
doi:10.1006/eujc.2000.0477
Available online at http://www.idealibrary.com on

Europ. J. Combinatorics(2001)22, 475–489

Non-constructible Complexes and the Bridge Index

RICHARD EHRENBORG ANDMASAHIRO HACHIMORI†

We show that if a three-dimensional polytopal complex has a knot in its 1-skeleton, where the
bridge index of the knot is larger than the number of edges of the knot, then the complex is not con-
structible, and hence, not shellable. As an application we settle a conjecture of Hetyei concerning the
shellability of cubical barycentric subdivisions of 3-spheres. We also obtain similar bounds conclud-
ing that a 3-sphere or 3-ball is non-shellable or not vertex decomposable. These two last bounds are
sharp.
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1. INTRODUCTION

In the history of the study of shellability, many examples of non-shellable triangulations of
balls and spheres have been constructed. A review can be found in the paper by Ziegler [22].
There are two other important properties that a simplicial complex can satisfy, namely con-
structibility and vertex decomposability. These properties satisfy the following hierarchy.

vertex decomposableH⇒ shellable H⇒ constructible.

By considering the contrapositive implications; that is,

not vertex decomposable⇐H non-shellable ⇐H non-constructible,

we have that non-shellability is implied by non-constructibility.
Among the examples of non-shellable triangulations, Furch’s 3-ball [6] (also shown in

Bing’s article [2]) and Lickorish’s 3-sphere [13] involve a special knot embedded as a 1-
dimensional complex of small size. Both of these examples are treated in the paper of Hachi-
mori and Ziegler [9] and were extended to the following theorem.

THEOREM 1.1 (HACHIMORI AND ZIEGLER). A 3-ball with a knotted spanning arc con-
sisting of {at most2 edges is not constructible,

3 edges can be shellable, but not vertex decomposable,
4 edges can be vertex decomposable,

and a triangulated3-sphere or3-ball with a knot consisting of{at most3 edges is not constructible,
4 or 5 edges can be shellable, but not vertex decomposable,
6 edges can be vertex decomposable.

Shellability and constructibility naturally extend to polytopal complexes, whereas vertex de-
composability only applies to simplicial complexes. We note that the proof of the parts of
Theorem1.1 involving shellable and constructible triangulated manifolds is valid for poly-
topal complexes and the result naturally extends to polytopal decompositions.

In this paper we extend the Hachimori–Ziegler result for knots of larger size. In Theorem4.2
we show that if the bridge index of a knot is larger than the number of edges of the knot, then
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the complex is not constructible. Similar bounds hold for concluding that a simplicial complex
is not shellable or vertex decomposable.

The present work was inspired by the results of Armentrout [1]. He considered simple cell
partitionings that contain a knot through its 2- and 3-cells. If the knot has a bridge index larger
than the number of spanning arcs it is partitioned into by the cell partitioning, then he proved
that the cell partitioning is not shellable [1, Theorem 3]. Thus one can view Theorem4.2 as
the dual to Armentrout’s Theorem 3. Moreover, in Section6 we extend his result to prove
non-constructibility for general polytopal complexes that contain a weakly compatible knot
in their two- and three-dimensional faces.

Our proofs rely on extending the bridge index, a knot invariant, to tangles. A tangle is a
disjoint collection of paths and knots inside a 3-ball such that the endpoints of the paths are
on the boundary of the 3-ball. The bridge index of a knot can be defined using the notion of
bridge positions, and we define the bridge index for tangles in the same manner as that for
knots. The essential property of the bridge index of tangles is Proposition3.4which states that
the bridge index is subadditive. This should be compared with the fact that the bridge index
for knots is additive under knot addition; see [18].

Our theorem has several applications. One is the existence of triangulations of a PL-d-
sphere and a PL-d-ball whosen-fold barycentric subdivision is not constructible for given
integersn ≥ 0 andd ≥ 3. Another important application is a conjecture by Hetyei on
the existence of triangulated 3-spheres whose cubical barycentric subdivisions are
non-shellable [10, 11]. Our result solves this conjecture affirmatively.

In the concluding remarks (Section7) we discuss the sharpness of our bounds. Moreover,
further questions for research are presented.

2. PRELIMINARIES

In this section we give the basic definitions related to polytopal complexes, constructibility
and vertex decomposability. For other basic material on polytopal complexes, we recommend
the book by Ziegler [21].

