following property. If x ∈ ∆(w, r) and
0 < ρ < r̃, then there exists a plane P ′ = P ′(x, ρ) containing x such that

h(∆(x, ρ), P ′ ∩B(x, ρ)) ≤ ερ.

Given a bounded domain Ω we let σ denote the restriction of the (n − 1)-dimensional
Hausdorff measure to ∂Ω.

Definition 1.4 Let Ω ⊂ Rn be a bounded domain. We say that Ω and ∂Ω are Ahlfors regular
provided that there exist r0 > 0, C ≥ 1, such that

C−1 ≤ σ(∆(w, r))

rn−1
≤ C

whenever w ∈ ∂Ω, 0 < r < r0.
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We note that the left hand inequality in the above display is always valid in a NTA-domain
where now C = C(M) as follows easily from (i), (ii) of Definition 1.1 and the fact that Hausdorff
measure decreases under a projection.

Next let Ω ⊂ Rn be a bounded Ahlfors regular NTA-domain and let w ∈ ∂Ω, 0 < r < r0.
For 0 < b < 1, y ∈ ∂Ω we let

Γ(y) = Γb(y) = {x ∈ Ω : d(x, ∂Ω) > b|x− y|}. (1.3)

Given a measurable function k on ∪y∈∆(w,2r)Γ(y)∩B(w, 4r) we define the non-tangential max-
imal function N(k) : ∆(w, 2r)→ R for k as

N(k)(y) = sup
x∈Γ(y)∩B(w,4r)

|k|(x) whenever y ∈ ∆(w, 2r). (1.4)

We let Lq(∆(w, 2r)), 1 ≤ q ≤ ∞, be the space of functions which are integrable, with respect to
the surface measure, σ, to the power q on ∆(w, 2r). Furthermore, given a measurable function
f on ∆(w, 2r) we say that f is of bounded mean oscillation on ∆(w, r), f ∈ BMO(∆(w, r)), if
there exists A, 0 < A <∞, such that∫

∆(y,s)

|f − f∆|2dσ ≤ A2σ(∆(y, s)) (1.5)

whenever y ∈ ∆(w, r) and 0 < s ≤ r. Here f∆ denotes the average of f on ∆ = ∆(y, s) with re-
spect to the surface measure σ. The least A for which (1.5) holds is denoted by ‖f‖BMO(∆(w,r))

.

If f is a vector valued function, f = (f1, .., fn), then f∆ = (f1,∆, .., fn,∆) and the BMO-norm of
f is defined as in (1.5) with |f−f∆|2 = 〈f−f∆, f−f∆〉. Also, we say that f is of vanishing mean
oscillation on ∆(w, r), f ∈ VMO(∆(w, r)), provided f ∈ BMO(∆(w, r)) and provided for each
ε > 0 there is a η > 0 such that (1.5) holds with A replaced by ε whenever 0 < s < min(η, r)
and x ∈ ∆(w, r). For more on BMO we refer to [S, chapter IV].

Let Ω ⊂ Rn be an Ahlfors regular NTA-domain with constants M , r0, and C. Given
p, 1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that u is a positive p-harmonic function in
Ω∩B(w, 4r), u is continuous in Ω̄∩B(w, 4r) and u = 0 on ∆(w, 4r). Extend u to B(w, 4r) by
defining u ≡ 0 on B(w, 4r) \Ω. Then there exists, see Lemma 2.5 in section 2, a unique locally
finite positive Borel measure µ on Rn, with support in ∆(w, 4r), such that∫

Rn

|∇u|p−2〈∇u,∇θ〉dx = −
∫
Rn

θdµ (1.6)

whenever θ ∈ C∞0 (B(w, 4r)). Moreover, using Lemma 2.5 and Harnack’s inequality for p-
harmonic functions we can conclude that µ is a doubling measure in the following sense. There
exists c = c(p, n,M), 1 ≤ c <∞, such that

µ(∆(z, 2s)) ≤ cµ(∆(z, s)) whenever z ∈ ∆(w, 3r), s ≤ r/c. (1.7)

Assuming that Ω ⊂ Rn is an Ahlfors regular NTA-domain we say that µ is an A∞-measure
with respect to σ on ∆(w, 2r), dµ ∈ A∞(∆(w, 2r), dσ) for short, if for some γ > 0 there exists
ε = ε(γ) > 0 with the property that if z ∈ ∆(w, 2r), 0 < s < r and if E ⊂ ∆(z, s), then

σ(E)

σ(∆(z, s))
≥ γ implies that

µ(E)

µ(∆(z, s))
≥ ε. (1.8)
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In this paper we first prove the following two theorems.

Theorem 1 Let Ω ⊂ Rn be a bounded Ahlfors regular NTA-domain with constants M, r0, C.
Given p, 1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that u is a positive p-harmonic function in
Ω∩B(w, 4r), u is continuous in Ω̄∩B(w, 4r) and u = 0 on ∆(w, 4r). Extend u to B(w, 4r) by
defining u ≡ 0 on B(w, 4r) \ Ω and let µ be as in (1.6). Then µ is absolutely continuous with
respect to σ on ∆(w, 4r) and dµ ∈ A∞(∆(w, 2r), dσ). Moreover,

lim
x∈Γ(y)∩B(w,4r),x→y

∇u(x)
def
= ∇u(y)

exists for σ almost every y ∈ ∆(w, 4r) and for b, 0 < b < 1, fixed in the definition of Γ(y). Also
there exists q > p − 1 and a constant c, 1 ≤ c < ∞, both depending only on p, n,M and C,
such that

(i) N(|∇u|) ∈ Lq(∆(w, 2r)),

(ii)

∫
∆(w,2r)

|∇u|qdσ ≤ cr(n−1)( p−1−q
p−1

)

( ∫
∆(w,2r)

|∇u|p−1dσ

)q/(p−1)

,

(iii) log |∇u| ∈ BMO(∆(w, r)), ‖ log |∇u|‖BMO(∆(w,r))
≤ c,

(iv) dµ = |∇u|p−1dσ σ almost everywhere on ∆(w, 2r).

Finally, ∆(w, 4r) has a tangent plane at y ∈ ∆(w, r) for σ almost every y. If n(y) denotes the
unit normal to this tangent plane pointing into Ω ∩B(w, 4r), then ∇u(y) = |∇u(y)|n(y).

Theorem 2 Let Ω ⊂ Rn be a bounded (δ, r0)-Reifenberg flat domain, 0 < δ < δ̂(n), which
is also Ahlfors regular. Given p, 1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that u is a
positive p-harmonic function in Ω ∩ B(w, 4r), u is continuous in Ω̄ ∩ B(w, 4r) and u = 0 on
∆(w, 4r). Assume, in addition, that ∆(w, 4r) is Reifenberg flat with vanishing constant and
that n ∈ VMO(∆(w, 4r)). Then

log |∇u| ∈ VMO(∆(w, r)).

Concerning converse results we first prove the following theorem.

Theorem 3 Let Ω ⊂ Rn be a bounded (δ, r0)-Reifenberg flat domain, 0 < δ < δ̂(n), which is
also Ahlfors regular. Given p, 1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that u is a positive
p-harmonic function in Ω ∩B(w, 4r), u is continuous in Ω̄ ∩B(w, 4r) and u = 0 on ∆(w, 4r).
Assume, in addition, that

log |∇u| ∈ VMO(∆(w, r)).

There exists δ̄ = δ̄(p, n), 0 < δ̄ � 1, such that if δ < min{δ̂, δ̄} then ∆(w, r/2) is Reifenberg
flat with vanishing constant and n ∈ VMO(∆(w, r/2)).
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Finally we formulate a two-phase version of Theorem 3 without the flatness condition im-
posed on Ω through δ̄. In particular, let Ω1 ⊂ Rn and Ω2 ⊂ Rn be two Ahlfors regular NTA-
domains with constants M, r0, C. Moreover, assume, for some w ∈ ∂Ω1 ∩ ∂Ω2 and 0 < r < r0,
that

Ω1 ∩ Ω2 ∩B(w, 16r) = ∅, ∂Ω1 ∩B(w, 16r) = ∂Ω2 ∩B(w, 16r). (1.9)

If (1.9) holds then we let ∆(w, s) = ∂Ω1 ∩B(w, s) = ∂Ω2 ∩B(w, s) for all 0 < s ≤ 16r and we
let σ denote the the restriction of the (n− 1)-dimensional Hausdorff measure to ∆(w, 16r). We
can now state the fourth and last main theorem proved in this paper.

Theorem 4 Let Ω1,Ω2 ⊂ Rn be bounded domains satisfying (1.9) for some w ∈ Rn, 0 < r < r0.
Assume that Ω1, Ω2 are Ahlfors regular NTA-domains. Let ui, for i ∈ {1, 2}, denote a positive
p-harmonic function in Ωi∩B(w, 16r), and assume that ui is continuous in Ωi∩B(w, 16r) with
ui = 0 on ∆(w, 16r). If log |∇ui| ∈ VMO(∆(w, 4r)) for i = 1, 2, then ∆(w, r/2) is Reifenberg
flat with vanishing constant and n ∈ VMO(∆(w, r/2)).

Next we briefly discuss the proofs of Theorem 1-Theorem 4 and we start by discussing an
important and recurrent theme in several of our arguments. Assume that Ω ⊂ Rn is a bounded
NTA-domain with constants M, r0, and let p, 1 < p < ∞, be given. We say that Ω supports
the ‘fundamental inequality’ if there exist constants c̄ and ā, 1 ≤ c̄, ā <∞, which only depend
on p, n,M , such that the following holds whenever w ∈ ∂Ω, 0 < r < r0. Suppose that u is a
positive p-harmonic function in Ω ∩ B(w, 4r), that u is continuous in Ω̄ ∩ B(w, 4r) and that
u = 0 on ∆(w, 4r). Then

ā−1 u(y)

d(y, ∂Ω)
≤ |∇u(y)| ≤ ā

u(y)

d(y, ∂Ω)
whenever y ∈ Ω ∩B(w, r/c̄). (1.10)

(1.10) need not hold in an arbitrary NTA-domain but we have been able to establish (1.10)
when Ω is a starlike Lipschitz ring domain, see [LN, Lemma 2.5], when Ω is a Lipschitz domain,
see [LN1] and Theorem 2.7 in Section 2, and when Ω is a NTA-domain which can be uniformly
approximated by Lipschitz graph domains, see [LN4]. The last class of domains includes the
case of δ-Reifenberg flat domains, with δ sufficiently small, see Theorem 2.8 in Section 2. If
(1.10) holds, then from Lemma 2.4 in Section 2 it follows that u is infinitely differentiable in
Ω ∩ B(w, r/c̄) and hence a strong solution to (1.2) in Ω ∩ B(w, r/c̄). Differentiating (1.2), we
find that if ζ = 〈∇u, ξ̂〉, for some ξ̂ ∈ Rn, |ξ̂| = 1, then ζ satisfies, at y ∈ Ω ∩ B(w, r/c̄), the
partial differential equation Lζ = 0, where

L =
n∑

i,j=1

∂

∂yi

(
bij(y)

∂

∂yj

)
(1.11)

and
bij(y) = |∇u|p−4[(p− 2)uyi

uyj
+ δij|∇u|2](y), 1 ≤ i, j ≤ n. (1.12)

In (1.12) δij denotes the Kronecker delta. Furthermore,

c−1λ(y)|ξ|2 ≤
n∑

i,j=1

bij(y)ξiξj ≤ cλ(y)|ξ|2, λ(y) = |∇u(y)|p−2, (1.13)
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whenever ξ ∈ Rn \ {0}. Note from (1.10)-(1.13), that L is locally uniformly elliptic with
bounded measurable coefficients in Ω ∩B(w, r/c̄).

To outline the proof of Theorem 1 we first note that in [LN, Theorem 3] we proved Theorem
1 assuming that Ω is a starlike Lipschitz ring domain and in [LN2, Theorem 1] we proved
Theorem 1 when Ω is a Lipschitz domain. Unfortunately the proof of non-tangential limits
for ∇u in [LN, LN2] relies heavily on the fundamental inequality (1.10). Since this inequality
does not necessarily hold in an Ahlfors regular NTA-domain we are forced to use an alternative
approach based on a result from [LN4] (see Lemma 2.9 in Section 2). After proving Theorem
1 we in Remark 3.3 also discuss work of Badger [B] and its applications to absolute continuity
of p-harmonic measure and surface area.

To prove Theorem 2 we follow the corresponding proofs in [LN,Theorem 4] and [LN2,
Theorem 2] for starlike C1-domains and C1-domains, respectively. Our argument is necessarily
much more involved compared to [LN,LN2] but we are able, assuming only that Ω is Reifenberg
flat with vanishing constant and that n ∈ VMO(∆(w, 4r)), to make use of the existence of ‘very
big pieces of Lipschitz graphs with small constant’ in ∆(w, 4r) in order to derive estimates. The
proof of the existence of ‘very big pieces of Lipschitz graphs with small constant’ emanates in
the work of Semmes [Se, Se1] and was elaborated on, in our setting, by Kenig and Toro [KT1].
To prove Theorem 2 we use this set of ideas and we argue by contradiction. Using a blow-
up argument and taking a limit we eventually arrive at a situation where the boundary is a
hyperplane. In this simple geometry we easily obtain a contradiction to our assumption that
log |∇u| 6∈ VMO(∆(w, r)).

