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a b s t r a c t

We show that the analytic continuation of the exponential gener-
ating function associated to consecutiveweighted pattern enumer-
ation of permutations only has poles and no essential singularities.
The proof uses the connection between permutation enumeration
and functional analysis, and as well as the Laurent expansion of the
associated resolvent. As a consequence, we give a partial answer to
a question of Elizalde andNoy:when is themultiplicative inverse of
the exponential generating function for the number permutations
avoiding a single pattern an entire function? Our work implies that
it is enough to verify that this function has no zeros to conclude
that the inverse function is entire.

© 2014 Elsevier Ltd. All rights reserved.

1. Weighted enumeration

For a vector x = (x1, . . . , xk) of k distinct real numbers, define Π(x) to be the standardization of
the vector x, that is, the unique permutation σ = (σ1, . . . , σk) in Sk such that for all indices 1 ≤ i <
j ≤ k the inequality xi < xj is equivalent to σi < σj. Let S be a set of permutations in the symmetric
group Sm+1. We say that a permutation π in Sn avoids the set S consecutively if there is no index
1 ≤ j ≤ n − m such that Π(πj, πj+1, . . . , πj+m) ∈ S.

Following [2], we consider the extension of consecutive pattern avoidance to weighted enumer-
ation. Let wt be a real-valued weight function on the symmetric group Sm+1. Similarly, let wt1,wt2
be two real-valued weight functions on the symmetric group Sm. We call wt1 and wt2 the initial and
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final weight function, respectively. We extend these three weight functions to the symmetric group
Sn for n ≥ m by defining

Wt(π) = wt1(Π(π1, π2, . . . , πm)) ·

n−m
i=1

wt(Π(πi, πi+1, . . . , πi+m))

· wt2(Π(πn−m+1, πn−m+2, . . . , πn)).

Let αn be the sum of all the weights of permutations in Sn, that is,

αn =


π∈Sn

Wt(π).

This framework can be used to study consecutive pattern avoidance by defining the weight

wt(σ ) =


1 if σ ∉ S,
0 if σ ∈ S.

Furthermore, let both the initial and final weight functions be constant 1. Then for n ≥ m, αn is the
number of permutations in Sn that avoid the set S. In this case we extend αn by setting αn = n! for
n ≤ m − 1.

The classical combinatorial way to understand a sequence is by its generating function. Our main
result is an analytic result about the associated generating function.

Theorem 1.1. All the singularities of the analytic continuation of the exponential generating function
Q (z) =


n≥m αn · zn/n! for weighted permutations are either removable or poles.

In other words, the function Q (z) does not have any essential singularities.
To prove this result,wenowoutline the operator approachdescribed in the twopapers [2,3]. Define

the linear operator T on the space L2([0, 1]m) by

T (f )(x1, . . . , xm) =

 1

0
χ(t, x1, . . . , xm) · f (t, x1, . . . , xm−1)dt,

where the function χ is defined by χ(t, x1, . . . , xm) = wt(Π(t, x1, . . . , xm)). Similarly define the
two functions κ and µ on the m-dimensional unit cube [0, 1]m by κ(x) = wt1(Π(x)) and µ(x) =

wt2(Π(x)). Then the quantity αn is given by the inner product
T n−m(κ), µ


= αn/n!.

In this paper the initial and final weight functions wt1 and wt2 are equal to 1, that is, κ and µ are the
constant function 1 on the m-dimensional unit cube. For an application, where the weight functions
wt1 and wt2 are different from 1; see [2, Section 6].

Now the exponential generating function Q (z) can be written as

Q (z) =


n≥m


T n−m(κ), µ


· zn

= zm ·

(I − z · T )−1(κ), µ


.

