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Abstract. We study p-harmonic functions, 1 < p 6= 2 <∞, in R2
+ = {z = x+ iy :

y > 0,−∞ < x < ∞} and B(0, 1) = {z : |z| < 1}. We first show for fixed p,
1 < p 6= 2 < ∞, and for all large integers N ≥ N0 that there exists a p-harmonic
function on B(0, 1), V = V (reiθ), which is 2π/N periodic in the θ variable, and
Lipschitz continuous on ∂B(0, 1) with Lipschitz norm ≤ cN, satisfying V (0) = 0 and
c−1 ≤

∫ π
−π V (eiθ)dθ ≤ c. In case 2 < p <∞ we give a more or less explicit example

of V and our work is an extension of a result of Wolff in [Wol07, Lemma 1] on R2
+ to

B(0, 1). Using our first result, we extend the work of Wolff in [Wol07] on the failure
of Fatou type theorems for R2

+ to B(0, 1) for p-harmonic functions, 1 < p 6= 2 <∞.
Finally, we also outline the modifications needed for extending the work of Llorente,
Manfredi, and Wu in [LMW05] regarding the failure of subadditivity of p-harmonic
measure on ∂R2

+ to ∂B(0, 1).
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1. Introduction

Throughout this paper we mix complex and real notation, so z = x + iy and z̄ =
x− iy whenever x, y ∈ R where i =

√
−1. Moreover, we let R2

+ = {z = x+ iy : y > 0}
and B(z0, ρ) = {z : |z − z0| < ρ} whenever z0 ∈ R2 and ρ > 0. We consider for fixed
p, 1 < p 6= 2 < ∞, weak solutions u (called p-harmonic functions) to the p-Laplace
equation

Lpu := ∇ · (|∇u|p−2∇u) = 0(1.1)

2010 Mathematics Subject Classification. 35J60,31B15,39B62,52A40,35J20,52A20,35J92.
Key words and phrases. gap series, p-harmonic measure, p-harmonic function, radial limits, Fatou

theorem.
1



2 M. AKMAN, J. LEWIS, AND A. VOGEL

on B(0, 1) or R2
+ (see section 2 for the definition of a p-harmonic function). In

(1.1), ∇u denotes the gradient of u and ∇· denotes the divergence operator. In 1984
Wolff brilliantly used ideas from harmonic analysis and PDE to prove that the Fatou
theorem fails for p-harmonic functions when 2 < p <∞.

Theorem 1.1 ([Wol07, Theorem 1]). If p > 2, then there exist bounded weak solutions
of Lpû = 0 in R2

+ such that {x ∈ R : lim
y→0

û(x+ iy) exists} has Lebesgue measure zero.

Also there exist positive bounded weak solutions of Lpv̂ = 0 such that {x ∈ R :
lim sup
y→0

v̂(x+ iy) > 0} has Lebesgue measure 0.

The key to his proof and the only obstacle in extending Theorem 1.1 to 1 < p <
∞, p 6= 2, was the validity of the following theorem for 1 < p < 2, p 6= 2, stated as
Lemma 1 in [Wol07].

Theorem 1.2 ([Wol07, Lemma 1]). If p > 2 there exists a bounded Lipschitz function
Φ on the closure of R2

+ with Φ(z + 1) = Φ(z) for z ∈ R2
+, LpΦ = 0 weakly on R2

+,∫
(0,1)×(0,∞)

|∇Φ|p dxdy <∞, and

lim
y→∞

Φ(x+ iy) = 0 for x ∈ R, but

∫ 1

0

Φ(x)dx 6= 0.(1.2)

Theorem 1.2 was later proved for 1 < p < 2, by the second author of this article
in [Lew88] (so Theorem 1.1 is valid for 1 < p 6= 2 < ∞). Wolff remarks above the
statement of his Lemma 1, that Theorem 1.1 “ should generalize to other domains
but the arguments are easiest in a half space since Lp behaves nicely under Euclidean
operations”.

In fact Wolff makes extensive use of the fact that Φ(Nz+z0), z = x+ iy ∈ R2
+, N a

positive integer, z0 ∈ R2
+, is p-harmonic in R2

+, and 1/N periodic in x, with Lipschitz
norm ≈ N on R = ∂R2

+. Also he used functional analysis-PDE type arguments,
involving the Fredholm alternative and perturbation of certain p-harmonic functions
(when 2 < p <∞) to get Φ satisfying (1.2).

In this paper we first give, in Lemma 3.1, a hands on example of a Φ for which
Theorem 1.2 is valid. We then use this example and basic properties of p-harmonic
functions to give a more or less explicit construction of V = V (·, N, p) for 2 < p <∞
in the following theorem.

Theorem A. Given p, 1 < p 6= 2 < ∞, there exist N0 and a constant c1 ≥ 1,
all depending only on p, such that if N ≥ N0 is a positive integer, then there is a
p-harmonic function V in B(0, 1) with continuous boundary values satisfying

(a) − c1 ≤ V (teiθ) = V (tei(θ+2π/N)) ≤ c1 for 0 ≤ t ≤ 1 and θ ∈ R,

(b)

∫
B(0,1)

|∇V |pdxdy ≤ c1N
p−1,

(c) V (0) = 0 and c1

∫ π

−π
V (eiθ)dθ ≥ 1,

(d) V |∂B(0,1) is Lipschitz with norm ≤ c1N.

(1.3)
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We were not able to find a more or less explicit example for which Theorem A holds
when 1 < p < 2. Instead for 1 < p 6= 2 < ∞, we also use a finesse type argument to
eventually obtain Theorem A from the perturbation method used by Wolff in proving
Theorem 1.2 and a limiting type argument. In this proof of Theorem A we also
interpret rather loosely the phrase “c1 depends only on p”. However constants will
always be independent of N ≥ N0. We shall make heavy use of Wolff’s arguments
in proving Theorem A, as well as arguments of Varpanen in [Var15], who adapted
Wolff’s perturbation argument for constructing solutions to a linearized p-harmonic
periodic equation in R2

+ to certain periodic p-harmonic functions in the θ variable,
defined on B(0, 1). In section 4 we use Theorem A and modest changes in Wolff’s
argument to obtain the following analogue of Theorem 1.1.

Theorem B. If 1 < p 6= 2 < ∞, then there exist bounded weak solutions of
Lpû = 0 in B(0, 1) such that {θ ∈ R : lim

r→1
û(reiθ) exists} has Lebesgue measure

zero. Also there exist bounded positive weak solutions of Lpv̂ = 0 such that {θ ∈ R :
lim sup
r→1

v̂(reiθ) > 0} has Lebesgue measure 0.

Next for fixed p > 1, and E a subset of ∂B(0, 1), let C(E), denote the class of all
non-negative p-superharmonic functions ζ on B(0, 1) (i.e., Lpζ ≤ 0 weakly in B(0, 1))
with

lim inf
z∈B(0,1)

z→eiθ

ζ(z) ≥ 1 for all eiθ ∈ E.(1.4)

Put ωp(z0, E) = inf{ζ(z0) : ζ ∈ C(E)} when z0 ∈ B(0, 1). Then ωp(z0, E) is usually
referred to as the p-harmonic measure of E relative to z0 and B(0, 1). In section 5 we
use Theorem A and follow closely Llorente, Manfredi, and Wu in generalizing their
work, [LMW05], on p-harmonic measure in R2

+ to B(0, 1). We prove

Theorem C. If 1 < p 6= 2 < ∞ there exist finitely many sets E1, E2, . . . , Eκ ⊂
∂B(0, 1), such that

ωp(0, Ek) = 0, ωp(0, ∂B(0, 1) \ Ek) = 1 for 1 ≤ k ≤ κ, and
κ⋃
k=1

Ek = ∂B(0, 1).

(1.5)

Furthermore, ∂B(0, 1) \ Ek has one Lebesgue measure 0 for 1 ≤ k ≤ κ.

As for the plan of this paper, in section 2 we give some definitions and state some
basic properties of p-harmonic functions. As outlined above, in sections 3, 4, 5, we
prove Theorems A, B, C, respectively. In section 6, we make closing remarks.

Finally the authors would like to thank the referee for some helpful comments on
the presentation of this paper and for pointing out several typos.

2. Basic estimates and definitions for p-harmonic functions

In this section we first introduce some notation, then give some definitions, and
finally state some fundamental estimates for p-harmonic functions when p is fixed,
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1 < p < ∞. As in the introduction we set B(z0, ρ) = {z : |z − z0| < ρ} and
R2

+ = {z = x + iy : y > 0}. Concerning constants, unless otherwise stated, in
this section, and throughout the paper, c will denote a positive constant ≥ 1, not
necessarily the same at each occurrence, depending only on p. Sometimes we write
c = c(p) to indicate this dependence. Also A ≈ B means A/B is bounded above and
below by positive constants depending only on p. Let d(E1, E2) denote the distance
between the sets E1 and E2. For short we write d(z, E2) for d({z}, E2). Let diam(E),
Ē, and ∂E denote the diameter, closure, and boundary of E respectively. We also
write max

E
v̂, min

E
v̂ to denote the essential supremum and infimum of v̂ on E whenever

E ⊂ R2 and v̂ is defined on E.
If O ⊂ R2 is open and 1 ≤ q ≤ ∞, then by W 1,q(O) we denote the space of

equivalence classes of functions h with distributional gradient ∇h, both of which are
q-th power integrable on O. Let

‖h‖1,q = ‖h‖q + ‖ |∇h| ‖q

be the norm in W 1,q(O) where ‖ · ‖q is the usual Lebesgue q norm of functions in the
Lebesgue space Lq(O). Next let C∞0 (O) be the set of infinitely differentiable functions
with compact support in O and let W 1,q

0 (O) be the closure of C∞0 (O) in the norm of
W 1,q(O). Let 〈·, ·〉 denote the standard inner product on R2. Given an open set O and
1 < p <∞, we say that v̂ is p-harmonic in O provided v̂ ∈ W 1,p(G) for each open G
with Ḡ ⊂ O and

∫
|∇v̂|p−2〈∇v̂,∇θ〉 dxdy = 0 whenever θ ∈ W 1,p

0 (G).(2.1)

We say that v̂ is a p-subsolution (p-supersolution) in O provided v̂ ∈ W 1,p(G)
whenever G is as above and (2.1) holds with = replaced by ≤ (≥) whenever θ ∈
W 1,p

0 (G) with θ ≥ 0. We begin our statement of lemmas with the following maximum
principle.

Lemma 2.1. Given 1 < p < ∞, if v̂ is a p-subsolution and ĥ is a p-supersolution
in O with max(v̂ − ĥ, 0) ∈ W 1,p

0 (G), whenever G is an open set with Ḡ ⊂ O, then

max
O

(v̂ − ĥ) ≤ 0.

Proof. A proof of this lemma can be found in [HKM06, Lemma 3.18]. �
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Lemma 2.2. Given p, 1 < p < ∞, let v̂ be p-harmonic in B(z0, 4ρ) for some ρ > 0
and z0 ∈ R2. Then

(a) max
B(z0,ρ/2)

v̂ − min
B(z0,ρ/2)

v̂ ≤ c

(
ρp−2

∫
B(z0,ρ)

|∇v̂|p dxdy
)1/p

≤ c2 ( max
B(z0,2ρ)

v̂ − min
B(z0,2ρ)

v̂).

Furthermore, there exists α̃ = α̃(p) ∈ (0, 1) such that if s ≤ ρ then

(b) max
B(z0,s)

v̂ − min
B(z0,s)

v̂ ≤ c

(
s

ρ

)α̃ (
max
B(z0,2ρ)

v̂ − min
B(z0,2ρ)

v̂

)
.

(c) If v̂ ≥ 0 in B(z0, 4ρ), then max
B(z0,2ρ)

v̂ ≤ c min
B(z0,2ρ)

v̂.

(2.2)

Proof. Lemma 2.2 is well known. A proof of this lemma, using Moser iteration of
positive solutions to PDE of p-Laplace type, can be found in [Ser64]. (2.2) (c) is
called Harnack’s inequality. �

Lemma 2.3. Let Ω = B(0, 1) or R2
+ and 1 < p < ∞. Let z0 ∈ ∂Ω and suppose v̂

is p-harmonic in Ω ∩ B(z0, 4ρ) for 0 < ρ < diam(Ω) with ĥ ∈ W 1,p(Ω ∩ B(z0, 4ρ))

and v̂ − ĥ ∈ W 1,p
0 (Ω ∩ B(z0, 4ρ)). If ĥ is continuous on Ω̄ ∩ B(z0, 4ρ) then v̂ has a

continuous extension to Ω̄ ∩B(z0, 4ρ), also denoted v̂, with v̂ ≡ ĥ on ∂Ω ∩B(z0, 4ρ).
If

|ĥ(z)− ĥ(w)| ≤M ′|z − w|σ̂ whenever z, w ∈ ∂Ω ∩B(z0, 4ρ),

for some σ̂ ∈ (0, 1], and 1 ≤M ′ <∞, then there exists σ̂1 ∈ (0, 1], depending only on
σ̂ and p, such that

|v̂(z)− v̂(w)| ≤ 2M ′ρσ̂ + (|z − w|/ρ)σ̂1 max
Ω∩B̄(z0,2ρ)

|v̂|(2.3)

whenever z, w ∈ Ω ∩B(z0, ρ).

If ĥ ≡ 0 on ∂Ω ∩ B(z0, 4ρ), v̂ ≥ 0 in B(z0, 4ρ), ĉ ≥ 1, and z1 ∈ Ω ∩ B(z0, 4ρ) with
ĉ d(z1, ∂Ω) ≥ ρ, then there exists c̃, depending only on ĉ and p, such that

(+) max
B(z0,2ρ)

v̂ ≤ c̃

(
ρp−2

∫
B(z0,3ρ)

|∇v̂|p dxdy
)1/p

≤ (c̃)2 v̂(z1).(2.4)

Furthermore, using (2.3), it follows for z, w ∈ Ω̄ ∩B(z0, 2ρ) that

(++) |v̂(z)− v̂(w)| ≤ c v̂(z1)

(
|z − w|
ρ

)σ̂1
.

