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Non-constructible Complexes and the Bridge Index

RICHARD EHRENBORG ANDMASAHIRO HACHIMORIT

We show that if a three-dimensional polytopal complex has a knot in its 1-skeleton, where the
bridge index of the knot is larger than the number of edges of the knot, then the complex is not con-
structible, and hence, not shellable. As an application we settle a conjecture of Hetyei concerning the
shellability of cubical barycentric subdivisions of 3-spheres. We also obtain similar bounds conclud-
ing that a 3-sphere or 3-ball is non-shellable or not vertex decomposable. These two last bounds are
sharp.
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1. INTRODUCTION

In the history of the study of shellability, many examples of non-shellable triangulations of
balls and spheres have been constructed. A review can be found in the paper by 2@gler |
There are two other important properties that a simplicial complex can satisfy, namely con-
structibility and vertex decomposability. These properties satisfy the following hierarchy.

vertex decomposable — shellable — constructible.
By considering the contrapositive implications; that is,
not vertex decomposable<— non-shellable < non-constructible,

we have that non-shellability is implied by non-constructibility.

Among the examples of non-shellable triangulations, Furch’s 3-Bal(dlso shown in
Bing’s article P]) and Lickorish’s 3-spherelf] involve a special knot embedded as a 1-
dimensional complex of small size. Both of these examples are treated in the paper of Hachi-
mori and Ziegler 9] and were extended to the following theorem.

THEOREM 1.1 (HACHIMORI AND ZIEGLER). A 3-ball with a knotted spanning arc con-
sisting of

3 edges can be shellable, but not vertex decomposable,

{ atmost2 edges is not constructible,
4 edges can be vertex decomposable,

and a triangulateB-sphere or3-ball with a knot consisting of

4or5 edges can be shellable, but not vertex decomposable,

{ at most3 edges is not constructible,
6 edges can be vertex decomposable.

Shellability and constructibility naturally extend to polytopal complexes, whereas vertex de-
composability only applies to simplicial complexes. We note that the proof of the parts of
Theoreml.1 involving shellable and constructible triangulated manifolds is valid for poly-
topal complexes and the result naturally extends to polytopal decompositions.

In this paper we extend the Hachimori—Ziegler result for knots of larger size. In TheloPem
we show that if the bridge index of a knot is larger than the number of edges of the knot, then
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the complex is not constructible. Similar bounds hold for concluding that a simplicial complex
is not shellable or vertex decomposable.

The present work was inspired by the results of ArmentrutHe considered simple cell
partitionings that contain a knot through its 2- and 3-cells. If the knot has a bridge index larger
than the number of spanning arcs it is partitioned into by the cell partitioning, then he proved
that the cell partitioning is not shellabl&,[Theorem 3]. Thus one can view Theordi2 as
the dual to Armentrout’s Theorem 3. Moreover, in Sectowe extend his result to prove
non-constructibility for general polytopal complexes that contain a weakly compatible knot
in their two- and three-dimensional faces.

Our proofs rely on extending the bridge index, a knot invariant, to tangles. A tangle is a
disjoint collection of paths and knots inside a 3-ball such that the endpoints of the paths are
on the boundary of the 3-ball. The bridge index of a knot can be defined using the notion of
bridge positions, and we define the bridge index for tangles in the same manner as that for
knots. The essential property of the bridge index of tangles is PropoS8idavhich states that
the bridge index is subadditive. This should be compared with the fact that the bridge index
for knots is additive under knot addition; sele].

Our theorem has several applications. One is the existence of triangulations ofla PL-
sphere and a PH-ball whosen-fold barycentric subdivision is not constructible for given
integersn > 0 andd > 3. Another important application is a conjecture by Hetyei on
the existence of triangulated 3-spheres whose cubical barycentric subdivisions are
non-shellable10, 11]. Our result solves this conjecture affirmatively.

In the concluding remarks (Secti@) we discuss the sharpness of our bounds. Moreover,
further questions for research are presented.

2. PRELIMINARIES

In this section we give the basic definitions related to polytopal complexes, constructibility
and vertex decomposability. For other basic material on polytopal complexes, we recommend
the book by ZieglerZ1].

A polytopal complex Gs a finite set of (convex) polytopes such that (iPife C then all
the faces ofP are contained i, and (ii) if P, Q € C thenP N Q is a face of botHP and Q.