A polytopal complex Cis a finite set of (convex) polytopes such that (i) ifP ∈ C then all
the faces ofP are contained inC, and (ii) if P, Q ∈ C thenP ∩ Q is a face of bothP andQ.
In particular, the empty set∅ is always contained inC. The members ofC arefacesof C. The
zero-dimensional faces are calledverticesand the one-dimensional faces are callededges.
The empty set∅ is a (−1)-dimensional face. Thedimensionof a polytopal complex is the
largest dimension of its faces. Theface posetof a polytopal complex is the partially ordered
set consisting of all the faces ordered by inclusion. Observe that the face poset is a meet-
semilattice. The inclusion-maximal faces arefacets. If all the facets are of the same dimension
then the complexC is pure. If all the faces are simplices then it is called asimplicial complex,
whereas if they are all combinatorially equivalent to cubes then it is called acubical complex.
A d-dimensional polytopal complexC is calledsimple if wheneverm of its facets have a
non-empty intersection its dimension isd −m+ 1. Thek-skeletonof a polytopal complex is
the collection of all faces of dimensionk or less. In particular, the 1-skeleton consists of all
vertices and edges. Thelink of a faceP in a polytopal complexC, linkC(P), is the polytopal
complex which is combinatorially equivalent to the face figure ofP in C, namely, a polytopal
complex whose face poset is the same as the upper ideal of all elements containing the face
P in the face poset ofC. For a simplicial complexC let u ∗ C = C ∪ {u ∗ σ : σ ∈ C} be the
coneof C, whereu is a vertex not belonging toC andu ∗ σ is a simplex spanned byu andσ .
In addition, let6(C) = u ∗C ∪ v ∗C be thesuspensionof C, whereu andv are two distinct
vertices not inC.
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For a polytopal complexC, the union|C| of all the polytopes ofC is theunderlying spaceof
C andC is called apolytopal decompositionof |C|. A polytopal (simplicial, cubical) manifold
is a polytopal (simplicial, cubical, respectively) complex whose underlying space is homeo-
morphic to the manifold.

DEFINITION 2.1. A d-dimensional pure polytopal complexC is constructibleif:
(i) C is ad-dimensional polytope, or

(ii) there exist polytopal complexesC1 andC2 such thatC = C1 ∪ C2, the complexes
C1 andC2 ared-dimensional pure constructible polytopal complexes and the complex
C1 ∩ C2 is a(d − 1)-dimensional pure constructible polytopal complex.

The idea of constructibility can be seen in combinatorial topology, for instance in Zeeman’s
book [20]. The first explicit definition of this term is likely due to Hochster [12].

DEFINITION 2.2. A d-dimensional pure polytopal complexC is shellableif:
(i) C is ad-dimensional polytope, or

(ii) there exist polytopal complexesC1 andC2 such thatC = C1 ∪ C2, the complexC1 is
ad-dimensional pure shellable polytopal complex,C2 is ad-dimensional polytope and
the complexC1 ∩ C2 is a(d − 1)-dimensional pure shellable polytopal complex.

This definition of shellability is a reformulation of the classical definition. The classical defi-
nition is that there exists an ordering of the facetsF1, F2, . . . , Fn (i.e., a shelling) such that for
all 2≤ j ≤ n the complex(F1∪ · · · ∪ F j−1)∩ F j is (d− 1)-dimensional and shellable. This
definition of shellability is equivalent to the definition used in the paper of Bruggesser and
Mani [4], but weaker than the usual definition; see [21]. However, for simplicial complexes
and cubical complexes both definitions are equivalent becaused-simplices andd-cubes are ex-
tendably shellable. By comparing the condition on the complexC2 in Definitions2.1and2.2,
we observe that constructibility is a natural relaxation of shellability.

Let C be a polytopal complex andv a vertex ofC. Observe that ifC is a constructible
complex then the link of the complexC at the vertexv, linkC(v), is also constructible; see [3,
p. 1855]. This allows us to lift a non-constructible object from one dimension to the next.
Namely the contrapositive statement is

linkC(v) is non-constructible H⇒ C is non-constructible.

This property will be used in the proof of Propositions4.4and4.5.
We remark that ifC is ad-dimensional constructible complex whose(d − 1)-dimensional

faces belong to at most two facets then|C| is a PL-ball or a PL-sphere. (See Björner [3,
Theorem 11.4] and Zeeman [20, Chapter 3].) Thus ifC is a constructible polytopal ball or a
sphere thenC1 andC2 in Definition2.1are constructible polytopal balls.

ForC a simplicial complex andv a vertex of the complexC, letC−v denote the simplicial
complex consisting of all the facesF in C that do not contain the vertexv.

DEFINITION 2.3. A d-dimensional pure simplicial complexC is vertex decomposableif:
(i) C is ad-dimensional simplex, or

(ii) there exists a vertexv in C such thatC−v is a pured-dimensional vertex decomposable
simplicial complex and linkC(v) is a (d − 1)-dimensional pure vertex decomposable
simplicial complex.

The vertexv in part (ii) is called ashedding vertexof the simplicial complexC. The definition
of vertex decomposability is due to Provan and Billera, who showed that vertex decompos-
ability implies shellability [16].
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3. TANGLES AND THE BRIDGE INDEX

We now introduce knots, tangles and the bridge index and prove the subadditivity for the
bridge index. For references on knot theory, we suggest the books by Lickorish [14] and
Livingston [15].