To prove Theorem 3 and Theorem 4 we have to prove that

(i) ∆(w, r/2) is Reifenberg flat with vanishing constant,

(ii) lim
r̃→0

sup
w̃∈∆(w,r/2)

‖n‖BMO(∆(w̃,r̃))
= 0. (1.14)

To do this we attempt to follow the corresponding proof in [LN2], where Lipschitz domains
with small Lipschitz constant were considered (see also [LN5, Section 5]), and we prove Lemma
5.2-Lemma 5.5 below for Ahlfors regular NTA-domains. However the proofs of these lemmas
are now considerably more difficult again primarily because (1.10) need not hold. To briefly
outline the argument we note that we prove both statements in (1.14) by contradiction and by
performing essentially the same blow-up argument. If, for example, (ii) is false, then using a
blow-up argument we in the blow-up limit get a positive p-harmonic function, u∞, in an Ahlfors
regular and (4δ,∞) -Reifenberg flat domain, Ω∞, and u∞ has several important properties. In
particular, u∞ vanishes continuously on ∂Ω∞ and from Theorem 1 and our blow-up argument
we also get the existence of a measure, µ∞, corresponding to u∞ with∫

Rn

|∇u∞|p−2〈∇u∞,∇θ〉dx = −
∫

∂Ω∞

θdµ∞ (1.15)

whenever θ ∈ C∞0 (Rn). Moreover,

µ∞ = σ∞ on ∂Ω∞, |∇u∞(z)| ≤ 1 whenever z ∈ Ω∞. (1.16)

In (1.15) σ∞ is surface measure on ∂Ω∞. The conclusions in (1.15) and (1.16) follow from
Lemma 5.2-Lemma 5.5 of Section 5. In this situation we can, depending on how small we
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assume δ > 0 to be, use either results from [ACF] (see also [DP]) or [LN5, LN6] to deduce that
(1.15), (1.16) imply

u∞(y) = 〈y, ν〉 and Ω∞ = {y ∈ Rn : 〈y, ν〉 > 0} for some ν ∈ ∂B(0, 1). (1.17)

(1.17) is easily seen to contradict our assumption that (ii) in (1.14) is false. Theorem 4 follows
easily from Lemma 5.2-Lemma 5.5 due to their generality.

Finally, we mention that our proofs of Theorems 1-4 for 1 < p < ∞ are modeled (as is
[LN2]) on the beautiful work of [KT,KT1-KT3] for p = 2. However we have had several years
after the above publications to ‘turn the screw tighter.’ Thus this article may be of interest
also to those who only study the Laplace equation (the case p = 2).

The rest of the paper is organized as follows. In Section 2 we first collect estimates for
p-harmonic functions in NTA-domains. We then recall a number of the results proved in
[LN,LN1,LN4] concerning the boundary behaviour for p-harmonic functions in domains which
are either Lipschitz, Reifenberg flat or Ahlfors regular NTA-domains. In subsection 2.1 we state
some results for a uniformly elliptic operator L̂ and its Green function. The proof of Theorem
3 will use these results applied to the operator L in (1.11)-(1.13). In Section 3 and Section 4 we
prove Theorem 1 and Theorem 2. Section 5 and Section 6 are devoted to the proof of Theorem
3 and Theorem 4, respectively. In Section 6 we also make some closing remarks concerning
work in [KPT] and [B1].

2 p-harmonic functions and elliptic equations

Let 1 < p < ∞ and let Ω ⊂ Rn be a bounded domain. In this section we state a number of
estimates for non-negative p-harmonic functions defined in Ω assuming that Ω is either a NTA-
domain with constants M, r0, a Lipschitz domain with constant M , a (δ, r0)-Reifenberg flat
domain, 0 < δ < δ̂(n), or an Ahlfors regular NTA-domain with constants C,M, r0. Throughout
this section and this paper, unless otherwise stated, c will denote a positive constant ≥ 1, not
necessarily the same at each occurrence, depending only on p, n,M,C. In general, c(a1, . . . , am)
denotes a positive constant ≥ 1, which may depend only on p, n, M,C and a1, . . . , am, and which
is not necessarily the same at each occurrence. If A ≈ B then A/B is bounded from above and
below by constants which, unless otherwise stated, only depend on p, n,M,C.

For references to proofs of the following lemmas, Lemma 2.1-Lemma 2.5, we refer to [LN].

Lemma 2.1 Given p, 1 < p <∞, let u be a positive p-harmonic function in B(w, 2r). Then

(i) rp−n
∫

B(w,r/2)

|∇u|p dx ≤ c ( max
B(w,r)

u)p,

(ii) max
B(w,r)

u ≤ c min
B(w,r)

u.

Furthermore, there exists α = α(p, n) ∈ (0, 1) such that if x, y ∈ B(w, r), then

(iii) |u(x)− u(y)| ≤ c

(
|x−y|
r

)α
max
B(w,2r)

u.
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Lemma 2.2 Let Ω ⊂ Rn be a bounded NTA-domain and p fixed, 1 < p < ∞. Let w ∈ ∂Ω,
0 < r < r0, and suppose that u ≥ 0 is p-harmonic in Ω∩B(w, 2r), continuous in Ω̄∩B(w, 2r),
and u = 0 on ∆(w, 2r). Then

(i) rp−n
∫

Ω∩B(w,r/2)

|∇u|p dx ≤ c ( max
Ω∩B(w,r)

u)p.

Furthermore, there exists α = α(p, n,M) ∈ (0, 1) such that if x, y ∈ Ω ∩B(w, r), then

(ii) |u(x)− u(y)| ≤ c

(
|x−y|
r

)α
max

Ω∩B(w,2r)
u.

Lemma 2.3 Let Ω ⊂ Rn be a bounded NTA-domain and p fixed, 1 < p < ∞. Let w ∈ ∂Ω,
0 < r < r0, and suppose that u ≥ 0 is p-harmonic in Ω∩B(w, 2r), continuous in Ω̄∩B(w, 2r),
and u = 0 on ∆(w, 2r). There exists c = c(p, n,M), 1 ≤ c <∞, such that if r̃ = r/c, then

max
Ω∩B(w,r̃)

u ≤ c u(ar̃(w)).

Lemma 2.4 Let Ω ⊂ Rn be a bounded NTA-domain and p fixed, 1 < p < ∞. Let w ∈ ∂Ω,
0 < r < r0, and suppose that u is p-harmonic in Ω ∩ B(w, 2r), continuous in Ω̄ ∩ B(w, 2r),
and u = 0 on ∆(w, 2r). Extend u to B(w, 2r) by defining u ≡ 0 on B(w, 2r) \ Ω. Then u has
a representative in W 1,p(B(w, 2r)) with Hölder continuous partial derivatives in Ω ∩ B(w, 2r).
In particular, there exists σ ∈ (0, 1], depending only on p, n, such that if x, y ∈ B(ŵ, r̂/2),
B(ŵ, 4r̂) ⊂ Ω ∩B(w, 2r), then

c−1 |∇u(x)−∇u(y)| ≤ (|x− y|/r̂)σ max
B(ŵ,r̂)

|∇u| ≤ c r̂−1 (|x− y|/r̂)σ max
B(ŵ,2r̂)

u.

u is infinitely differentiable in Ω ∩B(w, 2r) ∩ {x : |∇u(x)| > 0} and∫
B(ŵ,r̂/2)∩{|∇u|>0}

|∇u|p−2

n∑
i,j=1

u2
xixj

dx ≤ c rn−2 max
B(ŵ,r̂)

|∇u|p

.

Lemma 2.5 Let Ω ⊂ Rn be a bounded NTA-domain and p fixed, 1 < p < ∞. Given w ∈
∂Ω, 0 < r < r0, suppose that u ≥ 0 is p-harmonic in Ω∩B(w, 2r), continuous in Ω̄∩B(w, 2r),
and u = 0 on ∆(w, 2r). Extend u to B(w, 2r) by defining u ≡ 0 on B(w, 2r) \ Ω. There
exists a unique locally finite positive Borel measure µ on ∆(w, 2r), such that whenever θ ∈
C∞0 (B(w, 2r)), then

(i)

∫
|∇u|p−2 〈∇u, ∇θ〉 dx = −

∫
θ dµ.

Moreover, there exists c = c(p, n,M), 1 ≤ c <∞, such that if r̃ = r/c, then

(ii) c−1rp−nµ(∆(w, r̃)) ≤ (u(ar̃(w)))p−1 ≤ c rp−n µ(∆(w, r̃/2)).
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We say that Ω ⊂ Rn is a bounded Lipschitz domain if there exists a finite set of balls
{B(xi, ri)}, with xi ∈ ∂Ω and ri > 0, such that {B(xi, ri)} constitutes a covering of an open
neighbourhood of ∂Ω and such that, for each i,

Ω ∩B(xi, 4ri) = {y = (y′, yn) ∈ Rn : yn > φi(y
′)} ∩B(xi, 4ri),

∂Ω ∩B(xi, 4ri) = {y = (y′, yn) ∈ Rn : yn = φi(y
′)} ∩B(xi, 4ri), (2.1)

in an appropriate coordinate system and for a Lipschitz function φi. The Lipschitz constants
of Ω are defined to be M = maxi ‖|∇φi|‖∞ and r0 = mini ri. Moreover, a bounded domain
Ω̃ ⊂ Rn is said to be starlike Lipschitz with respect to x̂ ∈ Ω̃ provided

∂Ω̃ = {x̂+R(ω)ω : ω ∈ ∂B(0, 1)} where logR : ∂B(0, 1)→R is Lipschitz on ∂B(0, 1).

We will refer to ‖ logR‖̂∂B(0,1) as the Lipschitz constant for Ω̃. Observe that this constant is
invariant under scaling about x̂.

We next collect a number of results proved in [LN,LN1,LN2,LN4].

Theorem 2.6 ([LN1, Theorem 2]) Let Ω ⊂ Rn be a bounded Lipschitz domain with constants
M, r0. Given p, 1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that u, v are positive p-harmonic
functions in Ω∩B(w, 4r), that u, v are continuous in Ω̄∩B(w, 4r) and u = 0 = v on ∆(w, 4r).
There exists c1 = c1(p, n,M) ≥ 1 and α = α(p, n,M), α ∈ (0, 1), such that∣∣∣∣log

u(y1)

v(y1)
− log

u(y2)

v(y2)

∣∣∣∣ ≤ c1

(
|y1 − y2|

r

)α
whenever y1, y2 ∈ Ω ∩B(w, r/c1).

Theorem 2.7 ([LN1, Lemma 4.28]) Let Ω ⊂ Rn be a bounded Lipschitz domain with constants
M, r0. Given p, 1 < p <∞, w ∈ ∂Ω, 0 < r < r0, suppose that u is a positive p-harmonic function
in Ω ∩ B(w, 4r), that u is continuous in Ω̄ ∩ B(w, 4r) and u = 0 on ∆(w, 4r). There exists
c2 = c2(p, n,M) ≥ 1 and λ̄ = λ̄(p, n,M) ≥ 1 such that

λ̄−1 u(y)

d(y, ∂Ω)
≤ |∇u(y)| ≤ λ̄

u(y)

d(y, ∂Ω)

whenever y ∈ Ω ∩B(w, r/c2).

Theorem 2.8 ([LN4, Lemma 3.8]) Let Ω ⊂ Rn be a (δ, r0)-Reifenberg flat domain. Given
p, 1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that u is a positive p-harmonic function in
Ω ∩ B(w, 4r), u is continuous in Ω̄ ∩ B(w, 4r), and u = 0 on ∆(w, 4r). Then there exist
δ̄1 = δ̄1(p, n) > 0, c̄1 = c̄1(p, n) and λ̄ = λ̄(p, n), 1 ≤ c̄1 < ∞, 1 ≤ λ̄ < ∞, such that if
0 < δ < δ̄1, then

λ̄−1 u(y)

d(y, ∂Ω)
≤ |∇u(y)| ≤ λ̄

u(y)

d(y, ∂Ω)

whenever y ∈ Ω ∩B(w, r/c̄1).
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Lemma 2.9 ([LN4, Lemma 4.14]) Let Ω ⊂ Rn be a bounded Ahlfors regular NTA-domain
with constants, r0,M,C. Given p, 1 < p <∞, w ∈ ∂Ω, 0 < r < r0, suppose that u is a positive
p-harmonic function in Ω∩B(w, 4r), u is continuous in Ω̄∩B(w, 4r), and u = 0 on ∆(w, 4r).
There exists a constant c = c(p, n,M,C), 1 ≤ c <∞, such that the following is true. There is
a starlike Lipschitz domain Ω̃ ⊂ Ω ∩ B(w, r), with center at a point w̃, d(w̃, ∂Ω̃) ≥ c−1r, and
with Lipschitz constant bounded by c, such that

σ(∂Ω̃ ∩∆(w, r))

σ(∆(w, r))
≥ c−1.

Moreover, if y ∈ Ω̃ then

c−1r−1 u(w̃) ≤ u(y)/d(y, ∂Ω) ≤ cr−1 u(w̃) .

2.1 Elliptic Equations

In this subsection we state some results for divergence form elliptic PDE which will be used in
the proof of Theorem 3. Let Ω ⊂ Rn be a bounded domain and suppose that

L̂ =
n∑

i,j=1

∂

∂yi

(
b̂ij(y)

∂

∂yj

)
(2.2)

in Ω. We assume that {b̂ij(·)} are in C∞(Ω) , b̂ij = b̂ji for all i, j ∈ {1, .., n}, and

λ−1|ξ|2 ≤
n∑

i,j=1

b̂ij(y)ξiξj ≤ c|ξ|2λ, (2.3)

for some λ ≥ 1. The following two lemmas, Lemma 2.10 and 2.11, follow from results and
arguments in [CFMS], [JK1], and Schauder theory.

Lemma 2.10 Let Ω ⊂ Rn be a bounded domain and let L̂ as in (2.2), (2.3) Then there exists
a Green’s function g(·, ·) : Ω× Ω→R ∪∞ with the following properties.

