Monthly Problem 11234
June-July issue of The American Mathematical Monthly

113 (2006), page 568.
11234. Proposed by Jim Brennan and Richard Ehrenborg, University of Kentucky, Lexington, KY. Let a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n-1} be real numbers with $a_{1}<b_{1}<a_{2}<\cdots<a_{n-1}<b_{n-1}<a_{n}$, let h be an integrable function from \mathbb{R} to \mathbb{R}. Show that

$$
\int_{-\infty}^{\infty} h\left(\frac{\left(x-a_{1}\right) \cdots\left(x-a_{n}\right)}{\left(x-b_{1}\right) \cdots\left(x-b_{n-1}\right)}\right) d x=\int_{-\infty}^{\infty} h(x) d x .
$$

Proposed problems and solutions should be sent in duplicate to the Monthly problem address:
DOUG HENSLEY, Monthly Problems
Department of Mathematics
Texas A\&M University
3369 TAMU
College Station, TX 77843-3368
Submitted solutions should arrive before October 31, 2006. Additional information, such as generalizations and references are welcome. The problem number and the solver's name and address should appear on each solution.

