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The notion of SS-algebra is introduced. The theory of apolarity and generic
canonical forms for polynomials is generalized to SS-algebras over the complex
field C. We apply this theory to the problem of finding the essential rank of
general, symmetric, and skew-symmetric tensors. Upper bounds for the essential
ranks are found by different combinatorial coverings. Q 1999 Academic Press

1. INTRODUCTION

The theory of apolarity was first developed by Clebsch, Lasker, Rich-
w xmond, Sylvester, and Wakeford 10, 17, 20 . They were first interested in

studying homogeneous polynomials of degree p and in q variables, and in
expressing them as sums of pth powers of linear terms. The problem is to
minimize the number of pth powers which are required in such a sum. For
instance, a result due to Sylvester is that a generic homogeneous polyno-
mial in two variables of degree 2n y 1 may be written as a sum with n

Ž .terms of 2n y 1 st powers. This is only true for a generic polynomial; for
instance x 2 y cannot be written as the sum of two cubes.

They then focused on the more general problem of finding canonical
ways of expressing a generic homogeneous polynomial. For example, it was

* The research for this paper was done at MIT, and the paper was written when the author
was a joint postdoctoral fellow between Centre de Recherches Mathematiques at Universite´ ´
de Montreal and LACIM at Universite du Quebec a Montreal.´ ´ ´ ` ´
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Ž .discovered that a generic quaternary cubic four variables and degree 3
may be written in the form h h h q h h h , where the h ’s are linear1 2 3 4 5 6 i

w xterms. In 3 the main theorems on apolarity and generic canonical forms
are presented for homogeneous polynomials, and numerous examples are
included.

In the present work we extend the theory of apolarity and generic
canonical forms to a more general setting. We introduce the notion of
SS-algebra, which is a vector space A together with a set SS of multilinear
forms on the space A. This idea generalizes the notion of an algebra. We

� 4then consider the space of all functions, A x , . . . , x , that may be1 d
constructed on the space A to itself by the multilinear forms in the set SS .
These functions behave like polynomials. We consider an important class

� 4of derivations on the space A x , . . . , x , namely the polarizations. The1 d
polarizations satisfy many properties, including some chain rules which
play a crucial role in the proof of our main theorem.

Ž .Recall that symmetric tensors Sym W correspond to polynomials in n
variables, where n is the dimension of W. The classical notion of apolarity
can then be formulated as follows. Given two symmetric tensors f g

Ž . Ž . Ž .Sym W * s Sym W * and g g Sym W , where r F p, we say that g isp p r
Ž . ² < :apolar to f if for all h g Sym W we have that f g ? h s 0. Wepy r

Ž .restate this definition by considering the linear map f : Sym W ªpy r
Ž . Ž .Sym W defined by f h s g ? h. Now we say that the linear map fp

Ž . Ž .is apolar to f g Sym W * if for all h g Sym W we have thatp pyr
² < Ž .:f f h s 0. It is in this setting that we are able to generalize the idea
of apolarity; see Definition 4.4.

In Section 5 we state the main theorem on generic canonical forms and
apolarity. In short, the problem of determining whether a form p g
� 4A x , . . . , x in an SS-algebra A is canonical may be solved by finding1 d

certain elements in the vector space and showing that a certain linear
equation system does not have a non-trivial solution. The concepts of
apolarity and polarizations are important in finding this equation system.

We apply the above theory to the study of the rank of general tensors,
symmetric tensors, and skew-symmetric tensors. In Section 6 we consider
general tensors, which correspond to multi-dimensional matrices. The
problem of finding upper bounds for the essential rank of general tensors
has a combinatorial interpretation. Namely, an upper bound for the
number of rooks required to cover a multidimensional chess board is also
an upper bound for the essential rank of tensors. Similar combinatorial
bounds are found in Section 7 for symmetric and skew-symmetric tensors.
With the help of Steiner triple systems we find explicit bounds for the
essential rank of symmetric and skew-symmetric tensors of degree 3. In the
concluding remarks we suggest a conjecture which gives a duality between
symmetric and skew-symmetric tensors.
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2. POLYNOMIAL FUNCTIONS

DEFINITION 2.1. An SS-algebra A is a vector space together with a set
SS of multilinear forms on A. That is, for each M g SS there exists a

Ž .positive integer k M such that

M : A = ??? = A ª A ,^ ` _
Ž .k Mis a multilinear form.

Ž .When there is no risk of confusion we will write k instead of k M . An
example of an SS-algebra is any associative algebra A. In this case SS

consists of a single bilinear form, which is the product on the algebra. But
in the general instance of SS-algebra we do not assume any relations
among the multilinear forms in the set SS .

In this article we will consider SS-algebras over the complex field C. We
assume that A carries a topology such that the induced topology on every
finite dimensional linear subspace is Euclidean. Moreover, we also assume
that SS is a set of continuous multilinear forms on the linear space A.

� 4We define A x , . . . , x to be the set of all functions in the variables1 d
x , . . . , x that we may construct by using the multilinear forms in the set1 d
SS . More formally

� 4DEFINITION 2.2. Let A x , . . . , x be the smallest set that contains the1 d
vector space A and the variables x , . . . , x , and which is closed under1 d

� 41. linear combinations: if p, q g A x , . . . , x and a , b g C then1 d
� 4a ? p q b ? q g A x , . . . , x ,1 d

2. compositions with the multilinear forms in the set SS : if M g S,
Ž . � 4 Ž .k s k M and p , . . . , p g A x , . . . , x then M p , . . . , p g1 k 1 d 1 k

� 4A x , . . . , x .1 d

� 4The elements of A x , . . . , x are called polynomials in the d variables1 d
x , . . . , x .1 d

� 4Observe that an element of A x , . . . , x may be constructed from A1 d
and the variables x , . . . , x in a finite number of steps by the two rules1 d
in Definition 2.2. Hence we can prove statements about elements in
� 4A x , . . . , x by induction.1 d

� 4In the language of universal algebra the set A x , . . . , x is the polyno-1 d
mial clone of d-ary operations closed under the functions in SS , addition,

w xand multiplication with scalars in C; see 15 .

LEMMA 2.3. There is a unique e¨aluation map, denoted by eval, from
� 4 d Ž . dA x , . . . , x = A to A such that for a , . . . , a g A1 d 1 d

Ž .1. eval x ; a , . . . , a s a ,i 1 d i

Ž .2. eval a; a , . . . , a s a for a g A,1 d
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Ž . Ž .3. eval a ? p q b ? q; a , . . . , a s a ? eval p; a , . . . , a q b ?1 d 1 d
Ž . � 4eval q; a , . . . , a for p, q g A x , . . . , x and a , b g C,1 d 1 d

Ž Ž . . Ž Ž .4. eval M p , . . . , p ; a , . . . , a s M eval p ; a , . . . , a , . . . ,1 k 1 d 1 1 d
Ž .. Ž . � 4eval p ; a , . . . , a for M g SS , k s k M , and p , . . . , p g A x , . . . , x .k 1 d 1 k 1 d

ŽTo avoid confusion we will sometimes write eval p; x ¤ a , . . . , x ¤1 1 d
. Ž . Ž .a instead of the shorter but still correct eval p; a , . . . , a .d 1 d

� 4We may say that two polynomials p and q in A x , . . . , x are equiva-1 d
lent if for all a , . . . , a g A we have that1 d

eval p; a , . . . , a s eval q ; a , . . . , a .Ž . Ž .1 d 1 d

That is, p and q behave in the same way as functions, but they may consist
of different expressions.