(a′) g(x, y) = g(y, x) when x 6= y, x, y ∈ Ω.

(b′) ζg(·, y) ∈ C∞(Ω \ B̄(y, ε)) ∩W 1,2
0 [Ω \ B̄(y, ε)] when ε > 0, y ∈ Ω, ζ ∈ C∞0 (Rn \ B̄(y, ε)).

(c′) If θ ∈ C∞0 (Ω), then θ(x) =

∫ n∑
i,j=1

b̂ij(y) θyi
(y) gyj

(x, y) dy when x ∈ Ω,

(d′) If n > 2, then g(x, y) ≤ c(λ, n)|x− y|2−n when x 6= y, x, y ∈ Ω,

if n = 2, then g(x, y) ≤ c(λ) log(
2 diam Ω

|x− y|
) when x 6= y, x, y ∈ Ω.

The next lemma follows from an iterative type argument using the maximum principle,
Harnack’s inequality, and barrier type estimates for solutions to (2.2), (2.3).
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Lemma 2.11 Let Ω, L̂, g(·, ·) be as in Lemma 2.10. Also assume that x ∈ ∂Ω and B(x, r) \ Ω̄
satisfies the corkscrew condition in Definition 1.1 (ii) relative to x, for 0 < r ≤ r0. If y, z ∈ Ω,
such that 0 < |x− z| < |x− y|/2 < r0/4, then there exists β ∈ (0, 1) depending on λ, n, and M
in Definition 1.1 with

g(z, y) ≤ c(λ, n)

(
|x− z|
|x− y|

)β
|z − y|2−n when n > 2,

g(z, y) ≤ c(λ)

(
|x− z|
|x− y|

)β
log

(
2 diam Ω

|z − y|

)
when n = 2.

3 Proof of Theorem 1

The purpose of this section is to prove Theorem 1 and we divide the proof into the following
lemmas.

Lemma 3.1 Let Ω ⊂ Rn, M , C, p, w, r0, r, u and µ be as in the statement of Theorem 1. Then
µ is absolutely continuous with respect to σ on ∆(w, 4r) and dµ ∈ A∞(∆(w, 2r), dσ). Let kp−1

denote the Radon-Nikodym derivative of µ with respect to σ on ∆(w, 4r), i.e., dµ/dσ = kp−1 σ
almost everywhere on ∆(w, 4r). Then there exist q > p−1 and a constant c, 1 ≤ c <∞, which
both only depend on p, n,M and C, such that

N(|∇u|) ∈ Lq(∆(w, 2r)), (3.1)

where N(·) is the non-tangential maximal function introduced in (1.4) relative to a fixed b, 0 <
b < 1, and ∫

∆(w,2r)

kqdσ ≤ cr(n−1)( p−1−q
p−1

)

( ∫
∆(w,2r)

kp−1dσ

)q/(p−1)

. (3.2)

Lemma 3.2 Let Ω ⊂ Rn, M , C, p, w, r0, r, u, µ, be as in the statement of Theorem 1 and
let k be as in Lemma 3.1. Then

lim
x∈Γ(y)∩B(w,4r),x→y

∇u(x)
def
= ∇u(y) exists for σ-a.e y ∈ ∆(w, 4r), (3.3)

where Γ(y) is the non-tangential cone at y introduced in (1.3) relative to a fixed b, 0 < b < 1.
Moreover ∆(w, 4r) has a tangent plane at σ almost every y ∈ ∆(w, 4r). If n(y) denotes the unit
normal to this tangent plane pointing into Ω ∩B(w, 4r), then

k(y) = |∇u(y)| and ∇u(y) = |∇u(y)|n(y) σ almost every on ∆(w, 4r). (3.4)

Proof of Theorem 1. It is easily seen that the above two lemmas imply Theorem 1. However
it should be pointed out that (ii) of Theorem 1 implies (iii) of this theorem and also that
dµ ∈ A∞(∆(w, 2r), dσ) (see [CF]). Thus the proof of Theorem 1 will be complete once we prove
Lemma 3.1 and Lemma 3.2.
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Proof of Lemma 3.1. Recall that u is extended to B(w, 4r) by defining u ≡ 0 on B(w, 4r)\Ω
and that µ is the measure associated to u as in the statement of Lemma 2.5. Let z ∈ ∆(w, 2r)
and 0 < s < r/c′, where c′ denotes the constant in Lemma 2.3, and let E ⊂ ∆(z, s) be a Borel
set. Next let 0 < γ < 1 be a degree of freedom to be fixed below, assume σ(E) ≥ γσ(∆(z, s)),
and let Ω̃ be as in Lemma 2.9 with w, r, w̃ replaced by z, s, z̃. Also let c̃ be the constant
appearing in Lemma 2.9 and let ũ be the p-capacitary function for the ring domain Ω̃\ B̄(z̃, s

2c̃
).

Extend ũ to Rn by defining ũ ≡ 0 on the complement of Ω̃ and let µ̃ be the measure associated
to ũ, in the sense of Lemma 2.5, with support in ∂Ω̃. Then, using the version of Theorem 1
established in [LN], valid in starlike Lipschitz rings, we can conclude that µ̃ is an A∞-measure
on ∂Ω̃, with respect to surface measure on ∂Ω̃. Using this conclusion and Lemma 2.9 we see
that if γ is sufficiently near one and F = ∂Ω̃∩E, then σ(F ) ≥ sn−1/c+ and hence µ̃(F ) ≥ c−1

+ ,
for some c+, 1 ≤ c+ < ∞, independent of z and s. Next, using Harnack’s inequality and the
maximum principle we find that cu ≥ u(z̃)ũ in Ω̃ \ B̄(z̃, s

2c̃
). From this inequality and Lemma

2.5 applied to u/u(z̃), ũ, we deduce for some ĉ ≥ 1, depending only on p, n,M,C, that

µ̃(B(y, t)) ≤ ĉ
µ(B(y, t))

µ(B(z, s))
whenever y ∈ F and 0 < t < s/ĉ.

Using this inequality, the fact that µ, µ̃ are regular Borel measures, and a Vitali type covering
type argument it follows that

µ(E)

µ(∆(z, s))
≥ µ(F )

µ(∆(z, s))
≥ ĉ−1µ̃(F ) ≥ (c+ĉ)

−1 . (3.5)

From (3.5) and arbitrariness of s, z we conclude that dµ ∈ A∞(∆(w, 2r), dσ). Using results from
[CF] it now follows that µ is absolutely continuous with respect to σ on ∆(w, 4r). Moreover,
if kp−1 = dµ/dσ denotes the Radon - Nikodym derivative of µ on ∆(w, 4r) then there exists
c̄ = c̄(p, n,M,C) and q′ > p − 1, q′ = q′(p, n,M,C), such that if y ∈ ∆(w, 2r), t > 0,
∆(y, t) ⊂ ∆(w, 2r), then∫

∆(y,t)

kq
′
dσ ≤ ct(n−1)

(p−1−q′)
p−1

( ∫
∆(y,t)

kp−1dσ

)q′/(p−1)

. (3.6)

From (3.6) we see that (3.2) holds for q = (q′ + p − 1)/2. Next we prove (3.1) for this q. To
prove (3.1) we note that we can assume, without loss of generality, that

max
Ω∩B(w,4r)

u = 1. (3.7)

Let Γ(y) be defined as in (1.3) for a fixed b, 0 < b < 1. Let y ∈ ∆(w, 2r) and let z ∈
Γ(y) ∩B(y, r/8). Then, using Lemma2.4 and Lemma 2.5 we obtain, with s = |z − y|,

|∇u(z)| ≤ c
u(z)

s
≤ c2s−1

(
sp−nµ(∆(y, s))

)1/(p−1)

= c2

(
s1−n

∫
∆(y,s)

kp−1dσ

)1/(p−1)

≤ c2(M(kp−1)(y))1/(p−1), (3.8)
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where c ≥ 1 depends on p, n,M,C, b, and

M(f)(y) = sup
0<s<r/4

s1−n
∫

∆(y,s)

fdσ

whenever f is an integrable function on ∆(w, 3r). Next we define

Nρ(|∇u|)(y) = sup
Γ(y)∩B(w,4r)∩{x∈Ω:d(x,∂Ω)≤ρ}

|∇u| whenever ρ ≤ r/8 and y ∈ ∆(w, 2r). (3.9)

Using (3.6)-(3.8) and the Hardy-Littlewood maximal theorem we see that∫
∆(w,2r)

Nr/8(|∇u|)qdσ ≤ c

∫
∆(w,2r)

(M(kp−1))q/(p−1)dσ

≤ c2r−
(n−1)(q+1−p)

p−1

( ∫
∆(w,2r)

kp−1dσ

)q/(p−1)

. (3.10)

From Lemma 2.4 and (3.7) we also find that |∇u(x)| ≤ cr−1 whenever x ∈ (Γ(y) ∩B(w, 4r)) \
B(y, r/8) and y ∈ ∆(w, 2r). Thus N(|∇u|)(y) ≤ Nr/8(|∇u|)(y) + cr−1 whenever y ∈ ∆(w, 2r).
Therefore, using (3.10) as well as Lemma 2.5 (ii) and (3.7), we can conclude that (3.2) holds.
This concludes the proof of Lemma 3.1. 2

Proof of Lemma 3.2. To prove Lemma 3.2 we argue by contradiction. Suppose there exists
a set F ⊂ ∆(w, 4r) with σ(F ) > 0, such that Lemma 3.2 is false for each y ∈ F. Under this
assumption we let z ∈ F be a point of density for F with respect to σ. Then

σ(∆(z, t) \ F )

σ(∆(z, t))
→ 0 as t→ 0. (3.11)

Hence, since Ω is Ahlfors regular there exists c = c(p, n,M,C) ≥ 1 such that

cσ(∂Ω̃ ∩∆(z, s) ∩ F ) ≥ sn−1, (3.12)

if s > 0 is small enough, and where Ω̃ ⊂ Ω is the starlike Lipschitz domain defined in Lemma
2.9 with w, w̃, r replaced by z, z̃, s. To get a contradiction we show that

Lemma 3.2 holds for σ almost every y ∈ ∂Ω̃ ∩∆(z, s). (3.13)

Thus to prove Lemma 3.2 it suffices to prove (3.13) whenever ∆(z, s) ⊂ ∆(w, 4r). Let σ̃ denote
surface area on ∂Ω̃ and let E be the set of all y ∈ ∂Ω̃ ∩∆(z, s) which satisfies the following.

(a) y is a point of density for E relative to σ, σ̃, µ.

(b) There is a tangent plane T (y) to both ∂Ω, ∂Ω̃ at y.

(c) lim
t→0

t−nσ(∂Ω ∩B(y, t)) = lim
t→0

t−nσ(∂Ω̃ ∩B(y, t)) = â.

(d) lim
t→0

t−nµ(∂Ω ∩B(y, t)) = â k(y)p−1.

(3.14)
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In (3.14), â, denotes the Lebesgue (n− 1)-measure of the unit ball in Rn−1. We claim that

σ(∂Ω̃ ∩∆(z, s) \ E) = 0. (3.15)

Indeed (a) of (3.14) for σ almost every y is a consequence of the fact that σ, σ̃ are regular Borel
measures and differentiation theory while (a) for µ and σ almost every y follows from the same
observations and Lemma 3.1. To prove (b) of (3.14) we need to prove, for σ almost every y in
∂Ω̃ ∩∆(z, s), that there exists a plane T (y) with

lim
t→0

h(T (y) ∩B(y, t), ∂Ω̂ ∩B(y, t))

t
= 0 (3.16)

where h denotes Hausdorff distance and Ω̂ ∈ {Ω, Ω̃}. (3.16) for σ almost every y ∈ ∂Ω̃∩∆(z, s)
follows, for Ω̂ = Ω̃, essentially from Rademacher’s theorem. Also if (3.16) holds for Ω̂ = Ω̃,
then using the uniform condition in Definition 1.1 for NTA-domains, Ω̃ ⊂ Ω, and (a) of (3.14)
for σ̃, one sees that necessarily (3.16) is also valid when Ω̂ = Ω. (c) of (3.14) for σ almost every
y ∈ ∂Ω̃ ∩∆(z, s) follows for σ̃ from a well known formula for surface area of a Lipschitz graph
and the Lebesgue differentiation theorem. Moreover (c) and (a) of this display for σ̃, as well as
Ahlfors regularity of ∂Ω, imply (c) for σ and σ almost every y ∈ ∂Ω̃ ∩∆(z, s). One could also
get (c) using geometric measure theory (see [EG]). To get (d) of (3.14) for σ almost every y, we
use (c) of this display, Lemma 3.1, and once again the Lebesgue differentiation theorem. Thus
(3.15) is true.