Proof. Continuity of v̂ given continuity of ĥ in Ω̄ ∩ B(z0, 4ρ) follows from Corollary
6.36 in [HKM06] with Ω in this lemma replaced by Ω∩B(z0, 4ρ). This Corollary and
the Hölder continuity estimate on h above, are then used in Theorem 6.44 of [HKM06]
to prove an inequality analogous to (2.3). Proofs involve Wiener type estimates for
subsolutions of p - Laplace type that vanish on ∂Ω∩B(z0, 4ρ). (2.4) (+) is sometimes
referred to as Carleson’s inequality, see [AS05]. �
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Lemma 2.4. Let p, v̂, z0, ρ, be as in Lemma 2.2. Then v̂ has a representative locally in
W 1,p(B(z0, 4ρ)), with Hölder continuous partial derivatives in B(z0, 4ρ) (also denoted
v̂), and there exist γ̂ ∈ (0, 1] and c ≥ 1, depending only on p, such that if z, w ∈
B(z0, ρ/2), then

(â) c−1 |∇v̂(z)−∇v̂(w)| ≤ (|z − w|/ρ)γ̂ max
B(z0,ρ)

|∇v̂| ≤ c ρ−1 (|z − w|/ρ)γ̂ max
B(z0,2ρ)

|v̂|.

Also v̂ has distributional second partials with

(b̂)

∫
B(z0,ρ)∩{∇v̂ 6=0}

|∇v̂|p−2
(
|v̂xx|2(z) + |v̂yy|2(z) + |v̂xy|2(z)

)
dxdy ≤ c ρ−p max

B(z0,2ρ)
|v̂|.

(ĉ) If ∇v̂(z0) 6= 0, then v̂ is infinitely differentiable in B(z0, s) for some s > 0.

(2.5)

Proof. For a proof of the left-hand inequality in (2.5) (â), see Theorem 1 in [Lew83].

(2.5) (b̂) can be proved using the method of difference quotients or by using (2.5) (â)

and carefully taking limits as ε→0 in (2.8) of [Lew83]. (2.5) (ĉ) follows from (â), (b̂),
and Schauder type estimates (see [GT01]). �

Lemma 2.5. Let x0 ∈ R, ρ > 0, 1 < p < ∞, and suppose û and v̂ are non-negative
p-harmonic functions in R2

+ ∩ B(x0, 4ρ) with continuous boundary values v̂ ≡ û ≡ 0
on R ∩B(x0, 4ρ). There exists c = c(p) such that

û(z)

v̂(z)
≤ c

û(x0 + ρi)

v̂(x0 + ρi)
whenever z ∈ R2

+ ∩B(x0, 2ρ).(2.6)

Also v̂ has a p-harmonic extension to B(x0, 4ρ) obtained by requiring v̂(z) = −v̂(z̄)
for z ∈ B(x0, 4ρ) \ R2

+.

Proof. Here (2.6) in Lemma 2.5 follows from essentially barrier estimates for non-
divergence form PDE. See for example [AKSZ07]. The extension process for v̂ is
generally referred to as Schwarz reflection. �

Next given η > 0 and x0 ∈ R let

S(x0, η) := {z = x+ iy : |x− x0| < η/2, 0 < y <∞}.
For short we write S(η) when x0 = 0. For fixed p, 1 < p < ∞, let R1,p(S(η)) denote
the Riesz space of equivalence classes of functions f on R2

+ with f(z+η) = f(z) when
z ∈ R2

+ and norm

‖f‖∗ = ‖f‖∗,p =

(∫
S(η)

|∇f |p dxdy
)1/p

<∞.(2.7)

Also let R1,p
0 (S(η)) denote functions in R1,p(S(η)) which can be approximated arbi-

trarily closely in the norm of R1,p(S(η)) by functions in this space which are infinitely
differentiable and vanish in an open neighbourhood of R. It is well known, see [Wol07,
section 1], that given f ∈ R1,p(S(η)) there exists a unique p-harmonic function ṽ on
R2

+ with ṽ(z + η) = ṽ(z) for z ∈ R2
+ with ṽ − f ∈ R1,p

0 (S(η)). In fact the usual
minimization argument yields that ṽ has minimum norm among all functions h in
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R1,p(S(η)) with h − f ∈ R1,p
0 (S(η)). Uniqueness of ṽ is a consequence of the maxi-

mum principle in Lemma 2.1.
Next we state

Lemma 2.6. Given 1 < p <∞, let v̂ be p-harmonic in R2
+ and v̂ ∈ R1,p(S(η)). Then

there exists c = c(p) and ξ ∈ R such that

|v̂(z)− ξ| ≤ c lim inf
t→0

(
max
R×{t}

v̂ − min
R×{t}

v̂

)
exp

(
− y

cη

)
(2.8)

whenever z = x+ iy ∈ R2
+.

Proof. The lim inf in (2.8) need not be finite, but clearly = max
R×{0}

v̂ − min
R×{0}

v̂ when v̂

has a continuous extension to the closure of R2
+. Lemma 2.6 is proved in Lemma 1.3

of [Wol07] using η periodicity of v̂ and facts about p-harmonic functions similar to
Lemmas 2.1 and 2.2. �

Finally, we state an analogue of Lemma 2.6 for B(0, 1).

Lemma 2.7. Given 1 < p < ∞, let v̂ be p-harmonic in B(0, 1), v̂ ∈ W 1,p(B(0, 1)),
and v̂(reiθ) = v̂(rei(θ+η)), when z = reiθ ∈ B(0, 1) and 2π/η is a positive integer.
Then there exists c = c(p) ≥ 1 such that

|v̂(reiθ)− v̂(0)| ≤ c lim
t→1

(max
B(0,t)

v̂ − min
B(0,t)

v̂) r
1
cη .(2.9)

Proof. Fix n = 0, 1, 2, . . . Using η periodicity of v̂ we deduce from Lemma 2.2 (b)
applied ≈ (1000η)−1 times in balls of radius η/10 that

max
B(0,2−n−1)

v̂ − min
B(0,2−n−1)

v̂ ≤ c−α̃/η
(

max
B(0,2−n)

v̂ − min
B(0,2−n)

v̂

)
,

where c ≥ 1 depends only on p. Iterating this inequality we obtain (2.9). �

3. Proof of Theorem A

In this section we prove Theorem A and as stated in the introduction we give two
proofs of Theorem A when 2 < p <∞. An important role in each proof is played by
homogeneous p-harmonic functions of the form:

z = reiθ → rλ φ(θ) for |θ| < α and r > 0,(3.1)

satisfying φ(0) = 1, φ(α) = 0, φ(θ) = φ(−θ), φ′ < 0 on (0, α], and φ ∈ C∞([−α, α])
with λ = λ(α) ∈ (−∞,∞). Regarding (3.1), Krol’ in [Kro73] (see also [Aro86]) used
(3.1) and separation of variables to show for 1 < p <∞,

0 =
d

dθ

{
[λ2φ2(θ) + (φ′)2(θ)](p−2)/2 φ′(θ)

}
+ λ[λ(p− 1) + (2− p)][λ2φ2(θ) + (φ′)2(θ)](p−2)/2φ(θ).
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Letting ψ = φ′/φ in the above equation and proceeding operationally he obtained,
the first order equation

0 =((p− 1)ψ2 + λ2)ψ′

+ (λ2 + ψ2)[(p− 1)ψ2 + λ2(p− 1) + λ(2− p)].
(3.2)

Separating variables in (3.2) one gets

λdψ

λ2 + ψ2
− (λ− 1) dψ

λ2 + ψ2 + λ(2− p)/(p− 1)
+ dθ = 0.(3.3)

Integrating (3.3) and using ψ(0) = 0 we obtain for 0 ≤ |θ| < α that

(λ/|λ|) arctan(ψ/λ)− λ− 1√
λ2 + λ(2− p)/(p− 1)

arctan

(
ψ√

λ2 + λ(2− p)/(p− 1)

)
= −θ

(3.4)

Letting θ → α from the left and using ψ(±α) = −∞ we get

(3.5) ± 1− λ− 1√
λ2 + λ(2− p)/(p− 1)

=
2α

π

where +1 is taken if λ > 0 and −1 if λ < 0. Using the quadratic formula it is easily
seen that for fixed α ∈ (0, π] each equation has exactly one λ satisfying it and λ > 0 if
the + sign is taken while λ < 0 if the - sign is taken in (3.5). Using these values of λ it
follows that the operational argument can now be made rigorous by reversing the steps
leading to (3.5). Then (3.2), ψ(0) = 0, and calculus imply that ψ is decreasing and
negative on (0, α). Integrating ψ over [0, θ), θ < α, and exponentiating it follows that
φ > 0 is decreasing on (0, α) with φ(α) = 0. Symmetry and smoothness properties
of φ listed above can be proved using ODE theory or Lemma (2.5) (ĉ) and Schwarz
reflection.

To avoid confusion later on let −λ̂ denote the value of λ in (3.5) with −1 taken,

α = π/2, and let φ̂ correspond to −λ̂ as in (3.1) for given p, 1 < p <∞. After some
computation one obtains from (3.5) as in [LV13] that

λ̂ = λ̂(p) = (1/3)
(
−p+ 3 + 2

√
p2 − 3p+ 3

)
/(p− 1).(3.6)

3.1. Proof of Theorem 1.2. In this section we provide a hands on proof of Theorem
1.2 when 2 < p < ∞. To this end, given 0 < t < 10−10, let a(·) be a C∞ smooth
function on R with compact support in (−t, t), 0 ≤ a ≤ 1 with a ≡ 1 on (−t/2, t/2),
and |∇a| ≤ 105/t. Let f(z) = a(x)a(y) when z = x + iy ∈ R2 and for fixed p,
1 < p 6= 2 < ∞ let û be the unique p-harmonic function on R2

+ with 0 ≤ û ≤ 1
satisfying ∫

R2
+

|∇û|pdxdy ≤
∫
R2
+

|∇f |pdxdy ≤ c t2−p,(3.7)

and û − f ∈ W 1,p
0 (R2

+ ∩ B(0, ρ)) whenever 0 < ρ < ∞. Existence and uniqueness
of û follows with small changes from the usual calculus of variations argument for
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bounded domains (see [Eva10]). We assert that there exists β∗ ∈ (0, 1] such that if
z, w ∈ B(0, ρ) ∩ R̄2

+, then

|û(z)− û(w)| ≤ c

(
|z − w|
ρ

)β∗
and |û(z)| ≤ c

(
t

|z|

)β∗
for z ∈ R̄2

+.(3.8)

The left hand inequality in (3.8) follows from Lemma 2.3. To prove the right hand
inequality in (3.8) observe from the boundary maximum principle in Lemma 2.1 and
0 ≤ û ≤ 1, that max

∂B(0,r)
û is decreasing for r ∈ (t,∞). Using this fact and Harnack’s

inequality in Lemma 2.2 (c) applied to max
∂B(0,r)

û− û, and (2.4) (++) we deduce the

existence of θ ∈ (0, 1) with

max
∂B(0,2r)

û ≤ θ max
∂B(0,r)

û.

Iterating this inequality we get the right hand inequality in (3.8).
Next we show as in [LV13] that

û(i) ≈ tλ̂(3.9)

where λ̂ is as in (3.6). To prove (3.9), let z = reiθ for r > 0 and 0 ≤ θ ≤ π, and put

v(z) = v(reiθ) = (t/r)λ̂ φ̂(θ − π/2)(3.10)

where λ̂ and φ̂ as defined before (3.6). Then v is p-harmonic in R2
+ with v ≡ 0 on

R \ {0} and v(it) = 1. Also from Harnack’s inequality and (2.4) of Lemma 2.3 with
v̂ = 1 − û, û, we find that û(it) ≈ 1. In view of the boundary values of û, v and
û(it) ≈ v(it) = 1, as well as Harnack’s inequality in (2.2) (c), we see that Lemma 2.5
can be applied to get

û/v ≈ 1(3.11)

in R2
+∩[B(0, 4t)\B(0, 2t)]. From (3.8) for û, v, and λ̂ > 0 we find first that û(z), v(z)→

0 as z →∞ in R2
+ and thereupon from Lemma 2.1 that (3.11) holds in R2

+ \ B̄(0, 2t).

Since v(i) = tλ̂ we conclude from (3.11) that claim (3.9) is true.
Finally observe from (3.6) that for 1 < p <∞

(3/2)(p− 1)2(p2 − 3p+ 3)1/2 dλ̂/dp = (p− 1)(p− 3/2)− (p2 − 3p+ 3)−
√
p2 − 3p+ 3

= p/2− 3/2−
√
p2 − 3p+ 3 < 0.

(3.12)

Indeed, the inequality in the second line in (3.12) is clearly true if p ≤ 3 and for p > 3
is true because

(p− 3)2 < 4(p2 − 3p+ 3) or 0 < 3(p2 − 2p+ 1) = 3(p− 1)2.

Since λ̂(2) = 1 we see that

λ̂(p) > 1 for 1 < p < 2 and λ̂(p) < 1 for p > 2.(3.13)
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Let ã denote the one periodic extension of a|[−1/2,1/2] to R. That is ã(x+ 1) = ã(x)
for x ∈ R and ã = a on [−1/2, 1/2]. Also let Ψ be the p-harmonic function on R2

+

with

(a) Ψ(z + 1) = Ψ(z), whenever z ∈ R2
+,

(b) Ψ− ã(x)a(y) ∈ R1,p
0 (S(1)) and 0 ≤ Ψ ≤ 1 in R2

+,

(c)

∫
S(1)

|∇Ψ|pdxdy ≤ c t2−p <∞,

(d) lim
y→∞

Ψ(x+ iy) = ξ whenever x ∈ R.

