Homework

October 12, 2011

Let $\mathcal{C}(X, Y)$ be the set of continuous functions from a topological space X to a topological space Y. The following two observations will be used below.

1. There is a (set) function

 $\epsilon: X \times \mathcal{C}(X, Y) \to Y$

defined by $(x, \phi) \mapsto \phi(x)$. This is called the *evaluation*.

2. Given a function $f: X \times Z \to Y$ there is a function

$$A(f): Z \to \mathcal{C}(X, Y)$$

defined by A(f)(z)(x) = f(x, z).

Given a function $g: Z \to \mathcal{C}(X, Y)$ there is a function

 $B(g): X \times Z \to Y$

defined by B(g)(x, z) = g(z)(x).

The compact-open topology on $\mathcal{C}(X, Y)$ has subbasis given by the sets

$$S(C,U) = \{ f \in \mathcal{C}(X,Y) | f(C) \subset U \}$$

for all compact subsets C of X and open sets U of Y. When no topology is specified for $\mathcal{C}(X,Y)$ use the compact-open topology.

Prove the following theorems.

- 1. If X is a compact Hausdorff space ϵ is continuous.
- 2. If f (as in 2 above) is continuous then A(f) is continuous. If X is a compact Hausdorff space and g (as in 2 above) is continuous then B(g) is continuous.