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Abstract. A poset P is called k-Eulerian if every interval of rank k is Eulerian. The class of
k-Eulerian posets interpolates between graded posets and Eulerian posets. It is a straightforward
observation that a 2k-Eulerian poset is also (2k+1)-Eulerian. We prove that the ab-index of a (2k+1)-
Eulerian poset can be expressed in terms of c = a + b, d = ab + ba and e2k+1 = (a − b)2k+1.
The proof relies upon the algebraic approaches of Billera–Liu and Ehrenborg–Readdy. We extend the
Billera–Liu flag algebra to a Newtonian coalgebra. This flag Newtonian coalgebra forms a Laplace
pairing with the Newtonian coalgebra k〈a,b〉 studied by Ehrenborg–Readdy. The ideal of flag oper-
ators that vanish on (2k + 1)-Eulerian posets is also a coideal. Hence, the Laplace pairing implies
that the dual of the coideal is the desired subalgebra of k〈a,b〉. As a corollary we obtain a proof of
the existence of the cd-index which does not use induction.
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1. Introduction

A partially ordered set (poset) is Eulerian if every interval contains the same num-
ber of elements of even rank as of odd rank. Another formulation of the Eulerian
property is every interval satisfies the Euler–Poincaré formula. The classical exam-
ple of an Eulerian poset is the face lattice of a convex polytope. In the combinatorial
study of polytopes there is great interest to understand the number of faces of
different dimensions. More generally, a large open problem is to classify the flag
f -vector of face lattices of convex polytopes, that is, the vector that enumerates
chains (flags) of elements of the partially ordered set.

For the class of graded posets, there are no linear relations holding between the
entries of the flag f -vector. However, for Eulerian posets there are linear relations.
They are called the generalized Dehn-Sommerville relations and were discovered
by Bayer and Billera [2]. Later Bayer and Klapper [5] proved that the flag f -vector
information of an Eulerian poset can be efficiently encoded by a noncommutative
polynomial called the cd-index. The cd-index has stirred a lot of interest in the
field, since it yields itself to computations [3, 6, 7, 10, 11]. Moreover, inequalities
have been proven for the coefficients of the cd-index for various classes of Eulerian
posets [6, 15].

The proofs presented so far for the existence of the cd-index are ad hoc. They
use that certain ab-polynomials can be written in terms of the variables c = a + b
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and d = ab + ba. These proofs offer no reason why these ab-polynomials are
cd-polynomials, that is, they do not explain why the cd-index is a polynomial in
the variables c and d. Up to this point, the algebraic structure behind the scenes has
not been explored in full.

Two articles have addressed the underlying algebraic structure of the cd-index.
First, Billera and Liu [9] studied the generalized Dehn–Sommerville relations and
were able to view them as an ideal in the algebra of flag operators. Secondly,
Ehrenborg and Readdy [11] discovered the underlying coalgebra structure of the
cd-index. This is the main tool for computations involving the cd-index; see [3, 6,
7, 10].

In the current paper we will join both of these approaches. By extending the flag
algebra to a Newtonian coalgebra, the right algebraic setting emerges. The duality
between the Billera–Liu and the Ehrenborg–Readdy approaches is formalized as
a Laplace pairing. The fact the ideal encoding the generalized Dehn–Sommerville
relations also is a coideal yields that the flag f -vectors of Eulerian posets form a
subalgebra. This is the algebra generated by the noncommuting variables c and d,
and hence gives a natural explanation of the algebraic structure of the cd-index.

We use these ideas to study posets with the property that every interval of rank k
or less satisfies the Euler–Poincaré relation. We call such a poset k-Eulerian. This
new class of posets can be seen as interpolating between the class of graded posets
and the class of Eulerian posets. The interesting case to study is (2k + 1)-Eulerian
posets because a 2k-Eulerian poset is necessarily (2k+1)-Eulerian. Since the linear
relations that (2k+1)-Eulerian posets satisfy form a coideal, we directly obtain that
flag f -vectors of (2k+ 1)-Eulerian posets form an algebra. Comparing the Hilbert
series of this algebra with the algebra k〈c,d, e2k+1〉, we conclude that these two
algebras are identical. Hence the flag f -vector of a (2k+1)-Eulerian posets can be
written as a polynomial in the variables c,d and e2k+1. From the case k = ∞, we
obtain as an immediate corollary a new proof of the existence of the cd-index for
Eulerian posets.