3. POLARIZATIONS

In this section we introduce an important class of linear maps on the
� 4linear space A x , . . . , x . These maps generalize the concept of deriva-1 d

tions on an algebra. This development will be done very much in the spirit
w xof the theory of supersymmetric algebra; see, for instance, 7 .

DEFINITION 3.1. A polarization D is a linear map from the polyno-t, x i
� 4 � 4mials A x , . . . , x to the polynomials A t, x , . . . , x , such that1 d 1 d

Ž .1. D a s 0 for a g A,t, x i

Ž .2. D x s t,t, x ii

Ž .3. D x s 0 for j / i,t, x ji

Ž Ž .. k Ž Ž .4. D M p , . . . , p s Ý M p , . . . , p , D p , p , . . . ,t, x 1 k js1 1 jy1 t, x j jq1i i
. Ž .p , for M g SS and k s k M .k

Observe that condition 4 in the definition generalizes the formula for
the derivation of a product.

We continue this section by showing that polarizations satisfy certain
chain rules. The proofs of these chain rules will follow by induction on the

� 4elements in A x , . . . , x .1 d

� 4 � 4PROPOSITION 3.2. Let p g A x and q g A y . We may consider the
Ž . � 4element eval p; x ¤ q as an element of A y . Moreo¨er, the polarization of

this element by D is gï en byu, y

D eval p; x ¤ q s eval D p; t ¤ D q , x ¤ q .Ž . Ž .Ž .u , y t , x u , y

� 4Proof. The proof is by induction on p g A x . It is easy to check that it
holds for p s a g A and for p s x. Moreover, both sides are linear in p.
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What remains to show is the induction step. Namely, given that the result
� 4 Ž .holds for p , . . . , p g A x , then it also holds for any p s M p , . . . , p ,1 k 1 k

Ž .where M is a multilinear form in SS such that k M s k. We have that

D eval M p , . . . , p ; x ¤ qŽ .Ž .u , y 1 k

s D M eval p ; x ¤ q , . . . , eval p ; x ¤ qŽ . Ž .Ž .Ž .u , y 1 k

k

s M eval p ; x ¤ q , . . . , D eval p ; x ¤ q ,Ž . Ž .Ž .ŽÝ 1 u , y i
is1

. . . ,eval p ; x ¤ qŽ . .k

k

s M eval p ; x ¤ q , . . . , eval D p ; t ¤ D q , x ¤ q ,Ž . Ž .Ž .Ý Ž 1 t , x i u , y
is1

. . . ,eval p ; x ¤ qŽ . .k

k

s eval M p , . . . , D p , . . . , p ; t ¤ D q , x ¤ qŽ . Ž .Ž .Ý 1 t , x i k u , y
is1

s eval D M p , . . . , p ; t ¤ D q , x ¤ qŽ . Ž .Ž .t , x 1 k u , y

s eval D p; t ¤ D q , x ¤ q .Ž .Ž .t , x u , y

Hence the induction is complete.

We say that a function f from the complex numbers C to the vector
space A is differentiable if for all a g C the limit

f a q h y f aŽ . Ž .
lim

hhª0

Ž . Ž . Ž .exists. When this limit exists, we denote it with ­r­a f a s f9 a . Let
Ž .M be a multilinear form in SS , with k s k M . Let f , for i s 1, . . . , k, bei

Ž .differentiable functions from C to A. We claim that M f , . . . , f is also1 k
a differentiable function from C to A. This is easy to check with the
following computation.

M f a q h , . . . , f a q h y M f a , . . . , f aŽ . Ž . Ž . Ž .Ž . Ž .1 k 1 k

h
k f a q h y f aŽ . Ž .i is M f a q h , . . . , f a q h , ,Ž . Ž .Ý 1 iy1ž his1

f a , . . . , f a .Ž . Ž .iq1 k /
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Since M is continuous the above expression converges when h ª 0, and
the limit is

k
XM f a , . . . , f a , f a , f a , . . . , f a .Ž . Ž . Ž . Ž . Ž .Ž .Ý 1 iy1 i iq1 k

is1

Observe that this expression is like the derivation of a product.
We also have the following chain rule for polarizations.

� 4PROPOSITION 3.3. Let p g A x , . . . , x and let f be a differentiable1 d i
function from C to A for i s 1, . . . , d. Then

­
eval p; f a , . . . , f aŽ . Ž .Ž .1 d­a

d
Xs eval D p; f a , f a , . . . , f a .Ž . Ž . Ž .Ž .Ý t , x i 1 di

is1

Proof. Just as in the proof of Proposition 3.2, we proceed by induction
� 4on the elements p of A x , . . . , x . It is easy to prove the basis for1 d

induction, that is, when p s a g A and p s x . Notice that, as in thei
previous proposition, both sides are linear in p. It remains to show the

� 4induction step. Given that the result holds for p , . . . , p g A x , then it1 k
Ž .also holds for any p s M p , . . . , p , where M is a multilinear form in SS1 k

Ž .such that k M s k. Then

­
eval M p , . . . , p ; f a , . . . , f aŽ . Ž . Ž .Ž .1 k 1 d­a

­
s M eval p ; f a , . . . , f a ,Ž . Ž .Ž .Ž 1 1 d­a

. . . ,eval p ; f a , . . . , f aŽ . Ž .Ž . .k 1 d

k

s M eval p ; f a , . . . , f a ,Ž . Ž .Ž .Ý 1 1 dž
js1

­
. . . , eval p ; f a , . . . , f a ,Ž . Ž .Ž .j 1 d­a

. . . , eval p ; f a , . . . , f aŽ . Ž .Ž .k 1 d /



APOLARITY AND GENERIC CANONICAL FORMS 173

k d

s M eval p ; f a , . . . , f a ,Ž . Ž .Ž .Ý Ý ž 1 1 d
js1 is1

. . . , eval D p ; fX a , f a , . . . , f a ,Ž . Ž . Ž .Ž .t , x j i 1 di

. . . , eval p ; f a , . . . , f aŽ . Ž .Ž . /k 1 d

d k
Xs eval M p , . . . , D p , . . . , p ; f a , f a , . . . , f aŽ . Ž . Ž .Ž .Ž .Ý Ý 1 t , x j k i 1 di

is1 js1

d k
Xs eval M p , . . . , D p , . . . , p ; f a , f a , . . . , f aŽ . Ž . Ž .Ž .Ý Ý 1 t , x j k i 1 diž /is1 js1

d
Xs eval D M p , . . . , p ; f a , f a , . . . , f a .Ž . Ž . Ž . Ž .Ž .Ý t , x 1 k i 1 di

is1

Here the induction is complete.

When A is a commutative algebra, we may express the polarizations in
terms of classical derivations. That A is a commutative algebra means that

Ž .SS consists of one bilinear form that is symmetric commutative , fulfills
the associative law, and has a unit element 1. For an algebra we denote
this unique bilinear form by ? .

DEFINITION 3.4. For a commutative algebra A we define the derivation
� 4 � 4D : A x , . . . , x ª A x , . . . , x to be the linear map satisfyingx 1 d 1 di

Ž .1. D a s 0 for a g A,x i

Ž .2. D x s 1,x ii

Ž .3. D x s 0 for j / i,x ji

Ž . Ž . Ž .4. D p ? q s D p ? q q p ? D q .x x xi i i

PROPOSITION 3.5. Let A be a commutatï e algebra. Then for any element
� 4p g A x , . . . , x and for a, a , . . . , a g A we ha¨e that1 d 1 d

eval D p; a, a , . . . , a s a ? eval D p; a , . . . , a .Ž . Ž .t , x 1 d x 1 di i

We omit the proof, since it is a straightforward induction argument.

