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Abstract

We define a class of bipartite graphs that correspond naturally with Ferrers diagrams. We give
expressions for the number of spanning trees, the number of Hamiltonian paths when applicable, the
chromatic polynomial, and the chromatic symmetric function. We show that the linear coefficient
of the chromatic polynomial is given by the excedance set statistic.

1 Introduction and preliminaries

Geometric and algebraic combinatorics span many areas, from the geometry of hyperplane arrange-
ments [2, 6], through graph theory [3, 14], to the more algebraic permutation statistics [8, 11, 12].
An important aspect of all these areas is enumeration, which often illuminates the finer structure of
the object under investigation, be it computing the faces of a polytope [1, 4, 5] or the distribution of
permutations satisfying certain criteria [7].

In this paper we unite these facets of combinatorics via the study of Ferrers graphs, and in particular
answer some of the more pertinent questions concerning enumeration. More precisely, we define a class
of bipartite graphs that we call Ferrers graphs, so called since the edges in the graphs are in direct
correspondence with the boxes in a Ferrers diagram. First, we calculate the number of spanning trees.
The technique we use to prove this utilizes electrical networks. In fact, the first reference to spanning
trees is in an article by Kirchhoff [16], thus the study of trees and the study of electrical networks share
their origin in the work of Kirchhoff. Second, when the two parts in the vertex partition have the same
cardinality we determine the number of Hamiltonian paths in the Ferrers graph. This result is based
upon the previous result and the proof is inspired by Joyal’s proof of Cayley’s formula. Third, and
most mysterious, we prove that the linear coefficient of the chromatic polynomial of a Ferrers graph
is given by the excedance set statistic of permutations. Lastly, we compute the chromatic symmetric
function, thus generating a family of symmetric functions arising from Ferrers diagrams other than
Schur functions. It should be noted that our Ferrers graphs are not those appearing in [13].
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Figure 1: The Ferrers graph and the Ferrers diagram associated with the partition (4, 4, 2), the dual
partition (3, 3, 2, 2) and the ab-word babba.

Definition 1.1 Define a Ferrers graph to be a bipartite graph on the vertex partition U = {u0, . . . , un}
and V = {v0, . . . , vm} such that

• if (ui, vj) is an edge then so is (up, vq) for 0 ≤ p ≤ i and 0 ≤ q ≤ j.

• (u0, vm) and (un, v0) are edges.

For a Ferrers graph G we have the associated partition λ = (λ0, λ1, . . . , λn), where λi is the degree
of the vertex ui. Similarly, we have the dual partition λ′ = (λ′0, λ

′
1, . . . , λ

′
m), where λ′j is the degree of

the vertex vj . The associated Ferrers diagram is the diagram of boxes where we have a box in position
(i, j) if and only if (ui, vj) is an edge in the Ferrers graph.

There is another natural way to index Ferrers graphs. Consider the Ferrers diagram associated
with the graph. Walk along the path on the border of the Ferrers diagram starting at the lower right
hand corner of the box indexed by (n, 0) and ending at the lower right hand corner of the box indexed
by (0,m). Label a horizontal step by b and a vertical step by a. It is straightforward to see that the
ab-words obtained this way are in one to one correspondence with Ferrers graphs. This is essentially
the same encoding as in Exercise 7.59 in [19]. See Figure 1 for an example of a Ferrers graph, its
Ferrers diagram, partition, dual partition and ab-word.

2 The number of spanning trees

For a spanning tree T of a Ferrers graph G define the weight σ(T ) to be

σ(T ) =
n∏
p=0

xdegT (up)
p ·

m∏
q=0

ydegT (vq)
q .

For a Ferrers graph G define Σ(G) to be the sum Σ(G) =
∑
T σ(T ), where T ranges over all spanning

trees T of the Ferrers graph G. Also let τ(G) denote the number of spanning trees of the graph G,
that is, τ(G) = Σ(G)x0=···=xn=y0=···=ym=1.