This paper is organized as follows. In the next section we introduce flag vectors
and the cd-index. In Section 3 we review the necessary algebraic tools. In Section 4
we develop the algebraic framework and study k-Eulerian posets. We end the paper
with concluding remarks about other classes of posets that may fit in this algebraic
setting.

2. Eulerian Posets and Flag Vectors

A partially ordered set (poset) P is graded if it has a unique minimal element 0̂, a
unique maximal element 1̂ and there is rank function ρ:P → N such that ρ(0̂) = 0
and ρ(y) = p(x)+1 if the element y covers x. For x ≤ z the interval [x, z] is the set
{y: x ≤ y ≤ z}. The rank of an interval [x, y] is ρ(y)− ρ(x) = ρ(x, y). A graded
poset is Eulerian if every interval of rank greater than or equal to one in the poset
satisfies the Euler–Poincaré relation, that is, the number of elements of even rank
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equals the number of elements of odd rank. Equivalently, a poset is Eulerian if
the Möbius function satisfies µ(x, y) = (−1)ρ(x,y) for every interval [x, y]. The
motivating example of Eulerian posets is face lattices of convex polytopes.

Let P be a poset of rank n+ 1. For S a subset of {1, . . . , n} define fS(P ) to be
the number of chains (flags) in the poset having elements with ranks given by the
set S. That is,

fS(P ) = ∣∣{(0̂ = x0 < x1 < · · · < xk+1 = 1̂
)
:
{
ρ(x1), . . . , ρ(xk)

} = S
}∣∣.

The 2n values fS(P ) constitute the flag f -vector of the poset P .
For S a subset {1, . . . , n} define the ab-polynomial vS by vS = v1 · · · vn, where

vi = b if i ∈ S and vi = a − b if i /∈ S. The ab-index of a graded poset P of rank
n+ 1 is the noncommutative polynomial

�(P ) =
∑
S

fS(P ) · vS,

where the sum ranges over all subsets S of {1, . . . , n}.
When the poset P is Eulerian there are linear relations between the entries of the

flag f -vector, namely the generalized Dehn–Sommerville relations [2]. Bayer and
Billera also showed that the dimension of the subspace that satisfies the generalized
Dehn–Sommerville relations is Fn, the nth Fibonacci number (

∑
n≥0 Fn · tn =

1/(1 − t − t2)). A different approach toward understanding the flag f -vector was
taken by Fine, Bayer and Klapper. The following theorem was conjectured by Fine
and proved by Bayer and Klapper [5].

THEOREM 2.1 (Bayer–Klapper). The ab-index of an Eulerian poset can be writ-
ten in terms of c = a + b and d = a · b + b · a.

When �(P ) is written in terms of c and d it is called the cd-index. The existence of
the cd-index is equivalent to the generalized Dehn–Somerville relations. Hence the
cd-index of an Eulerian poset encodes the flag f -vector without any redundancies.
Another way to see this is that the cd-monomials form a basis for the subspace
satisfying the generalized Dehn–Somerville relations. A different proof of this
result was given by Stanley [15]. An improved version of this proof due to Hetyei
appears in [6, Section 3].

Let P and Q be two posets. Define the star product P ∗Q to be the poset on the
set (P − {1̂}) ∪ (Q − {0̂}). The order relation is given by x ≤ P∗Qy if one of the
following three conditions is satisfied: (i) x, y ∈ P and x ≤ P y, (ii) x, y ∈ Q and
x ≤ Q y, (iii) x ∈ P and y ∈ Q. Stanley observed that the ab-index of P ∗Q is the
product of the respective ab-indices, that is, �(P ∗ Q) = �(P ) · �(Q); see [15,
Lemma 1.1].

3. Newtonian Coalgebras and Laplace Correspondence

We begin by recalling some notation. Let k be a field and A a vector space over k.
A product on the vector space A is a linear map µ: A ⊗ A → A. The product µ
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is associative if µ ◦ (µ⊗ id) = µ ◦ (id ⊗ µ). Similarly, a coproduct on the vector
space A is a linear map �:A → A ⊗ A. The coproduct � is coassociative if
(�⊗ id) ◦� = (id ⊗�) ◦�.