A knotis a simple closed arc contained in a three-dimensional space. The three-dimensional
spaces we consider are 3-balls and 3-spheres. Alink is the disjoint union of knots. Aspanning
arc is a simple arc contained in a 3-ball whose endpoints are on the boundary of the ball. A
tangle is a set of mutually disjoint spanning arcs and knots in a 3-ball or 3-sphere. Observe
that a tangle in a 3-sphere is necessarily a link since the 3-sphere has no boundary to which
the spanning arcs can be attached. Asemispanning disc Dis a disc contained in a 3-ballC
such that∂D = α∪β, whereα is some spanning arc ofC andβ is some simple arc contained
in the boundary∂C of C. A spanning arcα is straight if there is a semispanning discD such
thatα ⊆ ∂D. A set of spanning arcs aresimultaneously straightif they are mutually disjoint
and they have mutually disjoint semispanning discs. Moreover, if these semispanning discs
can be taken such that they avoid the interior of a discB on∂C, then we say that the spanning
arcs aresimultaneously straight with respect to the disc B.

As in the classical treatment of knots, the knots and tangles in this paper are considered
to be piecewise linear. The usual treatment of knots and tangles requires the arcs, except for
their endpoints, to be in the interior of the 3-space. However, on this point we will differ. We
just require that the whole tangles are in the 3-space, allowing the relative interior of the arcs
to intersect with the boundary of the 3-space. For instance, this was done in [9]. To make the
equivalence relation precise, we give here a definition of tangle equivalence used in this paper.

Two tanglesT1 andT2 are related by anelementary deformationif they only differ locally
by one of the following two cases.

(i) The segments[p,q] and[q, r ] are in the tangleT1, the segment[p, r ] is in T2 and the
disc spanned by[p,q, r ] intersectsT2 only in the segment[p, r ].

(ii) The segment[p, r ] is in the tangleT1, the pointp is an endpoint ofT1, the segment
[q, r ] is in T2, the pointq is an endpoint ofT2 and the disc spanned by[p,q, r ] inter-
sectsT2 only in the segment[q, r ].

The first case is the classical elementary deformation in knot theory; see [15, Chapter 2.3].
The second case allows us to move the endpoints of spanning arcs. Observe that the endpoints
must remain on the boundary of the 3-ball. We say that two tanglesT1 andT2 areequivalent
if there is a sequenceT1 = τ0, τ1, . . . , τt = T2 of tangles in whichτi is derived fromτi−1 by
an elementary deformation.

The bridge index is a classical knot invariant [15, 18]. We now extend this invariant to
tangles. Our definition is a generalization of the one given by Armentrout [1]. For a different
view of this invariant, see Proposition3.3and the paragraph preceding it.

DEFINITION 3.1. Let T be a tangle in a 3-ballC. The tangleT is in anm-bridge positionif
T is composed ofm mutually disjoint spanning arcsαi in C which are simultaneously straight
and whose relative interiors are contained in the interior ofC, and some other simple arcsβ j

contained in the boundary ofC. Moreover, every connected component ofT is required to
contain at least oneαi .

In the following we talk ofαi in the definition as ‘α-arcs’ andβi as ‘β-arcs’.
If T is in anm-bridge position, then every connected component of the tangleT is composed

of alternatingα-arcs andβ-arcs.
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FIGURE 1. Making bridges on a projected trefoil.
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FIGURE 2. The trefoil knot and its 2-bridge position.

We claim that every tangleT is equivalent to a tangleτ which is in anm-bridge position for
some positive integerm. Consider the tangleT in a 3-ball. By elementary deformations of the
tangleT we can move all the endpoints of the spanning arcs to be on the equator of the ball,
obtaining tangleT ′. Now we project the tangle straight down on the southern hemisphere of
the ball. When drawing this projection on the hemisphere one has to draw which strands of
the tangle cross over which strands. This is the same as when drawing the diagram of a knot;
see the discussion in [15, Chapter 2.4]. Now each overpass in the diagram can be replaced
with a small bridge; see Figure1. (Hence the name bridge index.) If there is a component
which has no overpasses (either the component is a straight arc or the unknot) then we make
a small bridge in the middle of this component. Each bridge is a straight spanning arc. More
importantly, this collection of bridges is simultaneously straight. The tangleτ obtained this
way is in anm-bridge position, wherem is the number of overpasses. Moreover, theτ only
differ from theT ′ by elementary deformations. In fact, Schubert’s [18] original definition of
the bridge index was the smallest number of ‘bridges’ needed to realize a knot in this manner.

Observe that the typical drawing of the trefoil has three overpasses; see Figure1. Hence
the trefoil is equivalent to a knot in a 3-bridge position. But we can do better. In Figure2 the
trefoil is moved by elementary transformations into a 2-bridge position.

DEFINITION 3.2. For a tangleT we define thebridge index b(T) as the minimum positive
integerm such that there is a tangleτ in anm-bridge position andτ is equivalent toT . If a
tangleT is in a 3-sphereC (in this case,T is a link) then we take a 3-ballC′ in C containing
T and define its bridge index with respect toC′.

