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Boundary Harnack Inequalities for Operators of p-Laplace
Type in Reifenberg Flat Domains

John L. Lewis, Niklas Lundström, and Kaj Nyström

Abstract. In this paper we highlight a set of techniques that recently have
been used to establish boundary Harnack inequalities for p-harmonic functions
vanishing on a portion of the boundary of a domain which is ‘flat’ in the sense
that its boundary is well-approximated by hyperplanes. Moreover, we use these
techniques to establish new results concerning boundary Harnack inequalities
and the Martin boundary problem for operators of p-Laplace type with variable
coefficients in Reifenberg flat domains.

1. Introduction and statement of main results

In [LN], [LN1], [LN2], see also [LN3] for a survey of these results, a number
of results concerning the boundary behaviour of positive p-harmonic functions,
1 < p < ∞, in a bounded Lipschitz domain Ω ⊂ Rn were proved. In particular,
the boundary Harnack inequality, as well as Hölder continuity for ratios of positive
p-harmonic functions, 1 < p < ∞, vanishing on a portion of ∂Ω were established.
Furthermore, the p-Martin boundary problem at w ∈ ∂Ω was resolved under the
assumption that Ω is either convex, C1-regular or a Lipschitz domain with small
constant. Also, in [LN4] these questions were resolved for p-harmonic functions
vanishing on a portion of certain Reifenberg flat and Ahlfors regular NTA-domains.

From a technological perspective the toolbox developed in [LN, LN1-LN4] can
be divided into (i) techniques which can be used to establish boundary Harnack
inequalities for p-harmonic functions vanishing on a portion of the boundary of
a domain which is ‘flat’ in the sense that its boundary is well-approximated by
hyperplanes and (ii) techniques which can be used to establish boundary Harnack
inequalities for p-harmonic functions vanishing on a portion of the boundary of
a Lipschitz domain or on a portion of the boundary of a domain which can be
well approximated by Lipschitz graph domains. Domains in category (i) are called
Reifenberg flat domains with small constant or just Reifenberg flat domains. They
include domains with small Lipschitz constant, C1-domains and certain quasi-balls.
Domains in category (ii) include Lipschitz domains with large Lipschitz constant
and certain Ahlfors regular NTA-domains, which can be well approximated by
Lipschitz graph domains in the Hausdorff distance sense. The purpose of this
paper is to highlight the techniques labeled as category (i) in the above discussion
and to use these techniques to establish boundary Harnack inequalities as well as to
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resolve the Martin boundary problem for operators of p-Laplace type with variable
coefficients in Reifenberg flat domains.

To state our results we need to introduce some notation. Points in Euclidean
n-space Rn are denoted by x = (x1, . . . , xn) or (x′, xn) where x′ = (x1, . . . , xn−1) ∈
Rn−1. Let Ē, ∂E, diam E, be the closure, boundary, diameter, of the set E ⊂ Rn

and let d(y,E) equal the distance from y ∈ Rn to E. 〈·, ·〉 denotes the standard
inner product on Rn and |x| = 〈x, x〉1/2 is the Euclidean norm of x. Put B(x, r) =
{y ∈ Rn : |x− y| < r} whenever x ∈ Rn, r > 0, and let dx be Lebesgue n-measure
on Rn. We let

h(E,F ) = max(sup{d(y,E) : y ∈ F}, sup{d(y, F ) : y ∈ E})
be the Hausdorff distance between the sets E,F ⊂ Rn. If O ⊂ Rn is open and
1 ≤ q ≤ ∞, then by W 1,q(O) we denote the space of equivalence classes of functions
f with distributional gradient ∇f = (fx1 , . . . , fxn), both of which are q th power
integrable on O. Let ‖f‖1,q = ‖f‖q +‖ |∇f | ‖q be the norm in W 1,q(O) where ‖·‖q

denotes the usual Lebesgue q-norm in O. Next let C∞0 (O) be the set of infinitely
differentiable functions with compact support in O and let W 1,q

0 (O) be the closure
of C∞0 (O) in the norm of W 1,q(O). By ∇· we denote the divergence operator.

We first introduce the operators of p-Laplace type which we consider in this
paper.

Definition 1.1. Let p, β, α ∈ (1,∞) and γ ∈ (0, 1). Let A = (A1, ..., An) :
Rn × Rn → Rn, assume that A = A(x, η) is continuous in Rn × (Rn \ {0})
and that A(x, η), for fixed x ∈ Rn, is continuously differentiable in ηk, for every
k ∈ {1, ..., n}, whenever η ∈ Rn \ {0}. We say that the function A belongs to the
class Mp(α, β, γ) if the following conditions are satisfied whenever x, y, ξ ∈ Rn

and η ∈ Rn \ {0}:

(i) α−1|η|p−2|ξ|2 ≤
n∑

i,j=1

∂Ai

∂ηj
(x, η)ξiξj ,

(ii)
∣∣∣∣∂Ai

∂ηj
(x, η)

∣∣∣∣ ≤ α|η|p−2, 1 ≤ i, j ≤ n,

(iii) |A(x, η)−A(y, η)| ≤ β|x− y|γ |η|p−1,

(iv) A(x, η) = |η|p−1A(x, η/|η|).
For short, we write Mp(α) for the class Mp(α, 0, γ).

Definition 1.2. Let p ∈ (1,∞) and let A ∈ Mp(α, β, γ) for some (α, β, γ). Given
a bounded domain G we say that u is A-harmonic in G provided u ∈W 1,p(G) and

(1.3)
∫
〈A(x,∇u(x)),∇θ(x)〉 dx = 0

whenever θ ∈ W 1,p
0 (G) . If A(x, η) = |η|p−2(η1, . . . , ηn), then u is said to be p-

harmonic in G. As a short notation for (1.3) we write ∇ · (A(x,∇u)) = 0 in G.

The relevance and importance of the conditions imposed through the assump-
tion A ∈ Mp(α, β, γ) will be discussed below. Initially we just note that the class
Mp(α, β, γ) is, see Lemma 2.15, closed under translations, rotations and under di-
lations x→ rx, r ∈ (0, 1]. Moreover, we note that an important class of equations



BOUNDARY HARNACK INEQUALITIES FOR OPERATORS OF p-LAPLACE TYPE 3

which is covered by Definition 1.1 and 1.2 is the class of equations of the type

(1.4) ∇ ·
[
〈A(x)∇u,∇u〉p/2−1A(x)∇u

]
= 0 in G

where A = A(x) = {ai,j(x)} is such that the conditions in Definition 1.1 (i) - (iv)
are fulfilled.

Next we introduce the geometric notions used in this paper. We define,

Definition 1.5. A bounded domain Ω is called non-tangentially accessible (NTA)
if there exist M ≥ 2 and r0 > 0 such that the following are fulfilled:

(i) corkscrew condition: for any w ∈ ∂Ω, 0 < r < r0, there exists
ar(w) ∈ Ω ∩B(w, r/2), satisfying M−1r < d(ar(w), ∂Ω),

(ii) Rn \ Ω̄ satisfies the corkscrew condition,
(iii) uniform condition: if w ∈ ∂Ω, 0 < r < r0, and w1, w2 ∈ B(w, r) ∩ Ω, then

there exists a rectifiable curve γ : [0, 1]→Ω with γ(0) = w1, γ(1) = w2,

and such that
(a) H1(γ) ≤ M |w1 − w2|,
(b) min{H1(γ([0, t])), H1(γ([t, 1])) } ≤ M d(γ(t), ∂Ω).

In Definition 1.5, H1 denotes length or the one-dimensional Hausdorff measure.
We note that (iii) is different but equivalent to the usual Harnack chain condition
given in [JK] (see [BL], Lemma 2.5). M will be called the NTA-constant of Ω.

Definition 1.6. Let Ω ⊂ Rn be a bounded domain, w ∈ ∂Ω, and 0 < r < r0.
Then ∂Ω is said to be uniformly (δ, r0)-approximable by hyperplanes, provided there
exists, whenever w ∈ ∂Ω and 0 < r < r0, a hyperplane Λ containing w such that

h(∂Ω ∩B(w, r),Λ ∩B(w, r)) ≤ δr.

We let F(δ, r0) denote the class of all domains Ω which satisfy Definition 1.6.
Let Ω ∈ F(δ, r0), w ∈ ∂Ω, 0 < r < r0, and let Λ be as in Definition 1.6. We say
that ∂Ω separates B(w, r), if

(1.7) {x ∈ Ω ∩B(w, r) : d(x, ∂Ω) ≥ 2δr} ⊂ one component of Rn \ Λ.

Definition 1.8. Let Ω ⊂ Rn be a bounded domain. Then Ω and ∂Ω are said to
be (δ, r0)-Reifenberg flat provided Ω ∈ F(δ, r0) and (1.7) hold whenever 0 < r <
r0, w ∈ ∂Ω.

For short we say that Ω and ∂Ω are δ-Reifenberg flat whenever Ω and ∂Ω are
(δ, r0)-Reifenberg flat for some r0 > 0. We note that an equivalent definition of a
Reifenberg flat domain is given in [KT]. As in [KT] one can show that a δ-Reifenberg
flat domain is an NTA-domain with constant M = M(n), provided 0 < δ < δ̂ and
δ̂ is small enough.

In this paper we first prove the following theorem.
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Theorem 1. Let Ω ⊂ Rn be a (δ, r0)-Reifenberg flat domain. Let p, 1 < p <∞, be
given and assume that A ∈Mp(α, β, γ) for some (α, β, γ). Let w ∈ ∂Ω, 0 < r < r0,
and suppose that u, v are positive A-harmonic functions in Ω∩B(w, 4r), continuous
in Ω̄ ∩ B(w, 4r), and u = 0 = v on ∂Ω ∩ B(w, 4r). There exists δ̃ < δ̂, σ > 0, and
c1 ≥ 1, all depending only on p, n, α, β, γ, such that if 0 < δ < δ̃, then∣∣∣∣log

u(y1)
v(y1)

− log
u(y2)
v(y2)

∣∣∣∣ ≤ c1

(
|y1 − y2|

r

)σ

whenever y1, y2 ∈ Ω ∩B(w, r/c1).

We note that in [LN] we obtained for p-harmonic functions u, v, in a bounded
Lipschitz domain Ω, ∣∣∣∣log

u(y1)
v(y1)

− log
u(y2)
v(y2)

∣∣∣∣ ≤ c

whenever w ∈ ∂Ω, and y1, y2 ∈ Ω∩B(w, r/c). Here c depends only on p, n, and the
Lipschitz constant for Ω. Moreover, using this result, we showed, in [LN1], that the
conclusion of Theorem 1 holds whenever u, v, are p-harmonic, and Ω is Lipschitz.
Constants again depend only on p, n, and the Lipschitz constant for Ω.

In this paper we also prove the following theorem.

Theorem 2. Let Ω ⊂ Rn, δ, r0, p, α, β, γ, and A be as in the statement of
Theorem 1. Then there exists δ∗ = δ∗(p, n, α, β, γ) < δ̂, such that the following is
true. Let w ∈ ∂Ω and suppose that û, v̂ are positive A-harmonic functions in Ω
with û = 0 = v̂ continuously on ∂Ω \ {w}. If 0 < δ < δ∗, then û(y) = λv̂(y) for all
y ∈ Ω and for some constant λ.

We remark, using terminology of the Martin boundary problem, that if û is
as in Theorem 2, then û is called a minimal positive A-harmonic function in Ω,
relative to w ∈ ∂Ω. Moreover, the A-Martin boundary of Ω is the set of equivalence
classes of positive minimal A-harmonic functions relative to all boundary points of
Ω. Two minimal positive A-harmonic functions are in the same equivalence class
if they correspond to the same boundary point and one is a constant multiple of
the other. Note that the conclusion of Theorem 2 implies that û is unique up to
constant multiples. Thus, since w ∈ ∂Ω is arbitrary, one can say that the A-Martin
boundary of Ω is identifiable with ∂Ω.

We remark that in [LN1] the Martin boundary problem for p-harmonic func-
tions was resolved in domains which are either convex, C1-regular or Lipschitz
with sufficiently small constant. Also, in [LN4] the Martin boundary problem was
resolved, again for p-harmonic functions, in Reifenberg flat domains and certain
Ahlfors regular NTA-domains. Theorem 2 is new in the case of operators of p-
Laplace type with variable coefficients.

Recall that Ω is said to be a bounded Lipschitz domain if there exists a finite
set of balls {B(xi, ri)}, with xi ∈ ∂Ω and ri > 0, such that {B(xi, ri)} constitutes
a covering of an open neighbourhood of ∂Ω and such that, for each i,

Ω ∩B(xi, ri) = {x = (x′, xn) ∈ Rn : xn > φi(x′)} ∩B(xi, ri),
∂Ω ∩B(xi, ri) = {x = (x′, xn) ∈ Rn : xn = φi(x′)} ∩B(xi, ri),(1.9)
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in an appropriate coordinate system and for a Lipschitz function φi. The Lipschitz
constant of Ω is defined to be M = maxi ‖|∇φi|‖∞. If Ω is Lipschitz then Ω is NTA
with r0 = min ri/c, where c = c(p, n,M) ≥ 1. Moreover, if each φi : Rn−1→R can
be chosen to be either C1- or C1,σ -regular, then Ω is a bounded C1- or C1,σ-domain.

We say that Ω is a quasi-ball provided Ω = f(B(0, 1)), where f = (f1, f2, ..., fn) :
Rn→Rn is a K > 1 quasi-conformal mapping of Rn onto Rn. That is, fi ∈
W 1,n(B(0, ρ)), 0 < ρ <∞, 1 ≤ i ≤ n, and for almost every x ∈ Rn with respect to
Lebesgue n-measure the following hold,

(i) |Df(x)|n = sup
|h|=1

|Df(x)h|n ≤ K|Jf (x)|,

(ii) Jf (x) ≥ 0 or Jf (x) ≤ 0.

In this display we have written Df(x) = ( ∂fi

∂xj
) for the Jacobian matrix of f and

Jf (x) for the Jacobian determinant of f at x.

Remark 1.10. Let Ω ⊂ Rn be a bounded Lipschitz domain with constant M . If
M is small enough then Ω is (δ, r0)-Reifenberg flat for some δ = δ(M), r0 > 0
with δ(M) → 0 as M → 0. Hence, Theorems 1-2 apply to any bounded Lipschitz
domain with sufficiently small Lipschitz constant. Also, if Ω = f(B(0, 1)) where
f is a K quasi-conformal mapping of Rn onto Rn, then one can show that ∂Ω is
δ-Reifenberg flat, with r0 = 1, where δ→0 as K→1 (see [R, Theorems 12.5 -12.7]).
Thus Theorems 1, 2, apply when Ω is a quasi-ball and if K = K(p, n) is close
enough to 1.

To state corollaries to Theorems 1-2 we next introduce the notion of Reifenberg
flat domains with vanishing constant.

Definition 1.11. Let Ω ⊂ Rn be a (δ, r0)-Reifenberg flat domain for some 0 <

δ < δ̂, r0 > 0, and let w ∈ ∂Ω, 0 < r < r0. We say that ∂Ω∩B(w, r) is Reifenberg
flat with vanishing constant, if for each ε > 0, there exists r̃ = r̃(ε) > 0 with the
following property. If x ∈ ∂Ω ∩ B(w, r) and 0 < ρ < r̃, then there is a plane
P ′ = P ′(x, ρ) containing x such that

h(∂Ω ∩B(x, ρ), P ′ ∩B(x, ρ)) ≤ ερ.

The following corollaries are immediate consequences of Theorems 1-2.

Corollary 1. Let Ω ⊂ Rn be a domain which is Reifenberg flat with vanishing
constant. Let p, 1 < p < ∞, be given and assume that A ∈ Mp(α, β, γ) for some
(α, β, γ). Let w ∈ ∂Ω, 0 < r < r0. Assume that u, v are positive A-harmonic
functions in Ω ∩ B(w, 4r), u, v are continuous in Ω̄ ∩ B(w, 4r) and u = 0 = v on
∂Ω ∩ B(w, 4r). There exist r∗1 = r∗1(p, n, α, β, γ) < r and c2 = c2(p, n, α, β, γ) ≥ 1
such that if w′ ∈ ∂Ω ∩B(w, r) and 0 < r′ < r∗1 , then∣∣∣∣log

u(y1)
v(y1)

− log
u(y2)
v(y2)

∣∣∣∣ ≤ c2

(
|y1 − y2|

r′

)σ

whenever y1, y2 ∈ Ω ∩B(w′, r′).