(3.14)

Existence of Ψ satisfying (a) − (d) of (3.14) follows from the discussion after (2.7),
and (2.8) of Lemma 2.6 (see also (3.7) for (c)). Comparing boundary values of û and
Ψ we see that û ≤ Ψ on R. Using this fact and Lemma 2.1 we find in view of (3.8)
that

û ≤ Ψ in R2
+.(3.15)

From (3.15), (3.9), and Harnack’s inequality for û, we have∫ 1

0

Ψ(x+ i) dx =

∫ 1/2

−1/2

Ψ(x+ i)dx ≥
∫ 1/2

−1/2

û(x+ i) dx ≈ tλ̂.(3.16)

Also from (3.14) and (2.3) we obtain∫ 1

0

Ψ(x+ si) dx =

∫ 1/2

−1/2

Ψ(x+ si) dx ≤ c t(3.17)

for some small s > 0. Thus∫ 1

0

Ψ(x+ si) dx ≤ ct1−λ̂
∫ 1

0

Ψ(x+ i)dx(3.18)

where c depends only on p. Recall from (3.13) that λ̂ < 1 if p > 2. So from (3.18) and
(3.14) (d) we see for t > 0 sufficiently small that

Lemma 3.1. Theorem 1.2 is valid for one of the four functions Φ(z) = ±(Ψ(z+i)−ξ)
or, for s > 0 small enough, Φ(z) = ±(Ψ(z + is)− ξ) whenever z ∈ R2

+.

This completes the hands on proof of Theorem 1.2 when p > 2.

Remark 3.2. The above proof of Theorem 1.2 fails when 1 < p < 2 as now λ̂ > 1,

so t1−λ̂ → ∞ in (3.18) as t → 0. In short, our hands on example could still be valid
for 1 < p < 2, but in this case one needs to make a better estimate than (3.18).

3.2. Hands on proof of Theorem A when 2 < p < ∞. To provide examples in
B(0, 1), satisfying Theorem A, we need to make somewhat better estimates than in
Lemma 3.1 since p-harmonic functions are not invariant under dilatation in polar coor-
dinates.
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2b
t)

Figure 1. Domain
T and S∗(−π/2, τ)

Proof. For this purpose let 0 < b << t << 10−10.
For the moment we allow both b and t to vary
subject to these requirements but shall later fix
t = t0 and then essentially choose b0 << t0 so
that if 0 < b ≤ b0, then Theorem A is true
for our examples. Let T be the triangular re-
gion whose boundary consists of the horizontal
line segment from −b − bt i to b − bti and the
line segments joining i to ±b − bti (see Figure
1). Let v1 be the p-harmonic function in T with
v1(z)− f(z/b+ ti) ∈ W 1,p

0 (T ) where f is defined
above (3.7). Then from Lemma 2.3 and trans-
lation, dilation invariance of p-harmonic func-
tions, we see that v1 has continuous boundary
values with v1 ≡ 1 on the open line segment
from −bt/2 − bti to bt/2 − bti, and v1 ≡ 0 on
∂T \ B̄(−bti, bt). From the definition of û above
(3.7) we find that

v1(z) ≤ û(z/b+ ti)(3.19)

in the W 1,p Sobolev sense, when z = x+ iy ∈ ∂T.
Thus by Lemma 2.1 this inequality holds in T.
Also from (3.9), (3.19), and Harnack’s inequality
we get

v1(bi) ≤ c û(i) ≈ tλ̂.(3.20)

On the other hand since both functions in (3.19)
have the same boundary values on ∂T ∩ {z =
x− bti : −b ≤ x ≤ b} it follows from (3.20), (2.3),
Lemma 2.5, and Harnack’s inequality that

û(z/b+ ti) ≤ c+(v1(z) + tλ̂) for z ∈ T ∩ B̄(−ibt, 2b).(3.21)

Also from (3.11) and the definition of v we have

û(i/c̆) ≥ 2c+t
λ̂(3.22)

provided t is small enough, say t ≤ t1, and c̆ is large enough where c̆, t1, depend on
c+ so only on p > 2. Using (3.22) in (3.21) with z = −c̆ t+1

c̆
bi we obtain first that

v1(−c̆ t+1
c̆

bi) ≥ tλ̂, and second from Harnack’s inequality for v1 that

v1(bi) ≈ tλ̂.(3.23)

Next if θ0 ∈ R and η > 0, we let

S∗(θ0, η) := {z : z = i+ ρeiθ : 0 ≤ ρ < 1, |θ − θ0| < πη}.



12 M. AKMAN, J. LEWIS, AND A. VOGEL

From high school geometry we see that if πτ = arctan( b
1+bt

), then the rays θ =
−π/2±πτ drawn from i to ±b−bti make an angle πτ with the y axis and consequently
(see Figure 1)

T̄ ∩ ∂B(i, 1) = ∂S∗(−π/2, τ) ∩ ∂B(i, 1).

Given N a large positive integer choose b so that τ = N−1 ≈ b. We claim that∫
T̄∩∂B(i,1)

v1(z)|dz| ≤ c b t.(3.24)

To prove (3.24) we parametrize T̄ ∩ ∂B(i, 1) by z(x) = x + iy(x) for −s ≤ x ≤ s
where s ≈ b (so y = 1 −

√
1− x2). Then from (3.19), (3.11), b << t, and the fact

that in (3.10), φ̂(θ − π/2) ≤ cmin(θ, π − θ) for θ ∈ [0, π], we see as in the proof of
(3.23) that if 2bt ≤ |x| ≤ b then |dz| ≈ dx and

v1(z(x)) ≤ cv(z(x)/b+ ti) ≤ c2(bt)λ̂ |x|−λ̂
(
|x|2 + bt

|x|

)
≈ (bt)1+λ̂|x|−λ̂−1.(3.25)

Thus ∫
T̄∩∂B(i,1)

v1(z)|dz| ≤ cbt+ c

∫ b

bt

(bt)1+λ̂x−λ̂−1dx ≤ c2bt,

so (3.24) is true. Let h̆(z) = v1(z) when z ∈ T̄ ∩ B̄(i, 1) and extend h̆ to B̄(i, 1) by

requiring that h̆(i + ρeiθ) = h̆(i + ρei(θ+2π/N)) for 0 < ρ ≤ 1, and θ ∈ R. Let v̆ be

the p-harmonic function in B(i, 1) with v̆ ≡ h̆ on ∂B(i, 1) in the W 1,p Sobolev sense.
From the usual calculus of variations argument we see that

(a′) 0 ≤ v̆(i+ ρeiθ) = v̆(i+ ρei(θ+2π/N)) ≤ 1 for 0 ≤ ρ ≤ 1, θ ∈ R,

(b′)

∫
S∗(−π/2,τ)

|∇v̆|pdxdy ≤
∫
T

|∇v1|pdxdy ≤ c (t/N)2−p.
(3.26)

We assert that

(c′)

∫ π

−π
v̆(i+ eiθ)dθ ≤ ct, and v̆(i) ≥ c−1tλ̂,

(d′) |v̆(z)− v̆(w)| ≤ c (N/t) |z − w| whenever z, w ∈ ∂B(i, 1).

(3.27)

The left-hand inequality in (3.27) (c′) follows from (3.24), (2.3) of Lemma 2.3, v1 = v̆
on T̄ ∩ ∂B(i, 1), and (3.26) (a′). To prove the right-hand inequality in (3.27) (c′),

we note that v̆ ≥ c−1tλ̂ on ∂B(i, 1 − 1/N), as we see from Harnack’s inequality for
v̆, (3.23), v1 ≤ v̆ in T̄ ∩ B̄(i, 1), and (3.26) (a′). This inequality and the minimum
principle for p-harmonic functions give the right-hand inequality in (3.27) (c′). To
prove (3.27) (d′), let z ∈ T̄ ∩ ∂B(i, 1), z0 ∈ ∂T, and suppose |z0 − z| is the distance
from z to ∂T. If |z − z0| ≥ bt/4, then v1 is p-harmonic in B(z, bt/4). Otherwise from
Schwarz reflection we see that v1 has a p-harmonic extension to B(z0, bt/2) (also
denoted v1). Thus in either case v1 is p-harmonic in B(z, bt/4) so from (2.5) (â) of
Lemma 2.4, we have

|∇v1|(z) ≤ c ( max
B(z,bt/4)

|v1|)/bt ≤ c/bt.(3.28)
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Now (3.28) and v̆ = v1 on T̄ ∩ ∂B(i, 1) give (3.27) (d′). We now choose 0 < t0 < t1 <
1 < N0, depending only on p > 2, so that if N is a positive integer with N ≥ N0,
then (3.26), (3.27), are valid with t = t0 and also,

0 ≤
∫ π

−π
v̆(i+ eiθ)dθ ≤ v̆(i)/2.(3.29)

With t0 now fixed, put

V (z) = v̆(i)− v̆(z + i) whenever z ∈ B(0, 1).

Then from (3.26), (3.27), (3.29), we conclude that Theorem A is valid for fixed p >
2. �

3.3. Finesse Proof of Theorem A for 1 < p 6= 2 < ∞. In this section we give a
proof of Theorem A valid for 1 < p 6= 2 < ∞, modelled on proofs of Wolff [Wol07]
and Varpanen [Var15], which however does not produce explicit examples. To briefly
outline our proof, we note that Wolff (see also [DS] [Section 3]) constructed for fixed
p, 1 < p 6= 2 <∞, a p-harmonic function, F, of the form

F (z) = F (x+ iy) = e−γyf(x) for z ∈ R2
+(3.30)

where γ > 0 and f satisfies
f(x+ 2π) = f(x) = f(−x),

f(π/2− x) = −f(π/2 + x),

f(0) = 1 and f(±π/2) = 0,

f ′(0) = 0 and f ′ < 0.

He then perturbed off of F and used the Fredholm alternative to eventually construct
Φ in Theorem 1.2. Varpanen generalized much of Wolff’s argument to the B(0, 1) set-
ting, but since the p− Laplacian is not invariant under dilations in polar coordinates
he needed to make estimates on Lipschitz, L∞ constants similar to those in Theorem
A for each N. Unfortunately the functional analysis - Fredholm alternative part of
Wolff’s argument does not seem to allow for specific estimates of constants. Our idea
for making estimates began from observing some similarities between (3.31), (3.32),
and a 1/N scaling of φ in the θ variable (corresponding to α = π/(2N)) in an ODE
arising from (3.3), (3.4) , as N→∞. This eventually led us to Lemma 3.3 and after
that in (3.45) to uniform convergence of ũN and all its partial derivatives to F and the
corresponding partial derivatives of F on R2. ũN is defined in (3.39). Next we state
in Lemma 3.4 and for 2 < p < ∞, the solutions obtained by Wolff and Lewis (using
the Fredholm alternative) to divergence form elliptic regularity Dirichlet problems.
In view of Lemmas 3.3, 3.4, we study for each N (large) in (3.50)-(3.55) a similar
elliptic regularity variational problem whose boundary functions are the same as the
functions obtained by Wolff and Lewis. Moreover the coefficients of our operator and
all its derivatives each converge uniformly on R̄2

+ to corresponding derivatives of the
coefficients used by Wolff and Lewis. From this fact, interior estimates for elliptic
PDE with smooth coefficients (Moser, De-Giorgi iteration, the method of difference
quotients, Sobolev theorems) and Schauder type boundary estimates (instead of the
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Fredholm alternative) we are able to show our solutions and their derivatives of order
≤ l (l a fixed positive integer) are bounded in R̄2

+ by constants that are independent

of N provided N ≥ Ñ(l). The information so obtained is transferred to B(0, 1) in
(3.56) - (3.63) using a change of variables argument as in [Var15]. We note that
(3.58) (see also (3.57)) answers in the affirmative an integrability question in section
1.4 of [Var15] but only for N sufficiently large. Finally we repeat arguments in Wolff
- Lewis for p > 2, keeping careful track of the constants which now depend on N. In
the last paragraph of our proof we use Lewis’ “ conjugate function argument “ to get
Theorem A for 1 < p < 2 .

To continue the proof of Theorem A for 1 < p < ∞, p 6= 2, we note from p−
harmonicity of F, and separation of variables, that it follows from (3.30), as in (3.3),
that if σ(x) = f ′(x)/f(x) whenever x ∈ [0, π/2] then

−dσ
dx

= (p− 1)
(γ2 + σ2)2

γ2 + (p− 1)σ2
, σ(0) = 0 and σ(π/2) = −∞(3.31)

where the last equality means as a limit from the left. Integrating (3.31) we get

p

2(p− 1)γ
arctan(σ(x)/γ)− (p− 2)σ(x)

2(p− 1)(σ2(x) + γ2)
= −x.(3.32)

where we have used σ(0) = 0. Letting x → π/2 it follows from (3.32) and σ(π/2) =
−∞ that

γ =
p

2(p− 1)
.(3.33)

Next we take the + sign and α = π/(2N) in (3.5). We obtain

1/N = 1− (1− 1/λ)(1− (p−2)
λ(p−1)

)−1/2 .(3.34)

Now since λ > 0 and N > 1, we see from (3.34) that λ > 1. Using this fact and taking
logarithmic derivatives of the right-hand side of (3.34) with respect to 1/λ, we find
that it is decreasing as a function of 1/λ. Thus λ→∞ as N →∞. Expanding (3.34)
in powers of 1/λ we obtain

1/N = 1− (1− 1/λ)[1 + (p−2)
2λ(p−1)

+O(1/λ2)]

=
p

2(p− 1)λ
+O(1/λ2) as λ→∞.

(3.35)

From (3.35) we conclude that
p

2(p− 1)
N = γN = λ+O(1) as N →∞(3.36)

where γ is as in (3.33). Now suppose for the rest of the proof of Theorem A that
N ≥ 1010 is a positive integer. Let

λ = λ(π/(2N), p) and φ = φ(·, π/(2N), p)

be the value and function in (3.1) corresponding to α = π/(2N). Then φ(±π/(2N)) =
0 so from Schwarz reflection with R replaced by θ = (2k− 1)π/(2N) for k = 1, . . . , N
(see Lemma 2.5) it follows that z = reiθ → rλφ(θ) extends to a p-harmonic function
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in R2 \ {0}, which is 2π/N periodic in the θ variable. Moreover since λ > 1 in (3.34),
we claim that if G(z) = GN(z) denotes this extension and we define G(0) = 0, then
G is p-harmonic in R2. To verify this claim given q ∈ C∞0 (R2) and ε > 0, we multiply
q by a suitable cutoff so that q = q1 + q2 where q1, q2, are infinitely differentiable with
q1 having compact support in B(0, ε) while q2 ≡ 0 in B(0, ε/2). Also |∇q1| ≤ Cε−1

where C is a positive constant that depends on q but is independent of ε. Then
(3.37)∫

R2

|∇G|p−2〈∇G,∇q〉dxdy =

∫
R2

|∇G|p−2〈∇G,∇q1〉dxdy ≤ Ĉε(λ−1)(p−1)+1→0

as ε→0, where Ĉ has the same dependence as C. Our claim follows from (3.37),
the definition of p−harmonicity, and the fact that functions in C∞0 (R2) are dense in
W 1,p(R2).