In particular, the empty sétis always contained i€. The members of arefacesof C. The
zero-dimensional faces are calledrticesand the one-dimensional faces are cakeidjes

The empty sef) is a (—1)-dimensional face. Thdimensionof a polytopal complex is the
largest dimension of its faces. Thace posebf a polytopal complex is the partially ordered

set consisting of all the faces ordered by inclusion. Observe that the face poset is a meet-
semilattice. The inclusion-maximal faces &eets If all the facets are of the same dimension
then the complex is pure If all the faces are simplices then it is calledimplicial complex
whereas if they are all combinatorially equivalent to cubes then it is caldedbiaal complex

A d-dimensional polytopal comple& is calledsimpleif wheneverm of its facets have a
non-empty intersection its dimensionds- m + 1. Thek-skeletorof a polytopal complex is

the collection of all faces of dimensidaor less. In particular, the 1-skeleton consists of all
vertices and edges. Thiek of a faceP in a polytopal complex, linkc (P), is the polytopal
complex which is combinatorially equivalent to the face figuré@ah C, namely, a polytopal
complex whose face poset is the same as the upper ideal of all elements containing the face
P in the face poset oF. For a simplicial complexC letux* C = CU{u* o : 0 € C} be the
coneof C, whereu is a vertex not belonging t6 andu x o is a simplex spanned hyando.

In addition, letX(C) = ux C U v x C be thesuspensionf C, whereu andv are two distinct
vertices not irC.
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For a polytopal comple&, the union/C| of all the polytopes of is theunderlying spacef
C andC is called goolytopal decompositioof |C|. A polytopal (simplicial, cubical) manifold
is a polytopal (simplicial, cubical, respectively) complex whose underlying space is homeo-
morphic to the manifold.

DEFINITION 2.1. A d-dimensional pure polytopal compl€xis constructibleif:

(i) C is ad-dimensional polytope, or

(i) there exist polytopal complex&%; andC, such thatC = C; U Cp, the complexes
C1 andC; ared-dimensional pure constructible polytopal complexes and the complex
C1NCyis a(d — 1)-dimensional pure constructible polytopal complex.

The idea of constructibility can be seen in combinatorial topology, for instance in Zeeman'’s
book [20]. The first explicit definition of this term is likely due to Hochsté&£].

DEFINITION 2.2. A d-dimensional pure polytopal complé€xis shellableif:

() Cisad-dimensional polytope, or

(ii) there exist polytopal complexé€% andC; such thatC = C; U Cy, the complexCs is
ad-dimensional pure shellable polytopal compl€y,is ad-dimensional polytope and
the complexC; N Cy is a(d — 1)-dimensional pure shellable polytopal complex.

This definition of shellability is a reformulation of the classical definition. The classical defi-
nition is that there exists an ordering of the fadeisF,, ..., Fj (i.e., a shelling) such that for
all2 < j < nthe complexFLU---UF;_1) NFj is (d — 1)-dimensional and shellable. This
definition of shellability is equivalent to the definition used in the paper of Bruggesser and
Mani [4], but weaker than the usual definition; s@d][ However, for simplicial complexes
and cubical complexes both definitions are equivalent beahsgaplices andl-cubes are ex-
tendably shellable. By comparing the condition on the com@lein Definitions2.1and2.2,
we observe that constructibility is a natural relaxation of shellability.

Let C be a polytopal complex and a vertex ofC. Observe that ifC is a constructible
complex then the link of the compléx at the vertex, linkc (v), is also constructible; se8,[
p. 1855]. This allows us to lift a non-constructible object from one dimension to the next.
Namely the contrapositive statement is

linkc (v) is non-constructible —  C is non-constructible.

This property will be used in the proof of Propositichd and4.5.

We remark that ifC is ad-dimensional constructible complex whogk— 1)-dimensional
faces belong to at most two facets thig is a PL-ball or a PL-sphere. (SeedBijer [3,
Theorem 11.4] and Zeemaf(, Chapter 3].) Thus i€ is a constructible polytopal ball or a
sphere theiC; andC; in Definition 2.1are constructible polytopal balls.

For C a simplicial complex and a vertex of the comple&, let C — v denote the simplicial
complex consisting of all the facésin C that do not contain the vertax

DEFINITION 2.3. A d-dimensional pure simplicial compléX is vertex decomposabig
(i) Cisad-dimensional simplex, or
(ii) there exists a vertexin C such thaC —v is a pured-dimensional vertex decomposable
simplicial complex and link(v) is a(d — 1)-dimensional pure vertex decomposable
simplicial complex.
The vertexv in part (i) is called ashedding verterf the simplicial complexC. The definition
of vertex decomposability is due to Provan and Billera, who showed that vertex decompos-
ability implies shellability [L6].