4. HOMOGENEOUS POLYNOMIALS AND APOLARITY

DEFINITION 4.1. Let V, W , . . . , W be linear subspaces of A. We say1 d
� 4that an element p in the set A x , . . . , x is homogeneous with respect to1 d

the linear spaces V, W , . . . , W , if for all w g W , . . . , w g W we have1 d 1 1 d d
Ž .eval p; w , . . . , w g V.1 d
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PROPOSITION 4.2. Let V be a subspace of A of dimension n and let W bej
� 4a subspace of A of dimension n for j s 1, . . . , d. Let p g A x , . . . , x bej 1 d

homogeneous with respect to the linear spaces V, W , . . . , W . Let u , . . . , u1 d 1 n
�Ž .be a basis of V and z , . . . , z be a basis of W . Par s j, i : 1 F j F d,j, 1 j, n jj

41 F i F n . Thus for k g Par, z is a base ¨ector in W for some index j.j k j
w xNow there exist polynomials f g C a in the ¨ariables a such thati k k g Par j, i

n nn 1 d

f a u s eval p; a z , . . . , a z .Ž .Ý Ý Ýi k i 1, i 1, i d , i d , ikgPar ž /
is1 is1 is1

Proof. The right-hand side consists of multilinear forms. Hence we may
use the multilinear property and linearly expand the expression. In doing
this we obtain a linear combination of elements of the form

eval p; z , . . . , z ,Ž .1, m d , m1 d

where 1 F m F n . Moreover, the coefficients in this linear combinationj j
will be polynomials in the a ’s.

ŽSince p is homogeneous, we know that each of the elements eval p;
.z , . . . , z lies in V, and thus can be expanded in the basis u , . . . , u .1, m d, m 1 nd1

By composing these two expansions the result follows.

� 4PROPOSITION 4.3. Assume that the polynomial p g A x , . . . , x is ho-1 d
mogeneous with respect to the linear spaces V, W , . . . , W . Then the polyno-1 d

Ž .mial D p is homogeneous with respect to the linear spaces V, W ,t, x ii

W , . . . , W .1 d

Proof. Since p is homogeneous with respect to the linear spaces
Ž .V, W , . . . , W , we know that the element eval p; w , . . . , w q a ? w, . . . , w ,1 d 1 i d

lies in V, where a g C, w g W , and w g W for j s 1, . . . , d. Take thei j j
partial derivative in the variable a of this element. The derivative will also
take values in V. By Proposition 3.3 the derivative is equal to

­
eval p; w , . . . , w q a ? w , . . . , wŽ .1 i d­a

­
s eval D ; w q a ? w , w , . . . , w q a ? w , . . . , wŽ .t , x p i 1 i diž /­a

s eval D p; w , w , . . . , w q a ? w , . . . , w .Ž .t , x 1 i di

Now by setting a s 0 the conclusion follows.

We now introduce the concept of apolarity in its general setting.
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DEFINITION 4.4. Let V and W be vector spaces and let f be a linear
map from W to V. We say L g V * is apolar to f if for all w g W

² :L f w s 0.Ž .
One important class of linear maps on which we consider the apolarity

condition is given by the following.

� 4PROPOSITION 4.5. Let p g A x , . . . , x and let a , . . . , a g A. Then the1 d 1 d
following map from A to A is linear

y ¬ eval D p; y , a , . . . , a .Ž .t , x 1 di

� 4Proof. The proof is by induction on p g A x , . . . , x . When p s a g1 d
A then D p s 0, so the map is the zero map, which is linear. Whent, x i

p s x then D p s d t. So y ¬ d y, which is linear. Hence the twoj t, x i, j i, ji

base cases are done. The linear combination of two linear maps is a linear
Ž .map. The remaining case to consider is when p s M p , . . . , p , where1 k

Ž .M g SS and k s k M . Assume it holds for p , . . . , p . Then we have that1 k

eval D M p , . . . , p ; y , a , . . . , aŽ .Ž .t , x 1 k 1 di

k

s eval M p , . . . , D p , . . . , p ; y , a , . . . , aŽ .Ý 1 t , x j k 1 diž /js1

k

s M eval p ; a , . . . , a , . . . , eval D p ; y , a , . . . , a ,Ž . Ž .ŽÝ 1 1 d t , x j 1 di
js1

. . . ,eval p ; a , . . . , a .Ž . .k 1 d

Each term in this expression is a linear map. Since the sum of linear maps
is a linear map, the proof is done.

5. GENERIC CANONICAL FORMS

DEFINITION 5.1. Let V be a finite dimensional linear space. We say
that a generic element ¨ g V has a property P, if the set of all elements in
V that has this property forms a dense set in V, where V has the
Euclidean topology.

THEOREM 5.2. Let V, W , . . . , W be finite dimensional linear subspaces1 d
� 4of the algebra A. Let p in A x , . . . , x be homogeneous with respect to the1 d

linear spaces V, W , . . . , W . A generic element ¨ g V can be written in the1 d
form

¨ s eval p; w , . . . , wŽ .1 d
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for some w , . . . , w if and only if there exist wX , . . . , wX so that there is no1 d 1 d
nonzero dual element in V * which is apolar to the linear map

y ¬ eval D p; y , wX , . . . , wXŽ .j t , x j 1 dj

relatï e to W , for all 1 F j F d.j

ŽObserve that Proposition 4.5 shows that the map y ¬ eval D p; y ,j t, x jjX X .w , . . . , w is linear, and that Proposition 4.3 guarantees that it maps the1 d
linear space W into V.j

The proof of the theorem requires the following two propositions.
w xProofs of these two propositions may be found in 3 . Let C x , . . . , x beŽ .1 q

the field of all algebraical functions in the variables x , . . . , x .1 q

Ž . Ž .PROPOSITION 5.3. Let p x , . . . , x , . . . , p x , . . . , x g1 1 q r 1 q
C x , . . . , x , where r F q. Then the algebraic functions p , . . . , p areŽ .1 q 1 r
algebraically independent if and only if the matrix

­ piž /­ x j 1FiFr , 1FjFq

has full rank.

Ž . Ž .PROPOSITION 5.4. Let p x , . . . , x , . . . , p x , . . . , x g1 1 q r 1 q
q rC x , . . . , x , where r F q. Let P: C ª C be defined byŽ .1 q

P x , . . . , x s p x , . . . , x , . . . , p x , . . . , x .Ž . Ž . Ž .Ž .1 q 1 1 q r 1 q

Then the algebraic functions p , . . . , p are algebraically independent if and1 r
only if the range of the map P is dense in C r.