Theorem 2.1 Let G be the Ferrers graph corresponding to the partition λ and the dual partition λ′.
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Then the sum of the weights of spanning trees T of the Ferrers graph G is given by

Σ(G) = x0 · · ·xn · y0 · · · ym ·
n∏
p=1

(y0 + · · ·+ yλp−1) ·
m∏
q=1

(x0 + · · ·+ xλ′q−1).

Hence the number of spanning trees of G is given by

τ(G) =
n∏
p=1

λp ·
m∏
q=1

λ′q.

Using the theory of electrical networks, originating with Kirchhoff [16] (for a more accessible
reference see [9]), we can deduce the following:

Proposition 2.2 Let H be a Ferrers graph and let G be the Ferrers graph obtained from H by adding
the edge (ui, vj), where i, j ≥ 1. Then the ratio between Σ(G) and Σ(H) is given by

Σ(G)
Σ(H)

=
x0 + · · ·+ xi−1 + xi
x0 + · · ·+ xi−1

· y0 + · · ·+ yj−1 + yj
y0 + · · ·+ yj−1

.

Proof: Let N be given by (x0 + · · · + xi) · (y0 + · · · + yj). View the Ferrers graph as an electrical
network where the edge (up, vq) is a resistor with resistance R(up, vq) = (xpyq)−1. Assign to each edge
in the Ferrers graph G a current w(up, vq) by the following rule:

w(up, vq) =



−xpyq/N if p < i, q < j,

yq
∑i−1
p=0 xp/N if p = i, q < j,

xp
∑j−1
q=0 yq/N if p < i, q = j,(

xiyj + yj
∑i−1
p=0 xp + xi

∑j−1
q=0 yq

)
/N if p = i, q = j,

0 otherwise.

Moreover, by Ohm’s law we have the potential difference P (up, vq) = R(up, vp) · w(up, vq). It is then
straightforward to verify that w(up, vq) and P (up, vq) satisfy Kirchhoff’s two laws when a current
of size 1 enters the vertex ui and leaves at vj . Also observe that the vertices u0, . . . , ui−1 have the
same potential and hence no current goes through vertices vj+1, . . . , vm. Similarly, there is no current
through the vertices ui+1, . . . , un. Hence the current through the edge (ui, vj) is given by

w(ui, vj) =
xiyj + yj

∑i−1
p=0 xp + xi

∑j−1
q=0 yq

N

=
N −

(∑i−1
p=0 xp

)
·
(∑j−1

q=0 yq
)

N
.

However, the current through the edge (ui, vj) can also be determined by the theory of electrical
networks so

w(ui, vj) =

∑
(ui,vj)∈T

∏
e∈T

R(e)−1

∑
T

∏
e∈T

R(e)−1
=

Σ(G)− Σ(H)
Σ(G)

,
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where the sum in the denominator is over all spanning trees T of the Ferrers graph G and the sum
in the numerator is over all spanning trees containing the edge (ui, vj). By combining the last two
identities the result follows. 2

Proof of Theorem 2.1: The proof is by induction on the number of edges. The smallest Ferrers
graph is the tree with n+m+ 1 edges where (ui, vj) is an edge if and only if i · j = 0. This tree has
weight x0 · · ·xn · y0 · · · ym · xm0 · yn0 . The induction step adds one edge at a time, and the result follows
from Proposition 2.2. 2

As a corollary of Theorem 2.1 we obtain the classical result for the complete bipartite graphs. For
the history and different approaches of this corollary, see Exercise 5.30 in [19].

Corollary 2.3 For the complete bipartite graph Kn+1,m+1 the sum of the weights of spanning trees T
is given by

Σ(Kn+1,m+1) = x0 · · ·xn · y0 · · · ym · (y0 + · · ·+ ym)n · (x0 + · · ·+ xn)m.

Thus the number of spanning trees of Kn+1,m+1 is given by τ(Kn+1,m+1) = (m+ 1)n · (n+ 1)m.

3 The number of Hamiltonian paths

We now turn our attention to enumerating the number of Hamiltonian (open) paths in a Ferrers graph
in the case when n = m, that is, when the two parts in the vertex partition of the bipartite graph
have the same cardinality. Observe that for convenience we will identify a Hamiltonian path with its
reversal.

