Assignment 11

1. Let L be the span of a nonzero vector \vec{u} in \mathbb{R}^2 . For \vec{y} in \mathbb{R}^2 we say the reflection of y over L is

$$\operatorname{refl}_L(\vec{y}) = 2\operatorname{proj}_L \vec{y} - \vec{y}$$

- (a) Compute the $\frac{\text{reflection}}{\text{projection}}$ of $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ over the line through the origin and the point (1,2).
- (b) Show that reflection is a linear transformation.
- 2. The vectors $\vec{u}_1 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$ and $\vec{u}_2 = \begin{bmatrix} 5 \\ -1 \\ 2 \end{bmatrix}$ are orthogonal. The vector $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ is not orthogonal to \vec{u}_1 and \vec{u}_2 , but it is also not in the span of \vec{u}_1 and \vec{u}_2 . Use these facts to construct a vector orthogonal to \vec{u}_1 and \vec{u}_2 .

3. Let
$$\vec{y} = \begin{bmatrix} 3 \\ -1 \\ 1 \\ 13 \end{bmatrix}$$
, $\vec{u}_1 = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix}$, and $\vec{u}_2 = \begin{bmatrix} -4 \\ 1 \\ 0 \\ 3 \end{bmatrix}$.

- (a) Find the point in the plane spanned by \vec{u}_1 and \vec{u}_2 that is closest to \vec{y} .
- (b) What is the distance from \vec{y} to the plane spanned by \vec{u}_1 and \vec{u}_2 ?
- 4. Find an orthogonal basis for the column space of the matrix $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$

5. Let
$$A = \begin{bmatrix} -1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{bmatrix}$$

- (a) Find an orthogonal basis for the column space of A.
- (b) Find the projection of $\vec{b} = \begin{bmatrix} 7 \\ 2 \\ 7 \\ 0 \end{bmatrix}$ onto the column space of A.
- (c) Find the least squares solution to $A\vec{x} = \vec{b}$.