Ž . Ž .Proof of Theorem 5.2. Let dim V s n and dim W s n for j sj j
1, . . . , d. Let u , . . . , u be a basis for V, and similarly let z , . . . , z be a1 n j, 1 j, n j

basis for W . Thus an element w g W can be written in the formj j j

nj

w s a z ,Ýj j , i j , i
is1

where a g C. We will call the coefficients a parameters. Set Par sj, i j, i
�Ž . 4j, i : 1 F j F d, 1 F i F n . Thus a parameter is of the form a , wherej k

< <k g Par. Observe that the number of parameters is Par s n q ??? qn .1 d
We will begin to prove the necessary implication of the theorem. Hence

assume that a generic element ¨ of V can be written in the form
Ž .eval p; w , . . . , w . By counting coefficients on the left hand side and1 d
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< <parameters on the right hand side, we obtain the inequality n F Par s
n q ??? qn .1 d

By Proposition 4.2 we can expand

n nn 1 d

f a u s eval p; a z , . . . , a z ,Ž .Ý Ý Ýi k i 1, i 1, i d , i d , ikgPar ž /
is1 is1 is1

where f are polynomials for i s 1, . . . , n.i
Consider the map F: CPar ª C n defined by

F a s f a ,Ž . Ž .Ž . Ž .k i kkgPar kgPar 1FiFn

where the coordinates of CPar are indexed by the set Par.
The assumption is that the range of the map F is dense in C n. By

Proposition 5.4 we infer that the n polynomials f are algebraicallyi
independent. Hence, by Proposition 5.3, the matrix

­fi
1Ž .ž /­ak 1FiFn , kgPar

has full rank, where rows are indexed by i and the columns by the set Par.
Ž .Since the matrix 1 has full rank, we can choose values for the

Ž .parameters such that the matrix 1 still has full rank. Denote these values
we choose for the parameters by g for k g Par. Letk

nj
Xw s g z .Ýj j , i j , i

is1

Thus wX g W .j j
Moreover, we know that the matrix

­fiž /­ak a sgm m 1F iFn , kgPar

has full rank. Hence the columns of the matrix span the linear space C n.
But C n is isomorphic to V. Via this isomorphism we get

n­f ­f ­ ¨i i¬ u s .Ý iž /­a ­a ­ak k kis11F iFn
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Thus, the elements

­ ¨
­ak a sgm m

span the linear space V.
Hence there is no nonzero functional L g V * such that

­ ¨
L s 0¦ ;­ak a sgm m

for all k g Par.
Each of the parameters will only occur in one of the vectors w , . . . , w .1 d

The parameter a occurs only in w . In particular, we havej, i j

­ wj s z .j , i­a j , i

Hence by the chain rule, Proposition 3.3, we conclude that

­ ¨ ­
s eval p; w , . . . , wŽ .1 d­a ­aj , i j , i

­ wjs eval D p; , w , . . . , wt , x 1 djž /­a j , i

s eval D p; z , w , . . . , w .Ž .t , x j , i 1 dj

Observe that

X Xeval D p; z , w , . . . , w s eval D p; z , w , . . . , w .Ž . Ž .t , x j , i 1 d t , x j , i 1 dj ja sgm m

Thus we can write our condition as follows: there is no nonzero functional
L g V * such that

X XL eval D p; z , w , . . . , w s 0Ž .¦ ;t , x j , i 1 dj

for all 1 F j F d and 1 F i F n . Observe that the above expression isj
linear in z and recall that the elements z , . . . , z form a basis for W .j, i j, 1 j, n jj

Hence the statement above is equivalent to the condition that there is no
nonzero functional L g V * such that

X XL eval D p; y , w , . . . , w s 0Ž .¦ ;t , x j 1 dj
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for all 1 F j F d and for all y g W .j j
Thus we have proven that there is no nonzero element in V * apolar to

all the maps

y ¬ eval D p; y , wX , . . . , wXŽ .j t , x j 1 dj

relative to W for j s 1, . . . , s. This proves the necessary condition of thej
theorem.

To prove the sufficient condition, we can trace the equivalences in the
necessary part in opposite direction. We begin by assuming that there is no
nonzero element in V * apolar to all the maps

y ¬ eval D p; y , wX , . . . , wXŽ .j t , x j 1 dj

relative to W for j s 1, . . . , d. This implies that the elementsj

eval D p; z , wX , . . . , wX ,Ž .t , x j , i 1 dj

where 1FjFd and 1FiFn , span the linear space V. Hence n qj 1
???qn elements span a linear space of dimension n. Thus n F n qd 1
??? qn . By the identities above, we can rewrite the above elements, andd
by using the isomorphism between V and C n we get that the matrix

­fiž /­ak a sgm m 1F iFn , kgPar

has rank d. Since n F n q ??? qn the above matrix has full rank. Thus1 d
the matrix

­fi
,ž /­ak 1FiFn , kgPar

where we remove the values of the b ’s, cannot have lower rank. But the
rank cannot increase so the last matrix has full rank also.

By Proposition 5.3 we know that the polynomials f , . . . , f are alge-1 d
braically independent. Proposition 5.4 implies that the range of the map

Par dF: C ª C is dense and the theorem follows.

When the SS-algebra is a commutative and associative algebra with a
unit element, then the linear maps in the statement of Theorem 5.2 reduce
to

y ¬ y ? eval D p; wX , . . . , wX ,Ž .j j x 1 dj
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where D is the derivation in the variable x ; see Proposition 3.5. More-x jj

over, if the algebra A is the algebra of polynomials with complex coeffi-
cients, and W is the linear space of homogeneous polynomials of degreej

w xd , then Theorem 5.2 reduces to the result presented in 3 .j

6. THE ESSENTIAL RANKS OF MULTI-DIMENSIONAL
MATRICES

Let W , . . . , W be vector spaces over the complex numbers such that1 d
Ž .dim W s n . Consider the linear space V s W m W m ??? m W . As-i i 1 2 d

sume that z , . . . , z is a basis for W . Then an element ¨ g V may bej, 1 j, n jj

written as

n n n1 2 d

¨ s ??? a ? z m z m ??? m z .Ý Ý Ý i , i , . . . , i 1, i 2, i d , i1 2 d 1 2 d
i s1 i s1 i s11 2 d

Thus the element ¨ corresponds to an n = n = ??? = n matrix1 2 d
Ž .a . Hence V is isomorphic to the linear space of n =i , i , . . . , i 1F i F n 11 2 d j j

n = ??? = n matrices whose entries are complex numbers. We will now2 d
extend the idea of rank of a two dimensional matrix to the multi-dimen-
sional case.

DEFINITION 6.1. An element ¨ g W m ??? m W has rank k if k is the1 d
smallest integer m such that there exist w , . . . , w g W ,1, 1 1, m 1
. . . ,w , . . . , w g W , such thatd, 1 d, m d

m

¨ s w m ??? m w .Ý 1, i d , i
is1

A question to study is: What is the maximal rank of the elements ¨ in
W m ??? m W ? Clearly an upper bound for the maximal rank is1 d
Ž Ž ..y1 dmax n , . . . , n ? Ł n . For instance, when d s 2 it is well-known1 d js1 j
that this bound is reached, namely the maximal rank of W m W is1 2

Ž .min n , n .1 2
Also, when d s 3 and n s n s n s 2 then the maximal rank of1 2 3

w xW m W m W is 3; see 5 . An example of an element that has rank 3 is1 2 3
z m z m z q z m z m z q z m z m z . Instead of con-1, 2 2, 1 3, 1 1, 1 2, 2 3, 1 1, 1 2, 1 3, 2
sidering the maximal rank, we will continue with a related question.

DEFINITION 6.2. The linear space W m ??? m W has essential rank k1 d
if k is the smallest integer m such that the set of elements ¨ in
W m ??? m W of rank at most m forms a dense set in the Euclidean1 d
topology.
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Observe that the maximal rank of W m ??? m W might be different1 d
from the essential rank of W m ??? m W . For instance, when n s n s1 d 1 2
n s 2, the essential rank of W m W m W is 2, which is different from3 1 2 3

w xthe maximal rank 3. For more on this last example, see 5 .
To find upper bounds for the essential rank of the linear space

W m ??? m W we will consider the combinatorial problem of rook cover-1 d
ings. Let A , . . . , A be finite sets and let A = ??? = A be the Cartesian1 d 1 d
product of these sets.