Corollary 2. Let Ω ⊂ Rn, p, α, β, γ and A be as in the statement of Corollary
1. Let w ∈ ∂Ω and suppose that û, v̂ are positive A-harmonic functions in Ω with



6 JOHN L. LEWIS, NIKLAS LUNDSTRÖM, AND KAJ NYSTRÖM

û = 0 = v̂ continuously on ∂Ω \ {w}. Then û(y) = λv̂(y) for all y ∈ Ω and for
some constant λ.

Remark 1.12. We note that if Ω is a bounded C1-domain in the sense of (1.9)
then Ω is also Reifenberg flat with vanishing constant. Hence Corollaries 1-2 apply
to any bounded C1-domain.

Concerning proofs, we here outline the proof of Theorem 1.

Step 0. As a starting point we establish the conclusion of Theorem 1, see Lemma
2.8, when A ∈Mp(α), Ω is equal to a truncated cylinder and w is the center on the
bottom of Ω̄.

Step A. (Uniform non-degeneracy of |∇u| - the ‘fundamental inequality’). There
exist δ1 = δ1(p, n, α, β, γ), ĉ1 = ĉ1(p, n, α, β, γ) and λ̄ = λ̄(p, n, α, β, γ), such that if
0 < δ < δ1, then

(1.13) λ̄−1 u(y)
d(y, ∂Ω)

≤ |∇u(y)| ≤ λ̄
u(y)

d(y, ∂Ω)
whenever y ∈ Ω ∩B(w, r/ĉ1).

If (1.13) holds then we say that |∇u| satisfies the ‘fundamental inequality’ in
Ω ∩B(w, r/ĉ1).

Step B. (Extension of |∇u|p−2 to an A2-weight). There exist δ2 = δ2(p, n, α, β, γ)
and ĉ2 = ĉ2(p, n, α, β, γ) such that if 0 < δ < δ2, then |∇u|p−2 extends to an
A2(B(w, r/(ĉ1ĉ2))-weight with constant depending only on p, n, α, β, γ.

For the definition of an A2-weight, see section 4. The ‘fundamental inequal-
ity’ established in Step A is crucial to our arguments and section 3 is devoted to
its proof. Armed with the results established in Step A and Step B we introduce
certain deformations of A-harmonic functions. In particular, to describe the con-
structions we let Ω ⊂ Rn, δ, r0, p, α, β, γ, A, w, r, u and v be as in the statement
of Theorem 1. Let δ̃ = min{δ1, δ2} where δ1 and δ2 are given in Step A and Step
B respectively. We extend u and v to B(w, 4r) by defining u ≡ 0 ≡ v on B(w, 4r)\Ω̄.

Step C. (Deformation of A-harmonic functions). Let r∗ = r/c and assume that

(a) 0 ≤ u ≤ v/2 in Ω̄ ∩ B̄(w, 4r∗),
(b) c−1 ≤ u(ar∗(w)), v(ar∗(w)) ≤ c,

(c) c−1h(ar∗(w)) ≤ max
Ω̄∩B̄(w,4r∗)

h ≤ ch(ar∗(w)) whenever h = u or v.(1.14)

Here c ≥ 1 depends only on p, n, α, β, γ. At the end of section 4 we then show that
the assumptions in (1.14) can be easily removed. Hence, to prove Theorem 1 we
can without loss of generality assume that (1.14) holds. We let ũ(·, τ), 0 ≤ τ ≤ 1,
be the A-harmonic function in Ω ∩B(w, 4r∗) with continuous boundary values,

(1.15) ũ(y, τ) = τv(y)+(1− τ)u(y) whenever y ∈ ∂(Ω∩B(w, 4r∗)) and τ ∈ [0, 1].

Using (1.14), (1.15), we see that if t, τ ∈ [0, 1], then

(1.16) 0 ≤ ũ(·, t)− ũ(·, τ)
t− τ

= v − u ≤ c(p, n, α, β, γ)
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on ∂(Ω∩B(w, 4r∗)). From the maximum principle for A-harmonic functions it then
follows that the inequality in (1.16) also holds in Ω ∩ B(w, 4r∗). Therefore, using
(1.16) we see that τ→ũ(y, τ), τ ∈ [0, 1], for fixed y ∈ Ω ∩ B(w, 4r∗), is Lipschitz
continuous with Lipschitz norm≤ c. Thus ũτ (y, ·) exists, for fixed y ∈ Ω∩B(w, 4r∗),
almost everywhere in [0,1]. Let {yν} be a dense sequence of Ω ∩B(w, 4r∗) and let
W be the set of all τ ∈ [0, 1] for which uτ (ym, ·) exists, in the sense of difference
quotients, whenever ym ∈ {yν}. We note that H1([0, 1] \ W ) = 0 where H1 is
one-dimensional Hausdorff measure. Next, applying the ‘fundamental inequality’,
established in Step A, to ũ(·, τ), τ ∈ [0, 1], we see that there exist constants ĉ and
λ̄, which depend on p, n, α, β, γ, but are independent of τ , τ ∈ [0, 1], such that if
y ∈ Ω ∩B(w, 16r′), r′ = r∗/ĉ and τ ∈ [0, 1], then

λ̄−1 ũ(y, τ)
d(y, ∂Ω)

≤ |∇ũ(y, τ)| ≤ λ̄
ũ(y, τ)
d(y, ∂Ω)

.(1.17)

One can then deduce, using the fundamental theorem of calculus and arguing as in
[LN4, displays (1.15)-(1.23)], that

(1.18) log
(
v(ym)
u(ym)

)
= log

(
ũ(ym, 1)
ũ(ym, 0)

)
=

1∫
0

f(ym, τ)
ũ(ym, τ)

dτ

whenever ym ∈ {yν}, ym ∈ Ω∩B(w, r′), and for a function f which has the following
important properties,

(1.19)
(i) f ≥ 0 is continuous in B̄(w, r′) with f ≡ 0 on B̄(w, r′) \ Ω,
(ii) f(ym, τ) = ũτ (ym, τ)

whenever ym ∈ {yν}, ym ∈ Ω ∩ B(w, r′), τ ∈ W. Moreover, f is locally a weak
solution in Ω ∩B(w, r′) to the equation

(1.20) L̃ζ =
n∑

i,j=1

∂

∂yi
( b̃ij(y, τ)ζyj

(y) ) = 0

where

(1.21) b̃ij(y, τ) =
∂Ai

∂ηj
(y,∇ũ(y, τ))

whenever y ∈ Ω ∩B(w, r′) and 1 ≤ i, j ≤ n. Also, using Definition 1.1 (i) and (ii)
we see that

(1.22) α−1λ̃(y, τ)|ξ|2 ≤
∑
i,j

b̃ij(y, τ)ξiξj ≤ αλ̃(y, τ)|ξ|2

whenever y ∈ Ω ∩B(w, r′) and where λ̃(y, τ) = |∇ũ(y, τ)|p−2. Finally, a key obser-
vation in this step is that ζ = ũ(·, τ) is also a weak solution to L̃ in Ω ∩ B(w, r′).
Indeed, using the homogeneity in Definition 1.1 (iv) we see that

(1.23)

∑
j

b̃ij(y, τ)ũyj
(y, τ) =

∑
j

∂Ai

∂ηj
(y,∇ũ(y, τ))ũyj

(y, τ)

= (p− 1)Ai(y,∇ũ(y, τ)).

We conclude from (1.23) that ζ = ũ(·, τ) is also a weak solution to L̃.
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Step D. (Boundary Harnack inequalities for degenerate elliptic equations). Using
the deformations introduced in Step C the proof of Theorem 1 therefore boils down
to proving boundary Harnack inequalities for the operator L̃. The idea here is to
make use of Step B to conclude that λ̃(·, τ), τ ∈ [0, 1], can be extended to A2-weights
in B(w, 4r′′), r′′ = r′/(4ĉ2). Then the operator L̃ can be considered as a degenerate
elliptic operator in the sense of [FKS], [FJK], [FJK1], and we can apply results of
these authors. In particular, to do this we first observe that the sequence {yν},
introduced below (1.16), is a dense sequence in Ω ∩ B(w, r′), and v1(·) = f(·, τ),
v2(·) = u(·, τ), are positive solutions to L̃, see (1.20)-(1.22), vanishing continuously
on Ω ∩ B(w, r′). Second, we observe from Step B that λ̃(y, τ) = |∇ũ(y, τ)|p−2 can
be extended to an A2(B(w, 4r′′))-weight. Hence, from [FKS], [FJK] and [FJK1],
we can conclude that there exist a constant c = c(p, n, α, β, γ), 1 ≤ c < ∞, and
σ = σ(p, n, α, β, γ), σ ∈ (0, 1), such that if r′′′ = r′′/c, then

(1.24)
∣∣∣∣v1(y1)v2(y1)

− v1(y2)
v2(y2)

∣∣∣∣ ≤ c
v1(ar′′′(w))
v2(ar′′′(w))

(
|y1 − y2|

r′′

)σ

whenever y1, y2 ∈ Ω ∩ B(w, r′′′). Hence, assuming (1.14) we see that Theorem 1
now follows from (1.18), (1.24), as

(1.25) 0 ≤ f(ar′′′(w), τ) ≤ c, u(ar′′′(w), τ) ≥ c−1, whenever τ ∈ (0, 1].

(1.25) is a consequence of (1.16) and (1.14) (b).

The proof of Theorem 2 can also be decomposed into steps similar to steps A-D
stated above. Still in this case details are more involved and we refer to section 5
for details.

The rest of the paper is organized as follows. In section 2 we state a number
of basic estimates for A-harmonic functions in NTA-domains and we obtain the
conclusion of Theorem 1 when A ∈Mp(α), Ω is equal to a truncated cylinder (see
(2.7) and Lemma 2.8), and w is the center of the bottom of Ω̄ (Step 0). In section
3 we establish the ‘fundamental inequality’ for A-harmonic functions, u, vanishing
on a portion of a Reifenberg flat domain (Step A). In section 4 we first state a
number of results for degenerate elliptic equations tailored to our situation and we
then extend |∇u|p−2 to an A2-weight (Step B). In this section we also complete
the proof of Theorem 1 by showing that the technical assumption in (1.14) can be
removed. In section 5 we prove Theorem 2. Finally in an Appendix to this paper
(section 6), we point out an alternative argument to Step C based on an idea in
[W].

2. Basic estimates for A-harmonic functions and boundary Harnack
inequalities in a prototype case

In this section we first state and prove some basic estimates for non-negative
A-harmonic functions in a bounded NTA domain Ω ⊂ Rn. We then prove the
boundary Harnack inequality for non-negative A-harmonic functions, A ∈ Mp(α),
vanishing on a portion of a hyperplane. Throughout this section we will assume
that A ∈ Mp(α, β, γ) or A ∈ Mp(α) for some (α, β, γ) and 1 < p < ∞. Also in
this paper, unless otherwise stated, c will denote a positive constant ≥ 1, not nec-
essarily the same at each occurrence, depending only on p, n,M,α, β, γ where M
denotes the NTA-constant for Ω ⊂ Rn. In general, c(a1, . . . , am) denotes a positive
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constant ≥ 1, which may depend only on p, n, M,α, β, γ and a1, . . . , am, not neces-
sarily the same at each occurrence. If A ≈ B then A/B is bounded from above and
below by constants which, unless otherwise stated, only depend on p, n,M,α, β, γ.
Moreover, we let max

B(z,s)
u, min

B(z,s)
u be the essential supremum and infimum of u on

B(z, s) whenever B(z, s) ⊂ Rn and whenever u is defined on B(z, s). We put
∆(w, r) = ∂Ω∩B(w, r) whenever w ∈ ∂Ω, 0 < r. Finally, ei, 1 ≤ i ≤ n, denotes the
point in Rn with one in the i th coordinate position and zeroes elsewhere.

Lemma 2.1. Given p, 1 < p <∞, assume that A ∈Mp(α, β, γ) for some (α, β, γ).
Let u be a positive A-harmonic function in B(w, 2r). Then

(i) rp−n

∫
B(w,r/2)

|∇u|p dx ≤ c ( max
B(w,r)

u)p,

(ii) max
B(w,r)

u ≤ c min
B(w,r)

u.

Furthermore, there exists σ̃ = σ̃(p, n, α, β, γ) ∈ (0, 1) such that if x, y ∈ B(w, r),
then

(iii) |u(x)− u(y)| ≤ c

(
|x−y|

r

)σ̃

max
B(w,2r)

u.

Proof: Lemma 2.1 (i), (ii) are standard Caccioppoli and Harnack inequalities while
(iii) is a standard Hölder estimate (see [S]). 2

Lemma 2.2. Let Ω ⊂ Rn be a bounded NTA-domain, suppose that p, 1 < p <∞,
is given and that A ∈Mp(α, β, γ) for some (α, β, γ). Let w ∈ ∂Ω, 0 < r < r0, and
suppose that u is a non-negative continuous A-harmonic function in Ω̄ ∩ B(w, 2r)
and that u = 0 on ∆(w, 2r). Then

(i) rp−n

∫
Ω∩B(w,r/2)

|∇u|p dx ≤ c ( max
Ω∩B(w,r)

u)p.

Furthermore, there exists σ̃ = σ̃(p, n,M,α, β, γ) ∈ (0, 1) such that if x, y ∈ Ω ∩
B(w, r), then

(ii) |u(x)− u(y)| ≤ c

(
|x−y|

r

)σ̃

max
Ω∩B(w,2r)

u.

Proof: Lemma 2.2 (i) is a standard subsolution inequality while (ii) follows from
a Wiener criteria first proved in [M] and later generalized in [GZ]. 2

Lemma 2.3. Let Ω ⊂ Rn be a bounded NTA-domain, suppose that p, 1 < p <∞,
is given and that A ∈Mp(α, β, γ) for some (α, β, γ). Let w ∈ ∂Ω, 0 < r < r0, and
suppose that u is a non-negative continuous A-harmonic function in Ω̄ ∩ B(w, 2r)
and that u = 0 on ∆(w, 2r). There exists c = c(p, n,M,α, β, γ), 1 ≤ c < ∞, such
that if r̃ = r/c, then

max
Ω∩B(w,r̃)

u ≤ c u(ar̃(w)).

Proof: A proof of Lemma 2.3 for linear elliptic PDE can be found in [CFMS]. The
proof uses only analogues of Lemmas 2.1, 2.2 for linear PDE and Definition 1.5. In
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particular, the proof also applies in our situation. 2

Lemma 2.4. Let Ω ⊂ Rn be a bounded NTA-domain, suppose that p, 1 < p <∞,
is given and that A ∈ Mp(α, β, γ) for some (α, β, γ). Let w ∈ ∂Ω, 0 < r <
r0, and suppose that u is a non-negative continuous A-harmonic function in Ω̄ ∩
B̄(w, 4r) and that u = 0 on ∆(w, 4r). Extend u to B(w, 4r) by defining u ≡ 0 on
B(w, 4r)\Ω. Then u has a representative in W 1,p(B(w, 4r)) with Hölder continuous
partial derivatives of first order in Ω ∩ B(w, 4r). In particular, there exists σ̂ ∈
(0, 1], depending only on p, n, α, β, γ such that if x, y ∈ B(ŵ, r̂/2), B(ŵ, 4r̂) ⊂
Ω ∩B(w, 4r), then

c−1 |∇u(x)−∇u(y)| ≤ (|x− y|/r̂)σ̂ max
B(ŵ,r̂)

|∇u| ≤ c r̂−1 (|x− y|/r̂)σ̂ max
B(ŵ,2r̂)

u.

Proof: Given ε > 0 and small, let

(2.5) A(y, η, ε) =
∫
Rn

A(y, η − x)θε(x)dx whenever (y, η) ∈ Rn ×Rn,

where θ ∈ C∞0 (B(0, 1)) with
∫
Rn θdx = 1 and θε(x) = ε−nθ(x/ε) whenever x ∈ Rn.