A few examples of the bridge index are:
• An unknot has bridge index 1. In fact, the unknot is the only knot having bridge index 1.
• The trefoil knot has bridge index 2; see Figure2.
• A straight spanning arc has bridge index 1.
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• A tangle consisting ofn simultaneously straight spanning arcs has bridge indexn.
• The bridge index for knots satisfiesb(K1 # K2) = b(K1) + b(K2) − 1, where # de-

notes knot addition [14, 15, 18]. Hence for every positive integern there is a knot with
bridge indexn, for example, the(n− 1)-fold knot sumK #(n−1), whereK denotes the
trefoil knot. Since the trefoilK has bridge index 2, we conclude thatK #(n−1) has bridge
indexn.

The bridge index of a knot can be viewed as the minimum number of local maxima over all
knot diagrams of the knot; see [15, Chapter 7.3]. The following proposition shows this is also
the case for our definition of the bridge index for tangles. Aheight function hon the closed
3-ball C is a continuous function from the ballC onto an interval[a,b] such that the inverse
imageh−1(x) is a closed disc forx ∈ (a,b) andh−1(a) andh−1(b) are both points. A point
p on a tangleT is a local maximumif p is not an endpoint of the tangleT and there is a
positive numberε such thath(p) ≥ h(x) for all x ∈ T with |x − p| < ε.

PROPOSITION3.3. The bridge index of the tangle T in the3-ball C is given by

b(T) = min{number of local maxima of T with respect to h} + number of paths of T,

where h ranges over all possible height functions of the ball C.

Since this proposition is not needed for the later sections of the paper, we omit the proof. This
kind of equivalence is well known for knots [7] (in this case the number of paths is zero), and
the proof for tangles is almost the same as that for knots.

The next proposition and Proposition3.6 are the keys to the theorems in the following
sections.

PROPOSITION3.4. Let C be a3-ball (3-sphere) and C1 and C2 be3-balls such that C=
C1∪C2 and C1∩C2 is a2-ball (2-sphere). Let T be a tangle of C. Set T1 to be the intersection
T ∩ C1 and let T2 be the topological closure of T− T1. (Hence T1 and T2 are tangles of C1
and C2, respectively.) Then we have

b(T) ≤ b(T1)+ b(T2).

PROOF. Consider first the case whenC is a 3-sphere. It is possible to choose a 3-ball
C′ ⊆ C such thatT is contained inC′, C′i = C′ ∩ Ci is a 3-ball fori = 1,2, the tangleTi is
contained inC′i for i = 1,2 andC′1 ∩ C′2 is a 2-ball inC1 ∩ C2. Now when replacingC, C1,
C2 by C′, C′1, C′2 the bridge indices ofT , T1 andT2 do not change. Hence we can assume that
C is a 3-ball.

We will construct a tangleτ which is equivalent to the tangleT and is in a(b(T1)+b(T2))-
bridge position. This will prove thatb(T) = b(τ ) ≤ b(T1)+ b(T2) which is the claim of the
proposition.

The intersectionT1 ∩ T2 is a setP of points {p1, p2, . . . , pt } in C1 ∩ C2. Using some
elementary deformations, we can assume that all the points ofP lie on the boundary of the
discC1 ∩ C2.

Let τi be a tangle which is equivalent toTi and in ab(Ti )-bridge position inCi , i = 1,2.
Without loss of generality, we can assume that the endpoints inτi do not lie inC1 ∩ C2. Let
p′i j be the endpoint ofτi corresponding top j of Ti . Then we connectp j andp′i j by an arc on
the boundary ofCi (i = 1,2) such thatτ = τ1∪ τ2∪ {p′1 j p j p′2 j } is equivalent toT . The fact
that such a connection is possible can be checked step by step according to the elementary
deformations fromTi to τi .

Observe thatτ is now a tangle in a(b(T1)+b(T2))-bridge position. Moreoverτ is equivalent
to T , thus proving the desired inequality. 2
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We remark that the requirement in Definition3.2 that every connected component must
have at least oneα-arc is necessary in the proof of Proposition3.4. The following case could
otherwise occur: a spanning arcτi consists of exactly oneβ-arc on the boundary ofC and
an arcp′i j p j would have to cross this arc. This situation would make the construction in the
proof fail.

Proposition3.4gives a bound forb(T) in terms ofb(T1) andb(T2). In the case whenT2 is
restricted to a collection of simultaneously straight spanning arcs, Lemma3.5 and Proposi-
tion 3.6 improve the bound forb(T). These two results will be useful in Sections5 and6.

LEMMA 3.5. Let C be a3-ball (3-sphere) and C1 and C2 be3-balls such that C= C1∪C2
and C1∩C2 is a2-ball (2-sphere). Let T be a tangle of C. Set T1 to be the intersection T∩C1
and let T2 be the topological closure of T− T1. Assume that T2 is a straight spanning arc.

(i) If T1 ∩ T2 consists of two points then b(T) ≤ b(T1).
(ii) If T1 ∩ T2 is one point then b(T) = b(T1).

(iii) If T1 ∩ T2 = ∅ then b(T) = b(T1)+ 1.

The proof of this lemma is straightforward and hence omitted. The next proposition general-
izes the previous lemma.

