Assignment 12

1. Let $A=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & -1\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}2 \\ 5 \\ 6 \\ 6\end{array}\right]$.
(a) Find the projection of \vec{b} onto the column space of A.
(b) Use the projection in (a) to find the least squares solution to $A \vec{x}=\vec{b}$.
(c) Find the least squares solutions to $A \vec{x}=\vec{b}$ using the transpose of A.
2. Give the least squares solutions to the system

$$
\begin{aligned}
& x-y=4 \\
& x-y=6
\end{aligned}
$$

3. For the data $(1,0),(2,1),(4,2),(5,3)$ find the equation of best fit of the form
(a) $a x+b$,
(b) $a x^{2}+b x$
4. Suppose radioactive substances A and B have decay constants of .02 and .07 respectively. If a mixture of these two substances at time $t=0$ contains M_{A} grams of A and M_{B} grams of B, then a model for the total amount of y of the mixture present at times t is

$$
y=M_{A} e^{-.02 t}+M_{B} e^{-.07 t}
$$

Suppose the initial amounts M_{A} and M_{B} are unknown, but a scientist is able to measure the total amount present at several times and records the following points $(t, y):(10,21.34)$, $(11,20.68),(12,20.05),(14,18.87),(15,18.30)$
(a) What least squares problem do you need to solve to find M_{A} and M_{B}.
(b) (Use technology!) Solve this least squares problem.