There are two important structures to consider. The first one is vertebrates:

Definition 3.1 Define a vertebrate (T, h, t) of a Ferrers graph as a spanning tree T together with one
vertex h from the set U called the head and one vertex t from the set V called the tail. Call the set of
vertices on the unique path from the head h to the tail t the joints of the vertebrate.

Since there are λ′0 ways to choose a head and λ0 ways to choose a tail, we have as a direct corollary
to Theorem 2.1:

Corollary 3.2 Let G be the Ferrers graph corresponding to the partition λ and the dual partition λ′.
Then the number of vertebrates of the Ferrers graph G is given by

n∏
p=0

λp ·
m∏
q=0

λ′q.
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The other important structure we will work with is permissible functions on the set U ∪V . We call
a function f : U ∪ V −→ U ∪ V permissible if, for all z ∈ U ∪ V , (z, f(z)) is an edge in the associated
Ferrers graph. Observe that the product in Corollary 3.2 also enumerates the number of permissible
functions on the Ferrers graph G.

For a function f let fk denote the kth power of the function under composition, that is, fk =
f ◦ · · · ◦ f . For a permissible function f call the set E(f) = ∩k≥1Im(fk) the essential set of the
function f . Observe that f restricts to a permissible permutation on the set E(f). Moreover, the
essential set E(f) intersects the sets U and V in equally large subsets.

Using similar ideas of André Joyal [15] we are able to prove for Ferrers graphs:

Theorem 3.3 Let G be a Ferrers graph with n=m, that is, each of the two parts in the vertex partition
have the same cardinality. Then the number of Hamiltonian paths in G is equal to the square of the
number of placements of n+1 rooks on the associated Ferrers board.

Observe that the number of rook placements on a Ferrers board with n + 1 rooks is λn · (λn−1 −
1) · · · (λ0−n), where λ is the associated partition. Similarly, this is also equal to λ′n ·(λ′n−1−1) · · · (λ′0−
n), where λ′ is the dual partition.

Proof of Theorem 3.3: First observe that the number of rook placements squared is equal to the
number of permissible bijections π on the Ferrers graph G.

The proof of the statement is by induction on n. The induction basis is n = 0 which is straight-
forward. Now the induction step.

Let S be a proper subset of U ∪ V such that S ∩ U and S ∩ V have equal size. We claim that the
number of vertebrates of the Ferrers graph G with the joints being the set S is equal to the number
of permissible functions on G having essential set S. By the induction hypothesis we know that the
number of Hamiltonian paths on G restricted to the set S is equal to the number of permissible
permutations on the set S. Now, a vertebrate is a path such that each vertex in the path is the root
of a tree. Similarly a function is a permutation such that each entry in the permutation is the ‘root’
of a ‘tree’. For instance, for a root s in the essential set S of a permissible function f the tree is the
collection of vertices z such that fk(z) ∈ S implies there exists i ≤ k such that f i(z) = s but f j(z) 6∈ S
for j < i. Hence the claim follows by changing a path on the set S to a permissible permutation on
the set S.

Now by summing over all S strictly contained in U ∪ V we have that the number of vertebrates
that are not paths is equal to the number of permissible functions that are not permutations. Since
the cardinalities of vertebrates and permissible functions are the same we are done. 2
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4 The chromatic polynomial and the linear coefficient

Before we embark on deriving the chromatic polynomial let us recall the excedance set statistic. It
was first studied in [11, 12]. We follow their notation and instead of speaking of the excedance set,
we talk about the excedance word.

Define the excedance word of a permutation π = π1 · · ·πk+1 in Sk+1 to be the word w = w1 · · ·wk
where wi = a if πi ≤ i and wi = b if πi > i. For an ab-word w of length k let [w] denote the number
of permutations in Sk+1 with excedance word w.

