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0 Introduction

In many elliptic problems, a weak solution u is required to satisfy a certain integral identity
- obtained from integrating the pde by parts with respect to a class of smooth test functions
- and also to lie in a certain Sobolev space. The Sobolev space is chosen so that powers of u
times a smooth cutoff function can be used as a test function, to derive properties of u ; higher
integrability, uniqueness, Hölder continuity, etc. On the other hand the integral identity often
makes sense under weaker assumptions on the Sobolev space. Thus the question arises as to
whether the Sobolev space assumption is in fact necessary to guarantee properties of u. This
question was partially answered by Serrin[S] who constructed the following examples. Given
ε ∈ (0, 1) let

u(x) = x1 |x|1−n−ε, x = (x1, . . . , xn) ∈ Rn,

aij(x) = δij + (a− 1)
xixj
|x|2 , 1 ≤ i, j ≤ n,

where {δij} is the Kronecker delta, a = n−1
ε(ε+n−2)

, and |x| denotes the norm of x. We note that

(a) λ |ξ|2 ≤
∑
i,j

aij ξiξj ≤ Λ |ξ|2,

(b) u ∈ W1,r(Rn) locally for r < n
n+ε−1

,

(c)
∑
i,j

∫
aij

∂u
∂xj

∂φ
∂xj

dx = 0, φ ∈ C∞0 (Rn),

(0.1)

where λ,Λ, depend only on ε. Clearly, u(x)→∞ as x→0. We remark that if (0.1)(a), (c) hold
for some measurable (aij) defined on an open set O with φ ∈ C∞0 (O) and u ∈ W1,2(O) locally,
then classical pde theory shows that u is Hölder continuous.

After Serrin’s example, related results were obtained by [EM], [HR], [GM], and [GS] on
problems of the above type. We note that Elcrat and Meyers[EM] were the first to show for a
broad range of elliptic problems that a classical weak solution actually lies in a higher Sobolev
space. Using this result and duality they obtained for O, (aij), u, φ, satisfying (0.1)(a), (c) as
above, that there exists δ > 0 depending only on λ,Λ, n, with the property that if u ∈ W1,2−δ(O)
locally, then u ∈ W1,2+δ locally, so in fact u is a classical weak solution to the pde. However
their method was unable to handle nonlinear pde’s. Recently, Iwaniec and Sbordone[IS] have
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shown that the usual Sobolev assumption for weak solutions of p Laplacian type (u ∈ W1.p

locally) can be relaxed to u ∈ W1,p−δ for some δ > 0, where δ depends only on p, n, and the
structure constants, in order to conclude that u ∈ W1,p+δ, locally. Hence in this case it still
turns out that u is a classical weak solution. Essentially they use the Hodge decomposition to
construct a suitable test function.

In this paper we introduce another method for constructing suitable test functions, based
on the Whitney extension theorem, Gehring’s reverse Hölder inequality, and the theory of Ap
weights. We show that our method can be used to relax the Sobolev assumptions for the full
range of elliptic problems considered by Elcrat-Meyers and still one can conclude that a solution
to the integral identity associated with the pde, is in fact a classical weak solution. Moreover,
our method appears to us to have more flexibility and to be more natural from a pde standpoint
than either of the above methods.

1 Notation and Results

As above Rn denotes Euclidean n space with inner product : 〈x, y〉 =
∑n

i=1 xi yi, x, y ∈ Rn

and dx denotes Lebesgue measure on Rn. Let B(x, r) = {y : |y − x| < r}, when x ∈ Rn and
r > 0. Let Ē, ∂E, |E|, denote the closure, boundary, and outer Lebesgue n measure of the set
E. For a fixed positive integer N and E a Lebesgue n measurable set, let Lp(E), 1 ≤ p ≤ ∞,
denote the usual space of Lebesgue measurable functions from E into RN which are p th power
integrable, with norm denoted by ‖ · ‖p . If O is a bounded open set, m a positive integer,
and 1 ≤ p ≤ ∞, then Wm,p(O) will denote the Banach space of functions in Lp(O) whose
distributional derivatives up to order m are also in Lp(O) with norm

‖u‖m,p = ‖u‖m,p,O =
∑
|α|≤m

‖∂αu/∂xα‖

In this display α = (α1, ..., αn) is a multi-index, |α| =
∑
αi is the length of α, and xα =

xα1
1 ... xαnn . We say that u ∈ W loc

m,p(O) if u ∈ Wm,p(Ω) whenever Ω is an open set with Ω̄ ⊂ O.

Let C∞0 (O) be the infinitely differentiable functions with compact support in O and put Ẇm,p(O)
equal to the closure of C∞0 (O) in the norm of Wm,p(O). Next let S denote the set of all n tuples
of multi-indexes of length less than or equal to m and let card S denote the cardinality of S.
Similarly Sk, 1 ≤ k ≤ m, will denote the set of all n tuples of multi-indexes of length k with
cardinality, card Sk. Let P = Πσ∈SRN denote the cartesian product of card S copies of RN

indexed by σ ∈ S. A similar interpretation holds for Pk = Πσ∈SkRN . If u ∈ Wm,p(O), we let
Dmu : O→P be the derivatives of u of order less than or equal to m considered as a vector
function with N · card S components. Also, ∂ku : O→Pk will stand for the vector function
of k th derivatives of u with N · card Sk components.