478 R. Ehrenborg and M. Hachimori
3. TANGLES AND THE BRIDGE INDEX

We now introduce knots, tangles and the bridge index and prove the subadditivity for the
bridge index. For references on knot theory, we suggest the books by Lickadsharid
Livingston [15].

A knotis a simple closed arc contained in a three-dimensional space. The three-dimensional
spaces we consider are 3-balls and 3-spherdiakAs the disjoint union of knots. Apanning
arc is a simple arc contained in a 3-ball whose endpoints are on the boundary of the ball. A
tangleis a set of mutually disjoint spanning arcs and knots in a 3-ball or 3-sphere. Observe
that a tangle in a 3-sphere is necessarily a link since the 3-sphere has no boundary to which
the spanning arcs can be attachedsemispanning disc s a disc contained in a 3-ball
suchthab D = o« U 8, wherex is some spanning arc @ andg is some simple arc contained
in the boundaryC of C. A spanning are is straightif there is a semispanning di such
thata C 9D. A set of spanning arcs asimultaneously straighf they are mutually disjoint
and they have mutually disjoint semispanning discs. Moreover, if these semispanning discs
can be taken such that they avoid the interior of a &sm 0C, then we say that the spanning
arcs aresimultaneously straight with respect to the disc B

As in the classical treatment of knots, the knots and tangles in this paper are considered
to be piecewise linear. The usual treatment of knots and tangles requires the arcs, except for
their endpoints, to be in the interior of the 3-space. However, on this point we will differ. We
just require that the whole tangles are in the 3-space, allowing the relative interior of the arcs
to intersect with the boundary of the 3-space. For instance, this was dd®je To jnake the
equivalence relation precise, we give here a definition of tangle equivalence used in this paper.

Two tanglesT; and T, are related by arlementary deformatioifi they only differ locally
by one of the following two cases.

(i) The segmentgp, q] and[q, r] are in the tangld;, the segmenip, r] is in T2 and the

disc spanned bjp, q, r] intersectsT, only in the segmentp, r].
(i) The segmentp, r] is in the tangleTy, the pointp is an endpoint ofl1, the segment

[g,r]is in Ty, the pointq is an endpoint off; and the disc spanned lpp, g, r] inter-
sectsT, only in the segmerig, r].
The first case is the classical elementary deformation in knot theory15e€apter 2.3].
The second case allows us to move the endpoints of spanning arcs. Observe that the endpoints
must remain on the boundary of the 3-ball. We say that two tariglesd T, areequivalent
if there is a sequencl = 1o, 71, ..., 1t = T2 of tangles in which; is derived fromzj _1 by
an elementary deformation.
The bridge index is a classical knot invariad6[18]. We now extend this invariant to
tangles. Our definition is a generalization of the one given by ArmentiduEpr a different
view of this invariant, see Propositiéch3 and the paragraph preceding it.

DEFINITION 3.1. LetT be atangle in a 3-ball. The tangl€T is in anm-bridge positionf
T is composed ofm mutually disjoint spanning aresg in C which are simultaneously straight
and whose relative interiors are contained in the interidZ cnd some other simple argsg
contained in the boundary @. Moreover, every connected componentlofs required to
contain at least one; .

In the following we talk ofw; in the definition asa-arcs’ andg; as ‘8-arcs’.
If T isinanm-bridge position, then every connected component of the tahgleomposed
of alternatingx-arcs ang3-arcs.
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FIGURE 1. Making bridges on a projected trefoil.

=D

2-bridge position

FIGURE 2. The trefoil knot and its 2-bridge position.

We claim that every tangl€ is equivalent to a tangle which is in anm-bridge position for
some positive integan. Consider the tangl€ in a 3-ball. By elementary deformations of the
tangleT we can move all the endpoints of the spanning arcs to be on the equator of the ball,
obtaining tanglel’. Now we project the tangle straight down on the southern hemisphere of
the ball. When drawing this projection on the hemisphere one has to draw which strands of
the tangle cross over which strands. This is the same as when drawing the diagram of a knot;
see the discussion il%, Chapter 2.4]. Now each overpass in the diagram can be replaced
with a small bridge; see Figurk (Hence the name bridge index.) If there is a component
which has no overpasses (either the component is a straight arc or the unknot) then we make
a small bridge in the middle of this component. Each bridge is a straight spanning arc. More
importantly, this collection of bridges is simultaneously straight. The tanglbtained this
way is in anm-bridge position, wheren is the number of overpasses. Moreover, thenly
differ from the T’ by elementary deformations. In fact, Schubert§][original definition of
the bridge index was the smallest number of ‘bridges’ needed to realize a knot in this manner.
Observe that the typical drawing of the trefoil has three overpasses; see Fiddeace
the trefoil is equivalent to a knot in a 3-bridge position. But we can do better. In Fijtime
trefoil is moved by elementary transformations into a 2-bridge position.