We now use a blow-up argument to complete the proof of Lemma 3.2. Let E, s be as in
(3.14) and y ∈ E. Using invariance of the p-Laplace equation under rotations and dilations we
may assume y = 0 and that T = T (0) = {x ∈ Rn : xn = 0} where T (0) is the tangent plane in
(3.14). Let {tm} be a decreasing sequence of positive numbers with limit zero and t1 � s. Let

Ωm = {x : tmx ∈ Ω ∩B(z, s)}
Ω̃m = {x : tmx ∈ Ω̃ ∩B(z, s)}
vm(x) = t−1

m u(tmx), x ∈ B(z, s).
(3.17)

Fix R >> 1. Then for m sufficiently large, say m ≥ m0,m0 = m0(R), we note that vm is
p-harmonic in Ωm ∩ B(0, R) and continuous in B(0, R) with vm ≡ 0 on B(0, R) \ Ωm. Let
ρS = {ρx : x ∈ S} whenever ρ > 0 and S ⊂ Rn. Define

νm(G) = t1−nm µ(tmG), whenever G is a Borel subset of B(0, R). (3.18)

Then νm is the measure corresponding to vm as in Lemma 2.5 for m ≥ m0. Let η = u(z̃)/s.
From Lemma 2.4 and Lemma 2.9 we see that

|∇vm| ≤ cη on Ω̃m . (3.19)

Also from (3.19) and Lemma 2.2, Lemma 2.3, we deduce that

|vm(x)| ≤ c
(
d(x,∂Ωm)

R

)α
η R, x ∈ Ωm ∩B(0, R), (3.20)

where α is the Hölder exponent in Lemma 2.2. We assume, as we may, that H = {x : xn > 0}
contains z̃. Then since Ω is an NTA-domain and Ω̃ is starlike Lipschitz with respect to z̃, we
from (3.16) find that

h(Ωm ∩B(0, R), H ∩B(0, R)) + h(Ω̃m ∩B(0, R), H ∩B(0, R))→0 as m→∞. (3.21)
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From (3.19)-(3.21) we see that a subsequence of {vm}, denoted {v′m} converges uniformly on
compact subsets of Rn to a Hölder continuous function v with v ≡ 0 in Rn \H. Also v ≥ 0 is
p-harmonic in H. We now apply the boundary Hölder continuity estimate in Theorem 2.6 with
Ω, u replaced by H, xn, respectively. Letting r→∞ we get v(x) = αx+

n for some α ≥ 0, where
x+
n = max(xn, 0). We assert that

α = k(y) (3.22)

where α is the Hölder exponent in Lemma 2.2. To prove (3.22) observe from Lemma 2.5 and
(3.20) that the sequence of measures, (ν ′m), corresponding to (v′m) have uniformly bounded total
masses on B(0, R). Also from Lemma 2.1 and (3.20) we see that {v′m} is uniformly bounded in
W 1,p(B(0, R)). Using these facts and Lemma 2.4, Lemma 2.5 (i), we obtain that ν ′m converges
weakly to ν where ν is the measure associated with αx+

n . One easily computes that ν = αp−1σH
where σH , denotes the (n − 1)-dimensional Hausdorff measure on H. Using this computation,
weak convergence, (3.18), and (3.14) (d), we get

αp−1 â Rn−1 = lim
m→∞ ν

′
m(B(0, R)) = lim

m→∞ s
1−n
m µ(B(0, Rsm)) = â Rn−1kp−1(y).

Thus (3.22) is true. From (3.22) and our earlier observations we see that x→t−1v(tx) converges
uniformly as t→0 to αx+

n on compact subsets of Rn and x→∇u(tx) converges uniformly to αen
as t→0 when x lies in a compact subset of H. Given 0 < β < 1, let Kβ = {x ∈ H : xn ≥ β|x|}.
In view of these remarks and (3.22) we conclude that

lim
t→0
∇u(tω) = k(y)en (3.23)

whenever 0 < β < 1 is fixed and ω ∈ Kβ with |ω| = 1. Finally, using the uniform condition in
Definition 1.1 once again it is easily seen, for given 0 < b < 1 and t > 0 small, that there exists
β > 0 such that Γb(0) ∩ B(0, t) ⊂ Kβ. From this observation, (3.23), and our earlier reduction
we conclude the validity of Lemma 3.2. 2

Armed with Lemma 3.1 and Lemma 3.2 we get Theorem 1 as pointed out after the statement
of these lemmas. 2

Remark 3.3 It is an interesting question as to what extent Theorem 1 remains valid when the
Ahlfors regularity assumption is replaced by a weaker assumption. Regarding this question, we
believe that an argument in Badger [B] together with Lemma 2.1-Lemma 2.5 can be used to
prove the following proposition.

Proposition 3.4 Let Ω ⊂ Rn be a bounded NTA-domain with constants M, r0. Given p, 1 <
p <∞, w ∈ ∂Ω, 0 < r < r0, let u, µ be as in Theorem 1. Set

A = {x ∈ ∆(w, 4r) : lim inf
ρ→0

σ(∆(x, ρ))

ρn−1
<∞}.

Then σ and µ restricted to A are mutually absolutely continuous.

To briefly outline the proof of this proposition we note that in [B] it is shown that a
theorem of David-Semmes, regarding Lipschitz approximation (on every scale) in bounded
Ahlfors regular NTA-domains, can be proved under weaker assumptions. Using this result it
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follows easily that if ∆(y, 4s) ⊂ ∆(w, 4r) and s1−nσ(∆(y, 4s)) ≤ τ < ∞, then Lemma 2.12
remains valid with w, r, w̃, replaced by y, s, ỹ, where now c also depends on τ. This lemma and
the same argument as in the proof of Lemma 3.1 imply as in [B, Proposition 4.5] that there
exist ε, δ > 0, depending only on p, n,M, τ, such that for every Borel set E ⊂ ∆(y, s), the
following is true.

(a) If µ(E) ≤ δµ(∆(y, s)) then σ(E) ≤ εσ(∆(y, s)).

(b) If σ(E) ≤ δσ(∆(y, s)) then µ(E) ≤ εµ(∆(y, s)).
(3.24)

Proposition 3.4 is obtained from (3.24) and a Vitali covering argument (see [B,(4.18)]).

4 Proof of Theorem 2

The purpose of this section is to prove Theorem 2. Let u,Ω, r0, be as in Theorem 2. For
w ∈ ∂Ω, 0 < r < r0, we define

n̂(w, r) =
ñ(w, r)

|ñ(w, r)|
where ñ(w, r) =

1

σ(∆(w, r))

∫
∆(w,r)

n(y)dσ(y) (4.1)

where n(y) is the inner unit normal at y ∈ ∂Ω guaranteed to exist, by Theorem 1, σ almost
everywhere. Let P̂ (w, r) be the hyperplane which is orthogonal to n̂(w, 2r) and which contains
w. Using coordinates x = (x′, xn), x′ = x− xnn̂(w, 2r) ∈ P̂ (w, r) we introduce the cylinder

C(w, r) = {x = (x′, xn) = x′ + xnn̂(w, 2r) such that x′ ∈ P̂ (w, r) ∩B(w, r), |xn| ≤ r}. (4.2)

Moreover, we let π(w, r)(x) denote the orthogonal projection of x ∈ Rn onto P̂ (w, r), i.e.,
π(w, r)(x) = π(w, r)(x′, xn) = x′. If G ⊂ Rn then we let π(w, r)(G) denote the projection of
G. In the proof of Theorem 2 we will use the following lemma.

Lemma 4.1 Let Ω ⊂ Rn be (δ, r0)-Reifenberg flat and Ahlfors regular with constants r0, C.
Suppose also that w ∈ ∂Ω, 0 < r < r0/100, and P̂ (w, r) is as defined above. There exists
δ̃ < δ̂(n) such that if 0 < δ < δ̃ and

‖n‖BMO(∆(w,100r))
≤ δ4, (4.3)

then ∂Ω ∩ C(w, r) contains very big pieces of a Lipschitz graph with small constant in the
following sense. There is a constant c̃ = c̃(n,C), 1 ≤ c̃ < ∞, and a Lipschitz function
φ : P̂ (w, r)→ R with ‖|∇φ|‖∞ ≤ c̃δ, such that if Γ = {x = (x′, xn) ∈ Rn : xn = φ(x′)}, then

(i) σ(((∂Ω \ Γ) ∪ (Γ \ ∂Ω)) ∩ C(w, r)) ≤ e−1/(c̃δ)rn−1,

(ii) ∂Ω ∩ C(w, r) = G ∪ F, G ⊂ Γ, σ(F ) ≤ e−1/(c̃δ)rn−1,

(iii) if x = (x′, xn) ∈ F then |xn − φ(x′)| ≤ c̃δd(x′, π(w, r)(G)).

Furthermore, if φ±(x′) = φ(x′)± 2c̃δd(x′, π(w, r)(G)) and Ω± = {(x′, xn) ∈ Rn : xn > φ±(x)},
then |||∇φ±|‖∞ ≤ 3c̃δ and

(iv) Ω+ ∩ C(w, r) ⊂ Ω ∩ C(w, r) ⊂ Ω− ∩ C(w, r).
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Proof. This result emanates in the work of Semmes [Se, Se1] but was elaborated on, in our
setting, by Kenig and Toro [KT1]. In particular, for more on this, and the particular statements
of Lemma 4.1, we refer to [CKL, p.64-71]. 2

Proof of Theorem 2. Let q be as in the statement of Theorem 1 and let q̃ = min{(q + p −
1)/2, p}. To prove Theorem 2 it suffices, by way of a lemma of Sarason (see [KT]), to prove
that there exists ε0 > 0 and r0 = r0(ε), defined for ε ∈ (0, ε0), such that whenever y ∈ ∆(w, r)
and 0 < s < r0(ε), then

1

σ(∆(y, s))

∫
∆(y,s)

|∇u|q̃ dσ ≤ (1 + ε)

 1

σ(∆(y, s))

∫
∆(y,s)

|∇u|p−1 dσ


q̃/(p−1)

. (4.4)

We prove (4.4) by contradiction. Indeed, if (4.4) is not true then there exist sequences
{sm}∞1 , {ym}∞1 satisfying ym ∈ ∆(w, r),m = 1, 2, . . . , lim

m→∞ sm = 0, and for which (4.4) is false

with y, s replaced by ym, sm,m = 1, 2, . . . . In the following we let, for 0 < ε� 1 fixed,

A = e1/ε, δ = ε2. (4.5)

Moreover, with this choice of δ we let

{δm} be a sequence such that 0 < δm ≤ δ and δm → 0 as m→∞. (4.6)

As usual c ≥ 1 will denote a constant which may depend on p, n,M,C but which is independent
of {ym}, {sm}, ε, {δm} and m. Since ∆(w, 4r) is Reifenberg flat with vanishing constant,
n ∈ VMO(∆(w, 4r)), and sm → 0 as m→∞, we may also assume, for m = 1, 2, ..., that

(i) Ω is (δm, r̂0)-Reifenberg flat with r̂0 = r̂0(δm) > 100Ansm,

(ii) ||n||BMO(∆(ym,100Asm))
≤ δ4

m. (4.7)

Assuming (4.5), (4.6), and (4.7) we let

P̂m = P̂ (ym, Asm), n̂m = n̂(ym, Asm) and Cm = C(ym, Asm) (4.8)

be defined as above Lemma 4.1 with δ, w, r replaced by δm, ym, Asm. Using Lemma 4.1 we
get for each m = 1, 2, ..., a function φm : P̂m → R, with ‖|∇φm|‖∞ ≤ c̃δm, such that if
Γm = {x = (x′, xn) ∈ Rn : xn = φm(x′)}, then,

(i) σ(((∂Ω \ Γm) ∪ (Γm \ ∂Ω)) ∩ Cm) ≤ e−1/(c̃δm)(Asm)n−1 ≤ e−1/(c̃δ)(Asm)n−1,

(ii) ∂Ω ∩ Cm = Gm ∪ Fm, Gm ⊂ Γm,

(iii) σ(Fm) ≤ e−1/(c̃δm)(Asm)n−1 ≤ e−1/(c̃δ)(Asm)n−1. (4.9)

Moreover, if x = (x′, xn) ∈ Fm, then

|xn − φm(π(ym, Asm)(x))|
≤ c̃δmd(πm(ym, Asm)(x)), πm(ym, Asm)(Gm)), (4.10)
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where πm(ym, Asm)(x) is the orthogonal projection of x ∈ Rn onto P̂m. Furthermore, if we let

φ±m(x′) = φm(x′)± 2c̃δmd(x′, π(ym, Asm)(Gm)),

Ω±m = {(x′, xn) ∈ Rn, xn > φ±m(x)}, (4.11)

then

|||∇φ±m|‖∞ ≤ 3c̃δm and Ω+
m ∩ Cm ⊂ Ω ∩ Cm ⊂ Ω−m ∩ Cm. (4.12)

Let σ±m denote surface measure on ∂Ω±m.
Next extend u to B(w, 4r) by putting u ≡ 0 in B(w, 4r) \ Ω̄ and let µ be the measure

associated to u in the sense of Lemma 2.5. Let u−m be the p-harmonic function in Ω−m ∩ Cm
which coincides with u on ∂(Ω−m ∩ Cm) and let u+

m be a non-negative p-harmonic function in
Ω+
m ∩Cm which is continuous in the closure of Ω+

m ∩Cm, and satisfies u+
m ≤ u−m on ∂(Ω+

m ∩Cm),
u+
m = u−m on Ω+

m ∩ ∂Cm ∩ {x ∈ Rn : d(x, ∂Ω+
m) ≥ δmsm} and u+

m ≡ 0 on ∂Ω+
m ∩ Cm. Extend u−m

and u+
m to Cm by putting u−m ≡ 0 on Cm \Ω−m, u

+
m ≡ 0 on Cm \Ω+

m, and let µ±m be the measures
on ∂Ω±m ∩ Cm associated to u±m in the sense of Lemma 2.5. In the following we let y±m ∈ ∂Ω±m
be points with the same projection under π(ym, Asm) as ym and we set ∆m = ∆(ym, sm),
∆±m = ∂Ω±m ∩B(y±m, sm). We note that

|y±m − ym| ≤ c′δmAsm (4.13)

as we see from (4.10). Furthermore, using (4.5), (4.7), and (4.9) we see, if ε is sufficiently small,
that

(i) (1− ε̂) ≤ σ±m(∆±m)

σ(∆m)
≤ (1 + ε̂),

(ii) (1− ε̂) ≤ σ(∆m \∆±m)

σ(∆m)
≤ (1 + ε̂), (4.14)

where ε̂ = e−1/(c′ε2) and c′ = c′(n,C). To continue our proof of Theorem 2 we introduce

Am =
1

σ(∆m)

∫
∆m

|∇u|q̃ dσ, A±m =
1

σ±m(∆±m)

∫
∆±m

|∇u±m|q̃ dσ±m, (4.15)

and we shall prove the following lemmas.