Following [11] let Rm = {r = (r0, . . . , rm) : r0 = 1, ri+1 − ri ∈ {0, 1}}. Thus, each vector
r = (r0, . . . , rm) in Rm starts with r0 = 1 and increases by at most one at each coordinate. Let
h(r) be the number of indices i such that ri+1 = ri. We then have the following result; see [11,
Theorem 6.3].

Theorem 4.1 Let w be an ab-word with exactly m b’s. That is, we can write w = an0ban1b · · ·banm.
Then the excedance set statistic [w] is given by

[w] =
∑

r∈Rm
(−1)h(r) · rn0+1

0 · rn1+1
1 · · · rnm+1

m .

For an ab-word w, let χ(w) denote the chromatic polynomial in t of the Ferrers graph G associated
with w. Moreover, let |w| denote the length of the ab-word w. Now we can state the relationship
between the linear coefficient of the chromatic polynomial and the excedance set statistic.

Theorem 4.2 The linear coefficient of the chromatic polynomial χ(w) is given by (−1)|w|+1 · [w].

It is straightforward to observe that χ(aw) = χ(wb) = (t− 1) · χ(w) and χ(1) = t · (t− 1), where
the 1 in χ(1) denotes the empty word.

For a vector r in the set Rm and 1 ≤ i ≤ m define fi(r) = fi by fi = t− ri−1 if ri − ri−1 = 1 and
fi = ri−1 otherwise.

Theorem 4.3 Let w be an ab-word with exactly m b’s, that is, w = an0ban1b · · ·banm. Then the
chromatic polynomial χ(w) of the associated Ferrers graph G is given by:

χ(w) =
∑

r∈Rm
t · (t− r0)n0 · f1 · (t− r1)n1 · f2 · · · fm−1 · (t− rm−1)nm−1 · fm · (t− rm)nm+1.

Proof: For a proper coloring of the graph G let ri be the number of distinct colors appearing on the
i + 1 nodes v0 through vi. Let us determine how many colorings there are of the graph with a given
vector r = (r0, . . . , rm).
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The node v0 can be colored in t ways. If ri − ri−1 = 1 then the the node vi is colored with a color
not used before, and there are t− ri−1 such colors. If ri+1 − ri = 0 then the node is colored with an
‘old’ color, and there are ri−1 such colors. In both cases we have fi possibilities.

For i ≤ m− 1 observe that there are ni u-nodes that are connected exactly to the nodes v0, . . . , vi.
There are (t − ri)ni ways to color these ni nodes, since they all have to avoid the ri colors of the
nodes v0, . . . , vi. Finally, there are nm + 1 u-nodes that are connected to all the v-nodes v0, . . . , vm.
Similarly, there are (t− rm)nm+1 ways to color these nodes. Hence there are

t · f1 · f2 · · · fm · (t− r0)n0 · · · (t− rm−1)nm−1 · (t− rm)nm+1

ways to color the graph G with a given r-vector. Now summing over all possible r-vectors the result
follows. 2

We now prove the main result:

Proof of Theorem 4.2: To obtain the linear coefficient in χ(w) divide by t and set t = 0. Observe
that fi evaluated at t = 0 is equal to ri−1 with a sign change if ri − ri−1 = 1. The number of such
sign changes is m− h(r). Moreover we also obtain n0 + n1 + · · ·+ nm + 1 sign changes from the other
factors. Hence the total number of sign changes is m− h(r) +n0 +n1 + · · ·+nm + 1 = |w| − h(r) + 1.

The remainder of the term corresponding to r can now be written as rn0+1
0 · rn1+1

1 · · · rnm+1
m , and

the result follows by Theorem 4.1. 2

There is one important special case of Theorem 4.3:

Proposition 4.4 The chromatic polynomial of the complete bipartite graph Kn+1,m+1 is given by

χ(bman) =
m+1∑
k=1

S(m+ 1, k) · t · (t− 1) · · · (t− k + 1) · (t− k)n+1,

where S(m, k) denotes the Stirling number of the second kind.