DEFINITION 3.2. For a tangleT we define thdoridge index |§T) as the minimum positive
integerm such that there is a tangtein an m-bridge position and is equivalent toT. If a
tangleT is in a 3-spher€ (in this caseT is a link) then we take a 3-ball’ in C containing
T and define its bridge index with respectGa

A few examples of the bridge index are:

e Anunknot has bridge index 1. In fact, the unknot is the only knot having bridge index 1.
e The trefoil knot has bridge index 2; see Figre
e A straight spanning arc has bridge index 1.
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e Atangle consisting of simultaneously straight spanning arcs has bridge imdex

e The bridge index for knots satisfiggK1#K2) = b(K1) + b(K2) — 1, where # de-
notes knot addition14, 15, 18). Hence for every positive integerthere is a knot with
bridge indexn, for example, theén — 1)-fold knot sumK#"=D whereK denotes the
trefoil knot. Since the trefoiK has bridge index 2, we conclude th&f"—1 has bridge
indexn.

The bridge index of a knot can be viewed as the minimum number of local maxima over all
knot diagrams of the knot; se&f, Chapter 7.3]. The following proposition shows this is also
the case for our definition of the bridge index for tangleshedght function hon the closed
3-ball C is a continuous function from the ball onto an intervala, b] such that the inverse
imageh—1(x) is a closed disc fox € (a, b) andh—1(a) andh—1(b) are both points. A point
p on a tangleT is alocal maximumif p is not an endpoint of the tanglE and there is a
positive numbek such thah(p) > h(x) for all x € T with |x — p| < ¢.

PropPoOsSITION3.3. The bridge index of the tangle T in tBeball C is given by
b(T) = min{number of local maxima of T with respect tp-h number of paths of T

where h ranges over all possible height functions of the ball C.

Since this proposition is not needed for the later sections of the paper, we omit the proof. This
kind of equivalence is well known for knot3][(in this case the number of paths is zero), and
the proof for tangles is almost the same as that for knots.

The next proposition and Propositié6 are the keys to the theorems in the following
sections.

PrROPOSITION3.4. Let C be a3-ball (3-spherg and G, and G, be 3-balls such that C=
C1UCzand G NCyis a2-ball (2-spherg. Let T be a tangle of C. Set 10 be the intersection
T N Cy and let T be the topological closure of F T;. (Hence T and T, are tangles of @
and G, respectively. Then we have

b(T) < b(T1) + b(T2).

PrRoOOF Consider first the case wheb is a 3-sphere. It is possible to choose a 3-ball
C’ € C such thafT is contained irC’, C/ = C’' N Cj is a 3-ball fori = 1, 2, the tangl€T; is
contained inC/ for i = 1, 2 andC; N C; is a 2-ball inCy N C,. Now when replacing, Cy,
C2by C’, C1, C; the bridge indices of , T; and T, do not change. Hence we can assume that
Cis a 3-ball.

We will construct a tangle which is equivalent to the tangle and is in a(b(T1) + b(T2))-
bridge position. This will prove thdi(T) = b(r) < b(T1) + b(T2) which is the claim of the
proposition.

The intersectionly N T» is a setP of points{p1, p2, ..., pt} in C1 N Cy. Using some
elementary deformations, we can assume that all the poirsligf on the boundary of the
discC1 N Co.

Let 7; be a tangle which is equivalent 1 and in ab(T;)-bridge position inC;, i = 1, 2.
Without loss of generality, we can assume that the endpointsdo not lie inC1 N Cy. Let
p{j be the endpoint of; corresponding tg; of T;. Then we conneagp; and p{j by an arc on
the boundary o€; (i = 1, 2) suchthat = 711 Ut U { p/lj Pj p/zj} is equivalent tor . The fact
that such a connection is possible can be checked step by step according to the elementary
deformations fronT; to 7.

Observe that is now a tangle in &b(T1)+b(T2))-bridge position. Moreover is equivalent
to T, thus proving the desired inequality. O
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We remark that the requirement in Definiti@2 that every connected component must
have at least one-arc is necessary in the proof of Propositid. The following case could
otherwise occur: a spanning arcconsists of exactly ong-arc on the boundary o and
an arcp{; pj would have to cross this arc. This situation would make the construction in the
proof fai'.