PROPOSITION3.6. Let C be a3-ball (3-sphere) and C1 and C2 be3-balls such that C=
C1∪C2 and C1∩C2 is a2-ball (2-sphere). Let T be a tangle of C. Set T1 to be the intersection
T ∩ C1 and let T2 be the topological closure of T− T1. Assume that T2 consists of

• a straight spanning arcs each of which intersects with T1 in two points,
• b straight spanning arcs each of which intersects with T1 in one point, and
• c straight spanning arcs each of which intersects with T1 in zero points.

If T2 is simultaneously straight with respect to C1 ∩ C2 then we have

b(T) ≤ b(T1)+ c.

PROOF. Similar to Proposition3.4, the case whenC is a 3-sphere reduces to the case when
C is a 3-ball. Hence we may assume thatC is a 3-ball. BecauseT2 is simultaneously straight
with respect toC1∩C2, the arcs ofT2 have mutually disjoint semispanning discs avoiding the
interior ofC1∩C2. Along these semispanning discs, we can move the arcs onto∂C2−C1 by
elementary moves. Thus we can assume without loss of generality that the arcs ofT2 are all
on the boundary ofC.

Now take a tubular neighborhoodN(ki ) for each arcki of T2. If we take the neighborhoods
small enough then they are mutually disjoint and also disjoint from the arcs ofT1. Let C◦ be
the 3-ballC −

⋃
N(ki ). Now add each tubeN(ki ) one by one toC◦. We observe that each

step satisfies the condition of Lemma3.5, and the inequality follows. 2

The condition thatT2 is simultaneously straightwith respect to C1 ∩ C2 is necessary for
Proposition3.6. If this condition is dropped, it is straightforward to construct counterexam-
ples.

4. CONSTRUCTIBLECOMPLEXES

In this section we show that tangles embedded in the 1-skeleton of a three-dimensional
constructible complex must contain at least the bridge index number of edges. For such a
tangleT , let e(T) denote the number of edges that the tangle contains.
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THEOREM 4.1. Let C be a three-dimensional polytopal ball or sphere which is con-
structible. Let T be a tangle contained in the1-skeleton of the polytopal complex C. Then
we have the inequality

b(T) ≤ e(T).

PROOF. The proof is by induction on the number of facets ofC. The induction basis is
whenC is a three-dimensional polytope. In this caseT is a disjoint union of path and cycles
(unknots). Letk be the number of components ofT . Thenb(T) = k ≤ e(T), and the induction
basis is complete.

The induction step is as follows. By condition (ii) of Definition2.1, we have two 3-dimen-
sional complexesC1 andC2 which are constructible 3-balls andC = C1∪C2. LetT1 = T∩C1
andT2 = T − T1. By Proposition3.4and the induction hypothesis, we obtain

b(T) ≤ b(T1)+ b(T2) ≤ e(T1)+ e(T2) = e(T).

This completes the induction. 2

Theorem4.1 implies the following result.

THEOREM 4.2. Let C be a three-dimensional polytopal ball or sphere. Assume that the
1-skeleton of the complex C contains a knot K such that

e(K ) ≤ b(K )− 1.

Then the polytopal complex C is non-constructible.

Thus our theorem proves the existence of non-constructible triangulations of a 3-sphere or
a 3-ball, if we can embed a knot with large bridge index using a small number of edges. The
following well-known proposition states that such an embedding is possible. In fact, it says
that any knot can be embedded into a triangulated 3-sphere or a 3-ball usinge edges, wheree
is any integer greater than or equal to 3. For references see Lickorish [13, Lemma 3] or Ziegler
[22, Section 3.2].

PROPOSITION4.3. Given any knot K and an integer e≥ 3, there exists a triangulation of
a 3-sphere or a3-ball which embeds K as a subcomplex consisting of e edges(and hence e
vertices).

We now present two applications of Theorem4.2. For a simplicial complexC, denote by
1(C) the barycentric subdivision ofC.

PROPOSITION4.4. Let d be greater than or equal to3, and n be any non-negative integer.
Then there exists a triangulation Cd(n) of the d-dimensional sphere(or ball) which is piece-
wise linear(PL), such that the n-fold barycentric subdivision1n(Cd(n)) is non-constructible.

PROOF. The proof is by induction on dimensiond. First we consider the cased = 3.
Choose a knotK with bridge index larger than or equal to 3· 2n

+ 1. Let C3(n) be a tri-
angulation of the three-dimensional sphere (or ball) that containsK on three edges. Such
a triangulation is guaranteed by Proposition4.3. Observe that when taking the barycentric
subdivision each edge is divided into two edges. Hence the knotK contained in1n(C3(n))
consists of 3· 2n edges. From Theorem4.2, it now follows that the complex1n(C3(n)) is
non-constructible. Finally, observe that all triangulations of three-dimensional spheres (and
balls) are piecewise linear.
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FIGURE 3. Two triangles joined at an edge and the cubical barycentric subdivision.