Let g(x) = gN(x) = φ(x/N) for x ∈ R where we now regard φ = φ(·, N), as defined
on R. Then

(α) g = gN(·) is 2π periodic on R, g(x) = g(−x), g(π/2 + x) = −g(π/2− x),

for x ∈ R, and g′ ≤ 0 on (0, π/2], g(±π/2) = 0,

(β) max
R
|g| = 1 = g(0) and c−1 ≤ |g′(x)|+ |g(x)| ≤ c, x ∈ R, where c = c(p).

(3.38)

Here (3.38) (α) and the left hand inequality in (3.38) (β), follow from the properties
of φ listed after (3.1) and discussed after (3.5). To get the estimate from below in the
right hand inequality of (3.38) (β) observe from Harnack’s inequality and (3.38) (α)
that we only need prove this inequality for x near π/2. Now comparing G to a linear
function vanishing on the rays θ = ±π/2, using Lemma 2.5 with û = G, v̂ a linear
function vanishing on the ray θ = π/2, and taking limits as z → eiπ/2, we deduce
c−1 ≤ |g′(π/2)| ≤ c. The rest of (3.38) (β) follows from (3.36) and Lemma 2.4. We
prove

Lemma 3.3. For fixed p, 1 < p 6= 2 < ∞, let f be as in (3.30) and g = gN as in

(3.38). Then g
(k)
N (x)→ f (k)(x) as N →∞, uniformly on R for k = 0, 1, 2, . . . .

Proof of Lemma 3.3. Given z = x + iy, N a large positive integer, and G as defined
below (3.36) let ũ(z) = G(1 + iz/N) for z ∈ R2. From the definition of φ we see that
if |z| < N,

ũ(z) = ũN(x+ iy) =
[
(1− y/N)2 + (x/N)2

]λ/2
φ

(
arctan

[
x/N

1− y/N

])
.(3.39)

Let

H(z) := HN(x+ iy) =
[
(1− y/N)2 + (x/N)2

]λ/2
,

K(z) := KN(x+ iy) = φ

(
arctan

[
x/N

1− y/N

])
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so ũ(z) = H(z)K(z) when |z| < N. Fix R > 100. Then from L’ Hospital’s rule,
(3.39), and (3.36), (3.38), we find uniformly for z ∈ B(0, 2R), that

lim
N→∞

H(z) = e−γy, lim
N→∞

Hx(z) = 0, and lim
N→∞

Hy(z) = −γ e−γy.(3.40)

From (3.36), (3.38), and the same argument as above we see that if N ′ is large enough
then |ũN | is uniformly bounded for N ≥ N ′, so from Lemmas 2.2 - 2.4, there exists
1 < M <∞ with

max
B(0,4R)

(|ũN |+ |∇ũN |) ≤M <∞(3.41)

for N ≥ N ′. From (3.41), (2.5) (â), and Ascoli’s theorem we see that a subsequence
say (ũNl), (∇ũNl), converges uniformly in B(0, 2R) to u,∇u, and u is p-harmonic in
B(0, 2R). Next we observe that (|HN |) is uniformly bounded below in B(0, 4R) for
N ≥ N ′ for N ′ large enough. Using this fact, (3.38), and (3.41) we see that

|Kx|(z) = N−1|φ′|
(

arctan

[
x/N

1− y/N

])
(1− y/N)

(1− y/N)2 + (x/N)2
≤M ′ <∞(3.42)

for N ≥ N ′, N ∈ {Nl}. Choosing y = 0 in (3.42) and using (3.38), properties of
arctan function we deduce

|g′N(x̂)| = N−1|φ′(x̂/N)| ≤ 2M ′ for x̂ ∈ [−2R, 2R].(3.43)

From (3.43) and the chain rule it follows easily that

lim
l→∞

(KNl)y(z) = 0 uniformly in B(0, 2R).(3.44)

Thus in view of (3.44), (3.40), we get u(z) = e−γyν(x) for z ∈ B(0, 2R), so by
uniqueness of f in (3.30) we have ν ≡ f in B(0, 2R). Since every subsequence of (ũN)
converges uniformly to F and R > 100 is arbitrary we conclude Lemma 3.3 when
k = 0.

Now from (3.38) (β) and uniform convergence of (∇ũN) to ∇F 6= 0 on compact
subsets of R2, we deduce for N ≥ N ′ that ∇ũN 6= 0 in B(0, R). Then from (2.5) (ĉ)
we see first that ũN is infinitely differentiable in B(0, R), for N ≥ N ′ and second from

Schauder type arguments using (2.5) (â), (b̂), as in [GT01], that

D(l)ũN → D(l)F = D(l)(e−γyf(x)), for l = 0, 1, . . .(3.45)

uniformly on compact subsets of R2 where D(l) denotes an arbitrary lth derivative in
either x or y. To finish the proof of Lemma 3.3, we proceed by induction. Suppose by
way of induction that Lemma 3.3 is valid for k = l, a non-negative integer. Using the
product formula for derivatives and (3.39) we find that taking m partial derivatives
in x on H gives an expression that is O(N−m/2) when m is even and O(N−(m+1)/2)
when m is odd, for z ∈ B(0, R) as N → ∞. Also n ≤ l derivatives on K produces
an expression that is O(1) in B(0, R) as N → ∞, thanks to global p-harmonicity of
F. Moreover in this O(1) term the only way to get a non-zero term in the limit as
N →∞ is to put all derivatives on φ, which then gives from the induction hypothesis
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a term converging to f (n)(x), as N → ∞. From these observations and the product
formula for derivatives we conclude that

lim
N→∞

∂l+1ũN(z)

∂xl+1
= lim

N→∞

[
(1 + y/N)2 + (x/N)2

]λ/2
g(l+1)(x) = e−γyf (l+1)(x).(3.46)

From (3.46), L’ Hospital’s rule, and induction we see that Lemma 3.3 is true. �

In order to use Lemma 3.3 we briefly outline Wolff’s proof of Theorem A for p > 2
and also the extension to 1 < p < 2 of this theorem in [Lew88], tailored to 2π
periodic rather than one periodic p-harmonic functions on R2

+. Let F, f, γ be as in
(3.30), 2 < p <∞, and for z ∈ R2 set

A(z) = A(x+ iy)

= ((f ′)2 + γ2f 2)(p−4)/2e−γ(p−2)y

(
γ2f 2 + (p− 1)(f ′)2 −(p− 2)γf ′f
−(p− 2)γf ′f (p− 1)γ2f 2 + (f ′)2

)
(x).

(3.47)

Note that A is 2π periodic in the x variable. Moreover, if A(z) = (aij(z)) for z =
x+ iy ∈ R̄2

+ and ξ = ξ1 + iξ2 ∈ R2, then

c−1|ξ|2e−γ(p−2)y ≤
2∑

i,j=1

aijξiξj ≤ c|ξ|2e−γ(p−2)y(3.48)

whenever ξ ∈ R2. Here (3.48) follows from (3.30), Harnack’s inequality for F , as well
as the analogue of (3.38) (β) for f. For the rest of this section we regard ∇ψ in
rectangular coordinates, as a 2× 1 column matrix whose top entry is ψx. Also, ∇· is
a 1× 2 row matrix whose first or leftmost entry is ∂

∂x
. Finally if ξ is a 2× 1 column

matrix and ξt is the transpose of ξ, then 〈A∗∇ψ, ξ〉 = ξtA∗∇ψ whenever A∗ is a 2×2
matrix with real entries.
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Lemma 3.4. Given p, 2 < p < ∞, there exists ζi = ζi(·, p) ∈ C∞(R̄2
+) for i = 1, 2,

with ∇ · (A∇ζi) = 0 in R2
+ satisfying

(ā) ζi(z + 2π) = ζi(z), z ∈ R2
+, and max

R
|ζi| = 1.

(b̄)

∫
S(2π)

〈A∇ζi,∇ζi〉dxdy ≈
∫
S(2π)

e−γ(p−2)y |∇ζi|2dxdy <∞ .

(c̄) There exist δ = δ(p) ∈ (0, 1] and µi ∈ R with lim
y→∞

ζi(x+ iy) = µi for x ∈ R

and |ζi(z)− µi| = |ζi(x+ iy)− µi| ≤ 2 e−δy for y ≥ 0.

(d̄) max
R2
+

|∇ζi| ≤M <∞ and

∫
S(2π)

|∇ζi|q dxdy ≤Mq <∞ for q ∈ (0,∞).

(ē) There exist y0 ∈ (0, 1), c+, and c++ ≥ 1, with c−1
+ ≤

∫ π

−π

∂ζ1
∂y

(x+ iy) dx ≤ c+ and

c−1
++ ≤

∫ π

−π
〈A∇ζ2, e1〉(x+ iy) dx ≤ c++ for 0 ≤ y ≤ y0, where e1 =

(
1
0

)
.

(3.49)

Proof of Lemma 3.4. The proof of Lemma 3.4 for ζ1 and essentially also for (ā)− (d̄)
of ζ2, is given in section 3 of [Wol07]. The proof of (ē) in Lemma 3.4 for ζ2 is in
[Lew88]. �

Next for for fixed p, 2 < p < ∞ and λ = λ(N, p), let T p(S(2π)) be equivalence
classes of functions h on R2

+ with h(z + 2π) = h(z) for z ∈ R2
+, distributional partial

derivatives ∇h, and norm,

‖h‖+,p =

∫
S(2π)

e−(λ−1)(p−2)y/N |∇h|2(x+ iy)dxdy <∞.

Also let T p0 (S(2π)) ⊂ T p(S(2π)) be functions in this space that can be approximated
arbitrarily closely in the above norm by C∞ functions in T p(S(2π)) that vanish in an
open neighbourhood of R. For g = gN as in (3.38) and z ∈ R̄2

+ set

Ă(z) =ĂN(x+ iy)

=((g′)2 + (λ/N)2g2)(p−4)/2e−(λ−1)(p−2)y/N

×

 (λ/N)2g2 + (p− 1)(g′)2 −(p− 2)(λ/N)g′g

−(p− 2)(λ/N)g′g (p− 1)(λ/N)2g2 + (g′)2

 (x).

(3.50)

From (3.38) we observe that Ă(z + 2π) = Ă(z) for z ∈ R̄2
+ and from (3.36), (3.38),

Lemma 3.3, that if Ă(z) = (ăij(z)), then (3.48) holds with aij replaced by ăij. More-
over constants are independent of N, provided N ≥ N ′ and N ′ is large enough.
Let ζ̆i = ζ̆i(·, N), i = 1, 2, be the weak solution to ∇ · (Ă∇ζ̆) = 0 in R2

+ with

ζ̆i − ζi ∈ T p0 (S(2π)) and max
R̄2
+

|ζ̆i| = 1. Existence and uniqueness of ζ̆1, for example,
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follows from (3.48) for Ă and a slight modification of the usual calculus of variations
minimization argument often given for bounded domains. To indicate this modifica-
tion, let

I(h) =

∫
S(2π)

2∑
i,j=1

ăij hxihxjdxdy

where the functional I(·) is evaluated at functions in

F := {h : h ∈ T p(S(2π)) with h− ζ1 ∈ T p0 (S(2π))}.
For fixed ρ >> 2π, we can choose hj ∈ F for j = 1, 2, . . . so that


lim
j→∞

I(hj) = inf{I(h) : h ∈ F},

hj|S(2π)∩B(0,ρ) ⇀ h̃ = h̃(·, ρ) strongly in L2(S(2π) ∩B(0, ρ)),

Each component of ∇hj tends weakly to a function ki, i = 1, 2 with ki in L2(S(2π)).

(3.51)

Integrating by parts and using the definition of a distributional derivative, it fol-
lows from (3.51) that ∇h̃ exists in the distributional sense and ∇hj ⇀ ∇h̃ weakly

in L2(S(2π) ∩ B(0, ρ)). Using the Cantor diagonal argument we may suppose h̃ is
independent of ρ so (3.51) holds for 0 < ρ < ∞. From lower semicontinuity of the

functional we conclude that h̃ ∈ F and I(h̃) = minh∈F I(h). The rest of the proof is
unchanged from the usual one for bounded domains.

Arguing as in section 3 of [Wol07] we deduce the existence of δ̆ ∈ (0, 1], depending
only on p, and µ̆i ∈ [−1, 1] for i = 1, 2, satisfying

max
R2
+

|ζ̆i| = 1, lim
y→∞

ζ̆i(x+ iy) = µ̆i and |ζ̆i (x+ iy) − µ̆i| ≤ 2e−δ̆y for x ∈ R, y ≥ 0.

(3.52)

From Lemma 3.3 and (3.36) we see that D(l)Ă→ D(l)A for l = 0, 1, . . . , uniformly on
R̄2

+ as N → ∞, where D(l)A denotes an arbitrary l-th partial derivative of A. From
this observation, (3.52), and interior estimates for divergence form PDE with smooth
coefficients (see [Eva10] [section 8.3] ) we deduce that if l is a nonnegative integer and
z = x+ iy ∈ R2

+, then

(3.53) |D(l)ζ̆i(z)| ≤
{
c+(l)e−δ̆y if y ≥ 1,
c++(l)y−l if y < 1,

where constants depend only on l, and the ellipticity - smoothness constants for A
provided N ≥ N ′(l). We also note from smoothness of ζi and Theorem 8.30 in [GT01]

that ζ̆i has a continuous extension to the closure of R2
+ with ζ̆i = ζi on R, i = 1, 2.