DEFINITION 3.1. Let A be a vector space with an associative product µ, and a
coassociative coproduct �. We call the triplet (A,µ,�) a Newtonian coalgebra if
it satisfies the identity

� ◦ µ = (id ⊗ µ) ◦ (�⊗ id)+ (µ⊗ id) ◦ (id ⊗�).

The definition of Newtonian coalgebra originated from Joni and Rota [13] un-
der the name infinitesimal coalgebra. The first major example was the Newtonian
coalgebra of polynomials. This was mentioned in [13] and studied in-depth by
Hirschhorn and Raphael [12], who used it to study the algebra of divided differ-
ences. Ehrenborg and Readdy [11] discovered the ab-index may be viewed as a
Newtonian coalgebra homomorphism between the Newtonian coalgebra spanned
by graded posets and the Newtonian coalgebra k〈a,b〉. In the case of Eulerian
posets, their result implies the cd-index is a Newtonian coalgebra homomorphism
from the Newtonian coalgebra spanned by Eulerian posets to k〈c,d〉.

Let ∗ denote the product (x1⊗· · ·⊗xm)∗(y1⊗· · ·⊗yn) = x1⊗· · ·⊗xm ·y1⊗· · ·
⊗ yn. The Newtonian condition can be reformulated as �(x · y) = �(x) ∗ y + x ∗
�(y), that is, the coproduct behaves like a derivation.

A subalgebra S of a Newtonian coalgebra A is a linearly closed subset of A
such that S · S ⊆ S and �(S) ⊆ S ⊗ S. An ideal I of a Newtonian coalgebra A is
a linearly closed subset such that A · I, I ·A ⊆ A and �(I) ⊆ A⊗ I + I ⊗A. The
Newtonian coalgebra A is graded of type (p, q) if A = ⊕

n≥0 An and the following
inclusions hold: Ai · Aj ⊆ Ai+j+p and �(An) ⊆ ⊕

i+j=n+q Ai ⊗ Aj . Similarly,
one defines subalgebras and ideals to be graded. Observe that if I is a graded ideal
of A then the quotient A/I is also a graded Newtonian coalgebra.

DEFINITION 3.2. Let A and B be two graded Newtonian coalgebras over the
field k. A graded Laplace pairing between A and B is a bilinear form 〈· | ·〉:B ×
A → k such that 〈Bm | An〉 = 0 for m �= n, the restriction 〈· | ·〉:Bn × An → k is
non-degenerate, and the following two identities hold:

〈x · y | u〉 =
∑
u

〈x | u(1)〉 · 〈y | u(2)〉, (3.1)

〈x | u · v〉 =
∑
x

〈x(1) | u〉 · 〈x(2) | v〉, (3.2)

where x, y ∈ B and u, v ∈ A.

Observe if B is graded of type (p, q) then the type of A is (−q,−p). Moreover,
dim(Bn) = dim(An) for all non-negative integers n.
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Let 〈· | ·〉:B × A → k be a Laplace pairing and V a graded subspace of B.
That is, we can write V = ⊕

n≥0 Vn, where Vn ⊆ Bn. Let V ⊥
n be the subspace

of An given by V ⊥
n = {u ∈ An: ∀x ∈ Vn 〈x | u〉 = 0}. Let V ⊥ be the direct

sum
⊕

n≥0 V
⊥. The following proposition is straightforward and thus the proof is

omitted.

PROPOSITION 3.3. Let A and B be a graded Laplace pairing. If S is a graded
subalgebra of B then S⊥ is a graded ideal of A. If I is a graded ideal of B then
I⊥ is a graded subalgebra of A. Moreover, I⊥ and the quotient Newtonian algebra
B/I form a graded Laplace pairing.

4. k-Eulerian Posets

DEFINITION 4.1. A poset P is k-Eulerian if all its intervals of rank k or less are
Eulerian.

Observe every poset is 1-Eulerian and that a poset is 2-Eulerian if every 2-
interval in the Hasse diagram is a diamond. We claim that the condition on a poset
being 2k-Eulerian is equivalent to the condition of being (2k + 1)-Eulerian. Hence
it is sufficient to study k-Eulerian posets when k is odd. The proof of the claim is
included in the arguments leading up to the proof of the main result.

We now state the main theorem of this section.