Proof: Begin to color the vertices v0, v1, . . . , vm with exactly k colors where 1 ≤ k ≤ m+ 1. This can
be done in S(m+ 1, k) · t · (t− 1) · · · (t− k+ 1) ways. There are (t− k)n+1 ways to color the remaining
vertices u0, u1, . . . , un. 2

The linear coefficient of the chromatic polynomial (up to a sign) also has the interpretation of
being the number of acyclic orientations of the graph with a unique given sink [14]. Also observe that
it is enough to note that there are no directed 4-cycles in an orientation of the edges in a Ferrers
graph to guarantee that the orientation is acyclic. Expressing this in terms of the associated Ferrers
diagram we have:

Corollary 4.5 The excedance set statistic [w] is the number colorings of the boxes in the Ferrers
diagram associated to the ab-word w with colors red and blue such that

7
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Figure 2: A Ferrers diagram with colored boxes, and its constituents.

(i) there are no four boxes (p, r), (p, s), (q, r), (q, s) such that (p, r) and (q, s) are colored red and
(p, s) and (q, r) are colored blue,

(ii) there is a unique given row where all the boxes are colored red, and

(iii) there is no column where all the boxes are colored blue.

5 The chromatic symmetric function

A natural generalization of the chromatic polynomial, known as the chromatic symmetric function was
defined in [18], and it is natural to ask whether we can explicitly compute these for Ferrers graphs.
This would give us a set of symmetric functions other than the Schur functions that can be computed
from Ferrers diagrams.

Observe that unlike the Schur functions, the chromatic symmetric functions of Ferrers graphs will
not form a basis for the symmetric functions as the chromatic symmetric function of the Ferrers graph
corresponding to the partition λ and λ′ will be identical.

Before we continue we need to define the constitution of a Ferrers diagram whose boxes have been
colored red and blue. First choose a red box. Score through that row and column. For every red box
with a score going through it in one direction score through it in the other direction. Repeat until
all the red boxes either have two scores or no scores through them. Extract all the boxes with two
scores in them. Choose another red box, and repeat until none remain. The list of extractions is the
constitution and each extraction is called a constituent.

In addition, let RBλ be the set of all red-blue colorings of the Ferrers diagram corresponding to
the partition λ (without the restriction of Corollary 4.5). For r ∈ RBλ let |r| be the number of
constituents of r and |r|red be the number of boxes in r colored red.

Theorem 5.1 Let G be the Ferrers graph corresponding to the partition λ. Then the chromatic
symmetric function XG in terms of the power sum symmetric functions pµ is given by:

XG =
∑

r∈RBλ

(−1)|r|red · pr1 · pr2 · · · pr|r| · p
b
1,

8



where ri is the number of rows plus the number of columns in the ith constituent of r, 1 ≤ i ≤ |r| and
b is the number of rows plus the number of columns of r that contain no red boxes.

Proof: Recall that for a graph G with a set of edges E the definition of the chromatic symmetric
function in terms of the power sum basis is [18, Theorem 2.5]

XG =
∑
S⊆E

(−1)|S|p|C0| · · · p|Cm|

where |Ci| is the number of vertices in each connected component Ci, 0 ≤ i ≤ m of G with the edges
not in S removed.

Now observe that for a Ferrers graph G with edge set E there is an natural bijection between
S ⊆ E and red-blue colorings r ∈ RBλ of the Ferrers diagram associated with λ, given by

(ui, vj) ∈ S ⇔ (i, j) is colored red in r.

This gives us the index of summation and the exponent of −1 in our formula. To complete the proof
note the constituents of r yield precisely the connected components of G containing more than one
vertex, and if the ith row (column) of r contains only blue boxes then ui (vi) is not connected to any
other vertex in G. 2

A more specific formula can be found for the two extreme cases of Ferrers graphs. First the case
when the Ferrers graph is a tree.