Assume now thatd ≥ 4. In the case of spheres, letCd(n) be the suspension ofCd−1(n); that
is, Cd(n) = 6(Cd−1(n)) = u ∗ Cd−1(n) ∪ v ∗ Cd−1(n), whereu andv are newly introduced
vertices. This is a triangulation of the PL-d-sphere sinceCd−1(n) is a PL-(d − 1)-sphere. In
the case of balls, we consider the cone overCd−1(n) instead of the suspension; that is, we let
Cd(n) = v ∗ Cd−1(n), wherev is a newly introduced vertex. This yields a PL-d-ball since
Cd−1(n) is a PL-(d − 1)-ball. In both cases, observe that

linkCd(n)(v) = Cd−1(n).

For a simplicial complexD and a vertexv of D we have

link1n(D)(v) ∼= 1
n(linkD(v)),

where∼= denotes combinatorial equivalence. Using these relations, we have

link1n(Cd(n))(v)
∼= 1

n(linkCd(n)(v)) = 1
n(Cd−1(n)).

Since link1n(Cd(n))(v) is not constructible we conclude that1n(Cd(n)) is not constructible
either, from what has been stated in Section2. 2

Given a simplicial complexC, thecubical barycentric subdivisionof the complexC is the
abstract cubical complex2(C) such that:

(i) the set of vertices of2(C) is the set of non-empty faces ofC, and
(ii) a face of the cubical complex2(C) is an interval of the face poset ofC.

It is straightforward to see that the cubical barycentric subdivision2(C) is a cubical complex
and that2(C) is a subdivision of the simplicial complexC. Hence the simplicial complex
C and its cubical barycentric subdivision2(C) have the same geometrical realization. See
Figure3 for an example of cubical barycentric subdivision.

PROPOSITION4.5. Let d be greater than or equal to3. Then there exists a d-dimen-
sional simplicial PL-sphere Cd such that the cubical barycentric subdivision2(Cd) is non-
constructible.

PROOF. Consider first the case whend is equal to 3. Choose a knotK with bridge index
larger than or equal to 7 and letC3 be a simplicial complex that contains the knotK on
three edges. Observe that the complexC3 is non-constructible. By the same argument as in
Proposition4.4, the cubical complex2(C3) is non-constructible.

The remaining part of the proof is by induction on dimension. LetCd be the suspension
of Cd−1; that is,Cd = 6(Cd−1) = u ∗Cd−1∪ v ∗Cd−1, whereu andv are newly introduced
vertices. Then we have that linkCd(v) = Cd−1, and henceCd is non-constructible. Observe
that link2(Cd)(v) = Cd−1, and hence2(Cd) is also non-constructible. 2
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Proposition4.5settles a conjecture of Hetyei [10, 11] on the existence of a triangulationC
of thed-dimensional sphere such that2(C) is not shellable. For dimensionsd greater than or
equal to 4 this was settled by Readdy (unpublished). The second half of our proof is essentially
her argument.

In the light of Propositions4.4and4.5we have the following proposition. Its proof follows
the lines of the two previous proofs.

PROPOSITION4.6. Let d be greater than or equal to3 and n be any non-negative integer.
Then there exists a d-dimensional simplicial PL-sphere Cd(n) such that the cubical complex
2(1n(Cd(n))) is non-constructible.

5. SHELLABLE AND VERTEX DECOMPOSABLESIMPLICIAL COMPLEXES

In this section we improve the results of Section4 for shellable and vertex decomposable
complexes.

THEOREM 5.1. Let C be a three-dimensional polytopal ball or sphere which is shellable.
Let K be a knot contained in the1-skeleton of the simplicial complex C. Then we have the
inequality

2 · b(K ) ≤ e(K ).

PROOF. We may assume thatK is not the unknot. SinceC is shellable there is an ordering of
the facetsF1, F2, . . . , Fn such that(F1 ∪ · · · ∪ F j−1) ∩ F j is a shellable 2-complex.

Let C(n+1)
1 = C, C(i )

1 = F1 ∪ · · · ∪ Fi−1, andC(i )
2 = Fi . Let T (n+1)

1 = K , T (i )1 =

T (i+1)
1 ∩ C(i )

1 , andT (i )2 = T (i+1)
1 − T (i )1 . (T (1)1 = ∅.) Note thatC(i+1)

1 = C(i )
1 ∪ C(i )

2 and
T (i+1)

1 = T (i )1 ∪ T (i )2 are decompositions of the type described in Proposition3.4.

Observe thatT (i )2 is in ∂C(i )
2 − C(i )

1 . This assures thatT (i )2 is simultaneously straight with
respect toC(i )

1 ∩C(i )
2 ; that is, the condition of Proposition3.6is satisfied for eachi . Let ai , bi

andci be the number of arcs ofT (i )2 described in Proposition3.6. Then we have

b(T (i+1)
1 ) ≤ b(T (i )1 )+ ci . (5.1)

Moreover, by considering the Euler characteristic of the tangleT (i+1)
1 we have that

χ(T (i+1)
1 ) = χ(T (i )1 )− ai + ci . (5.2)

Adding all the inequalities in (5.1) and separately adding all the equalities in (5.2), using the
fact thatT (1)1 = ∅, T (n+1)

1 = K , b(∅) = 0,χ(∅) = 0 andχ(K ) = 0, we obtain the following
inequality and equality

b(K ) ≤
n∑

i=1

ci and
n∑

i=1

ci =

n∑
i=1

ai .