Proposition3.4 gives a bound fob(T) in terms ofb(Ty) andb(T»). In the case whefi> is
restricted to a collection of simultaneously straight spanning arcs, LeB¥srend Proposi-
tion 3.6improve the bound fob(T). These two results will be useful in Sectiohand®é.

LEMMA 3.5. Let C be a3-ball (3-spherg and G and G be3-balls such that C= C1UC;
and G NC;is az2-ball (2-spherg. Let T be atangle of C. Sej 1o be the intersection MCy
and let § be the topological closure of F T1. Assume thatlis a straight spanning arc.

() If T1 N T, consists of two points then(d) < b(Ty).
(i) If Ty N T, is one point then B') = b(Ty).
(i) FTiNTo=0@thenkT) =b(Ty) + 1.

The proof of this lemma is straightforward and hence omitted. The next proposition general-
izes the previous lemma.

PROPOSITION3.6. Let C be a3-ball (3-spheré and G and G be 3-balls such that C=
C1UC2and G NCyis a2-ball (2-spherg. Let T be a tangle of C. Set 1o be the intersection
T N Cy and let  be the topological closure of ¥ T1. Assume thatslconsists of

e a straight spanning arcs each of which intersects withinltwo points,
e b straight spanning arcs each of which intersects withinfone point, and
e C straight spanning arcs each of which intersects withinlzero points.

If T2 is simultaneously straight with respect tq G C, then we have

b(T) = b(Ty) +c.

PROOF Similar to Propositior8.4, the case whe@ is a 3-sphere reduces to the case when
C is a 3-ball. Hence we may assume tlails a 3-ball. Becaus®&; is simultaneously straight
with respect taC; N Cy, the arcs off; have mutually disjoint semispanning discs avoiding the
interior of C; N Cy. Along these semispanning discs, we can move the arcsi@te- C1 by
elementary moves. Thus we can assume without loss of generality that the apcarefall
on the boundary of.

Now take a tubular neighborhoddi(k; ) for each ards; of T». If we take the neighborhoods
small enough then they are mutually disjoint and also disjoint from the arts et C° be
the 3-ballC — [ J N(kj). Now add each tub&l (ki) one by one taC°. We observe that each
step satisfies the condition of Lemr&, and the inequality follows. |

The condition thafl, is simultaneously straighwith respect to @ N C, is necessary for
Proposition3.6. If this condition is dropped, it is straightforward to construct counterexam-
ples.

4, CONSTRUCTIBLECOMPLEXES

In this section we show that tangles embedded in the 1-skeleton of a three-dimensional
constructible complex must contain at least the bridge index number of edges. For such a
tangleT, lete(T) denote the number of edges that the tangle contains.
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THEOREM4.1. Let C be a three-dimensional polytopal ball or sphere which is con-
structible. Let T be a tangle contained in theskeleton of the polytopal complex C. Then
we have the inequality

b(T) < e(T).

PROOF The proof is by induction on the number of facets@f The induction basis is
whenC is a three-dimensional polytope. In this c8sés a disjoint union of path and cycles
(unknots). Lek be the number of componentsDf Thenb(T) = k < e(T), and the induction
basis is complete.

The induction step is as follows. By condition (ii) of Definiti@nl, we have two 3-dimen-
sional complexe€; andC, which are constructible 3-balls atl= C;UC,. LetT; = TNCy
andT, = T — T;. By Propositior3.4and the induction hypothesis, we obtain

b(T) < b(T1) +b(T2) < e(T1) + e(T2) = &(T).
This completes the induction. O

Theoremd.limplies the following result.

THEOREM4.2. Let C be a three-dimensional polytopal ball or sphere. Assume that the
1-skeleton of the complex C contains a knot K such that

e(K) <b(K)-1.

Then the polytopal complex C is non-constructible.

Thus our theorem proves the existence of non-constructible triangulations of a 3-sphere or
a 3-ball, if we can embed a knot with large bridge index using a small number of edges. The
following well-known proposition states that such an embedding is possible. In fact, it says
that any knot can be embedded into a triangulated 3-sphere or a 3-balkiesiggs, where
is any integer greater than or equal to 3. For references see Lickbgdbelmma 3] or Ziegler
[22, Section 3.2].

ProPOSITION4.3. Given any knot K and an integer=e 3, there exists a triangulation of
a 3-sphere or a3-ball which embeds K as a subcomplex consisting of e e@geshence e
vertices.

We now present two applications of Theordn2 For a simplicial complexC, denote by
A(C) the barycentric subdivision &.