Lemma 4.2 There exists c ≥ 1, independent of m, such that

Am ≤ (1 + e−1/(cε))A−m

(
µ(∆m)

µ+
m(∆+

m)

)q̃/(p−1)

whenever m ∈ {1, 2, ...}.

Lemma 4.3 There exists c ≥ 1, independent of m, such that

lim sup
m→∞

A−m

(
σ−m(∆−m)

µ−m(∆−m)

)q̃/(p−1)

≤ (1 + e−1/(cε)).
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Lemma 4.4 Let µ±m be the measures associated to u±m as above. Then,

lim sup
m→∞

µ+
m(∆+

m)

µ−m(∆−m)
= 1.

We now complete the proof of Theorem 2 using Lemma 4.2-Lemma 4.4. Let c̄ be the largest
of the constants in Lemma 4.2-Lemma 4.4. Assuming (4.4) to be false we see from these lemmas
and (4.14) (i) that

1 + ε ≤ lim sup
m→∞

Am

(
σ(∆m)

µ(∆m)

)q̃/(p−1)

≤ (1 + e−1/(c̄ε)) · lim sup
m→∞

A−m

(
σ(∆m)

µ+
m(∆+

m)

)q̃/(p−1)

≤ (1 + e−1/(c̄ε))2 · lim sup
m→∞

(
µ−m(∆−m)

µ+
m(∆+

m)

σ(∆m)

σ−m(∆−m)

)q̃/(p−1)

≤ 1 + e−1/(cε) (4.16)

for some c = c(p, n, C) ≥ 1, provided ε0 is small enough. Choosing ε0 still smaller if necessary,
we see that (4.16) can not hold if 0 < ε ≤ ε0. Hence (4.4) must be true.

Proof of Lemma 4.2. To start the proof we note that

Am = A(1)
m + A(2)

m (4.17)

where

A(1)
m =

1

σ(∆m)

∫
Gm∩∆−m

|∇u|q̃ dσ, A(2)
m =

1

σ(∆m)

∫
∆m\(Gm∩∆−m)

|∇u|q̃ dσ (4.18)

and where the set Gm was introduced in (4.9). Using the reverse Hölder inequality in Theorem
1 (ii), Hölder’s inequality, (4.9) and (4.14) (ii) we see that

A(2)
m ≤ c

(
σ(∆m \ (Gm ∩∆−m))

σ(∆m)

)1−q̃/q

Am ≤ e−1/(cε) Am (4.19)

provided c is large enough and ε0 small enough.
To estimate A

(1)
m we let E−m be the set of points z ∈ Gm ∩∆−m such that

lim
ρ→0

σ(∆(z, ρ) ∩Gm ∩∆−m)

σ(∆(z, ρ))
= 1 = lim

ρ→0

σ−m(∆−m(z, ρ) ∩Gm ∩∆−m)

σ−m(∆−m(z, ρ))
(4.20)

and such that ∇u(z) and ∇u−m(z) exist. Applying Theorem 1 to u and u−m and using the
Lebesgue density theorem we see that σ(E−m) = σ(Gm ∩ ∆−m), σ−m(E−m) = σ−m(Gm ∩ ∆−m) and
that

A(1)
m =

1

σ(∆m)

∫
E−m

|∇u|q̃ dσ. (4.21)
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Moreover, if z ∈ E−m, then |∇u(z)| ≤ |∇u−m(z)| as we see from the maximum principle and the
definition of the set E−m. Furthermore, based on the definition of the set E−m in (4.20) we also
find that

lim
ρ→0

σ(∆(z, ρ))

σ−m(∆−m(z, ρ))
= 1 whenever z ∈ E−m. (4.22)

Using these facts, (4.14), Theorem 1, Hölder’s inequality and standard arguments we get

A(1)
m ≤ σ−m(∆−m)

σ(∆m)

1

σ−m(∆−m)

∫
Gm∩∆−m

|∇u−m|q̃dσ−m

≤ (1 + cε̂)
1

σ−m(∆−m)

∫
Gm∩∆−m

|∇u−m|q̃dσ−m ≤ (1 + cε̂)A−m. (4.23)

Combining (4.17), (4.19) and (4.23) we deduce that

Am ≤ (1 + e−1/(cε))A−m. (4.24)

Next let E+
m be the set of points z ∈ Gm ∩ ∆+

m such that (4.20) holds with ∆−m, σ
−
m,∆

−
m(z, ρ)

replaced by ∆+
m, σ

+
m,∆

+
m(z, ρ). From Theorem 1 and u+

m ≤ um we see that if z ∈ E+
m, then

|∇u+
m(z)| ≤ |∇u(z)| and we can conclude that

µ(∆m) ≥ µ+
m(Gm ∩∆+

m) ≥ (1− e−1/(cε))µ+
m(∆+

m),

where the last inequality follows from the same argument as in (4.19). Combining this inequal-
ity with (4.24) we conclude the validity of Lemma 4.2 for c large enough. 2

Proof of Lemma 4.3. Since ∂Ω−m is the graph of a Lipschitz function with Lipschitz norm→0
as m→∞, we can proceed along the lines of the proof of Theorem 4 in [LN] (see also Theorem
2 in [LN2]) to get Lemma 4.3. For the readers convenience we briefly outline this proof.

Let ŷm = y−m+ 1
10
Asmn̂m. We note that if ε is sufficiently small, then the domain D−m obtained

by drawing all line segments from points in B(ŷm,
Asm

100
) to points in ∂Ω−m∩B(y−m,

Asm

10
), is starlike

Lipschitz with respect to ŷm. Let D̂−m = D−m \ B̄(ŷm,
Asm

1000
) and note that the Lipschitz constant

of D̂−m is ≤ c = c(n,C). Let û−m be the p-capacitary function for D̂−m, i.e., û−m is non-negative,
û−m = 0 and û−m = 1 continuously on ∂D−m and ∂B(ŷm,

Asm

1000
), respectively, and û−m is p-harmonic

in D̂−m. Extend û−m to Rn \ D−m by setting û−m ≡ 0 on Rn \ D−m and let µ̂−m be the measure,
with support on ∂D−m, corresponding to û−m as in Lemma 2.5. Next suppose ε0 is so small that
A/100 ≥ 2c1, where c1 is as in Theorem 2.6. Then, using Theorem 2.6 with r, w, u1, u2 replaced
by Asm/100, y−m, u

−
m, û

−
m, we deduce, for ε small enough, that if w1, w2 ∈ B(y−m, 2sm)∩ D̂−m, then∣∣∣∣log

(
û−m(w1)

u−m(w1)

)
− log

(
û−m(w2)

u−m(w2)

)∣∣∣∣ ≤ cA−α, (4.25)

where c, α are the constants in Theorem 2.6 and hence independent ofm. Letting w1, w2→z1, z2 ∈
∂D̂−m ∩B(y−m, 2sm) in (4.25) and using Theorem 1 we see that∣∣∣∣log

(
|∇û−m(z1)|
|∇u−m(z1)|

)
− log

(
|∇û−m(z2)|
|∇u−m(z2)|

)∣∣∣∣ ≤ cA−α (4.26)
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for σ−m−almost all z1, z2 ∈ ∂D̂−m ∩B(y−m, 2sm). From the inequality in (4.26) we deduce

(1− cA−α)
|∇û−m(z1)|
|∇û−m(z2)|

≤ |∇u
−
m(z1)|

|∇u−m(z2)|
≤ (1 + cA−α)

|∇û−m(z1)|
|∇û−m(z2)|

, (4.27)

where c = c(p, n, C). Let

Â−m :=
1

σ−m(∆−m)

∫
∆−m

|∇û−m|q̃ dσ−m. (4.28)

From (4.27) and Theorem 1 we see that

Â−m
(µ̂−m(∆−m))q̃/(p−1)

≥ (1− cA−α)q̃
A−m

(µ−m(∆−m))q̃/(p−1)
. (4.29)

One concludes from (4.29) and simple estimates that it suffices to prove Lemma 4.3 with µ−m, u
−
m,

replaced by µ̂−m, û
−
m. Thus one proves for c = c(p, n, C) suitably large and ε0 sufficiently small

that

lim sup
m→∞

Â−m

(
σ−m(∆−m)

µ̂−m(∆−m)

)q̃/(p−1)

≤ 1 + e−1/(cε). (4.30)

To prove (4.30), let T−m be a conformal affine mapping of Rn which maps the plane W containing
the origin and with normal en onto P̂m with T−m(0) = y−m and T−m(en) = ŷm. Let D̃−m, ũ

−
m be

such that T−m(D̃−m) = D̂−m and û−m(T−mx) = ũ−m(x) whenever x ∈ D̃−m. Then, since the p-Laplace
equation is invariant under translations, rotations, and dilations, we see that ũ−m is the p-
capacitary function for D̃−m. Moreover, if µ̃−m corresponds to ũ−m as in Lemma 2.5 and σ̃−m
denotes surface measure on ∂D̃−m, then

Â−m

(
σ−m(∆−m)

µ̂−m(∆−m)

)q̃/(p−1)

= Ã−m

(
σ̃−m(∂D̃−m ∩B(0, 10/A))

µ̃−m(∂D̃−m ∩B(0, 10/A))

)q̃/(p−1)

, (4.31)

where

Ã−m :=
1

σ̃−m(∂D̃−m ∩B(0, 10/A))

∫
∂D̃−m∩B(0,10/A)

|∇ũ−m|q̃ dσ̃−m. (4.32)

Letting m→∞ one deduces from Lemma 2.1 and Lemma 2.2, that ũ−m converges uniformly
on Rn to ũ− where ũ− is the p-capacitary function for the starlike Lipschitz ring domain,
D̃− = D̂ \ B(en, 1/100). Also D̂ is obtained by drawing all line segments connecting points in
B(0, 1) ∩W to points in B(en, 1/10). Using a Rellich type inequality and arguing as in [LN,
displays (5.27)-(5.41)] it follows that

lim sup
m→∞

(Ã−m)1/q̃ ≤

 1

Hn−1(W ∩B(0, 10/A))

∫
W∩B(0,10/A)

|∇ũ−|p dHn−1


1/p

lim inf
m→∞

µ̃−m(∂D̃−m ∩B(0, 10/A))

σ̃−m(∂D̃−m ∩B(0, 10/A))
≥ 1

Hn−1(W ∩B(0, 10/A))

∫
W∩B(0,10/A)

|∇ũ−|p−1 dHn−1 (4.33)
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where Hn−1 denotes (n−1)-dimensional Lebesgue or Hausdorff measure on W. Assuming (4.33)
we note from Schwarz reflection that ũ− has a p-harmonic extension to B(0, 1/2) with ũ− ≡ 0 on
W ∩B(0, 1/2). From barrier estimates we have c−1 ≤ |∇ũ−| ≤ c on B(0, 1/4) where c depends
only on p, n, and from Lemma 2.4 we find that |∇ũ−| is Hölder continuous with exponent σ on
B̄(0, 1/4) ∩W . Using these facts we conclude first that there exist ẑ ∈ B̄(0, 10/A) ∩W and a
constant c such that

(1− cA−σ) |∇ũ−(ẑ)| ≤ |∇ũ−(z)| ≤ (1 + cA−σ) |∇ũ−(ẑ)| (4.34)

whenever z ∈ B(0, 10/A) ∩ W . Combining (4.30), (4.31), (4.33) and (4.34) one deduces for
c, ε−1

0 , sufficiently large in view of (4.5) that

lim sup
m→∞

Â−m

(
σ−m(∆−m)

µ̂−m(∆−m)

)q̃/(p−1)

≤ (1 + cA−σ)q̃ ≤ 1 + e−1/(cε), (4.35)

which is (4.30). This completes our outline of the proof of Lemma 4.3. 2

Proof of Lemma 4.4. We use the same notation as in Lemma 4.3. If Lemma 4.4 is false,
then there exist subsequences of {u+

m}, {u−m}, say v+
j = u+

mj
), v−j = u−mj

), with corresponding

measures, {ν+
j }, {ν−j }, and surface balls ∆̃+

j = ∆+
mj
, ∆̃−j = ∆−mj

, satisfying

lim
j→∞

ν+
j (∆̃+

j )

ν−j (∆̃−j )
exists and is 6= 1. (4.36)

To get a contradicition we note from the definition of v+
j , v

−
j , and Lemma 2.1-Lemma 2.3 that

v+
j ≤ u ≤ v−j ≤ v+

j + cδ̃αj u
+
mj

(ŷmj
) (4.37)

on ∂(Ω+
mj
∩ Cmj

) where α ∈ (0, 1) is as in Lemma 2.2 and δ̃j = δmj
. From the maximum

principle for p-harmonic functions we see that (4.37) also holds in Ω+
mj
∩ Cmj

. Let v̆+
j (x) =

v+
j (T−mj

(x))/v+
j (ŷmj

), x ∈ B(0, 10), and v̆−j = v−j (T−mj
(x))/v−j (ŷmj

), x ∈ B(0, 10), where T−mj
is

the conformal affine mapping in Lemma 4.3. Let C(0, 1) be the cylinder with center at 0, axis
parallel to en, and with both height and radius equal to 1. From Lemma 2.1-Lemma 2.4 we see
that v̆+

j and v̆−j , for j = 1, 2, . . . , have the following properties.