From Definition 1.1 and standard properties of approximations to the identity, we
deduce for some c = c(p, n) ≥ 1 that

(i) (cα)−1(ε+ |η|)p−2|ξ|2 ≤
n∑

i,j=1

∂Ai

∂ηj
(y, η, ε)ξiξj ,

(ii)
∣∣∣∣∂Ai

∂ηj
(y, η, ε)

∣∣∣∣ ≤ cα(ε+ |η|)p−2, 1 ≤ i, j ≤ n,

(iii) |A(x, η, ε)−A(y, η, ε)| ≤ cβ|x− y|γ(ε+ |η|)p−1(2.6)

whenever x, y, η ∈ Rn.Moreover, A(y, ·, ε) is, for fixed (y, ε), infinitely differentiable.
To prove Lemma 2.4 we choose u(·, ε), a weak solution to the PDE with struc-

ture as in (2.6), in such a way that u(·, ε) is continuous in Ω̄∩B̄(w, 3r) and u(·, ε) = u
on ∂[Ω∩B(w, 3r)]. Existence of u(·, ε) follows from the Wiener criteria in [GZ] men-
tioned in the proof of Lemma 2.2, the maximum principle for A-harmonic functions,
and the fact that the W 1,p-Dirichlet problem for these functions, in Ω ∩ B(w, 3r),
always has a unique solution (see [HKM, Appendix I]). Moreover, from [T], [T1],
it follows that u(·, ε) is in C1,σ̂(Ω ∩ B(w, 2r)) for some σ̂ > 0 with constants inde-
pendent of ε. Letting ε→0 one can show, using Definition 1.1, that subsequences
of {u(·, ε)}, {∇u(·, ε)}, converge pointwise to u,∇u. In view of Lemma 2.1 and
the result in [T] it follows that this convergence is uniform on compact subsets of
Ω ∩B(w, 3r). Using this fact we get the last display in Lemma 2.4.

Finally we note that in [T] a stronger assumption, compared to (2.6) (iii), is
imposed. However, other authors later obtained the results in [T] under assumption
(2.6) (see [Li] for references). 2

Next we show that the conclusion of Theorem 1 holds in the case of a truncated
cylinder with w the center on the bottom of the cylinder (Step 0). To this end we
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introduce, for a, b ∈ R+ and w = (w1, ..., wn) ∈ Rn, the truncated cylinders,

Qa,b(w) = {y = (y′, yn) : |y′ − w′| < a, |yn − wn| < b},
Q+

a,b(w) = {y = (y′, yn) : |y′ − w′| < a, 0 < yn − wn < b},
Q−a,b(w) = {y = (y′, yn) : |y′ − w′| < a, −b < yn − wn < 0}.(2.7)

Furthermore, if a = b then we let Qa(w) = Qa,a(w), Q+
a (w) = Q+

a,a(w), Q−a (w) =
Q−a,a(w).

Lemma 2.8. Suppose that p, 1 < p < ∞, is given and that A ∈ Mp(α) for
some α. Assume also, that u, v are non-negative A-harmonic functions in Q+

1 (0),
continuous on the closure of Q+

1 (0), and with u = 0 = v on ∂Q+
1 (0) ∩ {yn = 0}.

Then there exist c = c(p, n, α), 1 ≤ c <∞, and σ = σ(p, n, α) ∈ (0, 1] such that∣∣∣∣log
(
u(y1)
v(y1)

)
− log

(
u(y2)
v(y2)

)∣∣∣∣ ≤ c|y1 − y2|σ

whenever y1, y2 ∈ Q+
1/4(0).

Proof. Let A = A(η) be as in Lemma 2.8 and let p be fixed, 1 < p < ∞. Note
that yn is A-harmonic and that it suffices to prove Lemma 2.8 when v = yn. Define
A(η, ε) as in (2.5) relative to A and let u(·, ε) be the solution to∇·(A(∇u(y, ε), ε)) =
0 with continuous boundary values equal to u on ∂Q+

1 (0). Let

A∗ij(y, ε) = 1
2 (ε+ |∇u(y, ε)|)2−p

[
∂Ai

∂ηj
(∇u(y, ε), ε) +

∂Aj

∂ηi
(∇u(y, ε), ε)

]
whenever y ∈ Q+

1/2(0) and 1 ≤ i, j ≤ n. From (2.6) (ii) and Schauder type estimates
we see that u(·, ε), yn, are classical solutions to the non-divergence form uniformly
elliptic equation,

(2.9) L∗ζ =
n∑

i,j=1

A∗ij(y, ε)ζyiyj = 0,

for y ∈ Q+
1/2(0). Note also from (2.6) that the ellipticity constant for (A∗ij(y, ε)) and

the L∞-norm for A∗ij(y, ε), 1 ≤ i, j ≤ n, in Q+
1/2(0), depend only on α, p, n. From

this note we see that if z = (z′, zn) ∈ Q+
1/2(0) and 10−3 < ρ1 < ρ2 < 103, then

(2.10) ψ(y) =
e−N |y−z|2 − e−Nρ2

2

e−Nρ2
1 − e−Nρ2

2

is a subsolution to L∗ in Q+
1 (0)∩[B(z, ρ2)\B(z, ρ1)], if N = N(α, p, n) is sufficiently

large, and ψ ≡ 1 on ∂B(z, ρ1) while ψ ≡ 0 on ∂B(z, ρ2). Using this fact, with
z = (z′, 1/16), |z′| < 1/2, ρ1 = 1/64, ρ2 = 1/16 and Harnack’s inequality for L∗

(see [GT, Corollary 9.25]) we get

(2.11) c−1yn u(en/4, ε) ≤ u(y, ε)

whenever y ∈ Q+
1/4(0). Moreover, using 1 − ψ, z = (z′,−en/64), |z′| < 1/2, ρ1 =

1/64, ρ2 = 1/16, in a similar argument it follows that

(2.12) u(y, ε) ≤ cyn max
Q+

1/4(0)
u(·, ε) ≤ c2 yn u(en/4, ε)
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in Q+
1/4(0). In particular, the right-hand inequality in (2.12) follows from the ana-

logue of Lemma 2.3 for L∗.
Fix x ∈ ∂Q+

1/2(0) ∩ {y : yn = 0}. From (2.11), (2.12), and linearity of L∗ one
can deduce (see for example [LN, Lemma 3.27]) that there exists θ, 0 < θ < 1, such
that

(2.13) osc (ρ/4) ≤ θ osc (ρ)

when 0 < ρ ≤ 1/4, where osc (t) = M(t)−m(t) and we have put

M(t) = max
Q+

t (x)

u(y,ε)
yn

, m(t) = min
Q+

t (x)

u(y,ε)
yn

.

To get (2.13) one can simply apply the same argument as in (2.11), (2.12) to
u−m(ρ)yn, yn and M(ρ)yn − u, yn in Q+

ρ (x). Iterating (2.13), we obtain for some
λ > 0, c > 1, depending on α, p, n, that

(2.14) osc (s) ≤ c (s/t)λ osc (t), 0 < s < t ≤ 1/4.

Letting ε→0 it follows as in the proof of Lemma 2.4 that u(·, ε) converges uniformly
to u on compact subsets of Q+

1/2(0). Thus (2.11), (2.12) and (2.14) also hold for u.
Moreover, (2.11), (2.12), (2.14), arbitrariness of x, and interior Harnack - Hölder
continuity of u are easily shown to be equivalent to the conclusion of Lemma 2.8
when v(y) = yn.2

We note that boundary Harnack inequalities for non-divergence form linear
symmetric operators in Lipschitz domains can be found in either [B] or [FGMS].

We end this section by proving the following lemma.

Lemma 2.15. Let G ⊂ Rn be an open set, suppose that p, 1 < p < ∞, is given
and let A ∈ Mp(α, β, γ) for some (α, β, γ). Let F : Rn → Rn be the composition
of a translation, a rotation and a dilation z → rz, r ∈ (0, 1]. Suppose that u is
A-harmonic in G and define û(z) = u(F (z)) whenever F (z) ∈ G. Then û is Â-
harmonic in F−1(G) and Â ∈Mp(α, β, γ).

Proof. Suppose that F (z) = z + w for some w ∈ Rn, i.e., F is a translation.
In this case the conclusion follows immediately with Â(z, η) = A(z + w, η) and
Â ∈ Mp(α, β, γ). Suppose that F (z) = Γz, where Γ is an orthogonal matrix
with det Γ = 1. In this case the conclusion follows with Â(z, η) = A(Γz,Γη) and
Â ∈ Mp(α, β, γ). Finally, suppose that F (z) = rz for some r ∈ (0, 1]. Then û is
Â-harmonic in F−1(G) with Â(z, η) = rp−1A(rz, r−1η). Moreover, property (i),
(ii) and (iv) in Definition 1.1 follow readily. To prove (iii) in Definition 1.1 we see
that

|Â(z, η)− Â(y, η)| ≤ βrγ |z − y|γ |η|p−1 ≤ β|z − y|γ |η|p−1

whenever r ∈ (0, 1]. This completes the proof of Lemma 2.15. 2

3. Non-degeneracy of |∇u|

In this section we establish the ‘fundamental inequality’ referred to as Step A
in the introduction. To do this we first prove a few technical results.
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Lemma 3.1. Let 1 < p <∞, and assume that A1, A2 ∈Mp(α, β, γ) with

|A1(y, η)−A2(y, η)| ≤ ε|η|p−1 whenever y ∈ Q+
1 (0)

for some 0 < ε < 1/2. Let u2 be a non-negative A2-harmonic function in Q+
1 (0),

continuous on the closure Q+
1 (0), and with u2 = 0 on ∂Q+

1 (0)∩{yn = 0}. Moreover,
let u1 be the A1-harmonic function in Q+

1/2(0) which is continuous on the closure
of Q+

1/2(0) and which coincides with u2 on ∂Q+
1/2(0). Then there exist, given ρ ∈

(0, 1/16), c, c̃, θ, and τ, all depending only on p, n, α, β, γ, such that

|u2(y)− u1(y)| ≤ cεθu2(en/2) ≤ c̃εθρ−τu2(y) whenever y ∈ Q+
1/4(0) \Q+

1/4,ρ(0) .

Proof. To begin the proof of Lemma 3.1 we note that the existence of u1 in Lemma
3.1 follows from the Wiener criteria in [GZ], see the discussion after Lemma 2.2, the
maximum principle for A-harmonic functions, and the fact that the W 1,p-Dirichlet
problem for these functions in Q+

1/2(0) always has a unique solution (see [HKM,
Appendix I]). Observe for x ∈ Rn, λ ∈ Rn, ξ ∈ Rn \ {0}, and A ∈ Mp(α, β, γ),
that

(3.2) Ai(x, λ)−Ai(x, ξ) =
n∑

j=1

(λj − ξj)

1∫
0

∂Ai

∂ηj
(x, tλ+ (1− t)ξ)dt

for i ∈ {1, .., n}. Using (3.2) and Definition 1.1 (i), (ii), we see that

(3.3) c−1 (|λ|+|ξ|)p−2 |λ−ξ|2 ≤ 〈A(x, λ)−A(x, ξ), λ−ξ〉 ≤ c (|λ|+|ξ|)p−2|λ−ξ|2 .

Moreover, from (3.3) we deduce that if

I =
∫

Q+
1/2(0)

|∇u2 −∇u1|pdy,

then,

(3.4) I ≤ cJ, J :=
∫

Q+
1/2(0)

〈A1(y,∇u1(y))−A1(y,∇u2(y)),∇u2(y)−∇u1(y)〉dy,

whenever p ≥ 2. Also, if 1 < p < 2, we see from (3.3) and Hölder’s inequality that

(3.5) I ≤ cJp/2

 ∫
Q+

1/2(0)

|∇u1|p + |∇u2|pdx


1−p/2

where J is as defined in (3.4). As ∇ · (A1(y,∇u1(y))) = 0 = ∇ · (A2(y,∇u2(y)))
whenever y ∈ Q+

1/2(0) and as θ = u2 − u1 ∈ W 1,p
0 (Q+

1/2(0)), we see from the
definition of J in (3.4) that

J =
∫

Q+
1/2(0)

〈A2(y,∇u2(y))−A1(y,∇u2(y)),∇u2(y)−∇u1(y)〉dy.(3.6)
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Hence, using (3.4), (3.6), the assumption on the difference |A1(y, η) − A2(y, η)|
stated in the lemma and Hölder’s inequality we can conclude, for p ≥ 2, that

I ≤ cε

∫
Q+

1/2(0)

(|∇u1|p + |∇u2|p)dx.(3.7)

Also, for 1 < p < 2, we can use (3.5) to find that

(3.8) I ≤ cεp/2

∫
Q+

1/2(0)

(|∇u1|p + |∇u2|p)dx.

Now from the observation above (3.6), (3.3) with ξ = 0, and Hölder’s inequality we
see that ∫

Q+
1/2(0)

|∇u1|pdx ≤ c

∫
Q+

1/2(0)

〈A1(x,∇u1(x)), ∇u2(x)〉dx

≤ (1/2)
∫

Q+
1/2(0)

|∇u1|pdx + c

∫
Q+

1/2(0)

|∇u2|pdx.

Thus,

(3.9)
∫

Q+
1/2(0)

|∇u1|pdx ≤ c

∫
Q+

1/2(0)

|∇u2|pdx.

Let a = min{1, p/2}. Using (3.9) in (3.8), (3.7), and Lemmas 2.1 - 2.3 for u2 we
obtain

I ≤ cεa(u2(en/2))p.(3.10)

Next using the Poincáre inequality for functions in W 1,p
0 (Q+

1/2(0)) we deduce from
(3.10) that

(3.11)
∫

Q+
1/2(0)

|u2 − u1|p dx ≤ c

∫
Q+

1/2(0)

|∇u2 −∇u1|p dx ≤ cεa(u2(en/2))p.

In the following we let η = a/(p+ 2) and we introduce the sets

(3.12) E = {y ∈ Q+
1/2(0) : |u2(y)− u1(y)| ≤ εηu2(en/2)}, F = Q+

1/2(0) \ E.

Moreover, for a measurable function f defined on Q+
1/2(0) we introduce, whenever

y ∈ Q+
1/2(0), the Hardy-Littlewood maximal function

M(f)(y) := sup
{r>0, Qr(y)⊂Q+

1/2(0)}

1
|Qr(y)|

∫
Qr(y)

|f(z)|dz.(3.13)

Let

G = {y ∈ Q+
1/2(0) : M(χF )(y) ≤ εη}(3.14)

where χF is the indicator function for the set F . Then using weak (1,1)-estimates
for the Hardy-Littlewood maximal function, (3.11) and (3.12) we see that

|Q+
1/2(0) \G| ≤ cε−η|F | ≤ cε−ηε−pηεa = cεη(3.15)
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by our choice for η. Also, using continuity of u2(y)− u1(y) we find for y ∈ G that

(3.16) |u2(y)− u1(y)| = lim
r→0

1
|B(y, r)|

∫
B(y,r)

|u2(z)− u1(z)|dz ≤ cεηu2(en/2).

If y ∈ Q+
1/4(0) \ G, then from (3.15) we see there exists ŷ ∈ G such that |y − ŷ| ≤

c(n)εη/n. Using Lemmas 2.1, 2.2, we hence get that

|u2(y)− u1(y)| ≤ |u2(ŷ)− u1(ŷ)|+ |u2(y)− u2(ŷ)|+ |u1(y)− u1(ŷ)|
≤ c(εη + εσ̃η/n)u2(en/2).(3.17)

This completes the proof of the first inequality stated in Lemma 3.1. Finally, using
the Harnack inequality we see that there exists τ = τ(p, n, α, β, γ) ≥ 1 such that
u2(en/2) ≤ cρ−τu2(y) whenever y ∈ Q+

1/4(0) \Q+
1/4,ρ(0). 2

We continue by proving the following important technical lemma.

Lemma 3.18. Let O ⊂ Rn be an open set, suppose 1 < p <∞, and that A1, A2 ∈
Mp(α, β, γ). Also, suppose that û1, û2 are non-negative functions in O, that û1 is
A1-harmonic in O and that û2 is A2-harmonic in O. Let ã ≥ 1, y ∈ O and assume
that

1
ã

û1(y)
d(y, ∂O)

≤ |∇û1(y)| ≤ ã
û1(y)

d(y, ∂O)
.

Let ε̃−1 = (cã)(1+σ̂)/σ̂, where σ̂ is as in Lemma 2.4. If

(1− ε̃)L̂ ≤ û2

û1
≤ (1 + ε̃)L̂ in B(y, 1

100d(y, ∂O))

for some L̂, 0 < L̂ <∞, then for c = c(p, n, α, β, γ) suitably large,

1
cã

û2(y)
d(y, ∂O)

≤ |∇û2(y)| ≤ cã
û2(y)

d(y, ∂O)
.