PrROPOSITION4.4. Let d be greater than or equal & and n be any non-negative integer.
Then there exists a triangulationg@) of the d-dimensional sphefer ball) which is piece-
wise linear(PL), such that the n-fold barycentric subdivisiaf (Cq(n)) is non-constructible.

PROOF The proof is by induction on dimensiod. First we consider the casg= 3.
Choose a knoK with bridge index larger than or equal to-32" + 1. Let C3(n) be a tri-
angulation of the three-dimensional sphere (or ball) that contdiren three edges. Such
a triangulation is guaranteed by Propositi#3. Observe that when taking the barycentric
subdivision each edge is divided into two edges. Hence the knointained inA"(C3(n))
consists of 3 2" edges. From Theorerh.2, it now follows that the complexA"(C3z(n)) is
non-constructible. Finally, observe that all triangulations of three-dimensional spheres (and
balls) are piecewise linear.
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FIGURE 3. Two triangles joined at an edge and the cubical barycentric subdivision.

Assume now thadl > 4. In the case of spheres, &§(n) be the suspension &fy_1(n); that
is, Cg(n) = Z(Cg_1(n)) = ux Cy_1(n) U v x Cy_1(n), whereu andv are newly introduced
vertices. This is a triangulation of the Rl-sphere sinc€4_1(n) is a PL{d — 1)-sphere. In
the case of balls, we consider the cone dUgr;(n) instead of the suspension; that is, we let
Cg(n) = v x Cy_1(n), wherev is a newly introduced vertex. This yields a Btball since
Cq_1(n)is a PL{d — 1)-ball. In both cases, observe that

linkcymny(v) = Cq—1(n).
For a simplicial compleD and a vertex of D we have
link an(py(v) = A"(linkp (v)),
whereZ= denotes combinatorial equivalence. Using these relations, we have
link Anccy(my) (v) = A"(linkgymy (v)) = A"(Cy—1(N)).

Since linkyn(c,ny) (v) is not constructible we conclude that'(Cq(n)) is not constructible
either, from what has been stated in Secfion ]

Given a simplicial complexC, thecubical barycentric subdivisioaf the complexC is the
abstract cubical compleX(C) such that:

(i) the set of vertices dfi(C) is the set of non-empty faces 6f and
(i) aface of the cubical complex(C) is an interval of the face poset 6f

It is straightforward to see that the cubical barycentric subdivisi@d) is a cubical complex
and thatd(C) is a subdivision of the simplicial comple2. Hence the simplicial complex
C and its cubical barycentric subdivision(C) have the same geometrical realization. See
Figure3 for an example of cubical barycentric subdivision.

PROPOSITION4.5. Let d be greater than or equal t8. Then there exists a d-dimen-
sional simplicial PL-sphere gsuch that the cubical barycentric subdivisiar{Cq) is non-
constructible.

PrROOF Consider first the case whehis equal to 3. Choose a knét with bridge index
larger than or equal to 7 and I€t3 be a simplicial complex that contains the kriton
three edges. Observe that the complxis non-constructible. By the same argument as in
Propositiord.4, the cubical complexi(Cg) is non-constructible.

The remaining part of the proof is by induction on dimension. Cgtbe the suspension
of Cq_1; thatis,Cq = X (Cyq—1) = u*x Cy_1 Uv * Cq_1, whereu andv are newly introduced
vertices. Then we have that ligk(v) = Cy—1, and henceq is non-constructible. Observe
that linkgcy) (v) = Cg—1, and henc&l(Cy) is also non-constructible. O
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Propositiord.5 settles a conjecture of Hetyeli(, 11] on the existence of a triangulati@
of thed-dimensional sphere such thatC) is not shellable. For dimensiodsgreater than or
equal to 4 this was settled by Readdy (unpublished). The second half of our proof is essentially
her argument.
In the light of Propositiond.4and4.5we have the following proposition. Its proof follows
the lines of the two previous proofs.

PROPOSITION4.6. Let d be greater than or equal ®and n be any non-negative integer.
Then there exists a d-dimensional simplicial PL-sphegéng such that the cubical complex
d(A"(Cq4(n))) is non-constructible.

5. SHELLABLE AND VERTEX DECOMPOSABLESIMPLICIAL COMPLEXES

In this section we improve the results of Sectibfor shellable and vertex decomposable
complexes.