(a) v̆+
j and v̆−j are uniformly Hölder continuous of order α in C(0, 1).

(b) v̆+
j and v̆−j are uniformly bounded in the norm of W 1,p(C(0, 1)).

(c) ∇v̆+
j and ∇v̆−j are uniformly Hölder continuous of order σ on

compact subsets of (T−mj
)−1(Ω+

mj
∩ Cmj

).

Using these facts and (4.37) we get subsequences of {v̆+
j }, {v̆−j }, also denoted {v̆+

j }, {v̆−j }, with
v̆+
j , v̆

−
j →v as j→∞, where v is continuous in C(0, 1), p-harmonic in the component H of

C(0, 1) \W containing en. Moreover v ∈ W 1,p(C(0, 1))∩L∞(C(0, 1)), and v̆+
j , v̆

−
j →v uniformly

on compact subsets of C(0, 1) as j→∞ while ∇v̆+
j ,∇v̆−j →∇v uniformly on compact subsets of

H. Finally v−j , v
+
j both converge weakly to v in W 1,p(C(0, 1)) and j →∞. Let ν̆+

j , ν̆
−
j , ν be the
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measures corresponding to v̆+
j , v̆

−
j , v̆ as in Lemma 2.5. Then from the above results concerning

the various convergence, and Lemma 2.5, we see that {ν̆+
j }, {ν̆−j }, converge weakly to ν. Hence

1 = lim
j→∞

ν̆+
j (C(0, 10/A))

ν̆−j (C(0, 10/A))
= lim

j→∞
ν+
j (∆̃+

j )

ν−j (∆̃−j )
. (4.38)

This equality contradicts (4.36). Thus Lemma 4.4 is true. 2

5 Proof of Theorem 3

In the proof of Theorems 3 and 4 we shall need the following lemma.

Lemma 5.1 Let Ω ⊂ Rn be a bounded Ahlfors regular NTA-domain with constants, r0,M,C.
Given p, 1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that u is a positive p-harmonic function
in Ω ∩ B(w, 4r), u is continuous in Ω̄ ∩ B(w, 4r), and u = 0 on ∆(w, 4r). Suppose also
that log |∇u| ∈ VMO(∆(w, r)). Given ε > 0 there exist r̃ = r̃(ε), 0 < r̃ < r/4, and c =
c(p, n,M,C), 1 ≤ c < ∞, such that the following is true whenever 0 < r′ ≤ r̃. There exists a
set G ⊂ ∆(w, r′) such that

(a)
σ(G ∩∆(w, r′))

σ(∆(w, r′))
≥ 1− ε,

(b) (1− ε)bp−1 ≤ µ(∆(y, s))

σ(∆(y, s))
≤ (1 + ε)bp−1 whenever 0 < s < r′, y ∈ G ∩∆(w, r′).

Here µ is the measure associated with u as in Lemma 2.5 and log b is the average of log |∇u|
on ∆(w, 4r′).

Proof. This lemma was proved in [LN2, Lemma 4.1] assuming that Ω is a bounded Lipschitz
domain. The proof is essentially unchanged when Ω ⊂ Rn is a bounded Ahlfors regular NTA-
domain. 2

We now begin the proof of Theorem 3. Let Ω ⊂ Rn be a bounded Ahlfors regular NTA-
domain with constants, r0,M,C and w ∈ ∂Ω, 0 < r < r0/4. Recall from Section 1 that to prove
Theorem 3 it suffices to prove (i), (ii) of (1.14). We begin with (ii) and shall once again argue
by contradiction using a blow-up argument. Hence we assume that

0 < η = lim
r̃→0

sup
w̃∈∆(w,r/2)

‖n‖BMO(∆(w̃,r̃))
.

Then there exist a sequence of points {wj}, wj ∈ ∆(w, r/2), and a sequence of scales {rj}, with
2jrj → 0, such that

η = lim
j→∞

(
1

σ(∆(wj, rj))

∫
∆(wj ,rj)

|n− n∆(wj ,rj)|2dσ
)1/2

. (5.1)

For fixed p, 1 < p <∞ suppose that u is a positive p-harmonic function in Ω∩B(w, 4r), u is
continuous in Ω̄∩B(w, 4r) and u = 0 on ∆(w, 4r). Suppose also that log |∇u| ∈ VMO(∆(w, r))
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where ∇u is defined by way of Theorem 1 on ∆(w, 4r), σ almost everywhere. We now apply
Lemma 5.1 to u with w, r′ replaced by wj, 2jrj and with ε = 2−j

2
. Then for j large enough

there exists a set G̃j ⊂ ∆(wj, 2
jrj), such that

(a′)
σ(G̃j ∩∆(wj, 2

jrj))

σ(∆(wj, 2jrj))
≥ 1− 2−j

2

,

(b′) (1− 2−j
2

)bp−1
j ≤ µ(∆(y, s))

σ(∆(y, s))
≤ (1 + 2−j

2

)bp−1
j whenever 0 < s < 2jrj

and y ∈ G̃j ∩∆(w, 2jrj). (5.2)

In (5.2) (b′), log bj denotes the average of log |∇u| on ∆(wj, 2
j+2rj) with respect to σ. Let

Tj(z) = wj + rjz and put, for j = 1, 2, ...,

Ωj = T−1
j (Ω) = {r−1

j (x− wj) : x ∈ Ω},
λj = (rjbj)

−1,

uj(z) = λj u(Tj(z)) whenever z ∈ T−1
j (B(w, 4r)) . (5.3)

From translation and dilation invariance of the p-Laplace equation we see that uj is p-harmonic
in Ωj ∩ T−1

j (B(w, 4r)) and continuous in T−1
j (B(w, 4r)) with uj ≡ 0 in T−1

j (B(w, 4r)) \ Ωj.
Moreover, let µ, µj be the measures associated with u, uj as in Lemma 2.5, defined in B(w, 4r),
T−1
j (B(w, 4r)), and let σ, σj be the surface measures on ∂Ω, ∂Ωj, respectively. Using Ahlfors

regularity of Ωj and Theorem 1 we see that if Hj is a Borel subset of ∂Ωj ∩T−1
j (B(w, 4r)), then

σj(Hj) = r1−n
j σ(Tj(Hj)), µj(Hj) = λp−1

j rp−nj µ(Tj(Hj)). (5.4)

From (5.2), we see that if Gj = T−1
j (G̃j), then Gj ⊂ ∂Ωj ∩B(0, 2j) and

(α)
σj(Gj ∩ ∂Ωj ∩B(0, 2j))

σj(∂Ωj ∩B(0, 2j))
≥ 1− 2−j

2

,

(β) 1− 2−j
2 ≤ µj(∂Ωj ∩B(z, s))

σj(∂Ωj ∩B(z, s))
≤ 1 + 2−j

2

whenever 0 < s < 2j

and z ∈ Gj ∩ ∂Ωj. (5.5)

In fact, (5.5) (β) is a straightforward consequences of (5.2) (a′), (b′), (5.3), and (5.4). Using
this notation we prove the following lemmas.

Lemma 5.2 Let Ω ⊂ Rn be a bounded Ahlfors regular NTA-domain with constants M, r0, C,
and let w, r, {wj}, {rj}, {Ωj} be as above. Then there exists a subsequence k = k(j), j =
1, 2, . . . , satisfying Ωk → Ω∞ and ∂Ωk → ∂Ω∞ in the Hausdorff distance sense, uniformly on
compact subsets of Rn, as j →∞. Moreover, Ω∞ is an Ahlfors regular NTA-domain with con-
stants, M,∞, C ′ = C ′(M,C). Also if F = (F1, F2, . . . , Fn), where Fi, 1 ≤ i ≤ n, is continuous
on Rn with compact support, then∫

∂Ωk

〈nk, F 〉dσk→
∫

∂Ω∞

〈n∞, F 〉dσ∞ as j→∞

where nk, n∞ denote the inner unit normals to ∂Ωk, ∂Ω∞, respectively, and σk, σ∞ are the surface
measures on ∂Ωk, ∂Ω∞, respectively. Finally, if Ω is (δ, r0)-Reifenberg flat, 0 < δ < δ̂(n), then
we can also choose the subsequence so that Ω∞ is a 4δ-Reifenberg flat domain.
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Lemma 5.3 Let Ω ⊂ Rn be an Ahlfors regular NTA-domain, with constants M, r0, C, and let
w, r, {wj}, {rj}, {Ωj}, {uj}, {µj}, and k = k(j), be as above. If {Ωk}, Ω∞ are as in Lemma 5.2,
then there exist subsequences of {uk}, {µk} (also denoted {uk}, {µk}), with uk → u∞, uniformly
on compact subsets of Rn and where u∞ is a non-negative p-harmonic function in Ω∞ and u∞
is Hölder continuous on Rn with u∞ ≡ 0 on Rn \ Ω∞. Moreover, if µ∞ denotes the measure
corresponding to u∞, then µk → µ∞ weakly and |∇u∞| ≥ 1 holds σ∞ almost everywhere on
∂Ω∞.

Lemma 5.4 Under the same scenario as in Lemma 5.3 we have

|∇u∞(z)| ≤ 1 for all z ∈ Ω∞.

Lemma 5.5 Under the assumptions in Lemma 5.3 it is true that σk → σ∞ weakly as Radon
measures.

Lemma 5.6 Assume that Ω∞ is a 4δ-Reifenberg flat domain and that Ω∞ is Ahlfors regular.
Moreover, assume that Ω∞, u∞, µ∞, σ∞ are as in Lemma 5.2-Lemma 5.5. There exists δ̄ =
δ̄(p, n) small such that if δ < δ̄, then Ω∞ is a half-space and u∞(y′, yn) = yn in an appropriate
coordinate system.

Before proving Lemma 5.1-Lemma 5.6 we show that these lemmas imply (5.1). Indeed, from
Lemma 5.2 and Lemma 5.6 we see that 〈nk, ·〉dσk→〈en, ·〉dσ∞ as j→∞, weakly as measures in
an appropriate coordinate system. Thus, for 1 ≤ m ≤ n,

lim
j→∞

∫
∂Ωk∩B(0,1)

〈nk, em〉 dσk = δmn σ∞(∂Ω∞ ∩B(0, 1)), (5.6)

where nk is the inner unit normal to ∂Ωk and δmn is the Kronecker delta. Let ak denote the
average of nk on ∂Ωk ∩ B(0, 1) with respect to σk. From (5.6), Lemma 5.5, and the fact that
(5.1) is scale invariant we first see that

lim
j→∞

(
1

σk(∂Ωk ∩B(0, 1))

∫
∂Ωk∩B(0,1)

|en − ak|2dσk
)1/2

= 0. (5.7)

Second from (5.1), (5.7), the triangle inequality, Lemma 5.5, and (5.6) we obtain

0 < η = lim
j→∞

(
1

σk(∂Ωk ∩B(0, 1))

∫
∂Ωk∩B(0,1)

|nk − ak|2dσk
)1/2

≤ lim sup
j→∞

(
1

σk(∂Ωk ∩B(0, 1))

∫
∂Ωk∩B(0,1)

|nk − en|2dσk
)1/2

= lim sup
j→∞

(
1

σk(∂Ωk ∩B(0, 1))

∫
∂Ωk∩B(0,1)

2(1− 〈nk, en〉) dσk
)1/2

= 0.

We have reached a contradiction. Thus (ii) in (1.14) is true once we prove Lemma 5.2-Lemma
5.6.
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5.1 Proof of Lemma 5.2-Lemma 5.6

Proof of Lemma 5.2. For convergence of {Ωk} to Ω∞ in the sense of Hausdorff distance, and
the statement about Ω∞, see [KT, Theorem 4.1]. Using these facts, the display in Lemma 5.2
follows from the Gauss-Green theorem and geometric measure theory, see [EG, sec 5.8]. 2

Proof of Lemma 5.3. Let {Ωk} be as in Lemma 5.2 and let {uk}, {µk} be subsequences of
{uj}, {µj}, corresponding to {Ωk}. Then from Lemma 2.1-Lemma 2.5 applied to uk and (5.5) (β)
we deduce that uk is bounded, Hölder continuous, and locally in W 1,p on compact subsets of Rn

with the norms of all functions bounded above by constants which are independent of j. Also,
if B(x, 2ρ) ⊂ Ω∞, then for large j we see from Lemma 5.1 and Lemma 2.4 that ∇uk is Hölder
continuous and bounded on compact subsets of Ωk ∩B(x, ρ) again with constants independent
of j for j large enough. Thus we assume, as we may, that {uk} converges uniformly and weakly
in W 1,p on compact subsets of Rn to u∞ and that {∇uk} converges uniformly to ∇u∞ on
compact subsets of Ω∞. Also, u∞ > 0 in Ω∞ and u∞ is p-harmonic in Ω∞ and continuous on
Rn, with u∞ ≡ 0 on Rn \ Ω∞. Using these facts we deduce that if µ∞ denotes the measure
associated with u∞ as in Lemma 2.5, and θ ∈ C∞0 (Rn), then

−
∫
Rn

θdµ∞ =

∫
Rn

|∇u∞|p−2〈∇u∞,∇θ〉dx

= lim
j→∞

∫
Rn

|∇uk|p−2〈∇uk,∇θ〉dx = − lim
j→∞

∫
Rn

θdµk. (5.8)

Thus {µk} converges weakly to µ∞.
To show that |∇u∞| ≥ 1 σ∞ almost everywhere on ∂Ω∞ we observe from Theorem 1 and

Lemma 5.2 that it suffices to prove
σ∞ ≤ µ∞. (5.9)

To prove (5.9) we first observe from Theorem 1 that dµk = |∇uk|p−1dσk on ∂Ωk∩(Tk)
−1(B(w, 4r)).