Following Elcrat and Meyers[EM] , we consider nonlinear elliptic systems. For this purpose
suppose that O,m,N are as above, 1 < p < ∞, 0 < ε < 1, and A = (Aσ)σ∈S, where Aσ :
O × P→RN , for each σ ∈ S. Let u = (u1, ..., uN) ∈ W loc

m,r(O) and assume that each component
of A(x,Dmu(x)), x ∈ O, is Lebesgue n measurable with the following properties:

γ
∑
σ∈Sm

〈Aσ(x,Dmu(x)), ∂σu (x) 〉 ≥ | ∂mu (x)|p − a(x), (1.1)
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a.e in O, where a > 0 ∈ L1+ε(O), and for σ ∈ Si, 0 ≤ i ≤ m,

|Aσ(x,Dmu(x))| ≤ ai(x) | ∂mu (x)|p−1 + bi(x), a.e , (1.2)

where am = 1 , ai ∈ Lpi(O) for 0 ≤ i ≤ m − 1 , and bi ∈ Lqi(O) for 1 ≤ i ≤ m. Here
pi = max{p, n

(m−i)} + ε for 0 ≤ i ≤ m − 1 while if p′ = p
p−1

is the exponent conjugate to p,

then qi = max{1, np′

(n+p′(m−i))} + ε for 0 ≤ i ≤ m. We remark that if r, p− 1
2
≤ r ≤ p, is chosen

near enough p then from (1.2) and Hölder’s inequality, we see that Aσ(x,Dmu(x)) is locally
Lebesgue integrable on O for each σ ∈ S. With this restriction on r assume that∫

O
〈A(x,Dmu(x)), Dmφ(x) 〉 dx

=
∑

σ∈S
∫
O
〈Aσ(x,Dmu(x)), ∂σφ (x) 〉 dx = 0

(1.3)

whenever φ = (φ1, . . . , φN) ∈ C∞0 (O). We prove

Theorem 1. Let u ∈ W loc
m,r (O) and A be as in (1.1)-(1.3). Then there exists for fixed

n,m,N, ε, γ a positive continuous function δ = δ(n,m,N, ε, γ, p) of p on (1,∞) such that
if r = p− δ, then u ∈ W loc

m,p+δ, so u is a classical weak solution to (1.3) .

We remark that Elcrat and Meyer’s [EM] proved Theorem 1 with p− δ replaced by p. For
applications of Theorem 1 see [EM] or [ Gi, ch 5 ].

To outline our proof we consider a global version of Theorem 1 in a simple case. Suppose
in Theorem 1 that m = 1, O = Rn, N = 1, and a0 ≡ a ≡ bi ≡ 0, for i = 0, 1. We shall show
there exists δ = δ(n, γ, p) > 0, such that if u ∈ W1,p−δ(Rn), then u ≡ 0. To this end for given
λ > 0 let

E(λ) = {x ∈ Rn : M(| ∂1u |)(x) ≤ λ}

where M is the symmetric Hardy Littlewood Maximal function of | ∂1u | on balls (see section
2 for a definition). Using Sobolev type estimates it is easily shown that u is Lipschitz on E(λ)
with norm at most cλ, where c is a positive constant. From this fact, the fact that E(λ) is
closed, and Whitney’s extension theorem we see there exists a Lipschitz function v = vλ on Rn

with v = u on E(λ) and Lip norm at most, cλ. It is easily checked that ∂1v ∈ Lq(Rn), for
q ≥ p− δ. Indeed, ∫

E(λ)
| ∂1v |q(x)dx =

∫
E(λ)
| ∂1u |q(x) dx

≤ (cλ)q+δ−p
∫
E(λ)
| ∂1u |p−δ(x)dx

while on Rn \ E(λ), ∫
Rn\E(λ)

| ∂1v |q(x) dx ≤ cq λq |Rn \ E(λ)| < ∞,

as we see from weak type estimates and the fact that M(| ∂1u |) ∈ Lp−δ(Rn) ( by the Hardy
Littlewood Maximal Theorem ). Now the conjugate exponent to p−δ

p−1
is s = p−δ

1−δ > p − δ.
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Using this fact, (1.2), ∂1v ∈ Ls(Rn), and approximating v by functions in C∞0 (Rn), we find
from a standard argument that (1.3) holds for m = 1 with φ replaced by v.

Using (1.1)-(1.3) with φ replaced by v, the fact that D1u = D1v on E(λ), and || ∂1v ||∞ ≤
cλ , we deduce ∫

E(λ)

| ∂1u |p(x) dx ≤ c

∫
E(λ)

∑
σ∈S Aσ(x,Du(x)) ∂σu dx

= −c
∫
Rn\E(λ)

∑
σ∈S Aσ(x,Du(x)) ∂σv dx

≤ cλ

∫
Rn\E(λ)

| ∂1u |p−1(x) dx

(1.4)

We multiply both sides of (1.4) by λ−(1+δ) and integrate from 0 to ∞. It is easily checked that
both sides of the resulting inequality are finite since u ∈ W1,p−δ(Rn). Interchanging the order
of integration we get ∫ ∞

0

λ−(1+δ)

(∫
{M(|∂1u|)≤λ }

| ∂1u |p(x) dx

)
dλ

=

∫
| ∂1u |p

(∫ ∞
M(|∂1u|)

λ−(1+δ) dλ

)

= δ−1

∫
Rn
| ∂1u |pM(| ∂1u |)−δ dx

≤ c

∫ ∞
0

(∫
{M(|∂1u|)>λ}

| ∂1u |p−1 dx

)
λ−δ dλ

= c

∫
Rn
| ∂1u |p−1

(∫ M(|∂1u|)

0

λ−δ dλ

)
dx

= c
1−δ

∫
Rn
| ∂1u |p−1M(| ∂1u |)1−δdx.

(1.5)

Thus for some c = c(n, γ, p) we have

δ−1

∫
Rn
| ∂1u |pM(| ∂1u |)−δ dx

≤ c

∫
Rn
| ∂1u |p−1M(| ∂1u |)1−δ dx.

(1.6)

If u 6≡ 0 we use the observation that M(| ∂1u |)−δ is an Ap weight(see section 3 ) for δ sufficiently
small(say δ ≤ δ0) with Ap constants depending only on p and n. It follows from this fact, (1.6),
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and Muckenhoupt’s
theorem (see [T, ch 9]): ∫

Rn
(Mf)p ω dx ≤ c̃

∫
Rn
|f |p ω dx

where ω is an Ap weight and c̃ depends only on p and the Ap constants; that for δ ≤ δ0

δ−1

∫
Rn
M(| ∂1u |)p−δdx ≤ cδ−1

∫
Rn
| ∂1u |pM(| ∂1u |)−δ dx

≤ c

∫
Rn
M(| ∂1u |)p−δ dx.

