Assignment 14

1. The set $\mathcal{B}=\left\{1-t^{2}, t-t^{2}, 2-2 t+t^{2}\right\}$ is a basis for \mathbb{P}_{2}.
(a) What is the coordinate vector of $6+2 t-12 t^{2}$ with respect to \mathcal{B} ?
(b) If $[p(x)]_{\mathcal{B}}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$ what is $p(x)$?
2. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{M}_{2 \times 2}$ be the transformation $T(p)=\left[\begin{array}{cc}p(0) & p(-1) \\ p(1) & p(2)\end{array}\right]$.
(a) What is the matrix of T relative to the standard bases for \mathbb{P}_{2} and $\mathbb{M}_{2 \times 2}$?

Let $S: \mathbb{P}_{3} \rightarrow \mathbb{M}_{2 \times 2}$ be the transformation $S(p)=\left[\begin{array}{cc}p(0) & p(-1) \\ p(1) & p(2)\end{array}\right]$. (The only difference between S and T is the type of input.)
(b) What is the matrix of S relative to the standard bases for \mathbb{P}_{3} and $\mathbb{M}_{2 \times 2}$?
3. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ be given by $T(p(x))=\left[\begin{array}{c}\int_{-1}^{0} p(x) d x \\ \int_{0}^{1} p(x) d x\end{array}\right]$.
(a) Compute $T\left(x^{2}\right), T(x), T(1)$.
(b) What is the matrix of T with respect to the standard bases of \mathbb{P}_{2} and \mathbb{R}^{2} ?
4. Let V be the subspace of the vector space of real valued continuous functions of a single real variable generated by $\cos (x)$ and $\sin (x)$. Let $T: V \rightarrow V$ be defined by $T(f(x))=f^{\prime}(x)+f^{\prime \prime}(x)$. What is the matrix of T relative to the basis $\{\cos (x), \sin (x)\}$?
5. Find the change of coordinates matrix from $\mathcal{B}=\left\{\left[\begin{array}{c}-1 \\ 8\end{array}\right],\left[\begin{array}{c}1 \\ -5\end{array}\right]\right\}$ to $\mathcal{C}=\left\{\left[\begin{array}{l}1 \\ 4\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.
6. In \mathbb{P}_{2} find the change of coordinates matrix from $\mathcal{B}=\left\{1-3 t^{2}, 2+t-5 t^{2}, 1+2 t\right\}$ to the standard basis.