DEFINITION 6.3. A rook covering of A = ??? = A is a subset R of1 d
Ž .A = ??? = A such that for all a , . . . , a in A = ??? = A there exist1 d 1 d 1 d

Ž . Ž . Ž .r , . . . , r g R such that a , . . . , a and r , . . . , r differ in at most one1 d 1 d 1 d
place. That is,

� 4i : a / r F 1.i i

Ž .We call a rook covering R perfect if for all a , . . . , a g A = ??? = A1 d 1 d
Ž .there exists a unique r , . . . , r g R with the above conditions.1 d

Let n , . . . , n be positive integers. We will say that there is a rook1 d
covering of n = ??? = n of cardinality N, if there is a rook covering of1 d
A = ??? = A of cardinality N, where A has size n for i s 1, . . . , d.1 d i i

The problem of finding small rook coverings is a well studied problem,
w xsee 8, 13, 18 .

PROPOSITION 6.4. Let W be a ¨ector space o¨er the complex numbers ofj
dimension n for j s 1, . . . , d. If there is a rook co¨ering of n = ??? = n ofj 1 d
cardinality N, then the essential rank of V s W m ??? m W is less than or1 d
equal to N.

Proof. Let A be the vector space defined as

A s W [ ??? [ W [ V .1 d

Since A is finite dimensional, let the topology of A be the Euclidean.
Define

M : A = ??? = A ª A^ ` _
d

to be a multilinear form, such that

a m ??? m a if a g W ,1 d j jM a , . . . , a sŽ .1 d ½ 0 otherwise,

and extend M by linearity. It is easy to see that M is continuous.
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� 4Clearly the polynomial p g A x , . . . , x , . . . , x , . . . , x defined1, 1 1, N d, 1 d, N
by

N

p s M x , . . . , xŽ .Ý 1, i d , i
is1

is homogeneous with respect to

V , W , . . . , W , . . . , W , . . . , W .1 1 d d^ ` _ ^ ` _
N N

We would like to show that a generic element of V can be written in the
form

eval p; w , . . . , w , . . . , w , . . . , w , 2Ž . Ž .1, 1 1, N d , 1 d , N

Ž . Žwhere w g W . Observe that D p s M x , . . . , x , t,j, i j t , x 1, i jy1, ij, i
.x , . . . , x . By Theorem 5.2 it is enough to prove that there existjq1, i d, i

wX g W for j s 1, . . . , d and i s 1, . . . , N such that there is no nonzeroj, i j
dual element L g V * apolar to all the linear maps

y ¬ M wX , . . . , wX , y , wX , . . . , wX , 3Ž . Ž .j , i 1, i jy1, i j , i jq1, i d , i

where y g W . In order to do this, let z , . . . , z be a basisj, i j j, 1 j, n j

for W . Similarly let zU , . . . , zU be the dual basis for W U. That is,j j, 1 j, n jj
² U < : � 4z z s d . Let A be the set 1, . . . , n . Let R be a rook coveringj, i j, k i, k j j
of A = ??? = A of cardinality N. Thus let1 d

R s r , . . . , r : 1 F i F N .� 4Ž .1, i d , i

Choose wX s z .j, i j, r j, i
Ž .Assume that L in V * is apolar to all the linear maps in 3 . We can

write the dual element L in terms of the dual basis.

L s b ? zU m ??? m zU .Ý i , . . . , i 1, i d , i1 d 1 d
Ž .i , . . . , i gA = ??? =A1 d 1 d

Ž .Consider an element i , . . . , i g A = ??? = A . Since R is a rook cover-1 d 1 d
Ž .ing, there is an element r , . . . , r g R that differs in at most one1, k d, k

Ž . Ž .coordinate from i , . . . , i . Let the coordinate where i , . . . , i and1 d 1 d
Ž . Ž Ž . Ž .r , . . . , r differ be j. If i , . . . , i s r , . . . , r then choose j1, k d, k 1 d 1, k d, k

.arbitrarily. Thus we know that L is apolar to the linear map

y ¬ M z , . . . , z , y , z , . . . , z .Ž .j , k 1, r jy1, r j , k jq1, r d , r1 , k jy1 , k jq1 , k d , k
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Let y take the value of z . Hencej, k j, i j

0 s L M z z , z , z , . . . , zŽ .¦ ;1, r , . . . , jy1, r j , i jq1, r d , r1 , k jy1 , k j jq1 , k d , k

s L z m ??? m z m z m z m ??? m z¦ ;1, i jy1, i j , i jq1, i d , i1 jy1 j jq1 d

s b .i , . . . , i1 d

We conclude that all coefficients of L vanish. Thus we know that L s 0.
Theorem 5.2 implies that a generic element of V can be written in the

Ž .form 2 . Thus the linear space V s W m ??? m W has essential rank less1 d
than or equal to N.

2The smallest number of rooks covering the set n = n = n is n r2 .
This was stated as a problem in the Soviet Olympiad 1971. See also
w x2, Problem 39 . Thus we obtain:

COROLLARY 6.5. Let W be a ¨ector space o¨er the complex numbers of
m3 2dimension n. Then W has essential rank less than or equal to n r2 .

An error correcting code that corrects one error may be viewed as
w xa perfect rook covering. Such a code is the Hamming codes 11 . They

have the following parameters. Let q be a prime power, and let d s
Ž k . Ž .q y 1 r q y 1 , where k is a positive integer. Then there is a perfect
rook covering of

q d s q = ??? = q^ ` _
d

of size q dyk. We then obtain:

COROLLARY 6.6. Let W be a ¨ector space o¨er the complex numbers of
Ž k . Ž .dimension q, where q is a prime power. Let d s q y 1 r q y 1 , where k

be a positï e integer. Then W md has essential rank less than or equal to q dyk.

PROPOSITION 6.7. If there is a rook co¨ering of n = ??? = n using1 d
Ž . Ž .N rooks, then there is a rook co¨ering of m ? n = ??? = m ? n using1 d

mdy1 ? N rooks.

� 4Proof. Let A be a set of size n and let B s A = 0, 1, . . . , m y 1 .i i i i
Let R be a rook covering of A = ??? = A of cardinality N. We would1 d
like to find a rook covering of the set B = ??? = B . Consider the set R91 d
defined as

a , p , . . . , a , p g B = ??? = B� Ž . Ž .Ž .1 1 d d 1 d

: a , . . . , a g R , p q ??? qp ' 0 mod m .4Ž . Ž .1 d 1 d
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It is a direct verification that R9 is a rook covering of B = ??? = B with1 d
dy1cardinality m ? N.

The linear analogue to Proposition 6.7 is:

PROPOSITION 6.8. Let U, W , . . . , W be ¨ector spaces o¨er the complex1 d
numbers of dimensions m, n , . . . , n , respectï ely. If the linear space1 d

Ž .W m ??? m W has essential rank N, then the linear space W m U m ??? m1 d 1
Ž . dy1W m U has essential rank at most m ? N.d

Proof. Let z , . . . , z be a basis of W , and let zU , . . . , zU be thej, 1 j, n j j, 1 j, nj jU � 4 � 4dual basis of W . Let I denote the set 1, . . . , n = ??? = 1, . . . , n .j 1 d
We know that a generic element of W m ??? m W can be written in the1 d

form

N

w m ??? m w ,Ý 1, i d , i
is1

where w g W . By Theorem 5.2 this canonical form implies that therej, i j
exist wX g W , 1 F j F d and 1 F i F N, such that there is no nonzeroj, i j

Ž .element in W m ??? m W * apolar to all the maps1 d

t ¬ wX m ??? m t m ??? m wX ,j , i 1, i j , i d , i

where t g W . Hence the images of these linear maps span the spacej, i j
Ž .W m???m W . This is equivalent to the statement that for all i , . . . , i g I1 d 1 d

there exist y g W for 1 F j F d and 1 F i F N, such thatj, i j

d N
X Xw m ??? m y m ??? m w s z m ??? m z . 4Ž .Ý Ý 1, i j , i d , i i i1 d

js1 is1

Let u , . . . , u be a basis of U. Consider the following subset of1 m
� 4d0, 1, . . . ,m y 1 .