(1.7)

Clearly, (1.7) implies for δ small enough that ∂1u ≡ 0. Since u ∈ W1,p−δ(Rn) it follows that
u ≡ 0 which is a contradiction. Hence u ≡ 0.2

In section 2 we state and outline the proof of some lemmas involving Sobolev and reverse
Hölder inequalities which will be used in the proof of Theorem 1. In section 3 we prove Theorem
1.

Theorem 1 has a parabolic analogue which we shall prove in a future paper. Finally, we
would like to thank Tadeusz Iwaniec for helpful conversations concerning this problem.

2 Sobolev and Reverse Hölder Inequalities

If f is an integrable function on Rn and B ⊂ Rn is measurable, we let

fB = |B|−1

∫
B

fdx = −
∫
B

f dx

Mf(x) = M1f(x) = sup
r>0
−
∫
B(x,r)

|f |dx

Mkf(x) = Mk−1(Mf)(x), for k ≥ 2 .

We shall need the following lemma.

Lemma 2.1 Let k be a positive integer, 1 < q < ∞, x0 ∈ Rn, r > 0, and B = B(x0, r). If
w ∈ Wk,q(B), ∂αw )B = 0 for 0 ≤ |α| ≤ k − 1, and x ∈ B, then there exists c1 = c1(n, k, q)
such that

|w|(x) ≤ c1r
kMk(| ∂kv |χB )(x) (2.1a)

where χB is the characteristic function of B; while if 0 < s ≤ q, and ks < n, there exists
ĉ1 = ĉ1(n, k, s) such that

|w|(x) ≤ ĉ1r
k

(
−
∫
B

[Mk(| ∂kw |χB)]sdx

) k
n

[Mk( | ∂kw |χB)]
s
s∗ (x) (2.1b)
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(
−
∫
B

|wχB |s
∗
dx

) 1
s∗

≤ ĉ1r
k

(
−
∫
B

[Mk(| ∂kw |χB)]s dx

)1
s

(2.1c)

where χB is the characteristic function of B and s∗ = ns
n−ks .

Lemma 2.1 is well known, however for completeness we sketch a proof of this lemma along the
lines of [H]. We first prove Lemma 2.1 when k = 1. In this case it follows from Morrey’s lemma
that for x ∈ B

w(x) ≤ c

∫
B

| ∂1w ||x− y|1−n dy

=

∫
{y∈B:|x−y|<η}

... dx +

∫
{y∈B:|x−y|≥η}

... dx

= L1 + L2 .

(2.2)

In (2.2), as well as in the rest of this section, c ≥ 2 denotes a constant depending only on n, k, q,
not necessarily the same at each occurrence. To estimate L1 we write the integral defining L1

as a sum over {y ∈ B : 2−(k+1)η ≤ |x− y| ≤ 2−kη }, k = 0, 1, ... and use the definition of the
maximal function to get at x ∈ B

L1 ≤ cηM(| ∂1w |χB) . (2.3)

From (2.2), (2.3), and the fact that L2 = 0, when η ≥ 2r, we see that (2.1a) is valid for k = 1.
If η ≥ 2r, we estimate L2 using Hölder’s inequality. We obtain

L2 ≤ cη1−n
s

(∫
B

| ∂1w |s dx
)1
s

. (2.4)

If

η
n
s =

(∫
B

| ∂1w |sdy
)1
s

M( | ∂1w |χB )

then from (2.2)-(2.4) we see that (2.1b) is true when k = 1. Raising both sides of (2.1b) to the
s∗, integrating, and taking 1/s∗ powers of the resulting expression we find that (2.1c) is true
when k = 1. Hence Lemma 2.1 is true when k = 1.

Assume by way of induction that Lemma 2.1 is true when k = l, a positive integer. If
k = l + 1, then from (2.2), (2.3) with η = 2r and (2.1a) of the induction hypothesis applied to
∂1w , we find that (2.1a) holds when k = l + 1. Also from (2.3) and (2.1b) of the induction

hypothesis applied to ∂1w , we have at x ∈ B
L1 ≤ cηM(| ∂1w |χB)

≤ cηrk−1

(
−
∫
B

Mk−1(| ∂kw |χB)sdx

)k−1
n

M
(
Mk−1(| ∂kw |χB)

s
s̄

)

≤ cηrk−1

(
−
∫
B

[Mk−1(| ∂kw |χB)]s dx

)k−1
n

[Mk( | ∂kw |χB) ]
s
s̄

(2.5)
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where s̄ = ns
n−(k−1)s

and we have used Hölder’s inequality to get the last inequality. Applying

(2.1c) of the induction hypothesis to ∂1w and using Hölder’s inequality once again, we obtain

L2 ≤ cη1−n
s̄
(∫

B
| ∂1w |s̄ dx

)1
s̄

≤ cη1−n
s̄

(∫
B

[Mk−1( | ∂kw |χB)]s dx

)1
s

.

(2.6)

Choosing

η
n
s =

(∫
B

[Mk−1(| ∂kw |χB)]s dy

)1
s

Mk( | ∂kw |χB )
,

in (2.5), (2.6), we deduce from (2.2) that (2.1b) is valid when k = l + 1. (2.1c) follows from
(2.1b) as in the case k = 1. Hence by induction, Lemma 2.1 is true . 2

We shall also need

Lemma 2.2 Let k be a positive integer , λ > 0, 1 < q < ∞, x0 ∈ Rn, and r > 0. If
h = (h1, ..., hN) ∈ Wk,q(Rn), supp h ⊂ B̄(x0, r), and

F (λ) = {x : Mk(| ∂kh |)(x) ≤ λ } ∩B(x0, 2r) 6= ∅ ,

then h|F (λ) has an extension H = H(·, λ) to Rn satisfying,

(i) H = h on F (λ) and supp H ⊂ B(x0, 4r),

(ii) H ∈ Wk,∞(Rn) with || ∂σH ||∞ ≤ cλrk−|σ|, 0 ≤ |σ| ≤ k,

(iii) | ∂σ(H − h) |(x) ≤ cλd(x)k−|σ| for 0 ≤ |σ| ≤ k − 1
and a.e x ∈ Rn, where d(x) denotes the
distance from x to F (λ).