Next if w̆(z) = θ − i log r when z = reiθ, then w̆ maps {z : |θ| < π, e−1 < r < 1},
1-1 and onto S(2π)∩{w̆ = w̆1 + iw̆2 : 0 < w̆2 < 1}. Using periodicity of ζ̆i, (3.53), and

smoothness of ζi, we see that ζ̆i◦w̆ extends to a function with l continuous derivatives
in B(0, 1) \ B̄(0, e−1). Also this function has continuous boundary values equal to

boundary functions with l continuous derivatives. Finally ζ̆i ◦ w̆ is a solution to a
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uniformly elliptic divergence form PDE in this annulus with l continuous derivatives
for which a boundary maximum principle holds. Smoothness and ellipticity constants
can be chosen independent of N provided N ≥ Ñ(l). Details to a more general case
will be given after (3.55). We can now apply Theorems 6.14 and 6.6 in [GT01] to

conclude for l ≥ 3 that ζ̆i ◦ ŵ has l − 1 continuous derivatives in B̄(0, 1) \ B(0, e−1)
with L∞ norms bounded independently of N, provided that N ≥ Ñ(l). From this
conclusion, (3.52), (3.53), elliptic regularity theory, and Ascoli’s theorem it follows
that

lim
N→∞

D(k)ζ̆i(·, N)→ D(k)ζi uniformly in R̄2
+ as N →∞, for k = 0, 1, . . . , l − 1,

(3.54)

In view of (3.54) and (3.49) (d̄), (ē), we see for N ′ large enough and N ≥ N ′(l),
that

(α) max
R2
+

|∇ζ̆i| ≤ M̆ <∞ and

∫
S(2π)

|∇ζ̆i|qdxdy ≤ M̆q <∞ for q ∈ (0, l − 1).

(β) c−1
∗ ≤

∫ π

−π

∂ζ̆1
∂y

(x+ iy) dx ≤ c∗ for 0 ≤ y ≤ y0,

(γ) c−1
∗∗ ≤

∫ π

−π
〈Ă∇ζ̆2, e1〉(x+ iy) dx ≤ c∗∗ for 0 ≤ y ≤ y0 .

(3.55)

Constants in (3.55) are independent of N ≥ N ′(l) and M̆, M̆q, c∗, c∗∗, depend only on
p, as well as the corresponding constants for ζ1, ζ2, in (3.47) (d̄), (ē) of Lemma 3.4.

To continue the proof of Theorem A for 1 < p 6= 2 <∞, given z = reiθ ∈ B(0, 1),
N ≥ N ′, we follow [Var15] and let w = w(z) = Nθ − iN log r ∈ R2

+. Then w maps
{z = reiθ : 0 < r < 1, |θ| < π/N} one-one and onto S(2π). If z = x + iy = reiθ,

put Ã(z) = Ă(w(z)), when z ∈ B(0, 1) \ {0}, and Ã(0) = 0. We note from (3.50) for
z ∈ B(0, 1) that

Ã(z) = ĂN(Nθ − iN log r)

= τ(reiθ)

(
λ2φ2 + (p− 1)(φ′)2 −(p− 2)λφ′φ
−(p− 2)λφ′φ (p− 1)λ2φ2 + (φ′)2

)
(θ)

(3.56)

where

τ(reiθ) = N (2−p)r(λ−1)(p−2)((φ′)2 + (λ)2φ2)(p−4)/2(θ).

Here λ = λ(2π/N) and φ = φ(·, N) is the extension of φ = φ(·, 2π/N) in (3.1) to R.
Let ζ̃i(z) = ζ̆i(w(z)) for z ∈ B(0, 1) \ {0} and observe that ζ̃i is 2π/N periodic in the
θ variable. From the chain rule and (3.52) - (3.55) we see for i = 1, 2, that

max
∂B(0,r)

[(r/N) |∇ζ̃i|+ |ζ̃i − µ̆i|] ≤ M̃ rNδ̆ for 0 < r ≤ 1,(3.57)
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where M̃ is independent of N for N ≥ N ′. Put ζ̃i(0) = µ̆i. Then (3.57), (3.55) (α),
and the chain rule imply that∫

B(0,1)

|∇ζ̃i|q rdrdθ ≤ N q−1M̃q <∞ for q ∈ (0, Nδ/2),(3.58)

where M̃q is independent of ζ̃i for N ≥ N ′. Also from (3.55) (β), (γ), (3.56), we deduce
for N ≥ N ′, that

(+) (2c∗)
−1N ≤

∫ π

−π

∂ζ̃1
∂r

(reiθ) dθ ≤ 2c∗N for 1− y0

2N
≤ r ≤ 1,

(++) (2c∗∗)
−1N ≤

∫ π

−π
〈Ã∇′ζ̃2, e1〉(reiθ) dθ ≤ 2c∗∗N for 1− y0

2N
≤ r ≤ 1,

(3.59)

where

∇′ζ̃2(reiθ) =

(
r−1 ∂ζ̃2

∂θ

−∂ζ̃2
∂r

)
.

Next we observe from ∇· (Ă∇ζ̆i) = 0 for i = 1, 2, and the change of variables formula
that if χ ∈ C∞0 (B(0, 1) \ {0}) then

I =

∫
B(0,1)

〈Ã∇′ζ̃i,∇′χ〉rdrdθ = 0(3.60)

From (3.57) and the same limiting argument as in (3.37), we see that (3.60) still holds
if χ ∈ C∞0 (B(0, 1)). Finally, if v̄(z) = v̄(reiθ) = rλφ(θ,N), and

Ā(z) = |∇v̄|p−4

(
(p− 1)v̄2

x + v̄2
y (p− 2)v̄xv̄y

(p− 2)v̄xv̄y (p− 1)v̄2
y + v̄2

x

)
(z)(3.61)

when z = reiθ ∈ B(0, 1), then (3.60) can be rewritten as

I =

∫
B(0,1)

〈Ā∇ζ̃i,∇χ〉dxdy = 0(3.62)

so ∇ · (Ā∇ζ̃i) = 0 in B(0, 1). Here (3.62) can be verified by using the chain rule to
switch (3.60) from polar to rectangular coordinates but also as in [Var15] by noticing

that if a(·, ε) = v̄ + εl̃ for l̃ ∈ {ζ̃i, i = 1, 2}, then

∂

∂ε

(
∇ · (|∇a|p−2∇a)

)
ε=0

= ∇ · (Ā∇l̃) = 0.

The left hand side of this equation can be evaluated independent of the coordinate
system, so letting v̄ξ and v̄η denote directional derivatives of v̄ at z, where ξ = ieiθ

and η = −eiθ, we obtain

v̄ξ = r−1v̄θ and v̄η = −v̄r.

Using this fact, replacing v̄x and v̄y in (3.61) and (3.62) by v̄ξ and v̄η, and computing

∇ζ̃i and ∇χ, in the ξ and η coordinate system, we arrive at (3.60). Moreover, (3.59)
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(++) can be rewritten as

(2c∗∗)
−1λp−2N ≤

∫ π

−π
〈Ā∇ζ̃2, eθ〉(reiθ) dθ ≤ 2c∗∗λ

p−2N(3.63)

for 1− y0
2N
≤ r ≤ 1 where

eθ =

(
− sin θ
cos θ

)
.

Armed with (3.57)-(3.59) and (3.62), we can now essentially copy the proof of
Lemmas 3.16-3.19 in [Wol07] for 2 < p < ∞ and the argument leading to (12)-(13)
in [Lew88] for 1 < p < 2. Thus the reader should have these papers at hand. Since
constants now depend on N, we briefly indicate the slight changes in lemmas and
displays. In the proof we let C ≥ 1 be a constant, not necessarily the same at each
occurrence, which may depend on other quantities besides p, such as c∗, c∗∗, but is
independent of N and ε, for N ≥ N ′, 0 < ε ≤ ε′. Given p, 1 < p 6= 2 < ∞, and
ε > 0 small, for i = 1, 2, let ki = ki(·, N) be the p-harmonic function in B(0, 1) with

ki = v̄ + ε ζ̃i on ∂B(0, 1) in the W 1,p Sobolev sense. From Lemma 2.3 we see that
ki is Hölder continuous in B̄(0, 1). Also from the boundary maximum principle for
p-harmonic functions we deduce for z = reiθ ∈ B̄(0, 1) that

kj(re
iθ) = kj(re

i(θ+2π/N)) for j = 1, 2.

We note that f , v, and g in Wolff’s notation in [Wol07] corresponds to our v̄, ζ̃i, and
ki respectively. If q ∈ W 1,p

0 (B(0, 1)) and 2 < p <∞ then the analogue of the display
in Lemma 3.16 of [Wol07] in our notation relative to B(0, 1) is∣∣∣∣∫

B(0,1)

〈∇q,∇(v̄ + εζ̃i)〉|∇(v̄ + εζ̃i)|p−2dxdy

∣∣∣∣ ≤ CεσN (p−1)/p′ ‖|∇q|‖p(3.64)

for N ≥ N ′, where p′ = p/(p− 1), σ = min(2, p− 1), and ‖|∇q|‖p is the Lebesgue p
norm of |∇q| on B(0, 1). To get this estimate we use Hölder’s inequality, (3.57), and
our knowledge of v̄ to estimate the term in brackets in display (3.17) of [Wol07].

Lemma 3.18 of this paper follows easily from Lemma 3.16 with q = v̄+ ε ζ̃i− ki for
i = 1, 2, and now reads,

‖|∇v̄ + ε∇ζ̃i|‖pp ≤ ‖|∇ki|‖pp + CεσN (p−1)/p′ ‖|∇ki −∇v̄ − ε∇ζ̃i|‖p(3.65)

where all norms are relative to B(0, 1).
The new version of the conclusion in Lemma 3.19 of [Wol07] is: There exists ε′ ∈

(0, 1/2) and C ≥ 1 such that,∫
B(0,1)\B(0,1− y0

2N
)

|∇(v̄ + εζ̃i)−∇ki| dxdy ≤ Cετ̃(3.66)

for 0 < ε ≤ ε′ where τ̃ = σp′/2 > 1. To get this new conclusion first replace εσ by
εσN (p−1)/p′ and Sλ by B(0, 1), in the last display on page 392 of [Wol07], as follows
from the new version of Lemma 3.18. Second argue as in Wolff to get the top display
on page 393 of his paper with εσ/(p−1) replaced by εσ/(p−1)N1−1/p. Using this display
one gets the second display from the top on page 393 with εσp

′
replaced by N (p−1)εσp

′
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and f, v, g replaced by v̄, ζ̃i, ki, respectively. To get the next display choose 0 < ε′, in
addition to the above requirements, so that

|∇v̄ + ε∇ζ̃i|p−2 ≥ Ĉ−1Np−2(3.67)

for N ≥ N ′, 0 < ε ≤ ε′, and 1 − y0
2N
≤ r ≤ 1. This choice is possible as we see

from (3.36), (3.38) (β), and (3.57). We can now estimate the integral in (3.66),
using Schwarz’s inequality and (3.67) as in [Wol07]. We get the conclusion of Lemma
3.19 in Wolff’s paper [Wol07], except the integral in this display is now taken over
B(0, 1) \ B(0, 1 − y0

2N
). Now (3.66), (3.59) (+), and the fact that v̄ has average 0 on

circles with center at the origin, are easily seen to imply as in [Wol07] that∫ π

−π
k1((1− y0

2N
)eiθ)dθ −

∫ π

−π
k1((1− y0

4N
)eiθ)dθ ≥ C−1ε(3.68)

provided 0 < ε ≤ ε′ and ε′ is small enough. From the triangle inequality we conclude
that there is a d ∈ {1− y0

2N
, 1− y0

4N
}, for which if Ṽ (z) = k1(dz)−k1(0) for z ∈ B(0, 1),

then either V = Ṽ or V = −Ṽ satisfies (1.3) (c) in Theorem A. Also the usual calculus
of variations argument giving k1 and the maximum principle for p-harmonic functions,
as well as either (3.57) or (3.58) and (3.38) (β), give (1.3) (a), (b) in Theorem A with
c replaced by C. Finally (1.3) (d) of Theorem A follows from these inequalities and
Lemma 2.4. The proof of Theorem A is now complete for 2 < p <∞.

To avoid confusion we prove Theorem A, for 1 < p′ < 2, rather than 1 < p < 2,
where as usual p′ = p/(p−1) and p > 2. To do this we first replace the right-hand side
in display (13) of [Lew88] by Cετ̃Np−1, as we deduce in view of the new second display
from the top on page 393 of [Wol07]. Second we use (13) and Schwarz’s inequality in
the second line of display (12) in [Lew88] (with Q replaced by B(0, 1) \B(0, 1− y0

2N
),

q = p), and either (3.57) or (3.58) to get∣∣∣∣∣
∫
B(0,1)\B(0,1− y0

2N
)

r−2
[
|∇k2|(p−2)(k2)θ − |∇v̄ + ε∇ζ̃2|(p−2)(v̄ + εζ̃2)θ

]
dxdy

∣∣∣∣∣
2

≤ CN2(p−2)ε2τ̃ ,

(3.69)

where τ̃ is as in (3.66). Taking square roots in (3.69), using (3.63), the fact that
|∇v̄|p−2v̄θ has average 0 on circles with center at the origin, and arguing as in [Lew88]
we get ∫

B(0,1− y0
4N

)\B(0,1− y0
2N

)

r−1|∇k2|p−2(reiθ)(k2)θ(re
iθ)drdθ ≥ C−1Np−2ε(3.70)

for N ≥ N ′ and 0 < ε ≤ ε′. Let k be the p′-harmonic function in B(0, 1) with k(0) = 0
satisfying

kr = N2−pr−1|∇(k2)|p−2(k2)θ and r−1kθ = −N2−p|∇k2|p−2(k2)r.
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Existence of k follows from simple connectivity of B(0, 1) and the usual existence
theorem for exact differentials. Then (3.70) implies∫ π

−π
k(1− y0

4N
eiθ)dθ −

∫ π

−π
k(1− y0

2N
eiθ)dθ ≥ C−1ε(3.71)

for N ≥ N ′ and 0 < ε ≤ ε′. Finally (3.71) and a similar argument to the one from
(3.68) on in the first case considered, give Theorem A for 1 < p′ < 2. This completes
the proof of Theorem A for 1 < p 6= 2 <∞.