THEOREMS.1. Let C be a three-dimensional polytopal ball or sphere which is shellable.
Let K be a knot contained in theskeleton of the simplicial complex C. Then we have the
inequality

2.b(K) < e(K).
PROOF. We may assume th#t is not the unknot. Sinc€ is shellable there is an ordering of
the facets, F», ..., FysuchthatF1 U--- U Fj_1) N Fj is a shellable 2-complex.

Letc™ —c,cl’ = FU...UFR_g, andCy’ = F. Let ™Y = K, TV =

(i+1) () () (i+1) () (€8] (i+1) () ()

Tl(i+1) N C](i), an(?i)T2 =T _.Tl . (T;” = 0.) Note _that(_:l = C_1 uC,’ and
T =T,” UT,  are decompositions of the type described in Proposgidn

Observe t‘haﬂ'z(i )_ isin 8C§) — Cf). This assures thélfz(i) is simultaneously straight with
respect td:i') N Cg); that is, the condition of Propositidh6is satisfied for each Leta;, b
andc; be the number of arcs dfz(') described in Propositio8.6. Then we have

b ™) <b™) 4. (5.1)

Moreover, by considering the Euler characteristic of the taiﬁﬁlél) we have that
X (T = xTP) —a +a. (52)
Adding all the inequalities in5.1) and separately adding all the equalities5r?), using the

fact thatTl(l) =0, Tl(”“) =K, b®@) =0, x(@) = 0andy (K) = 0, we obtain the following
inequality and equality

n n n
b(K)sZci and Zci=2ai.
= i—1 i—1

Hence we have

n n n
e(K) > Y (@+hi+6) > Y (@+c)=2-) ¢ >2:b(K). =

i=1 i=1 i=1

For vertex decomposability we obtain an even better bound.
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THEOREMb5.2. Let C be a three-dimensional simplicial ball or sphere which is vertex
decomposable. Let K be a knot contained inXkrskeleton of the simplicial complex C. Then
we have the inequality

3. b(K) < e(K).

ProoF If C is vertex decomposable, Definiti@3 shows that there is a sequence of ver-
ticesxn, Xn—1, - . ., X1 Of C such thatx; is a shedding vertex af - - ((C — Xp) — Xn—1) - -+ —
xi+1). LetC{™ = ¢, ¢’ = C{'*Y — x, andCy’ = x; * link a+n (). Let ™Y = K,

1

T = 7MY el andTy” = TP - 70 (1Y = 0.) Observe tha€{ ™ = ¢ U
cy andT!*™ = 7V UT)" are the decompositions described in Proposifigh

The proof follows the same lines as the proof of Theoketn Similarly we obtairb(K) <
Yiicandd ¢ =3, a. The major difference in this proof is that a spanning arc in

Tz(i) counted byg; consists of at least two edges. Hence we have the inequality
e ™) > e(T{") +2-a +bi +a.

Thus we have

n n n
eK)=Y (2-a+b+c)>) (2-a+6)=3-> ¢ >3-b(K).
i=1 i=1 i=1
Itis important to note that this proof only depends on Len81sand not on the more general
Proposition3.6. a

6. COMPATIBLE AND WEAKLY COMPATIBLE TANGLES

Theoremsb.1 and4.2 can be viewed, respectively, as a dual result to Armentrout’s The-
orems 1 and 3 in]]. In this section we generalize his result to hold for polytopal 3-balls
and 3-spheres. Again our conclusions from the inequalities are non-constructibility and non-
shellability.

Let C be a three-dimensional polytopal ball or sphere. A tafgis compatiblewith the
complexC if T and the 2-skeleton df are in relative general position and for all facéts
of C the intersectiorF N T is empty or a straight spanning arc in the faEetSimilarly, T is
weakly compatiblevith the complexC if F N C is a set of simultaneously straight spanning
arcs in the faceF. The tangleT is naturally partitioned by the compléx Let p(T) denote
the number of arcs in this partition. For such weakly compatible knots contain€dwe
show the following analogue of Theorefril

THEOREM®G.1. If C is a constructible three-dimensional polytopal ball or sphere and C
contains a tangle T which is weakly compatible with C then

b(T) < p(T).

PROOFE The proofis by induction on the number of facet<ofif C is a three-dimensional
polytope therl is a set of simultaneously straight spanning arcs. In thisleéBgand p(T)
are both equal to the number of spanning arc$ dflence the induction basis is complete.

The induction step is the same as Theore By condition (ii) of Definition2.1we have
two three-dimensional complex€s andC, which are constructible 3-balls af= C1UC,.
LetT; = TNCyandT, = T — Ty. By Propositior8.4and the induction hypothesis, we obtain

b(T) < b(T1) +b(T2) < p(T1) + p(T2) = p(T).
This completes the induction. ]
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Hence we conclude with the following theorem.