Proof. Let ã ≥ 1, y ∈ O be as in the statement of the lemma. Using Lemma 2.4
and the Harnack inequality in Lemma 2.1 (ii) we see that,

(3.19) |∇û2(z1)−∇û2(z2)| ≤ ctσ̂ max
B(y,td(y,∂O))

|∇û2(·)| ≤ c2tσ̂ û2(y)/d(y, ∂O)

whenever z1, z2 ∈ B̄(y, td(y, ∂O)) and 0 < t ≤ 10−3. Here c depends only on
p, n, α, β, γ. Using (3.19) we see that we only have to prove bounds from below for
the gradient of û2 at y. To achieve this we suppose that,

(3.20) |∇û2(y)| ≤ ζ û2(y)/d(y, ∂O),

for some small ζ > 0 to be chosen. From (3.19) with z = z1, y = z2 and (3.20) we
then deduce that

(3.21) |∇û2(z)| ≤ [ζ + c2tσ̂] û2(y)/d(y, ∂O)

whenever z ∈ B(y, td(y, ∂O)). Integrating, it follows that if ŷ ∈ ∂B(y, td(y, ∂O)),
|y − ŷ| = td(y, ∂O), t = ζ1/σ̂, then

(3.22) |û2(ŷ)− û2(y)| ≤ c′ζ1+1/σ̂ û2(y).

The constants in (3.21),(3.22) depend only on p, n, α, β, γ.
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Next we note that (3.19) also holds with û2 replaced by û1. Let λ = ∇û1(y)
|∇û1(y)| .

Then from (3.19) for û1 and the non-degeneracy assumption on |∇û1| in Lemma
3.18, we find that

〈∇û1(z), λ〉 ≥ (1− c ãζ)|∇û1(y)| whenever z ∈ B̄(y, ζ1/σ̂d(y, ∂O)),

for some c = c(p, n, α, β, γ). If ζ ≤ (2cã)−1, where c is the constant in the last
display, then we get from integration that

(3.23) c∗(û1(ŷ)− û1(y)) ≥ ã−1ζ1/σ̂û1(y)

with ŷ = y+ ζ1/σ̂d(y, ∂O)λ and where the constant c∗ depends only on p, n, α, β, γ.
From (3.23), (3.22), we see that if ε̃ is as in Lemma 3.18, then

(1− ε̃)L̂ ≤ û2(ŷ)
û1(ŷ)

≤
(

1 + c′ζ1+1/σ̂

1 + ζ1/σ̂/(ãc∗)

)
û2(y)
û1(y)

≤ (1 + ε̃)
(

1 + c′ζ1+1/σ̂

1 + ζ1/σ̂/(ãc∗)

)
L̂ < (1− ε̃)L̂(3.24)

provided 1/(ãc̃)1/σ̂ ≥ ζ1/σ̂ ≥ ãc̃ ε̃ for some large c̃ = c̃(p, n, α, β, γ). This inequal-
ity and (3.23) are satisfied if ε̃−1 = (c̃ã)(1+σ̂)/σ̂ and ζ−1 = c̃ã. Moreover, if the
hypotheses of Lemma 3.18 hold for this ε̃, then in order to avoid the contradiction
in (3.24) it must be true that (3.20) is false for this choice of ζ. Hence Lemma 3.18
is true. 2

Armed with Lemma 3.1 and Lemma 3.18 we prove the ‘fundamental inequal-
ity’ for A-harmonic functions, A ∈ Mp(α, β, γ) for some (α, β, γ), vanishing on a
portion of {y : yn = 0}.

Lemma 3.25. Let 1 < p < ∞, and A ∈ Mp(α, β, γ) for some (α, β, γ). Suppose
that u is a positive A-harmonic function in Q+

1 (0), continuous on the closure of
Q+

1 (0), and that u = 0 on ∂Q+
1 (0) ∩ {yn = 0}. Then there exist ĉ = ĉ(p, n, α, β, γ)

and λ̄ = λ̄(p, n, α, β, γ), such that

λ̄−1u(y)
yn

≤ |∇u(y)| ≤ λ̄
u(y)
yn

whenever y ∈ Q+
1/ĉ(0).

Proof. Let A ∈ Mp(α, β, γ), A = A(y, η), be given. Put A2(y, η) = A(y, η),
A1(η) = A(0, η). Clearly, A1, A2 ∈ Mp(α, β, γ). We decompose the proof into the
following steps.

Step 1. Lemma 3.25 holds for the operator A1. To see this we note once again
that û1(y) = yn is A1-harmonic and û1 = 0 on ∂Q+

1 (0) ∩ {yn = 0}. Let û2 = u.
Applying Lemma 2.8 to the pair û1, û2 we see that∣∣∣∣log

(
û1(y1)
û2(y1)

)
− log

(
û1(y2)
û2(y2)

)∣∣∣∣ ≤ c|y1 − y2|σ(3.26)

whenever y1, y2 ∈ Q+
1/4(0). Exponentiation of this inequality yields the equivalent

inequality ∣∣∣∣ û1(y1)
û2(y1)

− û1(y2)
û2(y2)

∣∣∣∣ ≤ c′
û1(y2)
û2(y2)

|y1 − y2|σ(3.27)
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whenever y1, y2 ∈ Q+
1/4(0). Let O = Q+

1/4(0) and note that if y2 ∈ Q+
1/8(0) then

obviously

1
ã

û1(y2)
d(y2, ∂O)

≤ |∇û1(y2)| ≤ ã
û1(y2)

d(y2, ∂O)
(3.28)

for some ã = ã(n). Let r be defined through the relation c′rσ = 1
2 ε̃ where ε̃ is as in

Lemma 3.18. Using (3.27) we then see that

(1− ε̃/2)
û1(y2)
û2(y2)

≤ û1(y1)
û2(y1)

≤ (1 + ε̃/2)
û1(y2)
û2(y2)

(3.29)

whenever y1 ∈ B(y2, r). From (3.28), (3.29), and Lemma 3.18 we conclude that
Lemma 3.25 holds for the operator A1.

Step 2. Lemma 3.25 is valid for the operator A2. We let ρ ∈ (0, 1/16) and
δ̄ ∈ (0, 1/8) be degrees of freedom to be chosen below. Let û1 be the A1-harmonic
function in Q+

δ̄/2
(0) which is continuous on the closure of Q+

δ̄/2
(0) and which sat-

isfies û1 = u on ∂Q+
δ̄/2

(0). Using Step 1 we see there exist λ1 = λ1(p, n, α), ĉ1 =
ĉ1(p, n, α) ≥ 1, such that

λ−1
1

û1(y)
yn

≤ |∇û1(y)| ≤ λ1
û1(y)
yn

whenever y ∈ Q+
δ̄/ĉ1

(0).(3.30)

Moreover, using Definition 1.1 (iii) we have

(3.31) |A2(y, η)−A1(y, η)| ≤ ε|η|p−2 with ε = 2βδ̄γ whenever y ∈ Q+
δ̄
(0).

Let û2 = u. From Lemma 2.15 and Lemma 3.1 we see there exist c′, θ, τ, each
depending only on p, n, α, β, γ, such that

(3.32) |û2(y)− û1(y)| ≤ c′εθρ−τ û2(y) whenever y ∈ Q+
δ̄/4

(0) \Q+
δ̄/4,ρδ̄

(0).

Let ε̃ be as in the statement of Lemma 3.18 with ã replaced by λ1 and put ρ =
1/(32ĉ1). Fix δ̄ subject to c′εθρ−τ = c′ (2βδ̄γ)θρ−τ = min{ε̃/2, 10−8}. In particular,
we note that δ̄ = δ̄(p, n, α, β, γ). Then from (3.32) we see that

1− ε̃ ≤ û2(y)
û1(y)

≤ 1 + ε̃ whenever y ∈ Q+
δ̄/4

(0) \Q+
δ̄/4,ρδ̄

(0).(3.33)

Using (3.30), (3.33), and Lemma 3.18 we therefore conclude that

(3.34) λ−1
2

û2(y)
yn

≤ |∇û2(y)| ≤ λ2
û2(y)
yn

whenever y ∈ Q+
δ̄/ĉ1

(0) \Q+
δ̄/ĉ1,2ρδ̄

(0),

for some λ2 = λ2(p, n, α, β, γ). Moreover, if y ∈ Q+
δ̄/ĉ1,2ρδ̄

(0), then we can also prove
that (3.34) is valid at y by iterating the previous argument and by making use of
the invariance of the class Mp(α, β, γ) with respect to translations and dilations,
see Lemma 2.15. This completes the proof of Lemma 3.25. 2

Finally we use Lemma 3.25 to establish the main result of this section.

Lemma 3.35. Let Ω ⊂ Rn be a (δ, r0)-Reifenberg flat domain, w ∈ ∂Ω, and
0 < r < min{r0, 1}. Let p, 1 < p < ∞, be given and assume that A ∈ Mp(α, β, γ)
for some (α, β, γ). Suppose that u is a positive A-harmonic function in Ω∩B(w, 4r),
that u is continuous in Ω̄ ∩B(w, 4r), and that u = 0 on ∆(w, 4r). There exist δ̂ =
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δ̂(p, n, α, β, γ), ĉ = ĉ(p, n, α, β, γ) and λ̄ = λ̄(p, n, α, β, γ), such that if 0 < δ ≤ δ̂,
then

λ̄−1 u(y)
d(y, ∂Ω)

≤ |∇u(y)| ≤ λ̄
u(y)

d(y, ∂Ω)
whenever y ∈ Ω ∩B(w, r/ĉ).

Proof. Let A ∈ Mp(α, β, γ), A = A(y, η) be given. Let w ∈ ∂Ω, 0 < r <
r0, suppose that u is a positive A-harmonic function in Ω ∩ B(w, 4r), that u is
continuous in Ω̄ ∩B(w, 4r), and that u = 0 on ∆(w, 4r). We intend to use Lemma
3.25 and Lemma 3.1 to prove Lemma 3.35. Let u ≡ 0 in B(w, 4r) \ Ω. Then
u ∈ W 1,p(B(w, 2r)) and u is continuous in B(w, 4r). Let c1 = ĉ be as in Lemma
3.25 and choose c′ ≥ 100c1 so that if ŷ ∈ Ω ∩ B(w, r/c′), s = 4c1d(ŷ, ∂Ω), and
z ∈ ∂Ω with |ŷ − z| = d(ŷ, ∂Ω), then

(3.36) max
B(z,4s)

u ≤ cu(ŷ)

for some c = c(p, n, α, β, γ). Using Definition 1.6 with w, r replaced by z, 4s, we see
that there exists a hyperplane Λ such that

(3.37) h(∂Ω ∩B(z, 4s),Λ ∩B(z, 4s)) ≤ 4δs.

For the moment we allow δ̂ in Lemma 3.35 to vary but shall later fix it as a number
satisfying several conditions. Using (1.7) we deduce that

{y ∈ Ω ∩B(z, 4s) : d(y, ∂Ω) ≥ 8δs} ⊂ one component of Rn \ Λ.

Moreover, using Lemma 2.15 we see that we may without loss of generality assume
that Λ = {(y′, yn) : y′ ∈ Rn−1, yn = 0} and

(3.38) {y ∈ Ω ∩B(z, 4s) : d(y, ∂Ω) ≥ 8δs} ⊂ {y ∈ Rn : yn > 0}.

From (3.38) we find that if we define

Λ′ = {(y′, 0) + 20δsen, y
′ ∈ Rn−1}, Ω′ = {y ∈ Rn : yn > 20δs},

then

(3.39) Ω′ ∩B(z, 2s) ⊂ Ω ∩B(z, 2s).

Let v be a A-harmonic function in Ω′ ∩ B(z, 2s) with continuous boundary values
on ∂(Ω′ ∩ B(z, 2s)) and such that v ≤ u on ∂(Ω′ ∩ B(z, 2s)). Moreover, we choose
v so that

v(y) = u(y) whenever y ∈ ∂[Ω′ ∩B(z, 2s)] and yn > 40δs,
v(y) = 0 whenever y ∈ ∂[Ω′ ∩B(z, 2s)] and yn < 30δs.

Existence of v follows once again from the Wiener criteria of [GZ], the maximum
principle for A-harmonic functions, and the fact that the W 1,p-Dirichlet problem
for these functions in Ω′ ∩ B(z, 2s) always has a solution. By construction and
the maximum principle for A-harmonic functions we have v ≤ u in Ω′ ∩ B(z, 2s).
Also, since each point of ∂[Ω′ ∩ B(z, 2s)] where u 6= v lies within 80δs of a point
where u is zero, it follows from (3.36) and Lemmas 2.2, 2.3 that u ≤ v+ cδσ̃u(ŷ) on
∂[Ω′ ∩ B(z, 2s)]. In particular, again using the maximum principle for p-harmonic
functions we conclude that

v ≤ u ≤ v + cδσ̃u(ŷ) in Ω′ ∩B(z, 2s).
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Thus, using the last inequality and (3.36) we see that

(3.40) 1 ≤ u(y)
v(y)

≤ (1− cδσ̃)−1 whenever y ∈ Ω′ ∩B(ŷ, 1
2d(ŷ, ∂Ω′))

provided δ̂ is small enough. Using Lemma 3.25 and the construction we also have

(3.41) λ̂−1 v(ŷ)
d(ŷ, ∂Ω)

≤ |∇v(ŷ)| ≤ λ̂
v(ŷ)

d(ŷ, ∂Ω)
.

for some λ̂ = λ̂(p, n). In particular, from (3.40), (3.41) we see for 0 < δ < δ̂, and
δ̂ = δ̂(p, n, α, β, γ) suitably small, that the hypotheses of Lemma 3.18 are satisfied
with O = Ω′∩B(z, 2s) and ã = λ̂. We now fix δ̂ and from Lemma 3.18 we conclude
that

λ̄−1
1

u(ŷ)
d(ŷ, ∂Ω)

≤ |∇u(ŷ)| ≤ λ̄1
u(ŷ)

d(ŷ, ∂Ω)
for some λ̄1 = λ̄1(p, n, α, β, γ). Since ŷ ∈ Ω ∩ B(w, r/c′) is arbitrary, the proof of
Lemma 3.35 is complete. 2

4. Degenerate elliptic equations and extension of |∇u|p−2 to an
A2-weight

Let w ∈ Rn, 0 < r and let λ(x) be a real valued Lebesgue measurable func-
tion defined almost everywhere on B(w, 2r). λ(x) is said to belong to the class
A2(B(w, r)) if there exists a constant Γ such that

r̃−2n

∫
B(w̃,r̃)

λ dx ·
∫

B(w̃,r̃)

λ−1dx ≤ Γ(4.1)

whenever w̃ ∈ B(w, r) and 0 < r̃ ≤ r. If λ(x) belongs to the class A2(B(w, r)) then
λ is referred to as an A2(B(w, r))-weight. The smallest Γ such that (4.1) holds is
referred to as the A2-constant of λ.

In the following we let Ω ⊂ Rn be a bounded (δ, r0)-Reifenberg flat domain
with NTA-constant M . We let w ∈ ∂Ω, 0 < r < r0, and we consider the operator

(4.2) L̂ =
n∑

i,j=1

∂

∂xi

(
b̂ij(x)

∂

∂xj

)
in Ω ∩ B(w, 2r). We assume that the coefficients {b̂ij(x)} are bounded, Lebesgue
measurable functions defined almost everywhere on B(w, 2r). Moreover,

(4.3) c−1λ(x)|ξ|2 ≤
n∑

i,j=1

b̂ij(x)ξiξj ≤ c|ξ|2λ(x)

for almost every x ∈ B(w, 2r), where λ ∈ A2(B(w, r)). By definition L̂ is a degen-
erate elliptic operator (in divergence form) in B(w, 2r) with ellipticity measured
by the function λ. If O ⊂ B(w, 2r) is open then we let W̃ 1,2(O) be the weighted
Sobolev space of equivalence classes of functions v with distributional gradient ∇v
and norm

‖v‖̃21,2 =
∫
O

v2λdx+
∫
O

|∇v|2λdx <∞.
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Let W̃ 1,2
0 (O) be the closure of C∞0 (O) in the norm of W̃ 1,2(O). We say that v is a

weak solution to L̂v = 0 in O provided v ∈ W̃ 1,2(O) and∫
O

∑
i,j

b̂ijvxi
φxj

dx = 0(4.4)

whenever φ ∈ C∞0 (O).
The following three lemmas, Lemmas 4.5-4.7, are tailored to our situation and

based on the results in [FKS], [FJK] and [FJK1]. We note that these authors as-
sumed L̂ was symmetric, i.e., b̂ij = b̂ji, 1 ≤ i, j ≤ n, but this assumption was not
needed in the proof of these lemmas. Essentially one can say ‘ditto’ to the discus-
sion in [KKPT, section 1] for nonsymmetric uniformly elliptic divergence form PDE.

