MA 322 - 09

Assignment 13

- 1. Is the set of all polynomials $\mathbf{p}(x)$ in \mathbb{P}_n so that $\mathbf{p}(0) = 0$ a subspace of \mathbb{P}_n ? Justify!
- 2. Fix a 3×2 matrix F. If H is the set of all matrices A in $M_{2\times 4}$ so that FA = 0, is H a subspace of $M_{2\times 4}$? Justify!
- 3. Let $T: \mathbb{P}_2 \to \mathbb{M}_{2\times 2}$ be the transformation $T(p) = \begin{bmatrix} p(0) & p(-1) \\ p(1) & p(2) \end{bmatrix}$.
 - (a) Show T is linear.
 - (b) What is the kernel of T?
 - (c) What is the range of T?

Let $S: \mathbb{P}_3 \to \mathbb{M}_{2\times 2}$ be the transformation $S(p) = \begin{bmatrix} p(0) & p(-1) \\ p(1) & p(2) \end{bmatrix}$. (The only difference between S and T is the type of input.)

- (d) What is the kernel of S?
- (e) What is the range of S?
- 4. Let C be the vector space of all continuous real valued functions of a single real variable. There is a linear transformation $D: C \to C$ defined by D(f) is the derivative of f. What is the kernel of D?
- 5. Let $\vec{p_1}(t) = 1 + t$, $\vec{p_2}(t) = 1 t$, $\vec{p_3}(t) = 2$.
 - (a) Are $\{\vec{p}_1(t), \vec{p}_2(t), \vec{p}_3(t)\}$ a linearly independent set?
 - (b) Find a basis for the span of $\{\vec{p}_1(t), \vec{p}_2(t), \vec{p}_3(t)\}$.
 - (c) What is the coordinate vector of 4x + 3 relative to the basis you chose in (b)?
- 6. Is $\{t, \sin(t), \cos(t)\}$ a linearly independent set of vectors? (Hint: functions are the same only when the values for all choices of t are the same.)