THEOREM®G6.2. Let C be a three-dimensional polytopal ball or sphere. If there is a knot K

which is weakly compatible with C such that
p(K) < b(K) -1,
then C is non-constructible.

Armentrout’s theorem1, Theorem 3] states that if a weakly compatible kKoin a cell
partitioning hasp(K) < b(K) — 1 then the partitioning is non-shellable. This theorem was
shown to be a consequence of the fact that if a compatibleiknot cell partitioning satisfies
p(K) < 2. b(K) — 1 then the partitioning is non-shellablg [Theorem 1]. This theorem
can also be re-proved by a very simple proof similar to that for Thed&dmObserve that
Armentrout’s results are about simple polytopal spheres, whereas our proofs extend to non-
simple polytopal balls or spheres.

The next result is a strengthening of Armentrout’s theorgénTheorem 1].

THEOREMG6.3. If C is a shellable three-dimensional polytopal ball or sphere and C con-
tains a knot K which is compatible with C then

2-b(K) < p(K).
PROOF. As in the proof of Theorers.1, we defineCf), Cg), Tl(i) ande(i). There are now
four possible cases @ in Cj .
@) TV in C%) is an arc and]g) N TQS) consists of two points.
2) Tz(f) in C%) is an arc and](f) N Tz(f) is one point.
3) T in C%) is an arc and;’ N T, is empty.
4) 7" inCY is empty.
Letm; denote the number of cases of tyij¢. Again by studying how the bridge index (using
Lemma3.5) respectively the Euler characteristic change, we obtain the ineghéity < ms
and the equalityn; = m3z. Hence we have
p(K) =mg + m2 + mg
>2-mg
> 2-b(K). ad

It is desirable to improve Theoref3 by replacing the compatible condition with weakly
compatible. However one cannot prove this stronger statement by the same technique used in
the proof of Theorend.1since PropositioB.6 does not apply.

7. CONCLUDING REMARKS

In discussions with Ziegler we conjecture the following strengthening of the results in The-
orem4.2
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CONJECTURE?.1. T Let C be a three-dimensional polytopal ball or sphere and let K be a
knot contained in thé-skeleton of the complex C. If

e(K)<2-b(K)-1,

then the polytopal complex C is non-constructible.

The bound in Conjecturé.1lis sharp. Namely, by the same constructiontag&kamples 2], it

is straightforward to produce examples of shellable simplicial 3-spheres (and 3-balls) which
have a knotK consisting of 2 b(K) edges. From this observation, one can see that Theo-
rem5.1lachieves the sharp bound and that the conjecture is at least true in the case of shellable
complexes.

Consider a 3-sphere containing the trefoil knot on three edges. By Thdotehis sphere
is shown to be non-constructible. But the trefoil knot has bridge index 2. Hence observe that
the non-constructibility of this sphere does not follow from Theoreghbut it would follow
from Conjecturer. L

Analogously, by the same construction 8sExample 4], we can build examples of vertex
decomposable 3-spheres (balls) which have a Knobnsisting of 3b(K) edges. This shows
that Theorenb.2 achieves the sharp bound.

In Proposition4.4 it is shown that there are triangulated 3-spheres or 3-balls whese
fold barycentric subdivisions are not constructible for any gimersuch a result for non-
shellability was already known as a consequence of Lickorish’s thedt8m@n the other
hand, the barycentric subdivision of a constructible complex is always constructible and the
same is true for shellability. This leads one to conjecture that for a given 3-sphere or &3-ball
there is a non-negative intege¢ such thainc-fold barycentric subdivision is constructible.

For dimensions greater than or equal to 5, non-PL-spheres are counterexamples to this prob-
lem (because constructible spheres are piecewise linear), but for the cases of dimensions 3
and 4, and that of PL-spheres, the problem is open.

Some non-shellable examples of triangulated 3-balls are constructible. For example, Rudin’s
3-ball [17], Grinbaum’s 3-ball (unpublished; a description can be foundjiahd [8]) and
Ziegler's 3-ball R2] are known to be constructible; se®, 1L6]. Is Vince's non-shellable 3-
sphere 19 constructible? Is there a large class of objects which are constructible but not
shellable?

Finally, our bounds in Theorengs?2, 5.1, 5.2and6.2are all in terms of the bridge index of
the knot. Could there be similar results in terms of other knot invariants? It seems plausible
that knot invariants which are additive or subadditive such as the genus and the braid index
could play a role in future results.
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