Assignment 13

1. Is the set of all polynomials $\mathbf{p}(x)$ in \mathbb{P}_{n} so that $\mathbf{p}(0)=0$ a subspace of \mathbb{P}_{n} ? Justify!
2. Fix a 3×2 matrix F. If H is the set of all matrices A in $M_{2 \times 4}$ so that $F A=0$, is H a subspace of $M_{2 \times 4}$? Justify!
3. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{M}_{2 \times 2}$ be the transformation $T(p)=\left[\begin{array}{cc}p(0) & p(-1) \\ p(1) & p(2)\end{array}\right]$.
(a) Show T is linear.
(b) What is the kernel of T ?
(c) What is the range of T ?

Let $S: \mathbb{P}_{3} \rightarrow \mathbb{M}_{2 \times 2}$ be the transformation $S(p)=\left[\begin{array}{cc}p(0) & p(-1) \\ p(1) & p(2)\end{array}\right]$. (The only difference between S and T is the type of input.)
(d) What is the kernel of S ?
(e) What is the range of S ?
4. Let C be the vector space of all continuous real valued functions of a single real variable. There is a linear transformation $D: C \rightarrow C$ defined by $D(f)$ is the derivative of f. What is the kernel of D ?
5. Let $\vec{p}_{1}(t)=1+t, \vec{p}_{2}(t)=1-t, \vec{p}_{3}(t)=2$.
(a) Are $\left\{\vec{p}_{1}(t), \vec{p}_{2}(t), \vec{p}_{3}(t)\right\}$ a linearly independent set?
(b) Find a basis for the span of $\left\{\vec{p}_{1}(t), \vec{p}_{2}(t), \vec{p}_{3}(t)\right\}$.
(c) What is the coordinate vector of $4 x+3$ relative to the basis you chose in (b)?
6. Is $\{t, \sin (t), \cos (t)\}$ a linearly independent set of vectors? (Hint: functions are the same only when the values for all choices of t are the same.)