4. Proof of Theorem B

In this section we first state Wolff’s main lemma for applications (Lemma 1.6 in
[Wol07]), in the unit disk setting and then use it to prove Theorem B. The proof of
Theorem B is essentially unchanged from Wolff’s proof of Theorem 1.1. However for
the readers convenience we outline his proof, indicating how to resolve a few problems
in converting this proof from a half space to B(0, 1). We also note that if V as in
Theorem A is 2π/N periodic in the θ variable, where N = kN0, k = 1, 2, . . . , then
V is 2π/k periodic in this variable. Also since N0 depends only on p in the wider
context discussed below the statement of Theorem A in section 1, we may as well
assume N0 = 1. Finally in the proof of Theorem B, we let c ≥ 1, denote a positive
constant depending only on p in this wider context.

4.1. Main Lemma for applications of Theorem A. Given h ∈ W 1,p(B(0, 1)),

let ĥ be the p-harmonic function in B(0, 1) with boundary values ĥ = h on ∂B(0, 1)

in the W 1,p(B(0, 1)) Sobolev sense. We also let ‖h‖̆ denote the Lipschitz norm of h
restricted to ∂B(0, 1) and ‖h‖∞ = max

∂B(0,1)
|h|. Next we state an analogue Lemma 1.6

in [Wol07].

Lemma 4.1. Let 1 < p < ∞. Define α = 1 − 2/p if p ≥ 2, and α = 1 − p/2,
if p < 2. Let ε > 0 and 0 < M < ∞. Then there are A = A(p, ε,M) > 0 and
ν0 = ν0(ε, p,M) < ∞, such that if ν > ν0 ≥ 1 is an integer, f , g, and q are periodic
on ∂B(0, 1) in the θ variable with periods, 2π, 2π, and 2πν−1, respectively and if

max(‖f‖∞, ‖g‖∞, ‖q‖∞, ‖f ‖̆, ‖g‖̆, ν−1‖q‖̆) ≤M,(4.1)

then for z = reiθ ∈ B(0, 1),

|q̂f + g(reiθ)− f(eiθ)q̂(reiθ)− g(eiθ)| < ε for 1− r < Aν−α.(4.2)

If, in addition, q̂(0) = 0, then

|q̂f + g ((1− Aν−α)eiθ)− g(eiθ)| < ε(4.3)

and

|q̂f + g(reiθ)− ĝ(reiθ)| < ε if r < 1− Aν−α.(4.4)
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Proof. Lemma 4.1 is just a restatement for B(0, 1), of Lemma 1.6 in [Wol07]. To
briefly outline the proof of Lemma 4.1, we note that Lemma 1.4 in [Wol07] is used
to prove Lemma 1.6 in [Wol07]. This lemma relative to B(0, 1) states for fixed p,
1 < p <∞, that if u and v are p-harmonic in B(0, 1), bounded, u, v ∈ W 1,p(B(0, 1)),
and if u ≤ v on {eiθ : |θ − θ0| ≤ 2η} for 0 < η < 1/4 in the W 1,p(B(0, 1)) Sobolev
sense, then for 0 < t ≤ 1/2,

∫ 1

1−t

∫ θ0+η

θ0−η
|∇(u− v)+| rdrdθ ≤ cη−1t1/p

′
(‖|∇u|‖p + ‖|∇v|‖p)α [ max

∂B(0,1)
(u− v)+]1−α

(4.5)

where a+ = max(a, 0). It follows from a Caccioppoli type inequality for (u− v)+ that
(4.5) holds.

To begin the proof of Lemma 4.1, if z = reiθ ∈ B(0, 1), let

J(reiθ) = q̂f + g(reiθ)− q̂(reiθ)f(eiθ)− g(eiθ).

The first step in the proof of Lemma 4.1 is to show for given β ∈ (0, 10−5) that there is
a A = A(p, ε,M, β) for which (4.4) holds (so |J |(teiθ) < ε) when βν−1 < 1−t < Aν−α,
for ν ≥ ν0 = ν0(p, ε,M, β). Indeed if J(teiθ0) > ε, then (4.1), Lemmas 2.2, 2.3, and
invariance of p-harmonic functions under a rotation, are used in [Wol07] to show that
if η = ε

105(M2+M)
, then there is a set W ⊂ {teiθ : |θ − θ0| ≤ η} of Lebesgue measure

δ ≥ ρβη/100, where ρ = ρ(p,M, ε), with

q̂f + g(teiθ)− q̂(teiθ)f(eiθ0)− g(eiθ0) > ε/2.(4.6)

Also (4.1) and the choice of η yield

|q̂f + g(eiθ)− q̂(eiθ)f(eiθ0)− g(eiθ0)| < ε/200 when |θ − θ0| < η.(4.7)

Using (4.7), our knowledge of W, and (4.5) it follows that if u(reiθ) = q̂f + g(reiθ)
and v(reiθ) = q(reiθ)f(eiθ0) + g(eiθ0), then

δε/4 ≤
∫ t

0

∫ θ0+η

θ0−η
|∇(u− v)+| rdrdθ

≤ c(M, ε)t1/p
′
(‖|∇u|‖p + ‖|∇v|‖p)α

≤ c′(M, ε)t1/p
′
να/p

′
.

(4.8)

The estimate on ‖|∇u|‖p and ‖|∇v|‖p, in the second line of (4.8) follows from (4.1)
and the minimization property of p-harmonic functions using, for example,

ψ(reiθ) = u(eiθ)χ(r) where χ ∈ C∞0 (1− 2/ν, 1 + 2/ν)

with ψ = 1 on (1−1/ν, 1+1/ν) and |∇ψ| ≤ cν. Now (4.8) yields after some arithmetic
that t > Ã(ε,M, β)ν−α. Thus (4.2) of Lemma 4.1 is true when βν−1 < 1− r < Aν−α,

subject to fixing β = β(ε,M). To do this we apply (2.3) of Lemma 2.3 with v̂ = q̂f + g,
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q, and with ρ = β1/2ν−1, σ = 1, M ′ = ν, to get for 1− r < βν−1,

|J(reiθ)− J(eiθ)| ≤ c(M)

(
ν (β1/2ν−1) + (

βν−1

β1/2ν−1
)σ1
)
≤ c′(M) βσ1/2.(4.9)

Choosing β = β(ε,M) > 0 small enough and then fixing β we obtain (4.2) for
1− r < βν−1.

To prove (4.3) we note from (2.9) of Lemma 2.7 that

|q(reiθ)− q(0)| ≤ cMrν/c(4.10)

where c = c(p). Using (4.10) with q(0) = 0, r = 1−Aν−α, and choosing ν0, still larger
if necessary we get (4.3). Now (4.4) follows from (4.3) and (2.3) of Lemma 2.3 with
v̂ = ĝ and ρ = Aν−α/2 in the same way as in the proof of (4.9) for ν0 large enough.
This finishes the sketch of proof of Lemma 4.1. �

4.2. Lemmas on Gap Series. The examples in Theorem B will be constructed
using Theorem A as the uniform limit on compact subsets of B(0, 1) of a sequence
of p-harmonic functions in B(0, 1), whose boundary values are partial sums of Φj in
Theorem B with periods 2π/Nj where Nj+1/Nj >> 1. Lemma 4.1 will be used to
make estimates on this sequence. Throughout this subsection we let |E| denote the
Lebesgue measure of a measurable set E ⊂ R. We begin with

Lemma 4.2. For j = 1, 2, . . . , let ψj be Lipschitz functions defined on ∂B(0, 1) with∫ π

−π
ψj(e

iθ)dθ = 0 and ‖ψj‖∞ + ‖ψj ‖̆ ≤ C1 <∞.(4.11)

For j = 1, 2, . . . , let (Nj)
∞
1 be a sequence of positive integers with Nj+1/Nj ≥ 2. Also

let (aj)
∞
1 be a sequence of real numbers with

∞∑
j=1

a2
j <∞.

If

s∗(eiθ) := sup
k

∣∣∣∣∣
k∑
j=1

ajψj(e
iNjθ)

∣∣∣∣∣
then ∫ π

−π
(s∗)2(eiθ)dθ ≤ cC2

1

∞∑
j=1

a2
j(4.12)

where c is an absolute constant. Consequently,

(a) s(eiθ) := lim
k→∞

k∑
j=1

ajψj(e
iNjθ) exists for almost every θ ∈ [−π, π],

(b) |{θ ∈ [−π, π] : s∗(eiθ) > λ}| ≤ cC2
1

λ2
.

(4.13)
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Proof. Using elementary properties of Fourier series (see [Zyg68]) and ‖|dψj
dθ
|‖∞ ≤ C1

we find that

ψj(e
iθ) =

∞∑
n=−∞

bjne
inθ where bj0 = 0 and

∞∑
n=−∞

n2b2
jn ≤ cC2

1 .(4.14)

Now

s∗(eiθ) ≤
∞∑

n=−∞

sup
k

∣∣∣∣∣
k∑
j=1

ajbjne
inNjθ

∣∣∣∣∣ =
∞∑

n=−∞

l∗n(eiθ)(4.15)

where l∗n is the maximal function of
∞∑
j=1

ajbjne
inNjθ. It is well known (see [Zyg68]) that

∫ π

−π
(l∗n)2(eiθ)dθ ≤ c′

∞∑
j=1

(ajbjn)2.(4.16)

Using (4.15), (4.16), and Cauchy’s inequality we get∫ π

−π
(s∗)2(eiθ)dθ ≤

(
∞∑

n=−∞

(

∫ π

−π
(l∗n)2(eiθ)dθ)1/2

)2

≤ c′

(
∞∑

n=−∞

(
∞∑
j=1

a2
jb

2
jn)1/2

)2

≤ 2c′ (
∞∑
n=1

n−2)
∞∑
j=1

∞∑
n=−∞

(aj nbjn)2 ≤ cC2
1

∞∑
j=0

a2
j .

(4.17)

Therefore, (4.12) is valid. Now (4.13) follows from standard arguments, using (4.12)
(see [Zyg68]).

To prove Theorem B, let Nj be a sequence of positive integers with Nj+1/Nj a
positive integer > 2. Let Φj be the p-harmonic function in Theorem A with period

2π/Nj and set Φ̃j =
Φj
‖Φj‖∞ . Also for θ ∈ R and j = 1, 2, . . . , we set

φj(e
iθ) = Φ̃j(e

iθ/Nj),

dj =
1

2π

∫ π

−π
Φ̃j(e

iθ)dθ,

ψj = φj − dj.

(4.18)

Note from Theorem A that c−1 ≤ dj ≤ 1 and that ψj satisfies (4.11) of Lemma 4.2
for j = 1, 2, . . . ,. For j = 1, 2, . . . , set

Gj := {[πk/Nj, π(k + 2)/Nj], k an integer}

and let {Lj(eiθ)} be continuous functions on ∂B(0, 1) satisfying

{
L1 ≡ 1, 0 < Lj+1 ≤ Lj, and

Lj+1/Lj considered as a function of θ on R is linear on the intervals in Gj.

(4.19)
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Let σ(eiθ) for θ ∈ R, be the formal series defined by

σ(eiθ) := R +
∞∑
j=1

aj Lj(e
iθ) Φ̃j(e

iθ) and s̃(eiθ) :=
∞∑
j=1

ajΦ̃j(e
iθ)(4.20)

with

0 ≤ |R| ≤ 1 and
∞∑
j=1

a2
j < 1 .(4.21)

Finally let s̃n and σn denote corresponding n-th partial sums of s̃ and σ respectively.
Given I ∈ Gj, let Ĩ denote the interval with the same center as I and three times

its length. Using the gap assumption on (Nj), (4.19), and induction we find that

‖Lj+1‖̆ ≤ cNj.(4.22)

Using the gap assumption on (Nj), Theorem A, and (4.22), (4.21), we deduce for
n = 1, 2, . . . , that

βn = N−1
n (‖sn‖̆+ ‖σn‖̆) ≤ c and lim

n→∞
βn = 0 as n→∞.(4.23)

Moreover, from (4.13)(b) of Lemma 4.2 and (4.18) we have

|{θ ∈ [−π, π] : sup
n
|s̃n(eiθ)−

n∑
j=1

djaj| > λ}| ≤ c λ−2

∞∑
j=1

a2
j .(4.24)

First let R = 0 and choose (an) satisfying (4.21), so that
∑∞

j=1 djaj is a divergent

series whose partial sums are bounded. Then from (4.24) we deduce that

sup
n
|s̃n(eiθ)| <∞ and s̃(eiθ) does not exist for almost every θ ∈ [−π, π].(4.25)

Using (4.19)-(4.25), Wolff (see [Wol07, Lemma 2.12]) essentially proves

Lemma 4.3. If Nj+1 > Nj(log(2 + Nj))
3 for j = 1, 2, . . . , then there is a choice

of (Lj) satisfying (4.19) such that sup
j
‖σj‖∞ < ∞ and σ diverges for almost every

θ ∈ [−π, π].

Proof. To outline the proof of this lemma, for n = 1, 2, . . . , let Υn denote all intervals
I ⊂ R that are maximal (in length) with the property that I ∈ Gj for some j and
max
I
|sj| > n. From (4.22), (4.23), and (4.21) we see that if I ∈ Υn ∩ Gj, and c̃ is

large enough (depending only on p), then |sj| > n− c̃ on Ĩ where c̃ depends only on
p. Using (4.24) with λ = n− c̃ and boundedness of the partial sums of

∑n
j=1 ajdj we

get c ≥ 1 depending only on p, and the choice of (aj) such that∑
Ĩ∈Υn

|Ĩ ∩ [−3π, 3π]| ≤ c n−2 for n = 1, 2, . . . .(4.26)

Thus, from the usual measure theory argument,∣∣∣{θ ∈ [−π, π] : for infinitely many n, θ ∈ Ĩ with I ∈ Υn}
∣∣∣ = 0.(4.27)
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Finally, for j = 2, . . . , define Lj by induction as follows

(a) If Lk has been defined and I ∈ Gk is also in ∪Υn, put Lk+1 = 1
2
Lk on I.

(b) If none of the three intervals in Gk contained in Ĩ are in ∪Υn,

set Lk+1 = Lk on I.

(c) If neither (a) nor (b) holds for I ∈ Gk use (4.19) to define Lk+1.