Hence we have

e(K ) ≥
n∑

i=1

(ai +bi +ci ) ≥

n∑
i=1

(ai +ci ) = 2·
n∑

i=1

ci ≥ 2·b(K ). 2

For vertex decomposability we obtain an even better bound.
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THEOREM 5.2. Let C be a three-dimensional simplicial ball or sphere which is vertex
decomposable. Let K be a knot contained in the1-skeleton of the simplicial complex C. Then
we have the inequality

3 · b(K ) ≤ e(K ).

PROOF. If C is vertex decomposable, Definition2.3shows that there is a sequence of ver-
ticesxn, xn−1, . . . , x1 of C such thatxi is a shedding vertex of(· · · ((C − xn) − xn−1) · · · −

xi+1). Let C(n+1)
1 = C, C(i )

1 = C(i+1)
1 − xi , andC(i )

2 = xi ∗ link
C(i+1)

1
(xi ). Let T (n+1)

1 = K ,

T (i )1 = T (i+1)
1 ∩ C(i )

1 , andT (i )2 = T (i+1)
1 − T (i )1 . (T (1)1 = ∅.) Observe thatC(i+1)

1 = C(i )
1 ∪

C(i )
2 andT (i+1)

1 = T (i )1 ∪ T (i )2 are the decompositions described in Proposition3.4.
The proof follows the same lines as the proof of Theorem5.1. Similarly we obtainb(K ) ≤∑n
i=1 ci and

∑n
i=1 ci =

∑n
i=1 ai . The major difference in this proof is that a spanning arc in

T (i )2 counted byai consists of at least two edges. Hence we have the inequality

e(T (i+1)
1 ) ≥ e(T (i )1 )+ 2 · ai + bi + ci .

Thus we have

e(K ) ≥
n∑

i=1

(2 · ai + bi + ci ) ≥

n∑
i=1

(2 · ai + ci ) = 3 ·
n∑

i=1

ci ≥ 3 · b(K ).

It is important to note that this proof only depends on Lemma3.5and not on the more general
Proposition3.6. 2

6. COMPATIBLE AND WEAKLY COMPATIBLE TANGLES

Theorems5.1 and4.2 can be viewed, respectively, as a dual result to Armentrout’s The-
orems 1 and 3 in [1]. In this section we generalize his result to hold for polytopal 3-balls
and 3-spheres. Again our conclusions from the inequalities are non-constructibility and non-
shellability.

Let C be a three-dimensional polytopal ball or sphere. A tangleT is compatiblewith the
complexC if T and the 2-skeleton ofC are in relative general position and for all facetsF
of C the intersectionF ∩ T is empty or a straight spanning arc in the facetF . Similarly, T is
weakly compatiblewith the complexC if F ∩ C is a set of simultaneously straight spanning
arcs in the facetF . The tangleT is naturally partitioned by the complexC. Let p(T) denote
the number of arcs in this partition. For such weakly compatible knots contained inC, we
show the following analogue of Theorem4.1.

THEOREM 6.1. If C is a constructible three-dimensional polytopal ball or sphere and C
contains a tangle T which is weakly compatible with C then

b(T) ≤ p(T).

PROOF. The proof is by induction on the number of facets ofC. If C is a three-dimensional
polytope thenT is a set of simultaneously straight spanning arcs. In this caseb(T) and p(T)
are both equal to the number of spanning arcs ofT . Hence the induction basis is complete.

The induction step is the same as Theorem4.1. By condition (ii) of Definition2.1we have
two three-dimensional complexesC1 andC2 which are constructible 3-balls andC = C1∪C2.
Let T1 = T∩C1 andT2 = T − T1. By Proposition3.4and the induction hypothesis, we obtain

b(T) ≤ b(T1)+ b(T2) ≤ p(T1)+ p(T2) = p(T).

This completes the induction. 2
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Hence we conclude with the following theorem.

THEOREM 6.2. Let C be a three-dimensional polytopal ball or sphere. If there is a knot K
which is weakly compatible with C such that

p(K ) ≤ b(K )− 1,

then C is non-constructible.

Armentrout’s theorem [1, Theorem 3] states that if a weakly compatible knotK in a cell
partitioning hasp(K ) ≤ b(K ) − 1 then the partitioning is non-shellable. This theorem was
shown to be a consequence of the fact that if a compatible knotK in a cell partitioning satisfies
p(K ) ≤ 2 · b(K ) − 1 then the partitioning is non-shellable [1, Theorem 1]. This theorem
can also be re-proved by a very simple proof similar to that for Theorem5.1. Observe that
Armentrout’s results are about simple polytopal spheres, whereas our proofs extend to non-
simple polytopal balls or spheres.

The next result is a strengthening of Armentrout’s theorem [1, Theorem 1].

THEOREM 6.3. If C is a shellable three-dimensional polytopal ball or sphere and C con-
tains a knot K which is compatible with C then

2 · b(K ) ≤ p(K ).