THEOREM 4.2. The linear span of the ab-indices of (2k + 1)-Eulerian posets is
the algebra k〈c,d, e2k+1〉 for k ≥ 0.

We first begin with a lemma that shows one direction of the theorem.

LEMMA 4.3. The linear span of the ab-indices of (2k + 1)-Eulerian posets con-
tains the algebra k〈c,d, e2k+1〉 for k ≥ 0.

Proof. Let Bn denote the Boolean algebra on n elements. Then �(B2) = c and
�(B3)−�(B2 ∗ B2) = (c2 + d)− c · c = d. Let Tn be the Eulerian poset B∗n

2 .
Observe that �(Tn) = cn. Let Un be the poset of rank n + 1 obtained by taking
two copies of Tn and identifying the minimal and maximal elements. We have
�(Un) = 2 · cn − en. Observe that U2k+1 is (2k + 1)-Eulerian and 2�(T2k+1) −
�(U2k+1) = e2k+1. Now by applying [15, Lemma 1.1] the containment follows. ✷
Continuing the work in [9, 11], we introduce two Newtonian coalgebras and a
Laplace pairing between them. This will give us the appropriate algebraic frame-
work to prove Theorem 4.2.

Let k〈a,b〉 be the algebra of noncommutative polynomials in the variables a
and b. We enrich k〈a,b〉 with a coalgebra structure by defining the coproduct of
a monomial by �(u1 · · · un) = ∑n

i=1 u1 · · · ui−1 ⊗ ui+1 · · · un. Hence k〈a,b〉 is a
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graded Newtonian coalgebra of type (0,−1). This is the Newtonian coalgebra that
is central in the work of Ehrenborg and Readdy [11]. Since �(c) = 2 · 1 ⊗ 1 and
�(e) = 0, k〈c,d, e2k+1〉 is a graded subcoalgebra of k〈a,b〉.

Let A be the algebra of flag operators, that is, the vector space spanned by the
symbols f n

S where n is a positive integer and S is a subset of {1, . . . , n−1}. Define
a grading on A by deg(f n

S ) = n− 1. Hence we can write A = ⊕
n≥0 An. Observe

that dim(An) = 2n. The algebra structure on the algebra of flag operators is given
by f n

S · f m
T = f n+m

S∪{n}∪(T+n) and is extended by linearity. This algebra is associative,
but does not have a unit. The product was first suggested by Kalai [14] and the
algebra it defines was first studied rigorously by Billera and Liu [9].

We enrich the algebra of flag operators A with the coproduct

�(f n
S ) =

∑
i + j = n+ 1

i, j ≥ 1

f i
S∩{1,...,i−1} ⊗ f

j

S∩{i,...,n−1}−i+1,

and extend � by linearity. It is straightforward to see that A forms a graded
Newtonian coalgebra of type (1, 0) and has a counit.

Define a bilinear form on A × k〈a,b〉 → k by 〈f n
S | vT 〉 = δS,T where vT is

the ab-polynomial of degree n−1 defined in Section 2. This bilinear form restricts
to a non-degenerate form An × k〈a,b〉n → k. We claim that A and k〈a,b〉 form a
graded Laplace pair with this bilinear form. The first relation of a Laplace pairing,
Equation (3.1), was verified by the author and appears in [9, Proposition 5.2]. The
second relation, Equation (3.2), is equally direct to prove.

Observe for a poset P of rank n and S a subset of {1, . . . , n − 1} we have
〈f n

S | �(P )〉 = fS(P ). Following [9] define the nth Euler form χn in An−1 by

χn = f n
∅ − f n

{1} + f n
{2} − · · · + (−1)n−1 · f n

{n−1} + (−1)n · f n
∅ .

Hence a poset P of rank n satisfies the Euler–Poincaré relation if 〈χn | �(P )〉 = 0.
Let I be the two-sided ideal in A generated by the elements χ1, χ2, . . . . Sim-

ilarly, let Ik be the ideal in A generated by the elements χ1, χ2, . . . , χk . Observe
that the ideal I is the union

⋃
k≥1 Ik. More importantly, for a k-Eulerian poset P

we have that 〈Ik | �(P )〉 = 0.

LEMMA 4.4. If P is a 2k-Eulerian poset of rank 2k+1 then P is Eulerian. Hence
the two ideals I2k and I2k+1 are identical.