(4.28)

From (4.27) and the definition of Lj we see for almost every θ ∈ [−π, π] that there
exists a positive integer m = m(θ) such that Lj(θ) = Lm(θ) for j ≥ m. From (4.25)
we conclude that (σk) diverges for almost every θ ∈ [−π, π]. Also if |s̃k(eiθ)| > n,
then since |ak|‖Φ̃k‖∞ ≤ 1, we see from (4.28) that there exist n distinct integers,
j1 < j2 < . . . jn ≤ k with Lji+1(eiθ) = 1

2
Lji(e

iθ). Thus Lk+1(eiθ) ≤ 2−n. Using this
fact and summing by parts Wolff gets, sup

k
‖σk‖∞ <∞. �

Next we state

Lemma 4.4. If Nj+1 > Nj(log(2 + Nj))
3 for j = 1, 2, . . . , then there is a choice of

(Lj) satisfying (4.19) such that σj > 0 for j = 1, 2, . . . and sup
j
‖σj‖∞ < ∞ on R.

Also,

σ(eiθ) = lim
j→∞

σj(e
iθ) = 0 for almost every θ ∈ [−π, π].

Proof. Lemma 4.4 is essentially Lemma 2.13 in [Wol07]. To outline his proof let

R = 1 and aj = − 1

4j
for j = 1, 2, . . . in (4.21).(4.29)

We also set

Υkn := {I ∈ Gk : max
I
s̃k > n and I 6⊂ J ∈ Υjn for any j < k }.

Define Fkn and Hkn, by induction as follows : Let σ1 = 1 + a1Φ̃1 be the first partial
sum of σ in (4.20). By induction, suppose Lj and corresponding σj have been defined
for j ≤ k. Assume also that Fjn,Hjn ⊂ Gj have been defined for j < k and all
positive integers n with F0n = ∅ = H0n. If n is a positive integer and I ∈ Gk, we put
I ∈ Fkn if minI σk < 2−n and this interval is not in Fjn for some j < k. Moreover we
put I ∈ Hkn if min

I
s̃k < − 2n

n+1
and max

I
Lk > 2−n. Then

(a) Lk+1 =
1

2
Lk on I ∈ Gk if I ∈ ∪n(Fkn ∪Hkn ∪Υkn)

(b) Lk+1 = Lk on I if none of the three intervals in Ĩ are in ∪n(Fkn ∪Hkn ∪Υkn).

(c) If neither (a) nor (b) hold for I ∈ Gk, use (4.19) to define Lk+1.

(4.30)

This definition together with (4.20) define Lk+1 on Gk so by induction we get (Lm),
(σm), and also (Fmn) , (Hmn), (Υmn) whenever m,n are positive integers.



30 M. AKMAN, J. LEWIS, AND A. VOGEL

As in Lemma 4.3 we have Lk+1 < 2−n on I ∈ Υkn. Also if 2−(n+1) ≤ minI σj < 2−n

and Lj+1 ≤ 2−n on I ∈ Gj, then from (4.29) we see that

σj+1 ≥ σj − 2−(n+2) ≥ 2−(n+2) on I.

Using this observation and induction on n one can show for all positive integer k and
n that

if I ∈ Gk and min
I

σk < 2−n then Lk+1 < 2−n on I ∈ Gk.(4.31)

Now (4.31) implies that

σk > 0 for k = 1, 2, . . . , on [−π, π](4.32)

since σ1 > 0 and if 2−(n+1) ≤ σk < 2−n on I ∈ Gk. Using this observation and (4.31)
again we have

σk+1 > σk − 2−(n+2) > 0 on I.

Thus to show that (σj) is bounded it suffices to show that max
k

σk < c < ∞. Using

this fact and repeating the argument for boundedness of (σj) in Lemma 4.3 we obtain
boundedness of (σj). It remains to prove that

s̃k(e
iθ)→ 0 for almost every θ ∈ [−π, π].(4.33)

We shall need

c−1 Lk+1(eiθ2) ≤ Lk+1(eiθ1) ≤ c Lk+1(eiθ2)(4.34)

whenever θ1, θ2 ∈ Ĩ and I ∈ Gk for k = 1, 2 . . . . This follows easily from (4.30) and
the gap assumption on (Nj). To prove (4.33) let En denote the set of all θ ∈ R for
which there exist k and l positive integers with k < l satisfying

s̃l > −
2n

2(n+ 1)
while s̃k < −

2n

n+ 1
.

From aj < 0 and c−1 ≤ dj ≤ 1 for j = 1, 2, . . . , we obtain that

max

[
|s̃l(eiθ)−

l∑
j=1

ajdj| , |s̃k(eiθ)−
k∑
j=1

ajdj|

]
≥ 2n

8(n+ 1)
(4.35)

for n ≥ 100. If we let

Λ := {θ ∈ R : θ ∈ En for infinitely many n} ∪ {θ ∈ R : lim sup
j→∞

s̃j(e
iθ) > −∞}

then using (4.35) and (4.24) we deduce

|Λ| = 0.(4.36)

Next from induction on m and the definition of Hkm, it follows that if s̃k(e
iθ) < − 2m

m+1

on I ∈ Gk then Lk+1(eiθ) ≤ 2−m. Therefore if θ0 6∈ Λ then

lim
k→∞

s̃k (eiθ0) = −∞ and lim
k→∞

(s̃k Lk+1)(eiθ0) = 0.
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These equalities and

0 ≤ σj(e
iθ0) = 1 +

∑
l≤j

(Ll − Ll+1)s̃l(θ0) + sjLj+1(θ0)(4.37)

imply that if θ0 6∈ Λ then it must be true that limj→∞ σj(e
iθ0) exists and is non-

negative.
Suppose this limit is positive. Then from (4.23) we find that

sup
j
{max

Ĩ
s̃j : θ0 ∈ I ∈ Gj} <∞ and inf

j
{min

Ĩ
σj : θ0 ∈ I ∈ Gj} > 0.(4.38)

So θ0 belongs to at most a finite number of Ĩ with I ∈ Υkn ∪Fk,n for k, n = 1, 2, . . . .
Then since Lk(e

iθ0) → 0 and s̃k(e
iθ0) → −∞ as k → ∞ we deduce that given m a

sufficiently large positive integer, say m ≥ m0, there exists m′ < m with

m′ = max{j : j < m and Lj(θ0) 6= Lm(θ0)}

such that θ0 ∈ Ĩ, I ∈ Hm′n, for some positive integer n. This inequality and (4.34)

yield that if Lk(θ0) < 2−l, then s̃k(θ0) < −c 2l

l+1
for l ≥ l0 where c ≥ 1 is independent

of k and l. Using this fact and choosing an increasing sequence (il) for l ≥ l0 so that
Lil(θ0) = 2−l for l ≥ l0, it follows from (4.37) that σ(eiθ0) = −∞ which contradicts
(4.32). This first shows that σ(eiθ0) = 0 and this completes the proof of Lemma
4.4. �

4.3. Construction of Examples. To finish the proof of Theorem B we again follow
Wolff in [Wol07] closely and use Lemmas 4.1, 4.3, and 4.4 to construct examples. Let
N1 = 1 and by induction suppose N2, . . . , Nk have been chosen, as in Lemmas 4.3
and 4.4, with σ as in (4.19)-(4.21). Let g = σk, f = ak+1Lk+1, q = Φk+1, and suppose

max(‖f‖∞, ‖g‖∞, ‖q‖∞, ‖f ‖̆, ‖g‖̆, N−1
k+1‖q‖̆) ≤M(4.39)

where M = M(N1, . . . , Nk) is a constant and Φk+1 is p-harmonic in B(0, 1) with
Lipschitz continuous boundary values and Φk+1(0) = 0. Next apply Lemma 4.1 with
M as in (4.39) and ε = 2−(k+1) obtaining A = Ak and ν0 so that (4.1)-(4.4) are valid.
We also choose Nk+1 > ν0 and so that AkN

−α
k+1 <

1
2
Ak−1N

−α
k where α = 1 − p/2 if

p < 2 and α = 1 − 2/p if p > 2. By induction we now get σ as in Lemma 4.3 or
Lemma 4.4. Then

|σ̂j+1(reiθ)− σ̂j(reiθ)| < 2−(j+1) when r < 1− AjN−αj+1,(4.40)

and

|σ̂j+1(reiθ)− σj(eiθ)| < 2−j + |aj+1| when r > 1− AjN−αj+1 .(4.41)

From (4.40) we see that (σ̂j+1) converges uniformly on compact subsets of B(0, 1) to
a p-harmonic function σ̃ satisfying

|σ̃(reiθ)− σ̂k(reiθ)| < 2−k when r < 1− AkN−αk+1.(4.42)
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Using (4.40), (4.42), and the triangle inequality we also have for 1 − AkN−αk+1 < r <
1− Ak+1N

−α
k+2 that

|σ̃(reiθ)− σk(eiθ)| ≤ |σ̃(reiθ)− σ̂k+1(reiθ)|+ |σ̂k+1(reiθ)− σk(eiθ)|
< 2−(k+1) + 2−k + |ak+1|.

(4.43)

From (4.43) and our choice of (ak) we see for (σk) as in Lemma 4.3 that lim
r→0

σ̃(reiθ) does

not exist for almost every θ ∈ [−π, π] while if (σk) is as in Lemma 4.4, lim
r→0

σ̃(reiθ) = 0

almost everywhere. Moreover from boundedness of (σk) and the maximum principle
for p-harmonic functions we deduce that σ̃ is bounded in Lemma 4.3 or 4.4, as well
as non-negative in Lemma 4.4. To conclude the proof of Theorem B, put σ̃ = û and
σ̃ = v̂ if Lemma 4.3 and Lemma 4.4, respectively, was used to construct σ̃. �

5. Proof of Theorem C

In this section we use Theorem A to prove Theorem C. Let (Nj)
∞
1 be a sequence

of positive integers with N1 = 1 and with (Nj)
∞
2 to be chosen later in order to satisfy

several conditions. For the moment we assume only that Nj+1/Nj ≥ 2. Let Φj for
j = 1, 2, . . . be the p-harmonic function in B(0, 1) with period 2π/Nj constructed in
Theorem B with Φj = V. Apart from some details, which need to be worked out,
arising from the fact that we have to work with (Φj) rather than just Φ, we can
essentially copy the proof in [LMW05]. For the readers convenience we give details.
Once again Lemma 4.1 plays an important role in the estimates.

We assume as we may that

‖Φj‖∞ ≤ 1/2 and

∫ π

−π
log(1 + Φj)(e

iθ)dθ ≥ c−1
2(5.1)

for j = 1, 2, . . . , where c2 ≥ 1 depends only on p. Indeed otherwise, we replace Φj by

Φ̃j = c−1Φj and observe from Theorem A, elementary facts about power series that
for c >> c1,∫ π

−π
log(1 + Φ̃j(e

iθ))dθ ≥
∫ π

−π
Φ̃j(e

iθ)dθ − 2π(c1/c)
2 ≥ (2c1c)

−1.

Thus we assume (5.1) holds. We claim that there exists a positive integer κ >> 1
and a positive constant C = C(κ) > 1 such that for j = 1, 2, . . . ,

κ∑
l=1

alj ≥ C−1 and
κ∏
l=1

(1 + alj) > 1 + C−1(5.2)

where for l = 1, . . . , κ,

alj := min{Φj(e
iθ/Nj) : θ ∈ [−π +

(2l − 2)π

κ
,−π +

2lπ

κ
]}.

To prove (5.2), let φj(e
iθ) = Φj(e

iθ/Nj) for θ ∈ R. Then from Theorem A we see that

φj is continuous and 2π periodic on R with ‖φj ‖̆ ≤ c1, where c1 depends only on p.
Using these facts we get
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2πκ−1

κ∑
l=1

alj ≥
∫ π

−π
φj(e

iθ)dθ − ĉ κ−1 ≥ 1

2c1

> 0

for κ large enough thanks to (1.3) (c) . Likewise, from Theorem A and (5.1) it follows
that

2π
κ∑
l=1

log(1 + alj) ≥ κ

∫ π

−π
log(1 + φj)(e

iθ)dθ − c′ > κ

2c2

for κ large enough where c2 depends only on p. Dividing this inequality by 2π and
exponentiating we get the second inequality in (5.2). Hence (5.2) is valid. From (5.2)
we deduce for j = 1, 2, . . . , the existence of Λ and Ñ0 so that

(a) 1 < Λ < (1 + C−1)1/κ <

κ∏
l=1

(1 + alj)
1/κ,

(b) 3−Ñ0 < min
j

[
1 + max

1≤l≤κ
alj − Λ, (c1κ)−1

]
.