d� 4P s p , . . . , p g 0, 1, . . . , m y 1 : p q ??? qp ' 0 mod m .Ž . Ž .� 41 d 1 d

The cardinality of P is mdy1. Define the elements ¨ X g W m U,j, i, p j
where j s 1, . . . , d, i s 1, . . . , N, and p g P, by

¨ X s wX m u .j , i , p j , i p j

Thus there are d ? N ? mdy1 such elements. Consider now the linear maps

t ¬ ¨ X m ??? m t m ??? m ¨ X , 5Ž .j , i , p 1, i , p j , i , p d , i , p
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where t g W m U. We would like to show that the images of thesej, i, p j
Ž . Ž .linear maps span the linear space W m U m ??? m W m U . Choose1 d

Ž . Ž . � 4di , . . . , i g I and q , . . . , q g 0, 1, . . . , m y 1 . This choice corre-1 d 1 d
sponds to the basis element

z m u m ??? m z m uŽ . Ž .i q i q1 1 d d

Ž . Ž .of W m U m ??? m W m U . As observed before, we can find y g W1 d j, i j
Ž . jfor 1 F j F d and 1 F i F N, such that Eq. 4 is satisfied. Let p s

Ž j j .p , . . . , p be the element of P such that1 d

q if k / j,kjp sk ½ q y q q ??? qq mod m if k s j.Ž . Ž .k 1 d

Thus q and p j only differ in the jth coordinate. Let

$
y s y m u .j , i j , i q j

$
X X

j jThe element ¨ m ??? m y m ??? m ¨ lies in the image of one of1, i, p j , i d, i, p
Ž .the maps in 5 . Consider now the sum of these elements.

N d $
X X

j j¨ m ??? m y m ??? m ¨Ý Ý 1, i , p j , i d , i , p
is1 js1

N d
X X

j js w m u m ??? m y m u m ??? m w m uŽ . Ž .Ž .Ý Ý 1, i p j , i q d , i p1 j d
is1 js1

N d
X Xs w m u m ??? m y m u m ??? m w m u .Ž . Ž .Ž .Ý Ý 1, i q j , i q d , i q1 j d

is1 js1

Ž . Ž .Observe that the two linear spaces W m U m ??? m W m U and1 d
W m ??? m W m Umd are naturally isomorphic. Let F be this isomor-1 d
phism, that is,

F : W m ??? m W m Umd ª W m U m ??? m W m U .Ž . Ž .1 d 1 d
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View the isomorphism F as a reordering of the terms. Now, the above
Ž . Ž .element in W m U m ??? m W m U can be written as1 d

N d
X X

F w m ??? m y m ??? m w m u m ??? m u m ??? m uÝ Ý 1, i j , i d , i q q q1 j dž /is1 js1

N d
X Xs F w m ??? m y m ??? m w m u m ??? m uÝ Ý 1, i j , i d , i q q1 dž /ž /is1 js1

s F z m ??? m z m u m ??? m uŽ .i i q q1 d 1 d

s z m u m ??? m z m u .Ž . Ž .i q i q1 1 d d

Ž .But this is the particular basis element we chose in W m U m ??? m1
Ž . Ž .W m U . Hence we conclude that the images of the linear maps 5 spand

Ž . Ž .the space W m U m ??? m W m U . By Theorem 5.2 it follows that1 d
Ž . Ž .the linear space W m U m ??? m W m U has essential rank at most1 d

dy1m ? N.

7. ESSENTIAL RANK OF SYMMETRIC AND
SKEW-SYMMETRIC TENSORS

Let W be a vector space over the complex numbers of dimension n.
Ž .Recall that Sym W is the algebra of symmetric tensors over W. That is,

Ž .Sym W is isomorphic to the algebra of polynomials in n variables with
Ž .complex coefficients. Similarly, Ext W is the exterior algebra on W. The

Ž . Ž .product in Sym W is denoted by ? and the product in Ext W is denoted
by n. Both these algebras are graded, and we may write

Ext W s Ext W and Sym W s Sym W .Ž . Ž . Ž . Ž .[ [d d
dG0 dG0

Observe that

n ndim Ext W s and dim Sym W s ,Ž . Ž .Ž . Ž .d d ¦ ;ž /d d

where n is the number of ways to select a subset of size d from anŽ .d
² n :n-element set and where is the number of ways to select a multisubsetd

² n : Ž nqdy1 .of cardinality d from an n-element set. We have that s .d d
Similar to Definition 6.1 we may define the rank of a symmetric

respectively skew-symmetric tensor.
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Ž .DEFINITION 7.1. An element ¨ in the linear space Ext W has rank kd
if k is the smallest integer m such that there exist y g W for 1 F j F dj, i
and 1 F i F m such that

m

¨ s y n ??? n y .Ý 1, i d , i
is1

Ž .Similarly, an element ¨ in the linear space Sym W has rank k if k is thed
smallest integer m such that there exist y g W for 1 F j F d andj, i
1 F i F m such that

m

¨ s y ??? y .Ý 1, i d , i
is1

Ž . Ž .When d s 2 the maximal ranks that occur in Ext W and Sym W are2 2
well-known.

PROPOSITION 7.2. Let W be a ¨ector space o¨er the complex numbers of
Ž .dimension n. Then the maximal rank of Ext W is nr2 and the maximal? @2

Ž .rank of Sym W is nr2 .u v2

Proof. The first result is a well-known result in exterior algebra; see,
w x Ž .for example, 4 . An element in Sym W corresponds to a polynomial2

homogeneous of degree 2 and in n variables. It is well-known from linear
Žalgebra that such a polynomial may be written as a sum of n squares or

. 2 2 Ž . Ž .less of linear forms. By the identity a q b s a q i ? b ? a y i ? b , we
may combine 2 ? nr2 squares into nr2 products.? @ ? @

Similar to Definition 6.2 we have:

Ž . Ž Ž ..DEFINITION 7.3. The linear space Ext W Sym W has essentiald d
rank k if k is the smallest integer m such that the set of elements ¨ in

Ž . Ž Ž ..Ext W Sym W that has rank less than or equal to m form a densed d
set in the Euclidean topology.

Ž . Ž . w xWhen dim W s 6 it is known that Ext W has essential rank 2; see 7 .3
Ž . Ž .Also when dim W s 4 the essential rank of Sym W is equal to 2; see,3

w xfor instance, 3, Corollary 4.10 .
ŽA.For a set A let the set be the set of all subsets of cardinality d of A.d

²A:Similarly, let be the set of all multisubsets of cardinality d of A.d
Observe that we have

< < < <A AA As and s .¦ ; ¦ ;ž / ž /d dd d

ŽA. ŽA.DEFINITION 7.4. A covering C of is a subset C of such that ford d
ŽA. < <all I g there exist J g C such that I l J G d y 1. Similarly, ad
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²A: ²A: ²A:co¨ering C of is a subset C of such that for all I g there existd d d
< <J g C such that I l J G d y 1.

Ž²A:. Žn. Ž²n:.We will say that there is a covering of if there exists ad d d

ŽA. Ž²A:.covering of , where cardinality of A is n.d d
Žn.The problem of finding coverings of as small as possible is called thed

w x ²n:lotto problem 14 . Similarly, the problem of finding small coverings of d
is called the lotto problem with replacements.