(2.7)

To outline the proof of Lemma 2.2, we first observe from the divergence theorem that

∂σh )B(xo,2r) = 0 when 0 < |σ| ≤ k .

From this observation we see that the hypotheses of Lemma 2.1 are satisfied with B =
B(x0, 2r), w = h− hB. Using (2.1a) with |x− x0| = 3r

2
, and the fact that supp h ⊂ B̄(x0, r) we

get
|h(x)− hB| = |hB| ≤ crkMk(| ∂kh |)(x)

≤ crk−n
∫
B(x0,2r)

| ∂kh |dx ≤ cλrk,

where the last inequality is a consequence of the fact that F (λ) 6= ∅. Next from the above
inequality and (2.1a) with k replaced by k − l, 0 ≤ l ≤ k − 1, it follows that

| ∂lh |(y) ≤ cλrk−l, y ∈ F (λ) ∩B(x0, 2r), 0 ≤ l ≤ k . (2.8)
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If z0 ∈ F (λ) and s > 0, let V = V (·, z0, s) = (V1, ..., VN) be such that Vi, 1 ≤ i ≤ N, is the
unique polynomial of degree k − 1 with

∂σVi )B(z0,s) = ∂σhi )B(z0,s) for 0 ≤ |σ| ≤ k − 1, 1 ≤ i ≤ N . (2.9)

From (2.9) and (2.1a) with w = ∂l(h− V ) , x0 = z0, s = r, and k replaced by k − l, we see
that

| ∂l(h− V ) |(y) ≤ cλsk−l , y ∈ F (λ) ∩B(z0, s), 0 ≤ l ≤ k − 1. (2.10)

Let Wi, 1 ≤ i ≤ N, be the Taylor polynomial of degree k− 1 defined relative to z0, hi, and put
W = (W1, ...,WN). Using ( 2.10) we deduce that

| ∂l(V −W ) |(y) ≤ cλsk−l , (2.11)

when y ∈ B(z0, s) and 0 ≤ l ≤ k − 1. From (2.11) and (2.10) we see that

| ∂l(h−W ) |(y) ≤ cλ sk−l, y ∈ F (λ) ∩B(z0, s), 0 ≤ l ≤ k. (2.12)

Since s is arbitray, we conclude from (2.12) and (2.8) that h|F (λ) satisfies the hypotheses of
the Whitney extension theorem (see [St, ch 6]) . Applying this theorem we get H satisfying
(2.7)(i)-(iii) . 2

Finally, we shall need an amended form of a theorem of Gehring [G].

Lemma 2.3 Let R > 0, 0 < ξ < 1, q > 1, β = (1 + ξ)q, f ∈ Lβ(B(x0, R)), and g ∈
Lq(B(x0, R)) . Assume that whenever x ∈ B(x0,

R
2

), 0 < r ≤ R
16
, we have

−
∫
B(x, r

16
)

|g|qdx ≤ c2

(
−
∫
B(x,r)

|g|dx
)q

+ −
∫
B(x,r)

|f |q dx

+ θ−
∫
B(x,r)

|g|q dx

(2.13)

for some 0 < θ < 1, and 2 ≤ c2 <∞. Then there exists η = η(n, θ, c2, ξ, q) > 0 which for fixed
n, θ, c2, ξ, is a continuous function of q on (1,∞), and c3 = c3(n, θ, c2, ξ, q), 2 ≤ c3 < ∞, such
that if τ = q(1 + η), then(

−
∫
B(x0,

R
32

)

|g|τdx

) 1
τ

≤ c3

(
−
∫
B(x0,

R
2

)

|f |τ dx

) 1
τ

+ c3

(
−
∫
B(x0,

R
2

)

|g|q dx

)1
q

.

(2.14)

For a proof of Lemma 2.3 (see [Gi, ch 5, Proposition 1.1]). This author does not state
explicitly that η can be chosen as a continuous function of q on (1,∞)( for fixed n, θ, c2, ξ ),
but this statement can be deduced from a careful examination of the proof. Indeed, there are
two parts to the proof. The first part consists of using (2.13) and Calderón-Zygmund type
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arguments to derive an inequality for a certain distribution function. It is easily checked that
the constants in this inequality can be chosen independent of q on any compact subset of (1,∞)
provided the above constants are fixed. The second part of the proof (see [ Gi, ch.5, Lemma
1.2]) consists in showing that the derived inequality implies (2.14). Here an explicit value for
η is given which depends on the constants in the derived inequality . It follows that η can be
chosen independent of q on (1,∞) (when the other variables are fixed), so clearly η can be
chosen continuous on (1,∞).

3 Proof of Theorem 1

In this section, c ≥ 2, denotes a constant that depends only on n,m,N, ε, γ, p, not necessarily
the same at each occurrence. Let u,A,O be as in Theorem 1 and suppose B(x0, R) ⊂ O
for some R ≤ 1. For fixed y0 ∈ B(x0,

R
2

) and 0 < ρ < R
32
, let P = (P1, ..., PN) where

Pi = Pi(·, y0, 8ρ), 1 ≤ i ≤ N, is the unique polynomial of degree m − 1 in the coordinate
variables satisfying

∂σPi )B(y0,8ρ) = ∂σui )B(y0,8ρ) for 0 ≤ |σ| ≤ m− 1 . (3.1)

Let φ ∈ C∞0 (B(y0, 2ρ)) with φ = 1 on B(y0, ρ) and || ∂σφ ||∞ ≤ c ρ−|σ| when |σ| ≤ m. Put
ũ = (u − P )φ, and E(λ) = {x ∈ Rn : Mm(| ∂mũ |) ≤ λ}. If F (λ) = E(λ) ∩ B(y0, 4ρ) 6= ∅,
we may apply Lemma 2.2 with h = ũ, x0 = y0, and r = 2ρ, to get an extension v of ũ|F (λ)

to Rn satisfying (i)-(iii) with H replaced by v. Using Lemma 2.2, ( 1.2), and approximating v
by smooth functions, we see that (1.3) holds with φ replaced by v. Define Â = (Âσ)σ∈S where
Â : O × P →RN , by Âσ = Aσ, when σ ∈ S \ Sm and Âσ = (0, ..., 0), when σ ∈ Sm. Then from
(1.3) with φ = v, (ii) of Lemma 2.2, and (1.2), we deduce∫