Second, using this observation, (5.5) (β), and differentiation theory we see that

1− 2−k
2 ≤ |∇uk|p−1 ≤ 1 + 2−k

2

(5.10)

σk almost everywhere on ∂Ωk ∩ Gk ∩ B(0, 2k). Let 0 ≤ θ ∈ C∞0 (Rn). Using what we have
already proved in Lemma 5.2, (5.5) (α), and (5.10), we deduce that∫

θdµ∞ = lim
j→∞

∫
∂Ωk

θ|∇uk|p−1dσk ≥ lim inf
j→∞

∫
Gk∩∂Ωk

θ |∇uk|p−1dσk

≥ lim inf
j→∞

(1− 2−k
2

)

∫
Gk∩∂Ωk

θ dσk = lim inf
j→∞

∫
Gk∩∂Ωk

θdσk. (5.11)

Furthermore, ∫
Gk∩∂Ωk

θ dσk =

∫
∂Ωk

θ dσk + Ak, (5.12)
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where, for fixed θ and for j large enough, we have, using (5.5) (α) and Ahlfors regularity of Ωk,
that

|Ak| ≤ ||θ||∞2−k
2

σk(∂Ωk ∩B(0, 2k)) ≤ c||θ||∞2−k
2

2(n−1)k. (5.13)

From (5.12), (5.13) and lower semicontinuity type arguments we also deduce that∫
θdσ∞ ≤ lim inf

j→∞

∫
θ dσk = lim inf

j→∞

∫
Gk∩∂Ωk

θ dσk . (5.14)

Using (5.14) in (5.11) we get (5.9). The proof of Lemma 5.3 is now complete. 2

Proof of Lemma 5.4. We temporarily fix j large and put ξ̃ = 21−k2
where k = k(j) is as in

Lemma 5.3 and Lemma 5.4. We note from Theorem 1, with b = 100−100n2
, b′ = b100, (5.10),

and Egoroff’s theorem that there exists a compact set K = K(k) ⊂ Gk ∩B(0, 2k−4) and ρ > 0
such that

(i) σk(Gk ∩B(0, 2k−4) \K) ≤ ξ̃σk(∂Ωk ∩B(0, 2k)),

(ii) 1− ξ̃ ≤ |∇uk(y)|p−1 ≤ 1 + ξ̃ if y ∈ B(x, ρ) ∩ Γb′(x) and x ∈ K. (5.15)

Here, Γb′(x) = {z ∈ Ωk : d(z, ∂Ωk) > b′|x − z|}. Let Q(w, s) = {y : |yj − wj| ≤ s, 1 ≤ j ≤ n}
and let {Qi = Qi(ŷi, ri)} be a Whitney cube decomposition of Ωk satisfying

(a) Qi ∩Qm = ∅, i 6= m,

(b) 10−6nd(Qi, ∂Ωk) ≤ ri ≤ 10−4nd(Qi, ∂Ωk),

(c)
⋃
i

Q̄i = Ωk. (5.16)

Next let {ηi} be a partition of unity adapted to {Qi}. That is

(i)
∑
i

ηi ≡ 1.

(ii) The support of ηi is contained in the union of Q̄i and
⋃
{Qj : Q̄j ∩ Q̄i 6= ∅}.

(iii) ηi ≥ 0 is infinitely differentiable with ηi ≥ c−1 on Qi and

max{r−1
i |(ηi)xl

|, r−2
i |(ηi)xlxm|} ≤ c, for 1 ≤ m, l ≤ n. (5.17)

To prove Lemma 5.4 we will use an argument somewhat similar to the one in [LV]. Let

D̂ =
⋃
x∈K

Γb(x) ∩B(0, 2k) and D = D̂ ∩ {z ∈ Ωk : |∇uk(z)|p−1 > 1 + ξ̃}. (5.18)

Using (5.5), Lemma 2.5, Lemma 2.4, we deduce that

|∇uk(y)| ≤ c and c−1 ≤ r−1
l uk(y) ≤ c on B(ŷl,

1
2
d(ŷl, ∂Ωk)) (5.19)

whenever Q̄l ∩ D̂ 6= ∅ for some c = c(p, n). By definition we have 1 + ξ̃ < |∇uk|p−1 on D. As in
(1.11) we put

L =
n∑

l,m=1

∂

∂yl

(
blm(y)

∂

∂ym

)
for y ∈ D, (5.20)
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where

blm(y) = bml(y) = |∇uk|p−4[(p− 2)(uk)yl
(uk)ym + δlm|∇uk|2](y), 1 ≤ l,m ≤ n. (5.21)

From (5.19) and (1.13) we deduce that there exists c̄ = c̄(p, n) with

c̄−1|ξ|2 ≤
n∑

l,m=1

blm(y)ξlξm ≤ c̄ |ξ|2, (5.22)

whenever ξ = (ξ1, . . . , ξn) ∈ Rn and y ∈ D. Observe from (5.22) and Lemma 2.4 that L in
(5.20) is a uniformly elliptic operator in D with infinitely differentiable coefficients. Note also
that ζ = uk or ζ = a partial derivative of uk is a solution to Lζ = 0 in D. Let a = max(3, p)
and put

v(y) = [max(|∇uk|2 − (1 + 2ξ̃)2/(p−1), 0)]a(y) when y ∈ D̂.

By definition v(y) > 0 at y ∈ D̂ only if |∇uk|p−1(y) > (1 + 2ξ̃), v has continuous partial
derivatives of second order in D̂ and Lv ≥ 0 in D. Also from (5.15) and the definition of v,D,
we deduce that there is an open set N containing K ∪ (∂D ∩ {x : |∇uk(x)|p−1 = 1 + ξ̃}) with

v ≡ 0 on D ∩N. (5.23)

Next fix z0 ∈ Ω∞ with |z0| ≤ 2k/4 and suppose v(z0) > 0. We claim that

z0 ∈ D and d(z0, ∂Ωk) ≥ max
{

1
k
, d(z0,∂Ω∞)

2

}
, (5.24)

for j large enough. The second statement in (5.24) follows from Lemma 5.2. To prove the first
claim it suffices to show that

h( ∂Ωk ∩B(0, 21+k/2) , ∂D̂ ∩B(0, 21+k/2)) ≤ c ξ̃1/(2n). (5.25)

Indeed if y ∈ ∂D̂ ∩ B(0, 21+k/2) \K, then there exists w ∈ ∂Ωk \K with |x − y| ≥ |y − w|/b
whenever x ∈ K. Hence by the triangle inequality, |x−w| ≥ (1/b− 1)|y−w| whenever x ∈ K.
Now from (5.15), (5.5), and Ahlfors regularity of ∂Ωk we deduce that every ball about w of
radius cξ̃1/(2n) must, for k large enough, contain points of K. Thus every y ∈ ∂D̂ ∩B(0, 21+k/2)
lies within cξ̃1/(2n) of a point of ∂Ωk ∩ B(0, 21+k/2). Here c depends only on p, n, and the NTA
and Ahlfors regularity constants for Ω. The opposite inequality with these sets interchanged
follows easily from (5.15), (5.5). Thus (5.25) is true.

Let D1 be the component of D containing z0 and let g(·, ·) be Green’s function for L relative
to D1. Extend g(z0, ·) to D̂ by putting g(z0, ·) ≡ 0 on D̂ \D1. Then from (b′) of Lemma 2.10 we
see that g(z0, ·) ∈ W 1,2(D̂ \ B(z0, ε)) for each ε > 0. Let v̂(x) = v(x) when x ∈ D1 and v̂ = 0
elsewhere in D̂. Next consider fixed t with 2k/2 ≤ t ≤ 21+k/2 and put

Λ(t) = {l : supp ηl ⊂ D̂ ∩B(0, t) and rl ≥ τ} (5.26)

where τ = min(ρ2, ξ̃2) and where supp ηl denotes the support of ηl. Recall that ρ was introduced
in (5.15). If i ∈ Λ(t), we observe from (5.23) and (5.26) that v̂ ηi can be uniformly approximated
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in the C2(D̂) norm by C∞0 (D1) functions. Using this fact, Lemma 2.14 (c′), and integrating by
parts we see, if θ = v̂

∑
i∈Λ(t) ηi, that

v(z0) =
∑
i∈Λ(t)

∫ n∑
l,m=1

blm(v̂ηi)yl
g(z0, ·)ymdy

= −2

∫ ∑
i∈Λ(t)

n∑
l,m=1

blm v̂yl
(ηi)ym g(z0, ·) dy

−
∫ ∑

i∈Λ(t)

n∑
l,m=1

(blmv̂yl
)ym ηi g(z0, ·)dy

−
∫ ∑

i∈Λ(t)

v̂
n∑

l,m=1

(blm (ηi)yl
)ym g(z0, ·) dy

=: −I1(t)− I2(t)− I3(t). (5.27)

Using that Lv̂ ≥ 0 we deduce that I2(t) ≥ 0. Observe that if
∑

i∈Λ(t) ηi ≡ 1 on Ql, then the

integrands in the integrals defining I1(t), I3(t) vanish on Ql. Let Λ1(t) be the set of all l such
that v 6≡ 0 on supp ηl and such that there exists m 6∈ Λ(t), i ∈ Λ(t), with supp ηm∩ supp ηl 6= ∅
while supp ηi∩ supp ηl 6= ∅. Using the above observation, Lemma 2.4, (5.17) (iii), and (5.19)
we deduce that

|I3|(t) + |I1|(t) ≤ c
∑

m∈Λ1(t)

∫
Qm

( r−1
m |∇uk|2(p−1)

n∑
l,i=1

|(uk)ylyi
| + r−2

m )g(z0, ·) dy. (5.28)

Applying Hölder’s inequality, (5.19), and Lemma 2.4 in (5.28) we find that

|I3|(t) + |I1|(t) ≤ cJ(t), J(t) :=
∑

m∈Λ1(t)

r(n−1)/2
m

∫
Qm

r−3
m g2(z0, ·) dy

1/2

. (5.29)

Summarizing we have

v(z0) ≤ cJ(t) whenever t satisfies 2k/2 ≤ t ≤ 21+k/2. (5.30)

To estimate J(t) we divide the indices in Λ1(t) into Λ11(t),Λ12(t), where Λ11(t) consists of

all i in Λ1(t) with B(ŷi,
d(ŷi,∂Ωk)

100
) ∩ ∂B(0, t) 6= ∅, while Λ12(t) = Λ1(t) \ Λ11(t). We write

J(t) = J1(t) + J2(t) where J1(t), J2(t), are defined as in (5.29) with Λ11(t),Λ12(t) replacing
Λ1(t), respectively. We next estimate J1(t) and J2(t).

We first estimate J1(t) whenever t satisfies 2k/2 ≤ t ≤ 21+k/2. To do this we first note, using
Hölder’s inequality, disjointness of {Qm}, and the definition of Λ11(t), that

J1(t) ≤ c (
∑

m∈Λ11(t)

rn−1
m )1/2

 ∑
m∈Λ11(t)

∫
Qm

r−3
m g2(z0, ·) dy

1/2

≤ c2 2k(n−1)/4

 ∑
m∈Λ11(t)

∫
Qm

r−3
m g2(z0, ·) dy

1/2

=: c2 2k(n−1)/4 J11(t). (5.31)
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Let P = B(0, 22+k/2)\B(0, 2−1+k/2) and let Λ′ denote all Whitney cubes that have a nonempty
intersection with the closure of D̂ ∩ P . Integrating J1 over t ∈ (2k/2, 2k/2+1) we obtain from
(5.31) that

21+k/2∫
2k/2

J1(t)dt ≤ c2kn/4

 21+k/2∫
2k/2

J11(t)2 dt


1/2

≤ c2kn/4

∫
P

∑
m∈Λ′

r−2
m χQmg(z0, ·)2 dy

1/2

. (5.32)

To get the last inequality in (5.32) we interchanged the order of integration and used the fact
that each Qm has an index appearing in Λ11(t) for a set of t of at most length c rm. We now
claim that there exists c̄ ≥ 1, depending only on p, n, and the NTA and Ahlfors regularity
constants for Ω, such that if V = {x : c̄−12k/2 ≤ |x| ≤ c̄2k/2} ∩ D̂, then∫

P

∑
m∈Λ′

r−2
m χQmg(z0, ·)2 dy ≤ c̄

∫
V

|∇g(z0, ·)|2dy. (5.33)

(5.33) follows easily from (ii) in Definition 1.1 and Theorem 2 in [Le]. For completeness we
sketch a proof of (5.33). From Poincaré’s inequality we see that∫

Qm

r−2
m χQmg(z0, ·)2 dy ≤ c

∫
Qm

|∇g(z0, ·)|2 dy + c rn−2
m g2

Qm
(5.34)

where gQm(z0, ·) is the average of g(z0, ·) on Qm. Then since g(z0, ·) ∈ W 1,2
0 (D̂ \ B(z0, ε)) for

each ε > 0 and the complement of D̂ satisfies the corkscrew condition in (ii) of Definition 1.1,
we deduce

|gQm| ≤ crm inf
Qm

M(χV |∇g(z0, ·)|) (5.35)

where once again Mf denotes the Hardy-Littlewood maximal function of f. Using (5.35) in
(5.34), summing, and applying the Hardy-Littlewood maximal theorem we get (5.33). Armed
with (5.33) we can now complete the estimate of J1(t). Indeed, using (5.33) in (5.32), and
standard Caccioppoli type inequalities for solutions to L, we deduce that 21+k/2∫