We observe that this expression is not defined when the operator I − z · T is singular, that is,
when z−1 is an eigenvalue of the operator T . However the operator Tm is compact. Thus Theorem 6
in [1, Section VII.4] states that the set of eigenvalues has no point of accumulation but 0 and all the
non-zero eigenvalues have a finite index. Recall that the index of an eigenvalue for an operator on a
finite-dimensional vector space is the size of the largest Jordan block associated with that eigenvalue.
Now Theorem 1.1 follows from this lemma:

Lemma 1.2. If λ is a non-zero eigenvalue of the operator T of index k, then λ−1 is a pole of order at most
k of the function Q (z).
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Proof. Consider the limit

lim
z−→λ−1

(z − λ−1)k · (I − z · T )−1
= lim

ξ−→λ
(ξ−1

− λ−1)k · (I − ξ−1
· T )−1

= lim
ξ−→λ


λ − ξ

ξ · λ

k

· ξ · (ξ · I − T )−1

= λ1−2k
· lim

ξ−→λ
(λ − ξ)k · (ξ · I − T )−1, (1.1)

where we used the substitution ξ = z−1. The function R(ξ ; T ) = (ξ · I − T )−1 is known as the
resolvent function of T , and is defined for ξ not in the spectrum of T . By the proof of Theorem 16
in [1, Section VII.3], see also the proof of Theorem 18, we have the Laurent expansion of R(ξ ; T ) in the
neighborhood 0 < |ξ − λ| < ϵ, is given by

R(ξ ; T ) =

∞
j=−k

Aj · (λ − ξ)j ,

where the operators Aj do not depend on the variable ξ . Hence the limit in Eq. (1.1) exists and is given
by

lim
z−→λ−1

(z − λ−1)k · (I − z · T )−1
= λ1−2k

· A−k.

That is, the limit

lim
z−→λ−1

(z − λ−1)k ·

(I − z · T )−1(κ), µ


= λ1−2k

· (A−k(κ), µ)

exists. Since this limit could be zero, we conclude that the analytic continuation has a pole at λ−1 of
order at most k. �

2. Pattern avoidance

Elizalde and Noy [4,5] studied a refined version of consecutive pattern avoidance, by considering
how many times patterns from the set S occur in the permutation π . Let cS(π) denote the number of
times a pattern from the set S occurs consecutively in the permutation π , that is,

cS(π) = |{i : Π(πi, . . . , πi+m) ∈ S}|.

Define the generating function P(u, z) by

P(u, z) =


n≥0


π∈Sn

ucS (π)
· zn/n!.

Elizalde and Noy [4,5] asked if the function ω(u, z) = 1/P(u, z) is an entire function when the set S
consists of a single permutation. They explicitly asked this questionwhen u = 0; see [5, Question 7.2].

In order to give a partial answer to this question we introduce the weight function wt by

wt(σ ) =


1 if σ ∉ S,
u if σ ∈ S,

and let wt1 and wt2 both be the constant 1.
Now the associated generating function is given by

P(u, z) =


n≥0

αn · zn/n!

=

m−1
n=0

zn + Q (z),

where we suppress the dependency of Q (z) on the set S and the parameter u.
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Proposition 2.1. For a fixed parameter u, the only possible obstruction to ω(u, z) = 1/P(u, z) to be an
entire function is if the function P(u, z) has a zero.

Proof. Note that the analytic continuations of the two generating functions Q (z) and P(u, z) share
the same singularities. Furthermore, by Theorem 1.1 all the singularities of Q (z) are poles, which
correspond to zeros ofω(u, z). Hence the only possibility thatω(u, z) is not an entire function is when
P(u, z) has a zero. �

We also note that when the parameter u is real and positive the operator T is positivity improving.
Kreı̆n and Rutman [6, Theorem 6.3] showed that T has a positive real eigenvalue λ which is simple
and λ is greater than all other eigenvalues in modulus. In this case, it follows that αn = c · λn

+O(rn),
where c is a positive constant and r is bounded from above by λ and below by the modulus of the
next largest eigenvalue. Hence 1/λ is a simple zero of ω(u, z) = 1/P(u, z) and it is the smallest zero
in modulus. For more details; see [3].
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