F (λ)

〈A(x,Dmu(x)), Dmũ(x) 〉 dx

= −
∫
Rn\F (λ)

〈A(x,Dmu(x)), Dmv(x) 〉 dx

≤
∫
Rn\F (λ)

〈 Â(x,Dmu(x)), Dm(ũ− v)(x) 〉 dx

−
∫
Rn\F (λ)

〈 Â(x,Dmu(x)), Dmũ(x) 〉 dx

+ cλ

∫
Rn\F (λ)

(| ∂mu |p−1 + bm) dx

= J1(λ) + J2(λ) + J3(λ) .

(3.2)
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If x ∈ Rn \B(y0, 3ρ), we observe that

Mm(| ∂mũ |)(x) ≤ cρ−n
∫
B(y0,4ρ)

Mm−1( | ∂mũ | ) dx = λ0

≤ c min
B(y0,8ρ)

Mm(| ∂mũ |) ,
(3.3)

since supp ũ ⊂ B(y0, 2ρ). Thus F (λ) 6= ∅ for λ > λ0 and

Rn \ E(λ) = {x ∈ Rn : Mm(| ∂mũ |)(x) > λ } = Rn \ F (λ) (3.4)

for λ0 < λ <∞.
We multiply both sides of (3.2) by λ−(1+δ) and integrate the resulting inequality over (λ0,∞).

Interchanging the order of integration and using (3.4), we get as in (1.5), (1.6)

δ−1K

= δ−1

∫
Rn\E(λ0)

M(| ∂mũ |)−δ 〈A(x,Dmu(x)), Dmũ(x) 〉 dx

+ δ−1 λ−δ0

∫
E(λ0)

〈A(x,Dmu(x)), Dmũ(x) 〉 dx

≤
3∑
i=1

∫ ∞
λ0

λ−(1+δ) Ji(λ) dλ =
3∑
i=1

Ki ,

(3.5)

where Ki denotes the integral with Ji in its integrand for 1 ≤ i ≤ 3. To estimate K1, we observe
from (1.2), (2.7)(iii), and (3.4) that for λ ∈ (λ0,∞) we have

|J1(λ)| ≤ c
m−1∑
l=0

∫
B(y0,8ρ)\E(λ)

[ al | ∂mu |p−1 + bl ]| ∂l(ũ− v) | dx

≤ cλ
m−1∑
l=0

∫
B(y0,8ρ)\E(λ)

[ al | ∂mu |p−1 + bl ] d
m−l(x)dx .

(3.6)
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For 0 ≤ l ≤ m− 1, let

α = (p−1)ε
100n(p+ε)2

p̃ = p̃(l) = 1− (m−l)(1−α)p
n

γ1 = γ1(l) = [

∫
B(x0,

3R
4

)

{M2m(| ∂mu |χB(x0,
3R
4

))}
n(1−α)
m−l dx]

m−l
n

γ2 = γ2(l) = [

∫
B(x0,

3R
4

)

{M2m(| ∂mu |χB(x0,
3R
4

) )}p(1−α)dx]
m−l
n

τ1 = τ1(l) = [

∫
B(x0,

3R
4

)

{Mm(| ∂mũ )}
n(1−α)
m−l dx]

m−l
n

τ2 = τ2(l) = [

∫
B(x0,

3R
4

)

{Mm(| ∂mũ |)}p(1−α)dx]
m−l
n

(3.7a)

Then from (3.6) and weak type estimates we see for λ ∈ (λ0,∞) and 0 ≤ l ≤ m− 1 that

λ dm−l(x) ≤ cλ |B(y0, 8ρ) \ E(λ)|
m−l
n

≤ cmin {λα τ1, λ
p̃ τ2 } ≤ cmin {λαγ1, λ

p̃ γ2 } .
(3.7b)

To get the last line in (3.7b) we have used the inequality

| ∂mũ | ≤ cMm(| ∂mu |χB(y0,4ρ)) (3.8)

which follows from Lemma 2.1 as in (2.8) . We note for 0 ≤ l ≤ m − 1 from the Hardy -
Littlewood maximal theorem that min[ γ1(l), γ2(l) ] < ∞. Using (3.7b) in (3.6) we conclude
that

|J1(λ)| ≤ c

m−1∑
l=0

el(λ) (3.9)

where

el(λ) =

∫
B(yo,8ρ)\E(λ)

( al| ∂mu |p−1 + bl ) min {λαγ1(l) , λp̃ γ2(l) } dx.

Let pl = max{p, n
m−l} + ε, 0 ≤ l ≤ m − 1, and ql = max{1, np′

n+p′(m−l)} + ε, 0 ≤ l ≤ m, be as
in section 1 . To estimate K1 we consider two cases. First if pl = p + ε, then ql = 1 + ε and
we estimate el(λ), by choosing λα γ1(l) in the minimum . Integrating over (λ0,∞), we obtain
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when α2 > 4δ, ∫ ∞
λ0

λ−(1+δ) el(λ) dλ

≤ cγ1

∫
B(y0,8ρ)\E(λ0)

[∫ Mm(|∂mũ|)

0

λα−δ−1dλ

]

· (al| ∂mu |p−1 + bl) dx

≤ cγ1

∫
B(y0,8ρ)

[Mm(| ∂mũ |)]α−δ (al| ∂mu |p−1 + bl) dx.