2k/2

J1(t)dt


2

≤ c2kn/2
∫
V

|∇g(z0, ·)|2 dy ≤ c2k(n−2)/2

∫
W

g(z0, ·)2 dy (5.36)

where W = {x : c̄−22k/2 ≤ |x| ≤ c̄22k/2} ∩ D̂ and c̄ is as in the definition of V. Observe from
(5.5) and the definition of D̂,K, that there exists x ∈ ∂D̂ ∩ ∂Ωk with |x| ≤ 2−k for k large.
Using this value of x, as well as z = z0, y = z, in Lemma 2.11 it follows that

g(z, z0) ≤ ck2k(1−n/2−β/4) whenever z ∈ W. (5.37)
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Using (5.37) in (5.36) we conclude that 21+k/2∫
2k/2

J1(t)dt


2

≤ ck22k(1−β/2). (5.38)

We now estimate J12(t) whenever t ∈ (2k/2, 2k/2+1). To do this we first note that if i ∈ Λ12(t),
then

B(ŷi,
d(ŷi,∂Ωk)

100
) ∩ ∂D̂ 6= ∅. (5.39)

In fact if (5.39) was false, then from the definition of Λ1(t),Λ11(t), we see that d(ŷi, ∂Ωk) ≤ cτ.
Hence, for k large enough it would follow from (5.15) and the definition of b, b′, D̂, τ, v, that
v ≡ 0 on supp ηi, and this contradicts i ∈ Λ1(t). Furthermore, if i ∈ Λ12(t) and z ∈ Qi, then
from Lemma 2.10 (d′), Harnack’s inequality for uk, and the maximum principle for solutions to
L we see that

g(z0, z) ≤ c φ uk(z) whenever z ∈ Qi (5.40)

where φ := uk(z0)−1 d(z0, ∂Ω∞)2−n if n > 2 and φ := uk(z0)−1 log(k/d(z0, ∂Ω∞)) if n = 2. Also
from (5.19) and (5.39) we deduce that

uk(z) ≤ c ri whenever z ∈ Qi ⊂ Λ12. (5.41)

Using (5.40), (5.41) we get

J2(t) =
∑

m∈Λ12(t)

r(n−1)/2
m

∫
Qm

r−3
m g2(z0, ·) dy

1/2

≤ c φ
∑

m∈Λ12(t)

rn−1
m . (5.42)

Our next task is to estimate the sum on the right hand side of (5.42). Observe from (5.39)
and the same argument as in the proof of (5.25) that if i ∈ Λ12(t), then there exists c̃ ≥ 1 and
ỹi ∈ ∂Ωk such that

B(ỹi, 2ri/c̃) ∩K = ∅, d(ỹi, K) ≤ c̃ri, and |ŷi − ỹi| ≤ c̃ ri. (5.43)

From (5.43) and the fact that {Qm} are Whitney cubes we deduce that if i ∈ Λ12(t), then

B(ỹi, ri/c̃) ∩B(ỹl, rl/c̃) 6= ∅ for at most N indexes l, (5.44)

where N depends on the NTA, Ahlfors regularity constants for Ω, p, n, b, but is independent of
k. Using Ahlfors regularity of ∂Ωk, (5.44), (5.15), and (5.5) (β) in (5.42), we find that

J2(t) ≤ c φ
∑

m∈Λ12(t)

σk(∂Ωk ∩B(ỹm, rm/c̃))

≤ cφ σk(∂Ωk ∩B(0, 2k−4) \K) ≤ 2−kφ, (5.45)

whenever k ≥ k0 for some k0 large enough.
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To complete the proof of Lemma 5.4 we first deduce, from (5.38) and weak type estimates,
the existence of t̂ ∈ (2k/2, 2k/2+1) with J1(t̂) ≤ ck2−βk/4. Using this inequality, (5.45) in (5.29)
and then (5.27), we conclude that

v(z0) ≤ |I1(t̂)|+ |I2(t̂)| ≤ 2−kβ/8 + 2−kφ

for k large enough. Thus v(z0) = v(z0, k)→0 as k→∞. Based on the definition of v we conclude
that |∇u∞|(z0) ≤ 1 in Ω∞. Since z0 ∈ Ω∞ is arbitrary, the proof of Lemma 5.4 is complete. 2

Proof of Lemma 5.5. Using Lemma 5.3 and Lemma 5.4 we can conclude that dσ∞ = dµ∞.
Hence, for θ ∈ C∞0 (Rn) and the subsequence, k(j), j = 1, 2, . . . , we have∫

θdσ∞ = lim
j→∞

∫
∂Ωk

θ|∇uk|p−1dσk ≥ lim sup
j→∞

∫
Gk∩∂Ωk

θ |∇uk|p−1dσk

≥ lim sup
j→∞

(1− 2−k
2

)

∫
Gk∩∂Ωk

θ dσk = lim sup
j→∞

∫
∂Ωk

θdσk (5.46)

where the last equality follows as in (5.12) and (5.13). Moreover from (5.14) we have∫
∂Ω∞

θdσ∞ ≤ lim inf
j→∞

∫
∂Ωk

θdσk whenever 0 ≤ θ ∈ C∞0 (Rn). (5.47)

Combining (5.46) and (5.47) we see that

σk → σ∞ weakly as j →∞. (5.48)

This completes the proof of Lemma 5.5. 2

Proof of Lemma 5.6. As stated in the introduction we can use either the results in [ACF]
(see also [DP]) or [LN5, LN6] to complete the proof of Lemma 5.6. Each argument makes rather
subtle, somewhat different, smallness assumptions on δ. Thus it is not easy to tout the merits of
one proof over the other. An outline of the proof using results from [ACF] is given after (4.42)
in [LN2]. To outline the other proof one can first show that there exists δ1 = δ1(p, n) small, such
that if δ < min{δ̂, δ1}, then u∞ is a weak solution in Rn to the two-phase free boundary problem
studied in [LN5,LN6] with u−∞ ≡ 0 and G(s) = 1 + s, s ∈ [0,∞). Then, using [LN6, Theorem 2]
one can conclude that there exists δ2 = δ2(p, n,M,C) such that if 0 < δ < δ2 then the following
is true. There exist N = N(p, n,M,C), 1 ≤ N <∞, and a Lipschitz function φ∞ : Rn−1→R,
with Lipschitz norm bounded by N , such that ∂Ω∞ = {(y′, yn) : yn > φ∞(y′)}. In particular,
∂Ω∞ is the graph of a Lipschitz function. Combining this conclusion with [LN5, Theorem 1]
it follows that ∂Ω∞ is in fact C1,γ-smooth for some γ = γ(p, n,M,C) ∈ (0, 1). Using these
conclusions one can then complete the proof of Lemma 5.6 as follows. Let δ̄ = min{δ1, δ2},
where δ1, δ2 are as above, and let R � 1 be an arbitrary real number. Then, applying [LN5,
Theorem 1] with u(y) = u∞(Ry)/R, y ∈ B(0, 2), one finds that

sup
{y′: (y′,φ∞(y′))∈B(0,R/8)}

|∇φ∞(y′)−∇φ∞(0)| ≤ c|y′|σR−σ (5.49)
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where c = c(p, n,M,C). Letting R→∞ one gets that ∇φ∞ ≡ ∇φ∞(0). Thus φ∞ is linear and
consequently Ω∞ is a halfspace. This completes the proof of Lemma 5.6. 2

Proof of 1.14 (i) and Theorem 3. The proof of (i) of (1.14) is essentially the same as the
proof of (1.14) (ii). Indeed, if ∆(w, r/2) is not Reifenberg flat with vanishing constant, there
exist sequences {wj}, wj ∈ ∆(w, r/2), and {rj}, rj → 0, such that

inf
P

1

rj
h(∆(wj, rj), P ∩B(wj, rj)) ≥ λ, (5.50)

for some λ > 0. The infimum in (5.50) is taken with respect to all (n− 1)-dimensional planes
P containing wj. We then argue as in (5.2)-(5.5) and Lemma 5.1 to get a subsequence {Ωk},
with ∂Ωk→∂Ω∞ in the Hausdorff distance sense, uniformly on compact subsets of Rn. Hence

inf
P ′
h(∂Ω∞ ∩B(0, 1), P ′ ∩B(0, 1)) ≥ λ, (5.51)

where now the infimum is taken with respect to all (n− 1)-dimensional planes P ′ containing 0.
However, using Lemma 5.6 we see that if Ω is δ-Reifenberg flat and δ is small enough, then Ω∞
is a halfplane. This statement contradicts (5.51). The proof of (1.14) and Theorem 3 is now
complete. 2

6 Proof of Theorem 4 and Closing Remarks

The purpose of this section is to prove Theorem 4 and we note that to prove Theorem 4 we again
have to prove (i) and (ii) in (1.14). However in this case we have to prove these statements in
the setting of Ahlfors regular NTA-domains and without any initial flatness assumption. Thus
if (1.14) (i) or (ii) is false we can repeat the corresponding blow-up argument in Theorem 3 to
get p-harmonic functions ui∞ in domains Ωi

∞, i = 1, 2, which are continuous in Rn with ui∞ ≡ 0
on Rn \ Ωi

∞. Moreover Rn \ Ω̄1
∞ = Ω2

∞. Let µi∞ be the measures corresponding to ui∞, i = 1, 2.
Applying Lemma 5.2-Lemma 5.4 we deduce that if σ∞ denotes the (n−1)-dimensional Hausdorff
measure on ∂Ω1

∞ = ∂Ω2
∞, then

µi∞ ≡ σ∞ for i = 1, 2. (6.1)

Put û = u1
∞ in Ω1

∞ and û = −u2
∞ in Ω̄2

∞. Then from Lemma 2.5 we see that û is p-harmonic
in Rn. Also from Lemma 5.4 we have |∇û| ≤ 1. Using this fact and Hölder continuity of ∇û in
Lemma 2.4 we see, for given x ∈ Rn, that if R > 0 is large enough then

|∇û(x)−∇û(0)| ≤ c(|x|/R)σ, (6.2)

where c = c(p, n). Letting R→∞ we conclude that ∇û(x) = ∇û(0). Thus û is linear and since
∂Ω1
∞ = {û = 0}, we conclude that Ω1

∞ and Ω2
∞ are half spaces. This conclusion leads to

a contradiction exactly as in the proof of Theorem 3. The proof of Theorem 4 is therefore
complete. 2
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6.1 Closing Remarks

We note that a problem related to Theorem 4 was considered in [KPT] and [B1]. Indeed,
suppose Ω+ is a NTA-domain with parameters M, r0 = ∞, and that Ω− = Rn \ Ω+ is also a
NTA-domain with parameters M, r0 =∞. For fixed p, 1 < p <∞, suppose u+, u−, are positive
p-harmonic functions in Ω+,Ω− with continuous boundary value 0 on ∂Ω+ = ∂Ω−. Extend u±
to Ω∓ by putting u± ≡ 0. Let µ± be the measures corresponding to u± as in Lemma 2.5. Next
let

A = {y ∈ ∂Ω+ : lim
t→0

µ−((B(y, t))

µ+(B(y, t))
= f(y), 0 < f(y) <∞}.

From differentation theory it follows that

∂Ω+ = ∂Ω− = A
⋃

B
⋃

C

where µ+, µ−, are mutually absolutely continuous on A, and µ+(B) = 0 = µ−(C). LetHα denote
α-dimensional Hausdorff measure on Rn and let H-dim A denote the Hausdorff dimension of A
defined by

H-dim A = inf{α : Hα(A) = 0}.

We state

Proposition 6.1 H-dim A ≤ n− 1.

The case p = 2 of Proposition 6.1 is due to [KPT]. Moreover using Lemma 2.5, as well as the
blow-up argument in Theorem 4, we believe that one can essentially copy the proof of Theorem
4.1 and Corollary 4.1 for harmonic functions in [KPT] with slight adjustments. For example in
[KPT] the authors quote a result of Hardt and Simon in order to show, for a harmonic function
v in Rn, that |∇v| 6= 0 somewhere on {x : v(x) = 0}. If v is p-harmonic in Rn, for some
1 < p < ∞, then this statement follows easily from Lemma 2.4 and a barrier type argument.
For p ≥ n, Proposition 6.1 is not surprising in view of the results in [LNV].

In [KPT] it is also shown, for p = 2, that if µ±(A) > 0, then H-dim A = n − 1. The proof
uses Proposition 6.1 and a well known monotonicity formula of Alt, Caffarelli, and Friedman.
The proof fails for p 6= 2, since it is not known whether an analogue of this monotonicity formula
holds when p 6= 2. Once again the results in [LNV] provide interesting examples of Reifenberg
domains where H-dim A < n− 1 when p ≥ n.

Finally we note that the arguments in [KPT] are further enhanced by Badger in [B1]. In
order to state these results let VMO (µ+) denote the space of functions on ∂Ω+ that are of
vanishing mean oscillation with respect to µ+. This space is defined in a way similar to the
VMO space defined after (1.5) but with σ replaced by µ+. Badger proves the following.

Proposition 6.2 Suppose p = 2 and log (dµ−/dµ+) ∈ VMO (µ+). Then for some positive
integer d, ∂Ω+ = Γ1

⋃
Γ2 · · ·

⋃
Γd, where Γk, 1 ≤ k ≤ d, are pairwise disjoint. Also each

nontrivial blow-up of u+ at points in Γk produces a homogeneous polynomial of degree k.

We conjecture that an analogue of Proposition 6.2 holds for fixed p, 1 < p < ∞, with ho-
mogeneous polynomial replaced by homogeneous p-harmonic function. Finally, if Ω+ is (δ,∞)-
Reifenberg flat and δ = δ(p) > 0 is small enough, then Proposition 6.2 with d = 1 is proved in
[LuN].
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