Lemma 4.5. Let Ω ⊂ Rn be a NTA-domain with constant M , w ∈ ∂Ω, 0 < r < r0,
and let λ be an A2(B(w, r))-weight with constant Γ. Suppose that v is a positive
weak solution to L̂v = 0 in Ω∩B(w, 2r). Then there exists a constant c, 1 ≤ c <∞,
depending only on n,M and Γ, such that if w̃ ∈ Ω, 0 < r̃, B(w̃, 2r̃) ⊂ Ω ∩B(w, r),
then

(i) c−1r̃2
∫

B(w̃,r̃/2)

|∇v|2λdx ≤ c

( ∫
B(w̃,r̃)

λdx

)
( max
B(w̃,r̃)

v)2 ≤ c

∫
B(w̃,2r̃)

|v|2λdx,

(ii) max
B(w̃,r̃)

v ≤ c min
B(w̃,r̃)

v.

Furthermore, there exists α̃ = α̃(n,M,Γ) ∈ (0, 1) such that if x, y ∈ B(w̃, r̃) then

(iii) |v(x)− v(y)| ≤ c

(
|x−y|

r̃

)α̃

max
B(w̃,2r̃)

v.

Lemma 4.6. Let Ω ⊂ Rn be a NTA-domain with constant M , w ∈ ∂Ω, 0 < r < r0,
and let λ be an A2(B(w, r))-weight with constant Γ. Suppose that v is a positive
weak solution to L̂v = 0 in Ω∩B(w, 2r) and that v = 0 on ∆(w, 2r) in the weighted
Sobolev sense. Then there exists c̃ = c̃(n,M,Γ), 1 ≤ c̃ <∞, such that the following
holds with r̃ = r/c̃.

(i) r2
∫

Ω∩B(w,r/2)

|∇v|2λdx ≤ c̃

∫
Ω∩B(w,r)

|v|2λdx,

(ii) max
Ω∩B(w,r̃)

v ≤ c̃v(ar̃(w)).

Furthermore, there exists α̃ = α(n,M,Γ) ∈ (0, 1) such that if x, y ∈ Ω ∩ B(w, r̃),
then

(iii) |v(x)− v(y)| ≤ c

(
|x−y|

r

)α̃

max
Ω∩B(w,2r̃)

v.

Lemma 4.7. Let Ω ⊂ Rn be a NTA-domain with constant M , w ∈ ∂Ω, 0 < r < r0,
and let λ be an A2(B(w, r))-weight with constant Γ. Suppose that v1 and v2 are
two positive weak solutions to L̂v = 0 in Ω∩B(w, 2r) and v1 = 0 = v2 on ∆(w, 2r)
in the weighted Sobolev sense. Then there exist c = c(n,M,Γ), 1 ≤ c < ∞, and
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σ = σ(n,M,Γ) ∈ (0, 1) such that if r̃ = r/c, v1(ar̃(w)) = v2(ar̃(w)), then v1/v2 ≤ c
in Ω ∩B(w, r/c) and if y1, y2 ∈ Ω ∩B(w, r/c), then∣∣∣∣v1(y1)v2(y1)

− v1(y2)
v2(y2)

∣∣∣∣ ≤ c

(
|y1 − y2|

r

)σ

.

To continue the proof of Theorem 1, we have the following lemmas.

Lemma 4.8. Let Ω ⊂ Rn be a bounded (δ, r0)-Reifenberg flat domain. Let p, 1 <
p <∞, be given and assume that A ∈ Mp(α, β, γ) for some (α, β, γ). Let w ∈ ∂Ω,
0 < r < r0 and suppose that u is a positive A-harmonic function in Ω∩B(w, 4r), u
is continuous in Ω̄∩ B̄(w, 4r), and u = 0 on ∆(w, 4r). Then there exist, for ε∗ > 0
given, δ̂ = δ̂(p, n, α, β, γ, ε∗) > 0 and c = c(p, n, α, β, γ, ε∗), 1 ≤ c <∞, such that

c−1

(
r̂

r

)1+ε∗

≤ u(ar̂(w))
u(ar(w))

≤ c

(
r̂

r

)1−ε∗

whenever 0 < δ ≤ δ̂ and 0 < r̂ < r/4.

Lemma 4.9. Let Ω ⊂ Rn be a bounded (δ, r0)-Reifenberg flat domain. Let
p, 1 < p < ∞, be given and assume that A ∈ Mp(α, β, γ) for some (α, β, γ). Let
w ∈ ∂Ω, 0 < r < min{r0, 1}, and suppose that u is a positive A-harmonic function
in Ω ∩ B(w, 2r), u is continuous in Ω̄ ∩ B(w, 2r), and u = 0 on ∆(w, 2r). There
exist δ′ = δ′(p, n, α, β, γ), and c = c(p, n, α, β, γ) ≥ 1 such that if 0 < δ < δ′, and
r̂ = r/c, then |∇u|p−2 extends to an A2(B(w, r̂))-weight with constant depending
only on p, n, α, β, γ.

Proof of Lemma 4.8: Let A ∈ Mp(α, β, γ), A = A(y, η) be given and set
A2(y, η) = A(y, η), A1(η) = A(w, η). Then A1, A2 ∈ Mp(α, β, γ). Let u be a A2-
harmonic function as in the statement of the lemma. We extend u to B(w, 4r) \Ω
by putting u ≡ 0 in this set and then note that u is continuous in B(w, 4r). We also
observe from Definition 1.8 that it suffices to prove Lemma 4.9 for δ = δ̂. Also, as
discussed after Definition 1.8 we may assume that Ω is a NTA-domain. Moreover,
using Lemma 2.15 and Definition 1.1 (iv), we can without loss of generality assume
that r = 4, w = 0 and u(a1(0)) = 1.

In the following we let ξ be a small constant to be chosen below. In particular, ξ
will be fixed to depend only on p, n, α, β, γ. For ξ fixed we can, again using Lemma
2.15, without loss of generality also assume that

h(P ∩B(0, 4ξ), ∂Ω ∩B(0, 4ξ)) ≤ 4δ̂ξ,

where P = {y ∈ Rn : yn = 0}. Furthermore, if δ̄ = 4δ̂ is small enough, then we
may assume, as in (3.38), that

(4.10)
B(0, 4) ∩ {(y′, yn) : yn ≥ 2δ̄ξ} ⊂ Ω

B(0, 4) ∩ {(y′, yn) : yn ≤ −2δ̄ξ} ⊂ Rn \ Ω.

Moreover, we see that to prove Lemma 4.8 it suffices to show that

(4.11) c−1r̂1+ε∗ ≤ u(ar̂(0)) ≤ cr̂1−ε∗ whenever 0 < r̂ < ξ.

In the following we will use the notation introduced in (2.7).
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To begin the proof of (4.11) we introduce two auxiliary functions u+ and u−.
In particular, we define u+ to be A2-harmonic in Q+

ξ,(1−8δ̄)ξ
(8δ̄ξen) with continuous

boundary values on ∂Q+
ξ,(1−8δ̄)ξ

(8δ̄ξen) defined as follows,

u+(y) = u(y) if y ∈ ∂Q+
ξ,(1−8δ̄)ξ

(8δ̄ξen) ∩ {y : 16δ̄ξ ≤ yn},

u+(y) =
(yn − 8δ̄ξ)

8δ̄ξ
u(y) if y ∈ ∂Q+

ξ,(1−8δ̄)ξ
(8δ̄ξen) ∩ {y : 8δ̄ξ < yn < 16δ̄ξ},

u+(y) = 0 if y ∈ ∂Q+
ξ,(1−8δ̄)ξ

(8δ̄ξen) ∩ {y : yn = 8δ̄ξ}.

Similarly, we define u− to be the A2-harmonic function in Q+
ξ,(1+8δ̄)ξ

(−8δ̄ξen) which

satisfies u− = u on ∂Q+
ξ,(1+8δ̄)ξ

(−8δ̄ξen). From the maximum principle for A-
harmonic functions and (4.10) we see, by construction, that

u+(y) ≤ u(y) ≤ u−(y) whenever y ∈ Q+
ξ,(1−8δ̄)ξ

(8δ̄ξen).(4.12)

Using Definition 1.1 (iii) we next note that

(4.13) |A2(y, η)−A1(y, η)| ≤ ε|η|p−1 whenever y ∈ Q+
ξ,(1+8δ̄)ξ

(−8δ̄ξen), ε = 2βξγ .

To proceed we let ū+ be the A1-harmonic function in Q+
ξ/2,(1/2−8δ̄)ξ

(8δ̄ξen) which

is continuous on the closure of Q+
ξ/2,(1/2−8δ̄)ξ

(8δ̄ξen) and which coincides with u+

on ∂Q+
ξ/2,(1/2−8δ̄)ξ

(8δ̄ξen). Similarly, we let ū− be the A1-harmonic function in

Q+
ξ/2,(1/2+8δ̄)ξ

(−8δ̄ξen) which is continuous on the closure of Q+
ξ/2,(1/2+8δ̄)ξ

(−8δ̄ξen)

and coincides with u− on ∂Q+
ξ/2,(1/2+8δ̄)ξ

(−8δ̄ξen). Finally, we define v+(y) :=
yn − 8δ̄ξ, v−(y) := yn + 8δ̄ξ whenever y ∈ Rn. Hence v+ and v− are A1-harmonic
functions and grow linearly in the en-direction.

We first focus on the right hand inequality in (4.11). Using (4.13), Lemma 2.15,
and Lemma 3.1 we see that

(4.14) u−(y) ≤ (1− c̃εθ δ̄−τ )−1ū−(y)

for y ∈ Q+
ξ/4,(1/4+8δ̄)ξ

(−8δ̄ξen) ∩ {−4δ̄ξ < yn < ξ/2} and for a constant c̃ =
c̃(p, n, α, β, γ). Moreover, using (4.12), the maximum principle and the Harnack
inequality for A-harmonic functions, (4.14), as well as Lemma 2.8 applied to the
functions ū−, v− we see that there exists a constant c̄ = c̄(p, n, α), 1 ≤ c̄ <∞, such
that

(4.15) u(y) ≤ u−(y) ≤ (1− c̃εθ δ̄−τ )−1ū−(y) ≤ c(1− c̃εθ δ̄−τ )−1 ū−(aξ/8(0))
v−(y)
ξ

whenever y ∈ Ω ∩B(0, ξ/c̄). From (4.15) we conclude that

u(y) ≤ c(1− c̃εθ δ̄−τ )−1ū−(aξ/8(0)) (yn/ξ)(4.16)

whenever y ∈ Ω ∩ B(0, ξ/c̄). Let δ̄ < 1/(16c̄) and let ξ be defined though the
relation

1/2 = c̃εθ δ̄−τ = c̃(2βξγ)θ δ̄−τ .

Then ξ = ξ(p, n, α, β, γ, δ̄) and from Lemmas 3.1, 2.2, 2.3, as well as the maximum
principle for A harmonic functions, we observe that

u(aξ/8(0)) ≈ u−(aξ/8(0)) ≈ ū−(aξ/8(0)) ≈ max
Q+

ξ/2,(1/2+8δ̄)ξ
(−8δ̄ξen)

u
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where proportionality constants depend only on p, n, α, β, γ. Using these displays
in (4.16), we get u(aδ̄ξ(0)) ≤ ĉδ̄ u(aξ/8(0)). Moreover, suppose by way of induction
that we have shown, for some k ∈ {1, 2, ...},

(4.17) u(aδ̄kξ(0)) ≤ (ĉδ̄)k u(aξ/8(0))

where ĉ depends only on p, n, α, β, γ. Then, from Reifenberg flatness we see there
exists a plane P ′ containing 0 such that

h(P ′ ∩B(0, 4δ̄kξ), ∂Ω ∩B(0, 4δ̄kξ)) ≤ 4δ̂δ̄kξ.

We can now repeat the above argument with P replaced by P ′ and 4 replaced by
4δ̄kξ. Here however we use a cylinder with radius and height ≈ δ̄kξ, since we can
already apply Lemma 3.1. We get

u(aδ̄k+1ξ(0)) ≤ ĉ δ̄ u(aδ̄kξ(0)) ≤ (ĉδ̄)k+1u(aξ/8(0)).

Thus by induction the inequality in (4.17) is true for all positive integers k. Next
we fix δ̄ so that δ̄−ε∗ = ĉ where ĉ is the constant in the above display. Then δ̄
and ξ both depend only on p, n, α, β, γ and ε∗. Given 0 < r̂ < ξ, let k be the
smallest integer such that δ̄kξ ≤ r̂. Then from (4.17) and our choice of δ̄ we see
that u(ar̂(0)) ≤ cr̂1−ε∗ , for some c = c(p, n, α, β, γ, ε∗). Here we have also used
the fact that u(aξ/8(0)) ≤ c∗ = c∗(p, n, α, β, γ), which follows from Lemmas 2.2,
2.3, and fact that u(a1(0)) = 1. This completes the proof of the right-hand side
inequality in (4.11).

Second we focus on the left-hand inequality in (4.11). In this case we first apply
Lemma 2.8 to the functions ū+, v+ in Q+

ξ/2,(1/2−8δ̄)ξ
(8δ̄ξen). Indeed, using Lemma

2.8 and the Harnack inequality we see, provided δ̄ is small enough, that

ū+(a32δ̄ξ(0))
v+(a32δ̄ξ(0))

≈
ū+(aξ/8(0))
v+(aξ/4(0))

≈
ū+(aξ/8(0))

ξ
.(4.18)

Here A ≈ B means that A/B is bounded from above and below by constants which
only depend on p, n, α, β, γ. From (4.18) we get

ū+(a32δ̄ξ(0)) ≥ c̄−1δ̄ū+(aξ/8(0))(4.19)

for some c̄ = c(p, n, α, ξ), 1 ≤ c̄ <∞. Moreover, using Lemma 3.1 we also see that

(4.20) ū+(y) ≤ (1− c̃ εθ δ̄−τ )−1u+(y)

for y ∈ Q+
ξ/2,(1/2−8δ̄)ξ

(8δ̄ξδen) ∩ {16δ̄ξ < yn < ξ/2} and for a constant c̃ =
c̃(p, n, α, β, γ). Using (4.19), (4.20), the fact that the class Mp(α, β, γ) is closed
under translations, rotations, suitable dilations, and multiplication by constants
(see Lemma 2.15 and Definition 1.1 (iv)) , we can argue as in the proof of the
right-hand inequality in (4.11). Thus by induction we obtain

u(a(32δ̄)kξ(0)) ≥ (c̄−1δ̄)ku(aξ/8(0)) for k = 1, 2, ...(4.21)

To complete the proof we let δ̄ be so small that c̄−1δ̄ ≥ (32δ̄)1+ε∗ and assume
that r̂ ∈ [(32δ̄)k+1ξ, (32δ̄)kξ]. With δ̄(p, n, α, β, γ, ε∗) now fixed, it follows from
Harnack’s inequality for A-harmonic functions that

(4.22) u(ar̂(0)) ≥ c−1u(a(32δ̄)kξ(0)) ≥ c−1(32δ̄)k(1+ε∗)u(aξ/8(0)) ≥ c−1r̂(1+ε∗).

for some c = c(p, n, α, β, γ, ε∗). In (4.22) we have also used the fact that u(aξ/8(0)) ≥
1/c+(p, n, α, β, γ, ε∗), for some c+ ≥ 1, which follows from the definition of δ̄ in
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terms of ε∗, Harnack’s inequality, and the fact that u(a1(0)) = 1. (4.22) completes
the proof of (4.11) and hence the proof of Lemma 4.8. 2

Proof of Lemma 4.9. Lemma 4.9 follows from Lemma 4.8, in exactly the same
way as Lemma 3.30 in [LN4] followed from Lemma 3.15 in [LN4]. For the readers
convenience we include the details of the proof. Let Qj = Q(xj , rj), j = 1, 2, ... be a
Whitney decomposition of Rn \ Ω̄ into open cubes with center at xj and sidelength
rj . Then ∪jQ̄(xj , rj) = Rn \ Ω̄ and Q(xj , rj) ∩ Q(xi, ri) = ∅ when i 6= j. We
furthermore construct the Whitney cubes in such a way that 10−4nd(Qj , ∂Ω) ≤
rj ≤ 10−2nd(Qj , ∂Ω). Let r̂ = r/c̃2, where c̃ = c̃(p, n, α, β, γ), 1 ≤ c̃ < ∞, is so
large that the ‘fundamental inequality’ in Lemma 3.35 holds in Ω∩B(w, r/c̃). From
the NTA property of Ω we may also suppose c̃ is so large that if Qj∩B(w, 50r̂) 6= ∅,
then there is a wj ∈ Ω∩B(w, c̃r̂) for which d(wj , ∂Ω) ∼ d(wj , xj) ∼ d(xj , ∂Ω). Here
A ∼ B means that A/B is bounded from above and below by constants which only
depend on n.