(3.10)

Second, if pl > p+ ε, then pl = n
m−l + ε, ql = np′

n+p′(m−l) + ε , and we estimate el(λ) by choosing

γ2(l)λp̃ in the minimum . We get for 0 < 4δ < α2,∫ ∞
λ0

λ−(1+δ) el(λ) dλ

≤ c γ2

∫
B(y0,8ρ)\E(λ0)

[∫ Mm(|∂mũ|)

0

λp̃−δ−1dλ

]

· (al| ∂mu |p−1 + bl) dx

≤ cγ2

∫
B(y0,8ρ)

[Mm(| ∂mũ |)]p̃−δ (al| ∂mu |p−1 + bl) dx.

(3.11)

In the first case we put

fl = cγ1(l)M2m(| ∂mu |χB(x0,
3R
4

))
α−δ (al | ∂mu |p−1 + bl)

and in the second case we set

fl = cγ2(l)M2m(| ∂mu |χB(x0,
3R
4

))
p̃−δ (al| ∂mu |p−1 + bl)

when x ∈ B(x0,
3R
4

). Define F1 = F1,δ by F p−δ
1 =

∑m−1
l=0 fl. Summing (3.11), using (3.8),

Hölder’s inequality, the Hardy - Littlewood maximal theorem, and a ballpark estimate, we
conclude that

(a) K1 ≤
∫
B(y0,8ρ)

F p−δ
1 dx ,

(b) F1 ∈ Lp+α(B(x0,
3R
4

)) .

(3.12)
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Next we consider J2. From (1.2) we see as in (3.6) that for λ ∈ (λ0,∞)

|J2(λ)| ≤ c

m−1∑
l=0

∫
B(y0,8ρ)\E(λ)

[ al | ∂mu |p−1 + bl ]| ∂lũ | dx

=
m−1∑
l=0

e′l .

(3.13)

To estimate e′l we again consider two cases. If pl = p+ ε, 0 ≤ l ≤ m− 1,we note for 0 < β < 1
2
,

that

−
∫
B(y0,4ρ)

Mm(| ∂mũ |)β dx ≤ c [−
∫
B(y0,4ρ)

Mm−1(| ∂mũ |) dx]β

≤ c λβ0 ,

(3.14)

as follows from weak type estimates for the maximal function. Let α be as in (3.7a). Then from
(3.14) with β = αn

m−l , and (2.1b) with s = β, w = | ∂lũ |, k = m − l, we find for λ ∈ (λ0,∞)
and x ∈ B(y0, 8ρ) that

| ∂lũ |α ≤ cρα(m−l) λα
2
Mm(| ∂mũ |)α−α2

≤ cλα
2
Mm(| ∂mũ |)α−α2

(3.15)

since 32ρ < R < 1. Also from (2.1b) with s = n(1−α)
m−l , we deduce at x ∈ B(y0, 8ρ) that

| ∂lũ |1−α ≤ cγ1−α
1 Mm(| ∂mũ |)α−α2

(3.16)

where γ1 = γ1(l) is as in (3.7a). Multiplying the lefthand side of (3.15) and (3.16) together we
get an estimate for | ∂lũ |. Using this estimate in (3.13) we find as in (3.10) for 0 < 4δ < α2

that ∫ ∞
λ0

λ−(1+δ) e′l(λ)dλ

≤ cγ1−α
1

∫
B(yo,8ρ)

[al | ∂mu |p−1 + bl]M
m(| ∂lũ |)2α−α2−δ dx .

(3.17)

If pl > p+ ε, we use (2.1b) with s = p(1−α), w, and k as above to obtain at x ∈ B(y0, 8ρ) that

| ∂mũ |1−α ≤ cγ1−α
2 [Mm(| ∂mũ |)]p̃(1−α) (3.18)

where p̃ = p̃(l), γ2 = γ2(l) are as in (3.7a). Multiplying the lefthand side of (3.15) and (3.18)
together we get an estimate for | ∂lũ | when pl > p+ ε. Using this estimate we find as in (3.11)
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for 0 < 4δ < α2 that ∫ ∞
λ0

λ−(1+δ) e′l(λ)dλ

≤ cγ1−α
2

∫
B(yo,8ρ)

[ al | ∂mu |p−1 + bl ]

· [Mm(| ∂mũ |)]p̃(1−α)+α−δ dx .

(3.19)

In the first case we let

f̂l = cγ1−α
1 [ al | ∂mu |p−1 + bl ]M

2m(| ∂mu |χB(x0,
3R
4

))
2α−α2−δ

while in the second case we put

f̂l = cγ1−α
2 [ al | ∂mu |p−1 + bl ]M

2m(| ∂mu |χB(x0,
3R
4

))
[p̃(1−α)+α−δ] .

If F2 = F2,δ is defined by F p−δ
2 =

∑m−1
l=0 f̂l, then as in (3.12) we see for c large enough that

(a) K2 ≤
∫
B(y0,8ρ)

F p−δ
2 dx,

(b) F2 ∈ Lp+α(B(x0,
3R
4

)) .

(3.20)

To handle K3 we interchange the order of integration as previously to obtain

K3 ≤ c

∫
B(y0,8ρ)

[ | ∂mu |p−1 + bm ]Mm(| ∂mũ |)1−δ dx. (3.21)

Let F p−δ
3 = c bmM

2m(| ∂mu |χB(x0,
3R
4

))
1−δ. Then from (3.21), (3.8), and the Hardy Littlewood

maximal theorem, we find for 0 < 4δ ≤ α2 and α as in (3.7a) that

(a) K3 ≤
∫
B(y0,8ρ)

F p−δ
3 dx + c

∫
B(yo,8ρ)

| ∂mu |p−δ dx

(b) F3 ∈ Lp+α(B(x0,
3R
4

)) .