(5.3)

Fix κ subject to the above requirements. For θ ∈ R and k = 1, . . . , κ, we let

qk1(eiθ) := Φ1(−ei(θ+2kπ/κ)) and fk1 (eiθ) := 1 + qk1(eiθ).(5.4)

Moreover, for θ ∈ R, j = 2, 3, . . . , and k = 1, . . . , κ set

qkj (eiθ) := Φj(−ei(θ+2kπ/κ)) and fkj (eiθ) := (1 + qkj (eiθ))fkj−1(eiθ).(5.5)

Observe from (5.1), (5.3), (5.5) that

κ∏
k=1

fkj (eiθ) =

j∏
l=1

κ∏
k=1

(
1 + Φl(−ei(θ+2kπ/κ))

)
> Λκj.(5.6)

Let

Ek := {eiθ ∈ ∂B(0, 1) : fkj (eiθ) > Λj for infinitely many j}.(5.7)

From (5.6) we see that
κ⋃
k=1

Ek = ∂B(0, 1).(5.8)

From (5.8) we conclude that to finish the proof of Theorem C it suffices to show
k = 1, . . . , κ that

ωp(0, Ek) = 0, ωp(0, ∂B(0, 1) \ Ek) = 1, and |∂B(0, 1) \ Ek| = 0(5.9)

where ωp is defined after (1.4). To do this we use Lemma 4.1 and an inductive type
argument to choose (Nj)

∞
2 . First we require that N1 = 1 and Nj+1/Nj is divisible by

κ for j = 1, 2, . . . . Second for fixed k and j = 1, 2, . . . we apply Lemma 4.1 with
f = g = fkj and q = qkj+1 From (5.1) and Theorem B we see that ‖qkj ‖∞ ≤ 1/2, and

‖qkj ‖̆ ≤ c1Nj for j = 1, 2, . . . Thus,

2−j ≤ ‖fkj ‖∞ ≤ (3/2)j and ‖fkj ‖̆ ≤ c1 2jNj.(5.10)
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Let Mj = c14jNj and ε = εj = 3−j−1. Then there exists small Aj = Aj(p, εj,Mj), and
large ν0(p, εj, Nj) such that if Nj+1 > ν0, then

|f̂kj+1(reiθ)− fkj (eiθ)(qj+1(reiθ) + 1)| < 3−(j+1) for 1− AjN−αj+1 < r < 1(5.11)

and

|f̂j+1(reiθ)− f̂j(reiθ| < 3−(j+1) for r ≤ 1− AjN−αj+1.(5.12)

Now using (2.3) as in the derivation of (4.4) from (4.3) we see that we may also
assume

|f̂j(reiθ)− f̂j(eiθ| < 3−(j+1) for r ≥ 1− AjN−αj+1.(5.13)

Finally, we may choose (Aj) and (Nj) so that

100N−1
j+1 < tj = AjN

−α
j+1 < (c1Nj6

j+1)−1 and tj+1 <
tj
κ

(5.14)

for j = 1, 2, . . . ,. From (5.12) and (5.14), we deduce for m > j, a positive integer,
and for k = 1, 2, . . . , κ, that

|f̂km(reiθ)− f̂kj (reiθ| ≤ 3−j for r ≤ 1− tj.(5.15)

From (5.15) and Lemmas 2.2 - 2.4 we obtain that f̂kj and ∇f̂kj converge uniformly

as j →∞ to a locally p-harmonic f̂k, ∇f̂k, on compact subsets of B(0, 1) satisfying

(5.15) with f̂km replaced by f̂k. Also from (5.11), (5.1), and (5.15) with j replaced by
j + 1, it follows that

f̂km(reiθ) ≥ 1

2
f̂kj (reiθ)− 3−j for 1− tj ≤ r ≤ 1− tj+1.(5.16)

Next for fixed k, 1 ≤ k ≤ κ, let Gk
j = {eiθ : fkj (eiθ) > Λj}. Then

Ek =
∞⋂
n=1

(
∞⋃
j=n

Gk
j

)
where Ek is as in (5.7).(5.17)

By monotonicity of p-harmonic measure it suffices to show that

ωp

(
0,
∞⋃
j=n

Gk
j

)
≤ C̃Λ−n for n = 1, 2, . . .(5.18)

where C̃ ≥ 1 does not depend on n. Moreover, from Theorems 11.3-11.4 and Corollary

11.5 in [HKM06] applied to ωp

(
0, ∂B(0, 1) \

⋃N
j=nG

k
j

)
we see that

lim
N→∞

ωp

(
0,

N⋃
j=n

Gk
j

)
= ωp

(
0,
∞⋃
j=n

Gk
j

)
.

Therefore, instead of proving (5.18), we need only show that

ωp

(
0,

N⋃
j=n

Gk
j

)
≤ C̃Λ−n for N > n(5.19)
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in order to conclude that ωp(0, Ek) = 0. This conclusion and Theorem 11.4 in [HKM06]
then yield ωp(0, ∂B(0, 1) \ Ek) = 1 for k = 1, 2, . . . , κ.

To prove (5.19) we temporarily drop the k and write fj, Gj for fkj , G
k
j . Let

Hj :=
⋃
{I ⊂ R : I is a closed interval of length tj,max

θ∈I
fj(e

iθ) ≥ Λj − 3−j−1}

and let H̊ denote the interior of H relative to R. Clearly,

fj(e
iθ) < Λj − 3−(j+1) if θ ∈ Hj \ H̊j.(5.20)

Hence {θ : eiθ ∈ Ḡj} ⊂ H̊j. From (5.10), (5.14) we see that

|fj(eiθ1)− fj(eiθ2)| ≤ c12jtj ≤ 3−j6−1 if |θ1 − θ2| ≤ tj.(5.21)

Thus

min
θ∈Hj

fj(e
iθ) ≥ Λ−j − 3−j2−1.(5.22)

Let

Tj =
⋃
{I × [0, tj] : I ∈ Hj} ⊂ R̄2

+ for j = 1, 2, . . .

Using (5.22), (5.13), (5.14), we conclude that

f̂j(re
iθ) > Λj − 3−j if (θ, 1− r) ∈ Tj.(5.23)

At this point the authors in [LMW05] note that if it were true that

f̂N(reiθ) > C̄−1Λj for (θ, 1− r) in the closure of R2
+ ∩ ∂Tj for N ≥ j ≥ n > Ñ0,

then it would follow from the boundary maximum principle for p-harmonic functions
applied to C̄Λ−nfN in

B(0, 1) \ {reiθ : (θ, 1− r) ∈
N⋃
j=n

T̄j}

and convergence of (f̂j) to f̂ that (5.19) is valid. Unfortunately, this inequality need
not hold so the authors modify the components of Tj as follows. Observe that Tj
has a finite number of components having a non-empty intersection with [−π, π]. If
Q = [a, b]× [0, tj] is one of these components then

fj(e
ia), fj(e

ib) < Λj − 3−j−1 thanks to (5.20).(5.24)

If max
θ∈[a,b]

fj(e
iθ) ≤ Λj, then from (5.24) and the definition of Gj we deduce that

{eiθ : θ ∈ [a, b]} ∩ Ḡj = ∅

so in this case put Q∗ = ∅. Otherwise max
θ∈[a,b]

fj(e
iθ) > Λj, and from (5.10), (5.14),

(5.24),(5.23), we see that if IQj = [a, a+ tj] and JQj = [b− tj, b], then

Λj − 3−j < fj(e
iθ) < Λj − 3−j−2 on IQj ∪ J

Q
j .(5.25)
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We note from (5.14) that Nj+1tj > 100 and qj+1(eiθ) is 2π
Nj+1

periodic in θ so from the

definition of (al(j+1)) and (5.14) we can find intervals IQj+1 and JQj+1 with

IQj+1 ⊂ IQj , J
Q
j+1 ⊂ JQj , and max

Ij+1

qj+1, max
Jj+1

qj+1 ≥ max
1≤l≤κ

al(j+1).(5.26)

Moreover Ij+1 and Jj+1 each have length tj+1. Then from (5.3) (b) and (5.26) we get

for L = Ij+1 or Jj+1 and j > Ñ0 that

max
L

fj+1(eiθ) ≥ (1 + max
1≤l≤κ

al(j+1))(Λ
j − 3−j) > Λj+1.(5.27)

From (5.27), (5.10), (5.14), with j replaced by j + 1, we deduce that

min
L
fj+1(eiθ) ≥ Λj+1 − 3−j−2.(5.28)

We can now argue by induction to get nested closed intervals (IQl )∞j and (JQl )∞j , for

which IQl and JQl have length tl and (5.27), (5.28), are valid with j + 1 replaced by l.
Then

a < a∗ :=
∞⋂
l=j

IQl and b∗ :=
∞⋂
l=j

JQl < b.(5.29)

Set Q∗ = [a∗, b∗]× [0, tj] and

T ∗j =
⋃
{Q∗ : Q is a component of Tj}.

Then by construction and (5.25)

Ḡj ⊂ H̊∗j ⊂ H∗j = ∂T ∗j ∩ R.
Finally the authors show

f̂N(reiθ) >
1

3
Λj for (θ, 1− r) in ∂T ∗j \ H̊∗j and N ≥ j.(5.30)

For N = j this inequality is implied by (5.23) while if tj+1 ≤ 1− r ≤ tj we see from
(5.16) and (5.23) that (5.30) is valid for (θ, 1−r) in ∂T ∗j ∩ [tj+1 ≤ 1−r ≤ tj]. The only

remaining segments of ∂T ∗j ∩R2
+ are of the form {a∗}× [0, tj+1], {b∗}× [0, tj+1], where

a∗, b∗ are as in (5.29). If (θ, 1−r) ∈ {a∗}× [tl+1, tl] or {b∗}× [tl+1, tl] for j+1 ≤ l < N
we can use (5.16) with m = N, j = l, (5.13) with j = l, and (5.28) with j + 1 = l
to get that (5.30) is valid on ∂T ∗j ∩ [tl+1 ≤ 1 − r ≤ tl]. If (θ, 1 − r) ∈ {a∗} × [0, tN ]
or {b∗} × [0, tN ] then from (5.13) with j = N and (5.28) with j + 1 = N, we obtain
(5.30) on ∂T ∗j ∩ (0 < 1− r ≤ tN ]. Thus (5.30) is valid and from the discussions after
(5.23), (5.19), we conclude ωp(0, Ek) = 0 for 1 ≤ k ≤ κ.

It remains to prove |∂B(0, 1) \ Ek| = 0 for 1 ≤ k ≤ κ. To do this, for j = 1, 2, . . . ,

let τj(e
iθ) = log(1 + alj) when θ ∈ [−π + (2l−2)π

κ
,−π + 2lπ

κ
) and 1 ≤ l ≤ κ. We regard

τj as a 2π periodic function on R. For θ ∈ R, j = 1, 2, . . . , and k = 1, . . . , κ, let

hkj (e
iθ) = τj(−ei(Njθ+2kπ/κ))−mj where mj =

2π

κ

κ∑
l=1

log(1 + alj).
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Then for fixed k, hkj+1 is 2π/Nj+1 periodic and has average 0 on intervals where hkj is

constant since Nj+1/Nj is divisible by κ. Thus for fixed k, the functions hkj (e
iθ) are

orthogonal in L2(∂B(0, 1)) and also uniformly bounded for j = 1, 2, . . . . Using this
fact one can show (see page 182 in [KW85]) that

j∑
l=1

hkl = O(j3/4) for almost every eiθ ∈ ∂B(0, 1)(5.31)

with respect to Lebesgue measure on ∂B(0, 1). Since

log fkj ≥
j∑
l=1

(hkl +ml)

it follows from (5.3) (a), (5.31) that for almost every eiθ ∈ ∂B(0, 1) there exists
j0(θ) such that for j ≥ j0, f

k
j (eiθ) > Λj . From the definition of Ek we arrive at

|∂B(0, 1) \ Ek| = 0 for 1 ≤ j ≤ k.

6. Closing Remarks

We note that in [LMW05, section 4], the authors discuss some interesting open
questions for p-harmonic measure. Theorems A, B, C were inspired by these questions.
One natural question is to what extent Theorem 1.1 or Theorem B has an analogue in
other domains? For example, can one prove similar theorems in the unit ball, say B̆, of
Rn = {x = (x1, . . . , xn) : xi ∈ R, 1 ≤ i ≤ n}, n ≥ 3, when 1 < p <∞, p 6= n? For p =
n, one can map Rn

+ = {x ∈ Rn : xn > 0} by way of a linear fractional transformation,

conformally onto B̆ and use invariance of the n-Laplacian under conformal mappings
to conclude that the conclusion in Theorem 1.1 extends to B̆. Theorems B and C
generalize to B(0, 1)×Rn−2, n ≥ 3, by adding n− 2 dummy variables. We note that
for p > 2, the Martin function in Rn

+ = {x ∈ Rn : xn > 0} relative to 0 is homogeneous
of degree −λ where 0 < λ < N − 1 as follows from Theorem 1.1 in [LMTW19] (see
also [DS18]). Using this fact one can construct examples in Rn

+ similar to the hands
on examples constructed in R2

+ for Theorem A.
Another interesting question is whether the set in Theorem 1.1 or Theorem B

where radial limits exist can have Hausdorff dimension < 1? This set has dimension
≥ a = a(p) > 0 thanks to work of [MW88] and [FGMMS88].

Also an interesting question to us is whether Theorem 1.1 or Theorem B have
analogues for solutions to more general PDE of p-Laplace type. To give an example,
given p, 1 < p <∞, suppose f : Rn \ {0} → (0,∞) has continuous third partials on
Rn \ {0} with

(a) f(tη) = tpf(η) when t > 0 and η ∈ Rn,

(b) There exists ã1 = ã1(p) ≥ 1 such that if η, ξ ∈ Rn \ {0}, then

ã−1
1 |ξ|2|η|p−2 ≤

n∑
i,j=1

∂2f

∂ηi∂ηj
(η) ξi ξj ≤ ã1 |ξ|2|η|p−2.

(6.1)
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Put A = ∇f for fixed p > 1. Given an open set O we say that v is A-harmonic in O
provided v ∈ W 1,p(G) for each open G with Ḡ ⊂ O and∫

〈A(∇v(y)),∇θ(y)〉 dy = 0 whenever θ ∈ W 1,p
0 (G).(6.2)

Note that if f(η) = |η|p in (6.1) then v as in (6.2) is p-harmonic in O. Also observe
that if v is A = ∇f -harmonic in R2

+ then ṽ(z) = v(Nz+z0) is also A = ∇f harmonic
in R2

+ for z, z0 ∈ R2
+ and N ∈ R. As mentioned earlier Wolff made important use

of similar translation, dilation invariance for p-harmonic functions. Thus we believe
Theorems 1.1 stands a good chance of generalizing to the A-harmonic setting. On the
other hand we made important use of rotational invariance of p-harmonic functions
in our proof of Theorem B. Since this invariance is not true in general for A = ∇f -
harmonic functions on B(0, 1), an extension of Theorem B to the A-harmonic setting
would require new techniques.

Finally, we note that in a bounded domain D ⊂ Rn with 0 ∈ D and for p = 2
one can show ω2(·) (known as harmonic measure) is a positive Borel measure on
∂D, associated with the Green’s function of D having a pole at 0. This notion of
harmonic measure led the authors with various co-authors in [BL05, LNPC11, Lew15,
LNV13, ALV15] to study the Hausdorff dimension of a positive Borel measure with
support in ∂D, associated with a positive p-harmonic function defined in D ∩N and
with continuous boundary value 0 on ∂D. Here N is an open neighbourhood of ∂D.
Moreover, many of the dimension results we obtained for these “p harmonic measures”
in the above papers were also shown in [Akm14, ALV17] to hold for the positive Borel
measures associated with positive A = ∇f -harmonic functions in D ∩ N, vanishing
on ∂D.
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