Next we define λ(x) = |∇u(x)|p−2 whenever x ∈ Ω ∩ B(w, 50r̂) and we let Γ
be the set of all j such that if j ∈ Γ then Qj ∩ B(w, 50r̂) 6= ∅. Moreover, if j ∈ Γ
then we choose wj ∈ Ω ∩B(w, c̃r̂) as above and define λ(x) = λ(wj) when x ∈ Qj .
This defines λ almost everywhere on B(w, 50r̂) with respect to Lebesgue n measure,
since it follows from (4.27) that for δ small enough, ∂Ω ∩ B(w, r) has Lebesgue n
measure zero. From the definition of λ, Lemma 3.35, and the Harnack inequality
for A-harmonic functions we see that

(4.23) λ(x) = λ(wj) ≈ λ(z) whenever x ∈ Qj and z ∈ B(wj , d(wj , ∂Ω)/2).

Let λ̂ = λ if p ≥ 2 and λ̂ = 1/λ if 1 < p ≤ 2. If w̃ ∈ B(w, r) and d(w̃, ∂Ω)/2 < r̃ ≤ r̂,
then from Lemmas 2.1 - 2.3, (4.23), and Hölder’s inequality it follows that

(4.24)
∫

B(w̃,r̃)

λ̂dx ≤ cu(ar̃(ŵ))|p−2| r̃n−|p−2|.

Here ŵ ∈ ∂Ω with |w̃ − ŵ| = d(w̃, ∂Ω). Also, from Lemma 4.8 we get for δ̂ small
enough and y ∈ Ω ∩B(ŵ, cr̃), that

cu(y) ≥ u(ar̃(ŵ))
(
d(y, ∂Ω)

r̃

)1+ε∗

.(4.25)

Here ε∗ > 0 is a small positive number which will be fixed after the display following
(4.27). From (4.25) and Lemma 3.35, we see that if d(w̃, ∂Ω)/2 < r̃ ≤ r̂, then

(4.26)
∫

B(w̃,r̃)

λ̂−1dx ≤ cr̃(1+ε∗)|p−2|u(ar̃(ŵ))−|p−2|
∫

Ω∩B(ŵ,cr̃)

d(y, ∂Ω)−ε∗|p−2|dy.

To complete the estimate in (4.26) we need to estimate the integral involving the
distance function. To do this we define

I(z, s) =
∫

Ω∩B(z,s)

d(y, ∂Ω)−ε∗|p−2|dy

whenever z ∈ ∂Ω ∩B(w, r), 0 < s < r. Let

Ek = Ω ∩B(z, s) ∩ {y : d(y, ∂Ω) ≤ δks} for k = 0, 1, 2, . . .
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Then since ∂Ω is δ-Reifenberg flat we deduce that

(4.27)
∫

Ek

dy ≤ ck+1
+ δksn

where c+ = c+(p, n). Indeed, from δ-Reifenberg flatness it is easily seen that this
statement holds for E0, E1. Moreover, E1 can be covered by at most c/δn−1 balls
of radius 100δs with centers in ∂Ω ∩ B(z, s). We can then repeat the argument in
each ball to get that (4.27) holds for E2. Continuing in this way we get (4.27) for
all positive integers k. Using (4.27) and writing I(z, s) as a sum over Ek \Ek+1, k =
0, 1, 2, . . . we get

I(z, s) ≤ csn−ε∗|p−2|

[
1 + δ−ε∗|p−2|

∞∑
k=1

ck+ δ
k(1−ε∗|p−2|)

]
< c− s

n−ε∗|p−2|,

for some c− = c−(p, n) ≥ 1, provided 4ε∗|p − 2| ≤ 1 and δ′ > 0 is small enough.
Using this estimate with z = ŵ, s = cr̃, we can continue our calculation in (4.26)
and conclude that

(4.28)
∫

B(w̃,r̃)

λ̂−1dx ≤ cu(ar̃(ŵ))−|p−2| r̃n+|p−2|.

Combining (4.24), (4.28), we get∫
B(w̃,r̃)

λ̂−1dx ·
∫

B(w̃,r̃)

λ̂dx ≤ cr̃2n

when d(w̃, ∂Ω)/2 ≤ r̃ ≤ r̂. This inequality is also valid if r̃ ≤ d(w̃, ∂Ω)/2, as follows
easily from Lemma 3.35. We conclude from this inequality and arbitrariness of w̃, r̃,
that Lemma 4.9 is true. 2

4.1. Proof of Theorem 1. From the results proved or stated in section 2,
3, 4, we see that Steps 0, A, B, C and D outlined in the introduction are now
completed. Hence, to prove Theorem 1 it only remains to remove assumption
(1.14). To do this we first note from Definition 1.1 (iv) that Theorem 1 is invariant
under multiplication of u, v by constants. Using this note and Lemma 2.3 we see
that if r∗ = r/c, for c = c(p, n, α, β, γ) large enough, then we may assume that

(4.29) max
Ω∩B(w,4r∗)

h ≈ h(ar∗(w)) = 1 whenever h = u or v.

Let ũ, ṽ be the A-harmonic functions in Ω ∩ B(w, 4r∗) with boundary values ũ =
min(u, v) and ṽ = 2max(u, v) respectively on ∂(Ω∩B(w, 4r∗)). From the maximum
principle for A-harmonic functions we then see that ũ ≤ u, v ≤ ṽ/2 in Ω∩B(w, 4r∗).
Using this inequality and applying Theorem 1 to ũ, ṽ with r replaced by r∗, we get

max(u/v, v/u) ≤ ṽ/ũ ≤ c in Ω ∩B(w, r̃).

Finally we note from boundedness of u/v that (1.14) (a) can be achieved in Ω ∩
B(w, 4r∗) by multiplying v by a suitably large constant which can be chosen to
depend depend only on p, n, α, β, γ. Thus Theorem 1 is true. 2
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5. The Martin boundary problem: preliminary reductions

Let Ω ⊂ Rn, δ, r0, p, α, β, γ, and A be as in the statement of Theorem
2. Moreover, let w ∈ ∂Ω and let 0 < r′ � r̃0, where r̃0 = min{r0, 1}. Assume
that û is an A-harmonic function in Ω \ B(w, r′) and that û = 0 continuously on
∂Ω \B(w, r′). We can apply Lemma 3.35 to conclude that there exist δ∗, 0 < δ∗ <
1, c̄, λ̄ ≥ 1, depending only on p, n, α, β, γ, such that if 0 < δ ≤ δ∗, then, for each
ŷ ∈ ∂Ω \B(w, c̄r′), the ‘fundamental inequality’,

λ̄−1 û(y)
d(y, ∂Ω)

≤ |∇û(y)| ≤ λ̄
û(y)

d(y, ∂Ω)
(5.1)

holds whenever y ∈ ∂Ω ∩ B(ŷ, |ŷ − w|/c̄) ∩ B(w, r̃0). Using this fact we see that
if 0 < δ ≤ δ∗ then there exists η̃, depending only on p, n, α, β, γ, such that if we
define a non-tangential approach region at w ∈ ∂Ω, denoted Ω̃(w, η̃), by Ω̃(w, η̃) =
{y ∈ Ω : d(y, ∂Ω) ≥ η̃|y − w|}, then

(5.2) û satisfies (5.1) in [Ω \ Ω̃(w, η̃)] ∩ (B(w, r̃0) \B(w, c̄r′)).

We observe that the above argument applies for any small r′ > 0 if û is a minimal
positive A-harmonic function with respect to w. We note, in analogy with the
proof of Theorem 1, that if we apriori knew that (5.1) held in Ω∩B(w, r̃) for some
r̃ > 0, then we could apply the argument in Steps C,D of the introduction to get
an analogue of Theorem 1 in Ω ∩B(w, r̃) \B(w, cr′). Letting r′→0 we would then
get Theorem 2. Unfortunately though we do not know this apriori and we do not
see how to ‘deduce’ this inequality from simpler functions as in the proof of Lemma
3.35. Still, if (5.1) holds in Ω∩B(w, r̃), whenever A ∈Mp(α), then we can make use
of appropriate versions of Lemmas 3.1 and 3.18, as well as Definition 1.1 (iii), to
conclude that (5.1) holds in Ω∩B(w, s̃), for some s̃ < r̃, whenever A ∈Mp(α, β, γ).
Thus to prove Theorem 2 we first prove Theorem 2 under the assumption that

(5.3) A ∈Mp(α).

In particular, we start by showing that if one such A-harmonic function satisfies
the ‘fundamental inequality’ then all such functions, relative to the given A, have
this property. More specifically we prove,

Lemma 5.4. Let Ω be a bounded (δ, r0)-Reifenberg flat domain and let w ∈ ∂Ω. Let
A ∈Mp(α) for some α and 1 < p <∞. Let û, v̂ > 0 be A-harmonic in Ω\B(w, r′),
continuous in Rn \ B(w, r′), with û ≡ v̂ ≡ 0 on Rn \ [Ω ∪ B(w, r′)]. Suppose for
some r1, r′ < r1 < r̃0, and b ≥ 1, that

b−1 û(y)
d(y, ∂Ω)

≤ |∇û(y)| ≤ b
û(y)

d(y, ∂Ω)

whenever y ∈ Ω ∩ [B(w, r1) \ B(w, r′)]. There exists δ̃∗ > 0, λ, c ≥ 1, depending on
p, n, α, b, such that if 0 < δ < δ̃∗ < δ̃ (δ̃ as in Theorem 1), then

λ−1 v̂(y)
d(y, ∂Ω)

≤ |∇v̂(y)| ≤ λ
v̂(y)

d(y, ∂Ω)

whenever y ∈ Ω ∩ [B(w, r1/c) \B(w, cr′)]. Moreover,∣∣∣∣log
(
û(z)
v̂(z)

)
− log

(
û(y)
v̂(y)

)∣∣∣∣ ≤ c

(
r′

min(r1, |z − w|, |y − w|)

)σ
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whenever z, y ∈ Ω \B(w, cr′).

Proof: We note that to prove the last statement of Lemma 5.4 we can assume that
r′/r1 << 1, since otherwise there is nothing to prove. Let r̃ = ĉr′. If ĉ = ĉ(p, n, α)
is large enough, we may assume

(5.5) û ≤ v̂/2 ≤ ĉû in Ω \B(w, r̃),

as we see from Theorem 1, Harnack’s inequality, and the maximum principle for
A-harmonic functions. As in (1.15) we let u(·, t), t ∈ [0, 1], be A-harmonic in Ω \
B̄(w, r̃), with continuous boundary values,

(5.6) u(·, t) = (1− t)û(·) + tv̂(·) on ∂[Ω \ B̄(w, r̃)].

Extend u(·, t), t ∈ [0, 1], to be continuous on Rn \ [Ω∪ B̄(w, r̃)] by setting u(·, t) ≡ 0
on this set. Next we note from Lemma 3.18 that there exists ε0 = ε0(p, n, α, b) such
that if s1 and ρ1 satisfy r̃ ≤ s1 < ρ1/4 ≤ r1/16, t ∈ [0, 1], and

(5.7) (1− ε0)L̃ ≤ u(·, t)/û(·) ≤ (1 + ε0)L̃,

in Ω ∩ [B(w, 2ρ1) \B(w, s1)] for some L̃, then

(5.8) λ̂−1 u(y, t)
d(y, ∂Ω)

≤ |∇u(y, t)| ≤ λ̂
u(y, t)
d(y, ∂Ω)

whenever y ∈ Ω∩ [B(w, ρ1)\B(w, 2s1)] where λ̂ = λ̂(p, n, α, b). Observe from (5.5),
(5.6), that if t1, t2 ∈ [0, 1], then

c−1u(·, t1) ≤ U(·, t1, t2) =
u(·, t2)− u(·, t1)

t2 − t1
= v̂(·)− û(·) ≤ c u(·, t1)(5.9)

on ∂[Ω\B(w, r̃)]. Moreover, from the maximum principle we see that this inequality
also holds in Ω \ B̄(w, r̃). Thus for ε0 as in (5.7), there exists ε′0, 0 < ε′0 ≤ ε0, with
the same dependence as ε0, such that if |t2 − t1| ≤ ε′0, then

(5.10) 1− ε0/2 ≤
u(·, t2)
u(·, t1)

≤ 1 + ε0/2 in Ω \B(w, r̃).

Divide [0,1] into closed intervals, disjoint except for endpoints, of length ε′0/2 except
possibly for the interval containing 1 which is of length ≤ ε′0/2. Let ξ1 = 0 <
ξ2 < ... < ξm = 1 be the endpoints of these intervals. Thus [0,1] is divided into
{[ξk, ξk+1]}m

1 . Next suppose for some l, 1 ≤ l ≤ m− 1, that (5.8) is valid whenever
t ∈ [ξl, ξl+1] and y ∈ Ω∩ [B(w, ρ1)\B(w, 2s1)]. Under this assumption we claim for
some ĉ1, ĉ2, σ, depending only on p, n, α, b, that

(5.11)
∣∣∣∣log

u(z, ξl+1)
u(z, ξl)

− log
u(y, ξl+1)
u(y, ξl)

∣∣∣∣ ≤ ĉ1

(
s1

min(|z − w|, |y − w|)

)σ

whenever z, y ∈ Ω∩ [B(w, ρ1/ĉ2) \B(w, ĉ2s1)]. Indeed we can retrace the argument
in Step C of the introduction to get, for z, y ∈ Ω ∩ [B(w, ρ1/c) \ B(w, cs1)], that
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there exists f as in (1.19) and σ > 0 as in (1.24) such that

(5.12)

∣∣∣∣log
u(z, ξl+1)
u(z, ξl)

− log
u(y, ξl+1)
u(y, ξl)

∣∣∣∣ ≤
ξl+1∫
ξl

∣∣∣∣f(z, t)
u(z, t)

− f(y, t)
u(y, t)

∣∣∣∣ dt
≤ c

(
s1

min(|z − w|, |y − w|)

)σ

To get the last inequality in (5.12) we have used a slightly more general version of
Lemma 4.7.

We now proceed by induction. Observe from (5.10) and u(·, ξ1) = û, that (5.7)
(5.8) hold whenever t ∈ [ξ1, ξ2]. Thus (5.11) is true for l = 1 with s1 = r̃, ρ1 = r1/4.
Let s2 = ĉ2s1, ρ2 = ρ1/ĉ2. By induction, suppose for some 2 ≤ k < m,

(5.13)
∣∣∣∣log

u(z, ξk)
û(z)

− log
u(y, ξk)
û(y)

∣∣∣∣ ≤ (k − 1)ĉ1

(
sk

min(|z − w|, |y − w|)

)σ

whenever z, y ∈ Ω ∩ [B(w, ρk) \ B(w, sk)], where σ, ĉ1 are the constants in (5.11).
For η > 0 given and small we choose s′k ≥ 2sk, so that∣∣∣∣u(z, ξk)

û(z)
− u(y, ξk)

û(y)

∣∣∣∣ ≤ η
u(z, ξk)
û(z)

whenever z, y ∈ Ω∩ [B(w, ρk) \B(w, s′k)]. Moreover, fix z as in the last display and
choose η > 0 so small that

(5.14) (1− ε0)
u(z, ξk)
û(z)

≤ u(y, t)
û(y)

≤ (1 + ε0)
u(z, ξk)
û(z)

.

whenever y ∈ Ω ∩ [B(w, ρk) \B(w, s′k)] and t ∈ [ξk, ξk+1]. To estimate the size of η
observe, for t ∈ [ξk, ξk+1], that

u(y, t)
û(y)

=
u(y, t)
u(y, ξk)

· u(y, ξk)
û(y)

≤ (1 + ε0/2)(1 + η)
u(z, ξk)
û(z)

.