Proof. Among the Euler forms there is the relation

χ2n+1 = −1

2

2n∑
i=1

(
f i

∅ · χ2n+1−i + (−1)i · χ2n+1−i · f i
∅
)
. (4.1)

(See [9, Proposition 3.3].) If P is a 2k-Eulerian poset of rank 2k + 1 then (4.1)
implies P satisfies the Euler–Poincaré relations, that is, P is an Eulerian poset.
Hence we conclude that every 2k-Eulerian poset is also a (2k + 1)-Eulerian poset.
Also, the two ideals I2k and I2k+1 are generated by the elements χ2, χ4, . . . , χ2k. ✷
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PROPOSITION 4.5. The ideals Ik and I are ideals of the Newtonian coalgebra A.
Proof. Since I is the union of the Ik’s, it is enough to prove that Ik is a coideal.

First, we have

�(χn) =
∑

i + j = n+ 1
i, j ≥ 1

(
χi ⊗ f

j

∅ + (−1)i+1 · f i
∅ ⊗ χj

)
.

Hence for n ≤ k we obtain �(χn) ∈ Ik ⊗ A + A ⊗ Ik. Now consider the element
�(x · χn · y) = �(x) ∗ χn · y + x ∗�(χn) ∗ y + x · χn ∗�(y). Hence we have that
�(x · χn · y) ∈ Ik ⊗ A + A ⊗ Ik. By linearity �(Ik) ⊆ Ik ⊗ A + A ⊗ Ik, which
completes the proof. ✷
PROPOSITION 4.6. The Hilbert series of the algebra I⊥

2k+1 is given by

H
(
I⊥

2k+1

) = 1 + (1 + t) · 1

1 − t − t2 − t2k+2
· (
t + t2k+1

)
.

Proof. At this point we will prove half of this proposition, that is, the coefficient-
wise inequality H(I⊥

2k+1) ≤ 1 + (1 + t)(t + t2k+1)/(1 − t − t2 − t2k+2). Equality
will follow from the proof of Theorem 4.2.

The ideal I2k+1 encodes the linear relations holding among the flag f -vector
entries of a (2k+ 1)-Eulerian poset. Hence the dimension of the nth component of
I⊥

2k+1 is given by the number of flag operators f n+1
S that form a basis. We present

such a natural basis, but only show that it is a spanning set, thus proving the in-
equality. With a more careful argument one can show that it is a basis, and hence
the equality of the proposition follows.

Let n be a non-negative integer and S a subset of {1, 2, . . . , n}. We call the pair
(n, S) a permissible pair if it satisfies the following condition:

Assume that α, β ∈ S ∪ {0, n+ 1} and that {α + 1, . . . , β − 1} ∩ S =
{β − 1}. Then β − α ≥ 2k + 2.

If n is given, we call S a permissible set.
A subset S of {1, 2, . . . , n} is called sparse if {i, i + 1} �⊆ S for all i and n /∈ S.

Observe the class of permissible sets extends the notion of sparse sets by setting
k to be infinity. Moreover, knowing the entries of the flag f -vector of an Eulerian
poset for sparse sets is equivalent to knowing the whole flag f -vector; see [2].

To complete the proof of Proposition 4.6, we need the next two lemmas.

LEMMA 4.7. Let P be a (2k+1)-Eulerian poset of rank n+1. The flag f -vector
entries for permissible sets completely determine the full flag f -vector. That is, for
any set S one can express fS as a linear combination of permissible entries of the
flag f -vector.
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Proof. Given the set S look for the obstruction to permissibility with the largest
value of β. Since the intervals of P between ranks α and β are Eulerian, we have
the linear relation

(
1 + (−1)β−α) · fT =

β−1∑
i=α+1

(−1)i−α−1 · fT∪{i},

where T = S − {β − 1}. This relation allows us to replace fS with a linear combi-
nation of entries of the flag f -vector satisfying the property that their obstruction
to permissibility has strictly smaller β-values. Hence by continuing in this manner,
the result follows. ✷
It remains to enumerate the permissible sets. Let x and y be noncommuting vari-
ables. For a pair n and S, let mn,S denote the monomial x1 · · · xn, where xi = x if
i /∈ S and xi = y otherwise.