Similar to Proposition 6.4 we have:

PROPOSITION 7.5. Let W be an n-dimensional ¨ector space o¨er the
Žn.complex numbers C. If there exists a co¨ering of of size N then thed

Ž .essential rank of Ext W is less than or equal to N. If there exists a co¨eringd
²n: Ž .of of size N then the essential rank of Sym W is less than or equal to N.d d

The proof is similar to the proof of Proposition 6.4 and thus is omitted.
For the remaining part of this section we will consider the case when

d s 3.

DEFINITION 7.6. A Steiner triple system on a non-empty set A is a
ŽA. ŽA.subset S of such that for all pairs P g there is a unique triple3 2

Q g S such that P : Q.
A necessary and sufficient condition for a Steiner triple system to exist

on a set A of cardinality n is that n ' 1, 3 mod 6. Observe also that the
1 nŽ . Ž Ž ..size of a Steiner triple system is ? s n ? n y 1 r6.23

PROPOSITION 7.7. Assume that there exists a Steiner triple system on
Žnqm. Žan n-set and on an m-set. Then there exists a co¨ering of of size n ?3

Ž . Ž .. ²nqm:n y 1 q m ? m y 1 r6. Similarly, there exists a co¨ering of of size3
Ž Ž . Ž ..n ? n q 5 q m ? m q 5 r6.

< <Proof. Assume that A and A are two disjoint sets such that A s n1 2 1
< <and A s m. Let S be a Steiner triple system on A for i s 1, 2. Then2 i i

ŽA1j A2 .we claim that S j S is a covering of the set . Assume that1 2 3
ŽA1j A2 . < <I g . Then there is an index i such that A l I G 2. Hence3 i

� 4A l I contains a pair P. Then we may find x g A such that P j x g S .i i i
For the multiset case, consider the set of multisets

� 4x , x , x : x g A j A j S j S ,� 41 2 1 2

Ž Ž . Ž ..which has cardinality n q m q n ? n y 1 q m ? m y 1 r6. It is easy to
A j A1 2² :see that this is a covering of .3

COROLLARY 7.8. Let n be an e¨en positï e integer.

v
nŽ . ŽIf n ' 0, 8 mod 12 then there exists a co¨ering of of size n ?3

Ž ..n y 2 r12 q 3.
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v
nŽ . ŽIf n ' 2, 6 mod 12 then there exists a co¨ering of of size n ?3

Ž ..n y 2 r12.

v
nŽ . ŽIf n ' 4 mod 12 then there exists a co¨ering of of size n ?3

Ž . .n y 2 q 4 r12.

v
nŽ . ŽIf n ' 10 mod 12 then there exists a co¨ering of of size n ?3

Ž . .n y 2 q 4 r12 q 1.

Proof. We will only prove the first statement. Since nr2 ' 0, 4 mod 6
we have that nr2 y 3 ' 1, 3 mod 6, and nr2 q 3 ' 1, 3 mod 6. Thus by
Proposition 7.7, there exists a covering of size

nr2y3 ? nr2y4 q nr2q3 ? nr2q2 n ? ny2Ž . Ž . Ž . Ž . Ž .
s q3.

6 12

COROLLARY 7.9. Let W be an n-dimensional ¨ector space o¨er the
complex numbers C, where n is an e¨en positï e integer.

v Ž .If n ' 0, 8 mod 12 then the essential rank of Ext W is less than or3
Ž Ž ..equal to n ? n y 2 r12 q 3.

v Ž .If n ' 2, 6 mod 12 then the essential rank of Ext W is less than or3
Ž Ž ..equal to n ? n y 2 r12.

v Ž .If n ' 4 mod 12 then the essential rank of Ext W is less than or3
Ž Ž . .equal to n ? n y 2 q 4 r12.

v Ž .If n ' 10 mod 12 then the essential rank of Ext W is less than or3
Ž Ž . .equal to n ? n y 2 q 4 r12 q 1.

In the case when the dimension of the linear space W is 8, Corollary 7.9
Ž .says that the essential rank of Ext W is less than or equal to 7. But in3

fact, we do even better, as we will see in the next lemma.

LEMMA 7.10. Let W be a linear space of dimension 8 o¨er the complex
Ž .number C. Then the linear space V s Ext W has essential rank less than or3

equal to 4.

Proof. Let z , . . . , z be a basis for W. Let zU , . . . , zU be the dual basis1 8 1 8
for W *. Then zU n zU n zU , where 1 F i - j - k F 8, form a basisi j k

for V *.
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Choose wX s z , wX s z , and wX s z y z , for i s 1, 2, 3, 41, i 2 iy1 2, i 2 i 3, i 2 iy2 2 iq1
and where indices are counted modulo 8. Assume that L g V * is apolar to
the 12 linear maps

y ¬ y n wX n wX s y n z n z y z ,Ž .1, i 1, i 2, i 3, i 1, i 2 i 2 iy2 2 iq1

y ¬ wX n y n wX s z n y n z y z ,Ž .2, i 1, i 2, i 3, i 2 iy1 2, i 2 iy2 2 iq1

y ¬ wX n wX n y s z n z n y .3, i 1, i 2, i 3, i 2 iy1 2 i 3, i

We can write

L s a ? zU n zU n zU .Ý �i , j , k4 i j k
1Fi-j-kF8

By using the fact that L is apolar to the third map with y s z , we get3, i k
that a s 0. Since L is apolar to the first map with y s z ,�2 iy1, 2 i, k4 1, i 2 iy2
we have a s 0. Similarly, since L is apolar to the second map�2 iy2, 2 i, 2 iq14
with y s z , we have a s 0.2, i 2 iy2 �2 iy2, 2 iy1, 2 iq14

Since L is apolar to the first map with y s z , we get1, i 2 iq2

0 s L z n z n z y z² :Ž .2 iq2 2 i 2 iy2 2 iq1

s sign 2 i q 2, 2 i , 2 i y 2 ? aŽ . �2 iq2, 2 i , 2 iy24

y sign 2 i q 2, 2 i , 2 i q 1 ? aŽ . �2 iq2, 2 i , 2 iq14

s sign 2 i q 2, 2 i , 2 i y 2 ? a .Ž . �2 iq2, 2 i , 2 iy24

Again, use the first map with y s z .1, i 2 iq4

0 s L z n z n z y z² :Ž .2 iq4 2 i 2 iy2 2 iq1

s sign 2 i q 4, 2 i , 2 i y 2 ? aŽ . �2 iq4, 2 i , 2 iy24

y sign 2 i q 4, 2 i , 2 i q 1 ? aŽ . �2 iq4, 2 i , 2 iq14

s ysign 2 i q 4, 2 i , 2 i q 1 ? a .Ž . �2 iq4, 2 i , 2 iq14

Use the first linear map with y s z .1, i 2 iq3

0 s L z n z n z y z² :Ž .2 iq3 2 i 2 iy2 2 iq1

s sign 2 i q 3, 2 i , 2 i y 2 ? aŽ . �2 iq3, 2 i , 2 iy24

y sign 2 i q 3, 2 i , 2 i q 1 ? aŽ . �2 iq3, 2 i , 2 iq14

s sign 2 i q 3, 2 i , 2 i y 2 ? a .Ž . �2 iq3, 2 i , 2 iy24
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By symmetry, use the second map, with y s z , y s z , and2, i 2 iy3 2, i 2 iq3
y s z , to conclude that a s 0, a s 0, and2, i 2 iq4 2 iy1, 2 iy3, 2 iq1 2 iy1, 2 iq3, 2 iy2
a s 0. It is easy to see that we have shown that all coeffi-2 iy1, 2 iq4, 2 iq1
cients of L vanish, and thus L is equal to 0. By Theorem 5.2, Ý4 w nis1 i, 1

Ž .w n w is a generic canonical form for the linear space Ext W , andi, 2 i, 3 3

thus the space has essential rank 4.