Thus if η = ε0/4 (ε0 small), then the right hand inequality in (5.14) is valid. A
similar argument gives the left hand inequality in (5.14) when η = ε0/4. Also since
k ≤ 2/ε′0, and ε′0, σ depend only on p, n, α, b, we deduce from (5.13) that one can
take s′k = ĉ3sk for ĉ3 = ĉ(p, n, α, b) large enough. From (5.14) we first find that
(5.7) holds with L̃ = u(z,ξk)

û(z) in Ω ∩ [B(w, ρk) \ B(w, s′k)] and thereupon that (5.8)
also holds. From (5.8) we now get, as in (5.12), that (5.11) is valid for l = k in
Ω∩ [B(w, ρk

2ĉ2
) \B(w, 2ĉ2s′k)]. Let sk+1 = 2ĉ3ĉ2sk and ρk+1 = ρk

2ĉ2
. Using (5.11) and

the induction hypothesis we have

(5.15)

∣∣∣∣log
u(z, ξk+1)
û(z)

− log
u(y, ξk+1)
û(y)

∣∣∣∣ ≤
∣∣∣∣log

u(z, ξk+1)
u(z, ξk)

− log
u(y, ξk+1)
u(y, ξk)

∣∣∣∣
+

∣∣∣∣log
u(z, ξk)
û(z)

− log
u(y, ξk)
û(y)

∣∣∣∣
≤ kĉ1

(
sk+1

min(|z − w|, |y − w|)

)σ
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whenever z, y ∈ Ω ∩ [B(w, ρk+1) \ B(w, sk+1)]. From (5.15) and induction we get
(5.13) with k = m. Since u(·, ξm) = v̂ and sm ≤ cr′, ρm ≥ r1/c, for some large
c = c(p, n, α), we can now argue as in (5.14) to first get (5.7) with u(·, t) replaced
by v̂ and then (5.8) for v̂. We conclude that Lemma 5.4 is valid for z, y ∈ Ω ∩
[B(w, r1/c) \ B(w, cr′)] provided c is large enough. Using the maximum principle
for A-harmonic functions it follows that the last display in Lemma 5.4 is also valid
for z, y ∈ Ω \B(w, r1/c). 2

5.1. Proof of Theorem 2 when A ∈ Mp(α). Let Ω ⊂ Rn, w ∈ ∂Ω, δ, p, r0,
α, β, γ, be as in Theorem 2. Let A ∈ Mp(α), and suppose that u, v, are minimal
positive A-harmonic functions relative to w ∈ ∂Ω. If (5.1) holds for u in Ω ∩
B(w, r1), then we can apply Lemma 5.4 to u, v and let r′→0. We then get that
u/v equals a constant, which is the conclusion of Theorem 2. Thus to complete the
proof of Theorem 2 for A ∈ Mp(α), it suffices to show the existence of a minimal
positive A-harmonic function u relative to w ∈ ∂Ω and 0 < r1 < r̃0 for which
the ‘fundamental inequality’ in (5.1) holds in Ω ∩B(w, r1). Moreover, it suffices to
show that (5.1) holds for some r1 = r1(p, n, α), 0 < r1 < r̃0, λ̄ = λ̄(p, n, α) ≥ 1,
in Ω̃(w, η̃) ∩ B(w, r1) where η̃ = η̃(p, n, α) is as in (5.2). To this end we show
there exists c = c(p, n, α) ≥ 1 such that if c2r′ < r < r̃0/n, and ρ = r/c, then
(5.1) holds for û on Ω̃(w, η̃) ∩ ∂B(w, ρ). Here û > 0 is A-harmonic in Ω \ B̄(w, r′)
with continuous boundary values and û ≡ 0 on ∂Ω \ B̄(w, r′). It then follows from
arbitrariness of r, r′, the above discussion, and Lemma 5.4 that Theorem 2 is valid
whenever A ∈ Mp(α) and u is a minimal positive A-harmonic function relative to
w ∈ ∂Ω. With this game plan in mind, observe from Lemma 2.15 and (1.7), that
we may assume r = 1, w = 0, and

B(0, 4n) ∩ {y : yn ≥ µ} ⊂ Ω, B(0, 4n) ∩ {y : yn ≤ −µ} ⊂ Rn \ Ω,(5.16)

where µ = 500nδ∗, 0 < µ < 10−100 and r′ < (δ∗)2. Here δ∗ is temporarily allowed
to vary but will be fixed after the proof of Lemma 5.19. Extend û to be continuous
on Rn \ B(0, r′), by putting û ≡ 0 on Rn \ (Ω ∪ B(0, r′)). Using the notation in
(2.7), let Q = Q+

1,1−µ(µen) \ B̄(0,
√
µ) and let v1 be the A-harmonic function in Q

with the following continuous boundary values,

v1(y) = û(y), y ∈ ∂Q ∩ {y : 2µ ≤ yn},

v1(y) =
(yn − µ)

µ
û(y), y ∈ ∂Q ∩ {y : µ ≤ yn < 2µ}.

Comparing boundary values and using the maximum principle for A-harmonic func-
tions, it follows that

(5.17) v1 ≤ û in Q .

We now set µ = µ(ε) = exp(−1/ε). We shall prove,

Lemma 5.18. Let 0 < ε ≤ ε̂, µ = µ(ε) be as above and let η̃ be as in (5.2). If ε̂ is
small enough, then there exists θ̂ = θ̂(p, n, α), 0 < θ̂ ≤ 1/2, such that if ρ̂ = µ1/2−θ̂,
then

1 ≤ û(y)/v1(y) ≤ 1 + ε

whenever y ∈ Ω̃(0, η̃/4) ∩ [B(0, ρ̂) \B(0, 2
√
µ)].
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Lemma 5.19. Let v1, ε, ε̂, θ̂, µ be as in Lemma 5.18 and let η̃ be as in (5.2). If ε̂ is
small enough, there exist θ = θ(p, n, α), 0 < θ < θ̂/4, λ̃ = λ̃(p, n, α) > 1, such that
if ρ = µ1/2−2θ, a = µ−θ, then

λ̃−1 v1(y)
d(y, ∂Ω)

≤ |∇v1(y)| ≤ λ̃
v1(y)

d(y, ∂Ω)

whenever y ∈ Ω̃(0, η̃/2) ∩ [B(0, aρ) \B(0, ρ/a)].

Assuming Lemmas 5.18, 5.19, are true we complete the proof of Theorem
2 when A ∈ Mp(α) as follows. From these lemmas and Lemma 3.18 we de-
duce, for sufficiently small ε̂ = ε̂(p, n, α) > 0, that (5.1) is valid for û and for
some λ̄ = λ̄(p, n, α) ≥ 1 in Ω(w, η̃) ∩ ∂B(0, ρ). With ε̂ now fixed we put δ∗ =
µ(ε̂)/(500n) and conclude from (5.2), Lemma 2.15, arbitrariness of r, that (5.1)
holds in Ω ∩ [B(w, r1) \B(w, r′)] with r1 = r̃0/c, r

′ ≤ r0/c
′, provided c, c′ are large

enough, depending only on p, n, α. Thus we can apply Lemma 5.4 and proceed as in
the discussion after that lemma to get Theorem 2 under the assumption A ∈Mp(α).

Proof of Lemma 5.18. To begin the proof of Lemma 5.18 observe from (5.17)
that it suffices to prove the righthand inequality in this display. We note that if
y ∈ ∂Q and û(y) 6= v1(y), then y lies within 4µ of a point in ∂Q. Also max∂B(0,t) û
is non-increasing as a function of t ≥ r′, as we see from the maximum principle for
A-harmonic functions. Using these facts and Lemmas 2.1- 2.3 we find that

(5.20) û ≤ v1 + cµσ̃/2 û(
√
µen),

on ∂Q. By the maximum principle this inequality also holds in Q. Here σ̃ is the
exponent of Hölder continuity in Lemma 2.2. Using Harnack’s inequality, we also
find that there exist τ = τ(p, n, α) ≥ 1 and c = c(p, n, α) > 1 such that

(5.21) max{ψ(z), ψ(y)} ≤ c(d(z, ∂Q)/d(y, ∂Q))τ min{ψ(z), ψ(y)}

whenever z ∈ Q, y ∈ Q ∩B(z, 4d(z, ∂Q)) and ψ = û or v1. Also from Lemmas 2.1-
2.3 applied to v1, we get

(5.22) v1(2
√
µen) ≥ c−1 û(

√
µen).

Let ρ̂, θ̂ be as in Lemma 5.18. Using (5.20) - (5.22), we see that if y ∈ Ω̃(0, η̃/4) ∩
[B(0, ρ̂) \B(0, 2

√
µ)], then

(5.23) û(y) ≤ v1(y) + cµσ̃/2 û(
√
µen) ≤

(
1 + c2µσ̃/2−θ̂τ

)
v1(y) ≤ (1 + ε)v1(y)

provided ε̂ is small enough and θ̂τ = σ̃/4. The proof of Lemma 5.18 is complete. 2

Proof of Lemma 5.19. To prove Lemma 5.19 we let v1, ε, ε̂, θ̂, µ be as in Lemma
5.18. Using Lemmas 2.2 - 2.3 and Harnack’s inequality we see that there exists
φ = φ(p, n, α) > 0, 0 < φ ≤ 1/2, and c = c(p, n, α) > 1 with

(5.24) û(y) ≤ c(s/t)φû(sen)

provided y ∈ Rn \ B(0, t), t ≥ s ≥ 2r′. Using (5.24) with t = 1, s = 2
√
µ, and

Lemmas 2.1 - 2.3 we see that

(5.25) v1 ≤ cµφ/2û(
√
µen) on ∂Q \ B̄(0,

√
µ),
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where c depends only on p, n, α. Let ṽ be the A-harmonic function in Q with
continuous boundary values ṽ = 0 on ∂Q \ B̄(0,

√
µ), and ṽ = v1 on ∂B(0,

√
µ).

Then from (5.25) and the maximum principle, we see that

(5.26) ṽ ≤ v1 ≤ ṽ + cµφ/2û(
√
µen) in Q.

Let ρ = µ1/2−2θ, θ small, and a = µ−θ be as in Lemma 5.19. Using (5.21) applied
to ψ = ṽ we find

(5.27) ṽ ≥ c−1(µ1/2/aρ)τ û(
√
µen) = c−1µ3θτ û(

√
µen)

on Ω̃(0, η̃/8)∩[B(0, 2aρ)\B(0, ρ/(2a))], where τ is as in (5.21) and the nontangential
approach region Ω̃ was defined above (5.2) relative to w, η̃. Also, since η̃ depends
only on p, n, α, it follows that c = c(p, n, α) in (5.27). If we define θ by θ =
min{φ/(12τ), θ̂/4}, then from (5.26), (5.27) we get

(5.28) 1 ≤ v1
ṽ
≤ 1 + ε

in Ω̃(0, η̃/8)∩B(0, 2aρ)\B(0, ρ/(2a)), whenever 0 ≤ ε ≤ ε̂, provided ε̂ is sufficiently
small.

Next let v be the A-harmonic function in

Q′ = Q+
1,1−µ(µen) \ B̄(2

√
µen,

√
µ)

with continuous boundary values v = 0 on ∂Q′ \ B̄(2
√
µen,

√
µ) and v = 1 on

∂B(2
√
µen,

√
µ). We claim that

(5.29) v(y) ≤ c〈2√µen − y,∇v(y)〉

when y ∈ Q′. Assuming claim (5.29) we can complete the proof of Lemma 5.19 in the
following manner. First observe that (5.29) implies there exists c = c(p, n, η) ≥ 1,
for given η, 0 < η ≤ 1/2, with

(5.30) c−1 v(y)
d(y, ∂Q′)

≤ |∇v(y)| ≤ c
v(y)

d(y, ∂Q′)

in Q̃(0, η)\B̄(0, 10
√
µ), where Q̃(0, η) is the non-tangential approach region defined

relative to 0, η,Q, as above (5.2). From the observation in (5.2) with û,Ω, replaced
by v,Q and (5.30) for suitable η = η(p, n, α) we deduce that (5.30) in fact holds in
Q \ B̄(0, 10

√
µ). We can now use Lemma 5.4 in Q \ B̄(0, 10

√
µ) with v, ṽ playing

the role of û, v̂, respectively. In particular, we get for some large c = c(p, n, α) that

(5.31) c−1 ṽ(y)
d(y, ∂Ω)

≤ |∇ṽ(y)| ≤ c
ṽ(y)

d(y, ∂Ω)

in Q ∩ B(0, 1/c∗) \ B(0, c∗
√
µ) for some c∗ = c∗(p, n, α). Finally, note that if

0 ≤ ε ≤ ε̂ and if ε̂ is sufficiently small, then 1/c∗ > 2aρ > ρ/(2a) > c∗
√
µ. From

this fact, (5.31), (5.28), and Lemma 3.18 applied to ṽ, v1, we deduce that Lemma
5.19 is valid subject to claim (5.29).

To prove claim (5.29) we first observe from Lemmas 2.2, 2.3 that v(z) ≤ 1/2
in Q′ ∩ B(0, 10

√
µ) for some z whose distance from ∂Q is at least c−1√µ where

c = c(p, n, α). Using Harnack’s inequality it follows for some c′ > 1 that v ≤ 1−1/c′

on ∂B(2
√
µen, 3

√
µ/2). If y ∈ B̄(2

√
µen, 3

√
µ/2) \B(2

√
µen,

√
µ), set

(5.32) ζ(y) =
eN |y−z|2/µ − eN

e9N/4 − eN
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where z = 2
√
µen. Then ζ ≡ 0 on ∂B(2

√
µen,

√
µ), and ζ ≡ 1 on ∂B(2

√
µen, 3

√
µ/2).

Also, if N = N(p, n, α) is large enough in (5.32), then from direct calculation and
Definition 1.1, we find ∇ ·A(∇ζ) ≥ 0 in B(2

√
µen, 3

√
µ/2) \ B̄(2

√
µen,

√
µ). More-

over, using these facts and the maximum principle we deduce

(5.33) 1− v(y) ≥ (c+
√
µ)−1d(y, ∂B(2

√
µen,

√
µ))

in B(2
√
µen, 3

√
µ/2) \ B(2

√
µen,

√
µ) provided c+ = c+(p, n, α) is large enough.

Next for fixed t > 1 put

O = {y ∈ Q′ : 2
√
µen + t(y − 2

√
µen) ∈ Q′},

F (y) = F (y, t) =
v(y)− v(2

√
µen + t(y − 2

√
µen))

t− 1
whenever y ∈ O.

From (5.33) for t > 1 fixed, t near 1, and basic geometry it follows that

(5.34) F ≥ c−1 v on ∂O.

We note that (iv) of Definition 1.1 and A ∈ Mp(α) imply that an A-harmonic
function remains A-harmonic under scaling, translation, and multiplication by a
constant. From this fact we see that F is the difference of two A-harmonic func-
tions in O and one of them is a constant multiple of v. Using this fact, (5.34), and
the maximum principle for A-harmonic functions, it follows that F ≥ c−1v in O.
Letting t→1, using Lemma 2.4 and the chain rule, we get claim (5.29). The proof
of Lemma 5.19 is finished. 2

As mentioned earlier, Lemmas 5.18, 5.19 together with Lemma 5.4 imply The-
orem 2 when A ∈Mp(α).

