MA 322 - 09

Assignment 10

- 1. Let A be a 3×3 matrix whose eigenvalues are 3, $\frac{4}{5}$, and $\frac{3}{5}$ with corresponding eigenvectors $\begin{bmatrix} 1\\0\\-3 \end{bmatrix}, \begin{bmatrix} 2\\1\\-5 \end{bmatrix}, \text{ and } \begin{bmatrix} -3\\-3\\7 \end{bmatrix}$. Let $\vec{x}_0 = \begin{bmatrix} -2\\-5\\3 \end{bmatrix}$. If $\vec{x}_{k+1} = A\vec{x}_k$, find an expression for \vec{x}_k starting with the \vec{x}_0 above and describe \vec{x}_k as $k \to \infty$.
- 2. Let F_k be the number of foxes in a particular forest at month k and R_k be the number of rabbits at month k. Suppose In 2(a)-(c) Beplace "What is the

$E_{L,1} - 5E_L \pm AB_L$	
$r_{k+1} = .0r_k + .4r_k$	long term ratio" with "what can you
$R_{1} = mF_{1} + 11R_{1}$	iong terminatio with what can you
$m_{k+1} = -pr_k + 1.1m_k$	say about the long term behavior?

The constant p measures the deaths of rabbits due to predation from foxes.

- (a) If p = .325 how does the total population of rabbits and foxes change over time? (Is it increasing, constant, or decreasing?) What is the long term ratio of rabbits to foxes?
- (b) If p = .5 how does the total population of rabbits and foxes change over time? (Is it increasing, constant, or decreasing?) What is the long term ratio of rabbits to foxes?
- (c) Find a value for p so that the total number of rabbits and foxes does not change over time. What is the ratio of rabbits to foxes in this constant population?
- 3. Show that $||\vec{v} + \vec{u}||^2 + ||\vec{v} \vec{u}||^2 = 2||\vec{v}||^2 + 2||\vec{u}||^2$.
- 4. Let W be a subspace of \mathbb{R}^n . Show that if \vec{u} is in W and in W^{\perp} , then $\vec{u} = 0$.
- 5. Let U be an $m \times n$ matrix where the columns of U form an orthonormal set.
 - (a) If \vec{x} and \vec{y} are in \mathbb{R}^n , show that $(U\vec{x}) \cdot (U\vec{y}) = \vec{x} \cdot \vec{y}$.
 - (b) Show that $||U(\vec{x})|| = ||\vec{x}||$.