LEMMA 4.8. The generating function of permissible sets is given by

∑
(n,S)

mn,S = 1 + (1 + y) · 1

1 − (x + xy + x2ky2)
· (
x + x2ky

)
, (4.2)

where the sum ranges over permissible pairs (n, S).
Proof. It is straightforward to see that all monomials that appear after expanding

the right-hand side of (4.2) are permissible. Moreover, a permissible monomial
w �= 1 can be expressed as product w1 · · ·wm, m ≥ 2, where the first term w1 is
either 1 or y, the interior terms w2, . . . , wm−1 are either x, xy or x2ky2 and the last
term wm is either x or x2ky. This proves the lemma. ✷
By setting both x and y to be t in the rational generating function in Lemma 4.8,
we obtain the desired Hilbert series of Proposition 4.6. ✷
The free product of two Newtonian coalgebras is also a Newtonian coalgebra. For
graded Newtonian coalgebras with unit elements, the Hilbert series of the free
product is described in the next lemma.

LEMMA 4.9. LetA andB be two graded algebras both containing a unit element.
Assume that their Hilbert series are given respectively by 1 + f (t) and 1 + g(t).
Then the Hilbert series of the free (noncommutative) product A ∗ B is given by

(
1 + f (t)

) ∗ (
1 + g(t)

) = 1 + f (t)+ g(t)+ 2f (t) · g(t)
1 − f (t) · g(t) .

LEMMA 4.10. The Hilbert series of k〈c,d, e2k+1〉 is given by

1

1 − t
∗

(
1 − t2k

1 − t2
+ t2k

1 − t

)
.
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Proof. The algebra k〈c,d, e2k+1〉 = k〈c, e2, e2k+1〉 is the free product of k〈c〉
and k〈e2, e2k+1〉 and hence the result follows from Lemma 4.9. ✷
We are now ready to complete the proof of Theorem 4.2.

Proof of Theorem 4.2. We claim that the two Newtonian algebras I⊥
2k+1 and

k〈c,d, e2k+1〉 are identical. We already know that the subalgebra k〈c,d, e2k+1〉 is
contained in I⊥

2k+1. By a direct calculation it follows that the two Hilbert series in
Lemma 4.10 and Proposition 4.6 are identical. Hence the algebras are equal. This
also completes the proof of Proposition 4.6. ✷
Theorem 4.2 and its proof also extend to the case when k = ∞. We then obtain the
classical statement of the existence of the cd-index.

COROLLARY 4.11. The linear span of the ab-indices of Eulerian posets is the
algebra k〈c,d〉.
It is important to note that this proof of the existence of the cd-index differs from
previous proofs of Bayer and Klapper [5], Stanley [15], and Billera and Liu [9].
The main difference is that their proofs are all based on induction on the underlying
poset, whereas this proof avoids induction.

5. Concluding Remarks

Theorem 4.2 describes the linear span of flag f -vectors of (2k+1)-Eulerian posets.
There are two natural questions which arise. First, can the integer span of (2k +
1)-Eulerian posets be described? We conjecture that this ring is

Z

〈
c,d,

c2k+1 − e2k+1

2

〉
.

Secondly, can the cone of positive linear combinations of flag f -vectors of
(2k + 1)-Eulerian posets be described? The answer to this question would inter-
polate between the cones studied in [4, 8]. Namely, Billera and Hetyei [8] have
a complete description of the cone of flag f -vectors of graded posets. Bayer and
Hetyei [4] have similarly studied Eulerian posets and have a complete description
of the cone generated by Eulerian posets up to rank seven.

It is worth mentioning that a different coalgebraic approach to the cd-index
has been taken by Aguiar [1]. He shows that every Newtonian coalgebra A to-
gether with a linear map f :A → k contains a canonical Eulerian subcoalgebra
E(A). Using this structure, he concludes the existence of the cd-index. Generaliz-
ing his ideas, we deduce that there is a sequence of canonical subcoalgebras A =
E1(A) ⊇ E3(A) ⊇ E5(A) ⊇ · · · ⊇ E(A), such that E2k+1(A) corresponds to the
(2k + 1)-Eulerian posets.
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Are there other classes of posets that would fit into the algebraic framework
developed in Section 4? One suggestion is to consider posets where every interval
of rank k or less is a Boolean algebra. It would be interesting to determine the
corresponding Hilbert series.
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