The following corollary is straightforward to obtain.

COROLLARY 7.11. Let n be an e¨en positï e integer.

v
n² :If n ' 0, 8 mod 12 then there exists a co¨ering of of size3

Ž Ž ..n ? n q 10 r12 q 3.

v
n² : ŽIf n ' 2, 6 mod 12 then there exists a co¨ering of of size n ?3

Ž ..n q 10 r12.

v
n² : ŽIf n ' 4 mod 12 then there exists a co¨ering of of size n ?3

Ž . .n q 10 q 4 r12.

v
n² : ŽIf n ' 10 mod 12 then there exists a co¨ering of of size n ?3

Ž . .n q 10 q 4 r12 q 1.

²n:By Proposition 7.5 these upper bounds on covering give us upper3
Ž .bounds on the essential rank of Sym W . But we are able to press these3

bounds down a little by the following proposition.

Ž .PROPOSITION 7.12 R. E. Losonczy and J. Losonczy . Let n and m be
two positï e integers such that there exists a Steiner triple system on sets of
cardinalities n and m. Let W be a ¨ector space o¨er the complex number C of

Ž .dimension n q m. Then the essential rank of Sym W is less than or equal3
to

n ? n y 1 q m ? m y 1 n mŽ . Ž .
q q .

6 3 3

Proof. Let A and A be two disjoint sets of cardinalities n and m. Let1 2
A be the union of these two sets, that is, A s A j A . Let S be a Steiner1 2 i

< < Ž Ž .. < < Ž Žtriple system on A . Hence S s n ? n y 1 r6 and S s m ? m yi 1 2
..1 r6. Let T be a set of three element subsets of A such that A si i i
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D I. We would like the size of T to be as small as possible. Hence weI g T ii
< < < <may assume that T s A r3 . We will now prove thati i

a n a n a q b n b n bÝ Ý1, I 2, I 3, I 1, I 2, I 3, I
IgS igS1 2

q c n c n c q d n d n dÝ Ý1, I 2, I 3, I 1, I 2, I 3, I
IgT IgT1 2

Ž .is a generic canonical form for Sym W , where a , . . . , d g W. Let3 j, I j, I
� 4 � U4z be a basis for W and let z be the dual basis for W *.i ig A j A i ig A j A1 2 1 2

Let aX s z , where x is the jth element in the triple I g S . Similarly,j, I x 1
let bX s z , where x is the jth element in the triple I g S . Now wej, I x 2

X X � 4 Xchoose c and d more carefully. For x , x , x s I g T let c sj, I j, I 1 2 3 1 1, I
Ž . X Ž . X Ž .z q z , c s z q z , and c s z q z . The same pattern forx x 2, I x x 3, I x x1 2 1 3 2 3X � 4 X Ž . X Ž .the d : for x , x , x s I g T let d s z q z , d s z q z ,j, I 1 2 3 2 1, I x x 2, I x x1 2 1 3X Ž .and d s z q z .3, I x x2 3

Ž .Let L g Sym W * and assume that L is apolar to all the linear maps3
described by Theorem 5.2. Write L in terms of the dual basis

L s b ? zU ? zU ? zU ,Ý �i , j , k4 i j k
� 4i , j , k

where the sum ranges over all three element multisubsets of A.
We claim that for i, j g A and k g A we have that b s 0. This is1 �i, j, k4

true since we may find a linear map y ¬ z ? z ? y, such that L is apolar toi j
this linear map. By symmetry, for i, j g A and k g A, we have b s 0.2 �i, j, k4
We conclude that b s 0 when I is a set, that is, when there are noI
repetitions in I. Hence any square free monomial in L has a vanishing
coefficient.

� 4 Ž . Ž .Let i, j, k gT . Hence L is apolar to the map y¬ z qz ? z qz ?y.1 i j i k
For h g A we have that

0 s L z q z ? z q z ? zŽ . Ž .¦ ;i j i k h

2s L z ? z q z ? z ? z q z ? z ? z q z ? z ? z¦ ;i h i j h i k h j k h

s b q b q b q b�i , i , h4 �i , j , h4 �i , k , h4 � j , k , h4

s b .�i , i , h4

Since T contains triplets, which contain all the elements of A , we have1 1
that for all i g A and h g A the coefficient b vanishes. By symme-1 �i, i, h4
try, and by working with T we obtain for i, h g A that b s 0. Hence2 �i, i, h4
all the monomials in L vanish and we conclude that L is equal to zero. By
Theorem 5.2 the conclusion follows.
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COROLLARY 7.13. Let W be an n-dimensional ¨ector space o¨er the
complex numbers C, where n is an e¨en positï e integer.

v Ž .If n ' 0 mod 12 then the essential rank of Sym W is less than or3
Ž Ž ..equal to n ? n q 2 r12 q 3.

v Ž .If n ' 2 mod 12 then the essential rank of Sym W is less than or3
Ž Ž . .equal to n ? n q 2 q 4 r12 q 1.

v Ž .If n ' 4 mod 12 then the essential rank of Sym W is less than or3
Ž Ž ..equal to n ? n q 2 r12 q 1.

v Ž .If n ' 6 mod 12 then the essential rank of Sym W is less than or3
Ž Ž ..equal to n ? n q 2 r12.

v Ž .If n ' 8 mod 12 then the essential rank of Sym W is less than or3
Ž Ž . .equal to n ? n q 2 q 4 r12 q 4.

v Ž .If n ' 10 mod 12 then the essential rank of Sym W is less than or3
Ž Ž ..equal to n ? n q 2 r12 q 2.

8. CONCLUDING REMARKS

It would be interesting to know if Theorem 5.2 has more applications
w xthan the one presented in this article and in 3 . So far, all the examples

seen have been over algebras such as the tensor algebra, the algebra
of polynomials, and the exterior algebra. Thus the general notion of
SS-algebra has not been used yet.

Ž .The problem of finding the essential rank of Ext W has been consid-d
w xered recently by J. Losonczy 14 . He has found a geometrical interpreta-

tion of this essential rank. Moreover, he has worked out more upper
Ž .bounds for the essential rank of Ext W .d

In Section 7 we considered symmetric and skew-symmetric tensors. They
correspond to sets and multisets, which are dual to each other. There may
be a deeper relationship between these tensors, as the following conjecture
suggests.

CONJECTURE 8.1. Let n and d be non-negatï e integers and let m s n q
d y 1. Let V and W be ¨ector spaces o¨er the complex numbers C of

Ž .dimensions n and m. Is the essential rank of Sym V equal to the essentiald
Ž .rank of Ext W ?d

This hypothesis holds for small cases, for instance, when d F 2, and
Ž . Ž .when n F 2. When n s 4 and d s 3 the results that Sym V and Ext W3 3

have essential rank 2 are known; see the comment after Definition 7.3.
Ž .When n s 6 and d s 3 Corollary 7.13 implies that Sym V has essential3

rank at most 4. By counting parameters, it is easy to conclude that the
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Ž .essential rank of Sym V is equal to 4. Lemma 7.10 says that the essential3
Ž .rank of Ext W is at most 4.3

If this conjecture is true, it suggests a duality between the linear spaces
Ž . Ž .Sym V and Ext W . A very vague hint for this duality is thatd d

Ž Ž .. Ž Ž ..dim Sym V s dim Ext W .d d
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