5.2. Proof of Theorem 2. We are now ready to prove Theorem 2 in the
general case.

Lemma 5.35. Let Ω be a bounded (δ, r0)-Reifenberg flat domain and let w ∈ ∂Ω.
Let A ∈Mp(α, β, γ) for some (α, β, γ) and 1 < p <∞. Let û, v̂ > 0 be A-harmonic
in Ω \B(w, r′), continuous in Rn \B(w, r′), with û ≡ v̂ ≡ 0 on Rn \ [Ω∪B(w, r′)].
Then there exists δ∗, σ > 0, c+ ≥ 1, depending on p, n, α, β, γ, such that if 0 < δ <

δ∗ < δ̃ (δ̃ as in Theorem 1) and r1 = r̃0/c+, then∣∣∣∣log
(
û(z)
v̂(z)

)
− log

(
û(y)
v̂(y)

)∣∣∣∣ ≤ c+

(
r′

min(r1, |z − w|, |y − w|)

)σ

whenever z, y ∈ Ω \B(w, c+r′).

Proof: Once again we assume that r′/r1 << 1, since otherwise there is nothing to
prove. As in (5.5) we may assume for some c = c(p, n, α, β, γ) that

(5.36) û ≤ v̂/2 ≤ cû in Ω \B(w, 2r′).

Let u(·, t), t ∈ [0, 1], be A-harmonic in Ω \ B̄(w, 2r′), with continuous boundary
values,

(5.37) u(·, t) = (1− t)û(·) + tv̂(·) on ∂[Ω \ B̄(w, 2r′)].
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We claim there exists c, λ̄ ≥ 1 depending only on p, n, α, β, γ such that if t ∈ [0, 1],
and y ∈ Ω ∩ [B(w, r̃0/c) \ B̄(w, cr′)], then

λ̄−1 u(y, t)
d(y, ∂Ω)

≤ |∇u(y, t)| ≤ λ̄
u(y, t)
d(y, ∂Ω)

.(5.38)

Indeed let A1(y, η) = A(w, η) whenever y ∈ Rn and η ∈ Rn \ {0}. Let 1 < a < b
and suppose that ρ is such that 2r′ ≤ ρ/a < bρ ≤ r̃0/2. Let v(·, t), for t ∈ [0, 1],
be A1-harmonic in Ω \ B̄(w, ρ/a) with continuous boundary values equal to u(·, t).
Then, from Lemmas 5.4, 5.18, 5.19 we see that if a = a(p, n, α) is large enough,
then

(5.39) |∇v(·, t)| ≈ v(·, t)/d(·, ∂Ω)

on Ω∩∂B(w, ρ). Here ≈ means with constants depending only on p, n, α. Let h(·, t)
be the A1-harmonic function in Ω1 = Ω ∩ [B(w, bρ) \ B̄(w, ρ/a)] with continuous
boundary values equal to u(·, t). We claim that if b = b(p, n, α, β, γ) is large enough
then (5.39) is also valid for h. In fact (5.24) holds with u replaced by u(·, t) for
t ∈ [0, 1], where now φ = φ(p, n, α, β, γ) and s ≥ 2r′. Using (5.24) for u(·, t) we get

v(·, t) ≤ h(·, t) ≤ v(·, t) + c(ab)−φu(ρen/a, t) on ∂Ω1.

From the maximum principle this inequality also holds in Ω1. Moreover, for τ as in
(5.21) we deduce,

v(·, t) ≥ c−1a−τu(ρen/a, t)

on Ω̃(w, η̃/2) ∩ (B(w, 2ρ) \ B̄(w, ρ/2)). Thus, for some c′ = c′(p, n, α, β, γ) ≥ 1,

(5.40) v(·, t) ≤ h(·, t) ≤ (1 + c′aτ−φb−φ)v(·, t)

on Ω̃(w, η̃/2)∩ (B(w, 2ρ) \ B̄(w, ρ/2)). Choosing b = b(p, n, α, β, γ) large enough in
(5.40), using (5.39), Lemma 3.18, it follows that

(5.41) λ−1
+ h(y, t)/d(y, ∂Ω) ≤ |∇h(y, t)| ≤ λ+h(y, t)/d(y, ∂Ω)

whenever y ∈ Ω̃(w, η̃) ∩ ∂B(w, ρ) for some λ+ = λ+(p, n, α, β, γ) ≥ 1.
From (5.2) we see that (5.41) holds on Ω ∩ ∂B(w, ρ) provided λ+(p, n, α, β, γ)

is large enough. With a, b, now fixed, depending only on p, n, α, β, γ, we can use
Lemma 2.15 and argue as in Lemma 3.1 to conclude for given ε > 0, the existence
of r1 = r1(p, n, α, β, γ, ε) so small that if bρ ≤ r1 < r̃0, then

1− ε ≤ u(·, t)/h(·, t) ≤ 1 + ε

on Ω̃(w, η̃/2)∩(B(w, 2ρ)\B̄(w, ρ/2)). In view of this inequality, (5.41), and Lemma
3.18, we see that if ε = ε(p, n, α, β, γ) is small enough, then

(5.42) |∇u(·, t)| ≈ u(·, t)/d(·, ∂Ω)

on Ω̃(w, η̃)∩∂B(w, ρ), where proportionality constants depend only on p, n, α, β, γ.
In view of (5.2), this inequality holds on Ω ∩ ∂B(w, ρ). With r1, a, b fixed we see
from arbitrariness of ρ that (5.38) is true. We can now argue as in Lemma 5.4 or
just repeat the argument in (1.18) - (1.25) to conclude Lemma 5.35. 2

As pointed out earlier in this section, if u, v are minimal A-harmonic functions
relative to w ∈ ∂Ω, then we can apply Lemma 5.35 and let r′→0 to get Theorem
2. The proof of Theorem 2 is now complete. 2
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6. Appendix : an alternative approach to deformations

In this section we show that Step C in Theorem 1 can be replaced by a some-
what different argument based on ideas in [W]. The first author would like to thank
Mikhail Feldman for making him aware of the ideas in [W]. In the following all con-
stants will depend only on p, n, α, β, γ and we suppose that u, v are A-harmonic in
Ω ∩ B(w, 4r) and continuous in B(w, 4r) with u = v = 0 on B(w, 4r) \ Ω. From
Lemma 3.35 we see that if δ is small enough, r̂ = r/c, and c is large enough, then
for some µ ≥ 1,

(6.1) µ−1 h(y)
d(y, ∂Ω)

≤ |∇h(y)| ≤ µ
h(y)

d(y, ∂Ω)

whenever y ∈ Ω ∩ B(w, 4r̂), h ∈ {u, v}. Also from Lemma 4.8 we see that there
exists µ∗ ≥ 1, for ε∗ > 0 fixed, such that

(6.2) µ−1
∗

(
s

r̂

)1+ε∗

≤ h(as(w))
h(ar̂(w))

≤ µ∗

(
s

r̂

)1−ε∗

whenever y ∈ Ω ∩ B(w, r̂), h ∈ {u, v}, where 0 < s ≤ 4r̂. Observe again, for
x, λ ∈ Rn, ξ ∈ Rn \ {0}, that

(6.3)

Ai(x, λ)−Ai(x, ξ) =

1∫
0

d

dt
Ai(x, tλ+ (1− t)ξ)dt

=
n∑

j=1

(λj − ξj)

1∫
0

∂Ai

∂ηj
(x, tλ+ (1− t)ξ)dt

for i ∈ {1, ..., n}. In view of (6.3), (6.1), and A-harmonicity of u, v, we deduce that
u− v is a weak solution to L̄ζ = 0 in Ω ∩B(w, r̂), where

(6.4)

L̄ζ(x) =
n∑

i,j=1

∂

∂xi
(aij(x)ζxj

)

and aij(x) =

1∫
0

∂Ai

∂ηj
(t∇u(x) + (1− t)∇v(x))dt,

for 1 ≤ i, j ≤ n. Moreover, from the structure assumptions on A, see Definition 1.1,
we find that

(6.5)
c−1
+ (|∇u(x)|+ |∇v(x)|)p−2 |ξ|2 ≤

n∑
i,j=1

aij(x) ξiξj

≤ c+(|∇u(x)|+ |∇v(x)|)p−2 |ξ|2

whenever x ∈ Ω ∩B(w, r̂). Next we prove the following lemma.

Lemma 6.6. There exists c ≥ 1, δ0 > 0, such that if r∗ = r̂/c, and 0 < δ < δ0, then
(|∇u|+ |∇v|)p−2 extends to an A2-weight in B(w, r∗) with A2-constant depending
only on p, n, α, β, γ.
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Proof: The proof is essentially the same as the proof of Lemma 4.9. That is,
we use a Whitney cube decomposition of Rn \ Ω to extend (|∇u| + |∇v|)p−2 to
a function λ on B(w, 4r∗). Let w̃ ∈ B(w, r∗) and 0 < r̃ < r∗. Let ŵ ∈ ∂Ω with
|ŵ − w̃| = d(w̃, ∂Ω) and suppose that |ŵ − w̃|/2 < r̃ < r∗. We assume, as we may,
that

(6.7) max{u(ar̃(ŵ)), v(ar̃(ŵ))} = u(ar̃(ŵ)).

Let λ̂ = λ when p ≥ 2 and λ̂ = 1/λ for 1 < p < 2. As in (4.25) - (4.28), it follows,
for ε∗ > 0, small enough, that

(6.8)
∫

B(w̃,r̃)

λ̂dx ≤ cu(ar̃(ŵ))|p−2| r̃n−|p−2|

and ∫
B(w̃,r̃)

λ̂−1dx ≤ cr̃(1+ε∗)(|p−2|)u(ar̃(ŵ))−|p−2|
∫

Ω∩B(w̃,50r̃)

d(y, ∂Ω)−ε∗(|p−2|)dy

≤ cu(ar̃(ŵ))−|p−2| r̃n+|p−2|.(6.9)

These inequalities remain true if r̃ ≤ |w̃ − ŵ|/2, as follows easily from (6.1). Com-
bining (6.8), (6.9), and using arbitrariness of w̃, r̃, we get Lemma 6.6. 2

Using the ideas in [W] we continue by proving the following.

Lemma 6.10. Given p, 1 < p <∞, w ∈ ∂Ω, 0 < r < r0, suppose that û and v̂ are
non-negative A-harmonic functions in Ω ∩ B(w, 2r) with v̂ ≤ û. Assume also that
û, v̂, are continuous in B(w, 2r) with û ≡ 0 ≡ v̂ on B(w, 2r) \ Ω. Let r∗ be as in
Lemma 6.6. There exists c ≥ 1 such that if r̃ = r∗/c, then

c−1 û(ar̃(w))− v̂(ar̃(w))
v̂(ar̃(w))

≤ û(y)− v̂(y)
v̂(y)

≤ c
û(ar̃(w))− v̂(ar̃(w))

v̂(ar̃(w))

whenever y ∈ Ω ∩B(w, r̃).

Proof: We first prove the lefthand inequality in Lemma 6.10. To do so we show
the existence of Λ, 1 ≤ Λ <∞, and ĉ ≥ 1, such that if r′ = r∗/ĉ and if

e(y) = Λ
(

û(y)− v̂(y)
û(ar∗(w))− v̂(ar∗(w))

)
− v̂(y)
v̂(ar∗(w))

(6.11)

for y ∈ Ω ∩B(w, r∗), then

e(y) ≥ 0 whenever y ∈ Ω ∩B(w, 2r′).(6.12)

To do this, we initially allow Λ, ĉ ≥ 1 to vary in (6.11). Λ, ĉ, are then fixed near
the end of the argument. Put

u′(y) =
Λ û(y)

û(ar∗(w))− v̂(ar∗(w))
,

v′(y) =
Λ v̂(y)

û(ar∗(w))− v̂(ar∗(w))
+

v̂(y)
v̂(ar∗(w))

.

Observe from (6.11) that e = u′ − v′. Using Definition 1.1 (iv) we see that u′, v′

are A-harmonic functions. Let L̄ be defined as in (6.4) using u′, v′, instead of u, v,
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and let e1, e2 be the solutions to L̄ei = 0, i = 1, 2, in Ω∩B(w, r∗), with continuous
boundary values:

e1(y) =
û(y)− v̂(y)

û(ar∗(w))− v̂(ar∗(w))
, e2(y) =

v̂(y)
v̂(ar∗(w))

,(6.13)

whenever y ∈ ∂(Ω ∩ B(w, r∗)). From Lemma 6.6 we see that Lemma 4.7 can be
applied and we get, for some c+ ≥ 1 and r+ = r∗/c+, that

c−1
+

e1(ar+(w))
e2(ar+(w))

≤ e1(y)
e2(y)

≤ c+
e1(ar+(w))
e2(ar+(w))

(6.14)

whenever y ∈ Ω ∩B(w, 2r+). We now put

ĉ = c+, r
′ = r+, Λ = ĉ

e2(ar′(w))
e1(ar′(w))

,

and observe from (6.14) that

(6.15) Λe1(y)− e2(y) ≥ 0 whenever y ∈ Ω ∩B(w, 2r′).

Let ê = Λ e1−e2 and note from linearity of L̄ that ê, e, both satisfy the same linear
locally uniformly elliptic pde in Ω∩B(w, r∗) and also that these functions have the
same continuous boundary values on ∂(Ω ∩B(w, r∗)). Hence, using the maximum
principle for the operator L̄ it follows that e = ê and then by (6.15) that e(y) ≥ 0 in
Ω∩B(w, 2r′). To complete the proof of the left-hand inequality in Lemma 6.10 with
r̃ = 2r′, we observe from Lemmas 4.5, 4.6, that Λ ≤ c. The proof of the right-hand
inequality in Lemma 6.11 is similar. We omit the details. 2

We note that in [LN5] Lemma 6.10 was proved under the assumptions that û
and v̂ are non-negative p-harmonic functions in Ω ∩ B(w, 2r) and that Ω ⊂ Rn

is a Lipschitz domain. In this case the constants in Lemma 6.10 depend only on
p, n and the Lipschitz constant of Ω. Moreover, in [LN5] this result is used to
prove regularity of a Lipschitz free boundary in a general two-phase free boundary
problem for the p-Laplace operator.

Proof of Theorem 1. Let u, v,A,Ω, w, r be as in Theorem 1 and let û, v̂ be the
A-harmonic functions in Ω ∩B(w, 2r) with

û = max{u, v} and v̂ = min{u, v} on ∂[Ω ∩B(w, 2r)].

From the maximum principle for A-harmonic functions we have û ≥ v̂ and hence
we can apply Lemma 6.10 to conclude that

c−1 û(ar̃(w))
v̂(ar̃(w))

≤ û(y)
v̂(y)

≤ c
û(ar̃(w))
v̂(ar̃(w))

whenever y ∈ Ω∩B(w, r̃). Moreover, using the definition of û, v̂, and the inequalities
in the last display we can conclude that

(6.16)
u(y)
v(y)

≤ c
u(z)
v(z)

whenever y, z ∈ Ω ∩B(w, r̃).

Next if x ∈ ∂Ω ∩B(w, r̃/8), then we let

M(ρ) = sup
B(x,ρ)

u

v
and m(ρ) = inf

B(x,ρ)

u

v
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when 0 < ρ < r̃. If ρ is fixed we can apply Lemma 6.10 with û = u, v̂ = m(ρ)v, and
2r replaced by ρ to conclude the existence of c∗, c∗, such that if ρ̃ = ρ/c∗, then

(6.17) M(ρ̃)−m(ρ) ≤ c∗(m(ρ̃)−m(ρ)).

Likewise, we can apply Lemma 6.10 with û = M(ρ) v and v̂ = u to conclude

(M(ρ) v − u)/u ≈ constant on Ω ∩B(w, ρ̃).

Using this inequality together with (6.16) it follows that

(M(ρ)v − u)/v ≈ constant on Ω ∩B(w, ρ̃).

Here we have used heavily the fact that A-harmonic functions remain A-harmonic
after multiplication by a constant as follows from Definition 1.1 (iv). Thus if c∗ is
large enough, then

(6.18) M(ρ)−m(ρ̃) ≤ c∗(M(ρ)−M(ρ̃)).

If osc (t) = M(t) −m(t), then we can add (6.17), (6.18) and we get, after some
arithmetic, that

(6.19) osc (ρ̃) ≤ c∗ − 1
c∗ + 1

osc (ρ).

We can now use (6.19), since c∗ is independent of ρ. in an iterative argument.
Doing this we can conclude that

(6.20) osc (s) ≤ c(s/t)θ osc (t) whenever 0 < s < t ≤ r/2

for some θ > 0, c ≥ 1. (6.20), (6.16), along with arbitrariness of x ∈ ∂Ω∩B(w, r̃/8)
and interior Hölder continuity - Harnack inequalities for u, v, are easily seen to
imply Theorem 1. 2
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