Corollary 5.2 Let G be the Ferrers graph corresponding to the partition (m+ 1)1n. Then the chro-
matic symmetric function XG in terms of the power sum symmetric functions pµ is given by:

XG =
m+n∑
i=0

(−1)i
 ∑

j+k=i

(
m

j

)(
n

k

)
pj+1pk+1p

m+n−i
1

− (m+ n

i

)
pi+2p

m+n−i
1

 .
Proof: Observe that in the case where the Ferrers diagram associated with λ is a hook, for r ∈ RBλ
if (0, 0) is blue then we obtain the the function

m+n∑
i=0

(−1)i
∑
j+k=i

(
m

j

)(
n

k

)
pj+1pk+1p

m+n−i
1

whereas if it is red then we obtain the function
m+n+1∑
i=1

(−1)i
(
m+ n

i− 1

)
pi+1p

m+n+1−i
1 . 2

The other extreme case is the complete bipartite graph Kn,m, which is the Ferrers graph associated
with the partition mn. A change of basis is required for the simplest description of the chromatic
symmetric function.
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Corollary 5.3 The chromatic symmetric function XKn,m in terms of the monomial symmetric func-
tions mµ is given by:

XKn,m =
∑
σ∈Πn

∑
τ∈Πm

(r1!r2! · · ·) ·mµ(σ,τ),

where Πn is the collection of all set partitions of {1, . . . , n}, µ(σ, τ) is the partition determined by the
block sizes of σ and τ , and ri is the multiplicity of i in µ(σ, τ).

Proof: Recall that a stable partition of the vertices of a graph G is a partition of the vertices such
that each block is totally disconnected. Then Proposition 2.4 in [18] states

XG =
∑
π

(r1!r2! · · ·)mµ(π),

where the sum ranges over all stable partitions π of the graph G. The result follows by noting that
in the complete bipartite graph Kn,m, every block in a stable partition either lies entirely in the n
vertices {u0, . . . , un−1} or lies entirely in the m vertices {v0, . . . , vm−1}. 2

The symmetric functions appearing in Corollary 5.3 have the following explicit exponential gener-
ating function, generalizing Exercise 5.6 in [19]:∑

n,m≥0

XKn,m

sn

n!
tm

m!
=
∏
i≥1

(
esxi + etxi − 1

)
,

where we view the symmetric functions in terms of the variables {xi}i≥1.

Lastly, note that to recover the earlier chromatic polynomial we set x1 = . . . = xt = 1 and all
other xi = 0.

6 Concluding remarks

Is it possible to obtain an expression for the Tutte polynomial of a Ferrers graph, that would both
encode the number of spanning trees in Theorem 2.1 and the chromatic polynomial in Theorem 4.3?
For the enumerative results in this paper it is natural to ask for combinatorial proofs. From a bijection
given in [17], a bijective proof for Theorem 2.1 can be obtained via some modifications. In [10] bijective
proofs for Theorems 2.1 and 3.3 have been derived using box labeling. However, it would also be
desirable to have a bijective proof for Corollary 4.5.

The excedance set statistic [w] satisfies the recursion [ubav] = [uabv] + [uav] + [ubv] where u and
v are two ab-words. Is there a similar recursion for the chromatic polynomial? A partial answer to
this question is the following proposition, whose proof we omit.

Proposition 6.1 The chromatic polynomial χ(w) of the associated Ferrers graph satisfies the recur-
sion:

χ(wbak−1) = t · χ(wak−1) +
∑

0≤i≤k−1

(−1)k−i ·
(
k

i

)
· χ(wai).

10



On the excedance statistic level this recursion corresponds to [wbak−1] =
∑

0≤i≤k−1

(k
i

)
· [wai]; see [11,

Proposition 2.5]. Moreover, can this proposition be extended to the chromatic symmetric function?

Another question related to the chromatic polynomial arises from the following observation. A
Ferrers graph G can be equivalently viewed as an (n + m + 2)-dimensional hyperplane arrangement
given by

xi = yj if and only if (ui, vj) is an edge in G.

Thus the chromatic polynomial of the Ferrers graph G is also the characteristic polynomial of the
associated hyperplane arrangement, see [14]. Hence, can a combinatorial expression be found for the
number of acyclic orientations of the Ferrers graph, or equivalently for the number of regions of the
associated hyperplane arrangement?

Finally, one can define the Ferrers graph associated with a skew partition λ/µ. Do any of the
results in this paper extend naturally to skew partitions?
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