Assignment 3

- 1. (a) Compute the span of $\begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$.
 - (b) Give a geometric description of this span.
- 2. (a) Compute the span of $\begin{bmatrix} 4 \\ 2 \\ 10 \end{bmatrix}$ and $\begin{bmatrix} 6 \\ 3 \\ 15 \end{bmatrix}$.
 - (b) Give a geometric description of this span.
- 3. How many rows of $A = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 4 & 4 & 4 & 0 \\ -1 & 0 & -3 & 1 \\ 2 & 2 & 2 & -2 \end{bmatrix}$ have a pivot position? Does the equation

 $A\vec{x} = \vec{b}$ have a solution for each \vec{b} in \mathbb{R}^4 ?

- 4. Let A be a 3×2 matrix (so three rows and two columns). Explain why the equation $A\vec{x} = \vec{b}$ cannot be solved for every \vec{b} in \mathbb{R}^3 . What about A a 4×3 matrix?
- 5. If A is a 3×3 matrix and $\vec{v}_1, \vec{v}_2, \vec{y}_1, \vec{y}_2$ are vectors so that $A\vec{y}_1 = \vec{v}_1$ and $A\vec{y}_2 = \vec{v}_2$ find a vector \vec{w} so that $A\vec{w} = \vec{v}_1 + 3\vec{v}_2$.
- 6. Give a geometric comparison of the solutions to

7. Suppose $A\vec{x} = \vec{b}$ has a solution. Explain why the solution is unique exactly when $A\vec{x} = \vec{0}$ has only the trivial solution.