(3.22)

From (3.22), (3.20), (3.12), and (3.5), we conclude that

K ≤ δ

3∑
i=1

∫
B(y0,8ρ)

F p−δ
i + cδ

∫
B(y0,8ρ)

| ∂mu |p−δ dx . (3.23)

Next we estimate K from below . From (1.2), (3.8), and the fact that supp ũ ⊂ B(y0, 2ρ),
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we deduce

K =

∫
Rn\E(λ0)

Mm(| ∂mũ |)−δ 〈A(x,Dmu(x)), Dmũ(x) 〉 dx

+ λ−δ0

∫
E(λ0)

〈A(x,Dmu(x)), Dmũ(x) 〉 dx

≥ −c
∫
B(y0,2ρ)

Mm(| ∂mũ |)−δ[
m−1∑
l=0

(al| ∂mu |p−1 + bl)| ∂lũ |]dx

− c

∫
E(λ0)

Mm(| ∂mũ |)−δ [ | ∂mu |p−1 + bm ] | ∂mũ |dx

+

∫
B(y0,2ρ)

Mm(| ∂mũ |)−δ

· 〈A(x,Dmu(x)) − Â(x,Dmu(x)), Dmũ(x) 〉 dx

= − L1 − L2 + L3 .

(3.24)

To estimate L1 we again consider two cases. If pl = p+ ε we note from (3.16) that

| ∂lũ | ≤ cγ1M
m(| ∂mũ |)α

while if pl > p+ ε, we see from (3.18) that

| ∂mũ | ≤ cγ2 [Mm(| ∂mũ |)]p̃

where γ1 = γ1(l), γ2 = γ2(l), and p̃ = p̃(l) are as in (3.7a). Using these inequalities for | ∂lũ |
and (3.8) in the sum defining L1 we deduce for fixed δ ≤ 1

4
α2 and c large enough that

L1 ≤
∫
B(y0,8ρ)

F p−δ
1 dx . (3.25)

As for L2 suppose 0 < η ≤ 1
2

and | ∂mu | ≥ η−1λ0 at x ∈ E(λ0). Then since Mm(| ∂mũ |) ≤ λ0

on E(λ0) and supp ũ ⊂ B(y0, 2ρ) we find at x that

Mm(| ∂mũ |)−δ [ | ∂mu |p−1 + bm ] | ∂mũ |

≤ F p−δ
3 + c η1−δ | ∂mu |p−δ .

On the other hand if | ∂mu | < η−1λ0, then from the righthand inequality in (3.3) and (3.8) we
deduce that

Mm(| ∂mũ |)−δ [ | ∂mu |p−1 + bm ] | ∂mũ |

≤ F p−δ
3 + c η1−p

(
−
∫
B(y0,8ρ)

M2m(| ∂mu |χB(y0,4ρ))
tdx

)p−δ
t
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where t = 1+p
2
. Using these estimates in the integrand of L2 and the Hardy - Littlewood maximal

theorem, we get

L2 ≤
∫
B(y0,8ρ)

F p−δ
3 dx+ cη1−δ

∫
B(y0,8ρ)

| ∂mu |p−δ dx

+cη1−pρn
(
−
∫
B(y0,8ρ)

| ∂mu |t dx
)p−δ

t

.

(3.26)

Next we consider L3. Let D1 be the set of all x ∈ B(y0, 2ρ) \B(y0, ρ) such that

Mm(| ∂mũ |)(x) ≤ δMm(| ∂mu |χB(y0,4ρ))(x)

and set D2 = B(y0, 2ρ) \ [D1 ∪B(y0, ρ) ] . We write the integral in the definition of L3 as a
sum of integrals over B(y0, ρ), D1, and D2. In the integral over B(y0, ρ) we use (1.1) and the
fact that φ ≡ 1 in B(y0, ρ). In the integral over D1 we use (1.2). Finally in the integral over D2

we use (1.1) and the observation that if |σ| = m, then at x ∈ D2

| ∂σũ − ∂σu φ| ≤ cρl−m
m−1∑
l=0

| ∂l(u− P ) |.

We get

L3 =

∫
B(y0,2ρ)

Mm(| ∂mũ |)−δ

· 〈A(x,Dmu(x)) − Â(x,Dmu(x)), Dmũ(x) 〉 dx

≥ c−1

∫
B(y0,ρ)

Mm(| ∂mũ |)−δ | ∂mu |p dx

− c
∫
D1

Mm(| ∂mũ |)1−δ [ | ∂mu |p−1 + bm ] dx

− c
m−1∑
l=0

ρl−m
∫
D2

Mm(| ∂mũ |)−δ [| ∂mu |p−1 + bm]

· | ∂l(u− P ) |dx

−
∫
B(y0,2ρ)

a dx

= I1 − I2 − I3 − I4 .

(3.27)
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To estimate I1 we observe from ũ = u on B(y0, ρ) and (3.8) that at x ∈ B(y0,
ρ
2
)

Mm(| ∂mũ |) ≤ Mm(| ∂mũ |χB(y0,ρ)) + c−
∫
B(y0,8ρ)

Mm−1(| ∂mũ |) dx

≤Mm(| ∂mu |χB(y0,ρ)) + c∗−
∫
B(y0,8ρ)

M2m(| ∂mu |χB(y0,4ρ)) dx

provided c∗ = c∗(n,m,N) is large enough. Let,

G = {x ∈ B(y0,
ρ
2
) : Mm(| ∂mu |χB(y0,ρ))

≥ c∗−
∫
B(y0,8ρ)

M2m(| ∂mu |χB(x0,4ρ)) dx } .

Then from the above inequality we see that

Mm(| ∂mũ |) ≤ 2Mm(| ∂mu |χB(y0,ρ)) on G. (3.28)

Before proceeding further, we show that w = Mm(| ∂mũ |)−δ is an Ap weight when 2δ ≤ p− 1
with constants depending only on n. Indeed, for given s > 0 and z0 ∈ Rn, clearly

w(z0) ≤ c

[
−
∫
B(z0,s)

Mm−1(| ∂mũ |) dx
]−δ

on B(z0, s) where c depends only on n. Also from (3.14) with β = δ
p−1

, we get

−
∫
B(z0,s)

w
− 1
p−1dx ≤ c

[
−
∫
B(z0,s)

Mm−1(| ∂mũ |)dx
] δ
p−1

where again c depends only on n when 2δ ≤ p− 1. Using these inequalities we deduce that

(−
∫
B(z0,s)

wdx) · (−
∫
B(z0,s)

w
− 1
p−1 dx)p−1 ≤ c

which is the Ap condition of Muckenhoupt(see[T, ch 9]). Moreover from (3.14) it is not difficult
to show that w is a doubling measure :