PROOF. As in the proof of Theorem5.1, we defineC(i )
1 , C(i )

2 , T (i )1 andT (i )2 . There are now
four possible cases ofT (i )2 in C(i )

2 .

(1) T (i )2 in C(i )
2 is an arc andT (i )1 ∩ T (i )2 consists of two points.

(2) T (i )2 in C(i )
2 is an arc andT (i )1 ∩ T (i )2 is one point.

(3) T (i )2 in C(i )
2 is an arc andT (i )1 ∩ T (i )2 is empty.

(4) T (i )2 in C(i )
2 is empty.

Let m j denote the number of cases of type( j ). Again by studying how the bridge index (using
Lemma3.5) respectively the Euler characteristic change, we obtain the inequalityb(K ) ≤ m3
and the equalitym1 = m3. Hence we have

p(K ) = m1+m2+m3

≥ 2 ·m3

≥ 2 · b(K ). 2

It is desirable to improve Theorem6.3 by replacing the compatible condition with weakly
compatible. However one cannot prove this stronger statement by the same technique used in
the proof of Theorem5.1since Proposition3.6does not apply.

7. CONCLUDING REMARKS

In discussions with Ziegler we conjecture the following strengthening of the results in The-
orem4.2.
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CONJECTURE7.1. † Let C be a three-dimensional polytopal ball or sphere and let K be a
knot contained in the1-skeleton of the complex C. If

e(K ) ≤ 2 · b(K )− 1,

then the polytopal complex C is non-constructible.

The bound in Conjecture7.1is sharp. Namely, by the same construction as [9, Examples 2], it
is straightforward to produce examples of shellable simplicial 3-spheres (and 3-balls) which
have a knotK consisting of 2· b(K ) edges. From this observation, one can see that Theo-
rem5.1achieves the sharp bound and that the conjecture is at least true in the case of shellable
complexes.

Consider a 3-sphere containing the trefoil knot on three edges. By Theorem1.1this sphere
is shown to be non-constructible. But the trefoil knot has bridge index 2. Hence observe that
the non-constructibility of this sphere does not follow from Theorem4.2, but it would follow
from Conjecture7.1.

Analogously, by the same construction as [9, Example 4], we can build examples of vertex
decomposable 3-spheres (balls) which have a knotK consisting of 3·b(K ) edges. This shows
that Theorem5.2achieves the sharp bound.

In Proposition4.4 it is shown that there are triangulated 3-spheres or 3-balls whosen-
fold barycentric subdivisions are not constructible for any givenn. Such a result for non-
shellability was already known as a consequence of Lickorish’s theorem [13]. On the other
hand, the barycentric subdivision of a constructible complex is always constructible and the
same is true for shellability. This leads one to conjecture that for a given 3-sphere or a 3-ballC
there is a non-negative integernC such thatnC-fold barycentric subdivision is constructible.
For dimensions greater than or equal to 5, non-PL-spheres are counterexamples to this prob-
lem (because constructible spheres are piecewise linear), but for the cases of dimensions 3
and 4, and that of PL-spheres, the problem is open.

Some non-shellable examples of triangulated 3-balls are constructible. For example, Rudin’s
3-ball [17], Grünbaum’s 3-ball (unpublished; a description can be found in [5] and [8]) and
Ziegler’s 3-ball [22] are known to be constructible; see [8, 16]. Is Vince’s non-shellable 3-
sphere [19] constructible? Is there a large class of objects which are constructible but not
shellable?

Finally, our bounds in Theorems4.2, 5.1, 5.2and6.2are all in terms of the bridge index of
the knot. Could there be similar results in terms of other knot invariants? It seems plausible
that knot invariants which are additive or subadditive such as the genus and the braid index
could play a role in future results.
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11. G. Hetyei, Invariants of cubical spheres, in:Proceedings of the 8th International Conference on For-

mal Power Series and Algebraic Combinatorics, Minneapolis, June 24–June 29, 1996.
12. M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and poly-

topes,Ann. Math., 96 (1972), 318–337.
13. W. B. R. Lickorish, Unshellable triangulations of spheres,Europ. J. Combinatorics, 12 (1991),

527–530.
14. W. B. R. Lickorish,An Introduction to Knot Theory,Graduate Texts in Mathematics, 175, Springer-

Verlag, New York, 1997.
15. C. Livingston,Knot Theory, Carus Mathematical Monographs,24, Mathematical Association of

America, Washington, DC, 1993.
16. J. S. Provan and L. J. Billera, Decompositions of simplicial complexes related to diameters of

convex polyhedra,Math. Oper. Res., 5 (1980), 576–594.
17. M. E. Rudin, An unshellable triangulation of a tetrahedron,Bull. Am. Math. Soc., 64 (1958), 90–91.
18. H. Schubert,̈Uber eine numerische Knoteninvariante,Math. Z., 61 (1954), 245–288.
19. A. Vince, A nonshellable 3-sphere,Europ. J. Combinatorics, 6 (1985), 91–100.
20. E. C. Zeeman,Seminar on Combinatorial Topology, Fascicule 1, Expośes Ià V inclus, Institut des
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