−
∫
B(z0,2s)

w dx ≤ c −
∫
B(z0,s)

w dx

for some c > 0 depending only on n.
Thus w satisfies the conditions of a theorem of Muckenhoupt mentioned in section 1. Using
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this theorem and (3.28) it follows for 2δ ≤ p− 1 that

I1 = c−1

∫
B(y0,ρ)

Mm(| ∂mũ |)−δ | ∂mu |pdx

≥ c−1

∫
B(y0,ρ)

Mm(| ∂mũ |)−δMm(| ∂mu |χB(y0,ρ))
pdx

≥ c−1

∫
G

Mm(| ∂mu |χB(y0,ρ))
p−δ dx

= c−1

∫
B(y0,

ρ
2

)

Mm(| ∂mu |χB(y0,ρ))
p−δ dx

− c−1

∫
B(y0,

ρ
2

)\G
Mm(| ∂mu |χB(y0,ρ))

p−δ dx

≥ c−1

∫
B(y0,

ρ
2

)

| ∂mu |p−δ dx

− c ρn
(
−
∫
B(y0,8ρ)

M2m(| ∂mu |χB(x0,4ρ)) dx

)p−δ

≥ c−1

∫
B(y0,

ρ
2

)

| ∂mu |p−δdx− cρn
(
−
∫
B(y0,8ρ)

| ∂mu |t dx
)p−δ

t

.

(3.29)

Next from the definition of D1 and the Hardy - Littlewood maximal theorem, we see as in
(3.21)-(3.22) that

I2 = c

∫
D1

Mm(| ∂mũ |)1−δ [ | ∂mu |p−1 + bm ] dx

≤ cδ1−δ
∫
B(y0,8ρ)

| ∂mu |p−δ dx+ c

∫
B(y0,8ρ)

F p−δ
3 dx .

(3.30)

To estimate I3 we use Lemma 2.1 with w = ∂l(u− P ) , k = m− l, and as usual consider two

cases. If pl = p+ ε, we let s = n(1−α)
m−l in (2.1b) and obtain that

| ∂l(u− P ) | ≤ cρm−l γ1M
m(| ∂mu |χB(y0,8ρ))

α

while if pl > p+ ε, we let s = p(1− α) in (2.1b) and obtain that

| ∂l(u− P ) | ≤ cρm−lγ2M
m(| ∂mu |χB(y0,8ρ))

p̃.

Set
f̃l = cγ1(l)Mm(| ∂mu |χB(x0,

3R
4

))
α−δ ( | ∂mu |p−1 + bm)
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when pl = p+ ε and put

f̃l = cγ2M
m(| ∂mu |χB(x0,

3R
4

))
p̃−δ (| ∂mu |p−1 + bm)

when pl > p + ε. From the above inequalities we see that if F4 = F4,δ is defined by F p−δ
4 =∑m−1

l=0 f̃l, then in either case we have

(a) I3 ≤
∫
B(y0,8ρ)

F p−δ
4 dx ,

(b) F4 ∈ Lp+α(B(x0,
3R
4

)) .

(3.31)

From (3.28)-(3.31), we conclude that

−
∫
B(y0,

ρ
2

)

| ∂mu |p−δ dx ≤ cρ−n L3 + −
∫
B(y0,8ρ)

[a +
4∑
i=3

F p−δ
i ] dx

+ cδ1−δ−
∫
B(y0,8ρ)

| ∂mu |p−δdx+ c(−
∫
B(y0,8ρ)

| ∂mu |tdx )
p−δ
t .

(3.32)

Since L3 = L1 + L2 +K it follows from (3.32), (3.26), and (3.25) that

−
∫
B(y0,

ρ
2

)

| ∂mu |p−δ dx ≤ cρ−nK + −
∫
B(y0,8ρ)

[a +
4∑
i=1

F p−δ
i ] dx

+ c(δ1−δ + η1−δ)−
∫
B(y0,8ρ)

| ∂mu |p−δdx

+ cη1−p(−
∫
B(y0,8ρ)

| ∂mu |tdx )
p−δ
t .

(3.33)

which clearly gives an estimate for K from below. Using this estimate in (3.23), we get

−
∫
B(y0,

ρ
2

)

| ∂mu |p−δ dx ≤ −
∫
B(y0,8ρ)

F p−δ dx

+c(δ1−δ + η1−δ)−
∫
B(y0,8ρ)

| ∂mu |p−δdx

+cη1−p(−
∫
B(y0,8ρ)

| ∂mu |tdx )
p−δ
t ,

(3.34)

where we have put F = c [
4∑
i=1

Fi + a
1
p−δ ] for suitably large c. Let ĉ denote the constant

multiplying δ1−δ + η1−δ in (3.34) and put η = (4ĉ)−2. If δ1 = min{1
4
α2, η}, then from (3.34) we
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find for δ ≤ δ1 and c+ large enough that

−
∫
B(y0,

ρ
2

)

| ∂mu |p−δ dx ≤ −
∫
B(y0,8ρ)

F p−δ dx

+ 1
2
−
∫
B(y0,8ρ)

| ∂mu |p−δdx + c+(−
∫
B(y0,8ρ)

| ∂mu |t dx )
p−δ
t ,

(3.35)

where t = 1+p
2

is as previously defined. In view of (3.35), we see for given δ ≤ δ1 that the

hypotheses of Lemma 2.3 are satisfied with q = p−δ
t
> 1, g = | ∂mu |t, f = F t, θ = 1

2
, ξ = α

p
,

and c2 = c+. Since η in Lemma 2.3 is continuous as a function of q we may choose δ2, 0 < δ2 ≤ δ1

so small that
η(n, 1

2
, c+, ξ, q) > 1

2
η(n, 1

2
, c+, ξ, 2p

1+p
) = η1

for 0 < δ ≤ δ2. Finally we fix δ = min{1
4
η1, δ2}. Applying Lemma 2.3 and using the continuity

of η, we get Theorem 1 for this δ . 2
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