Assignment 4

- 1. Describe the possible echelon forms for matrices with the following properties:
 - (a) A is a 2×2 matrix with linearly dependent columns.
 - (b) A is a 4×3 matrix, $A = [\vec{a}_1 \vec{a}_2 \vec{a}_3]$, such that $\{\vec{a}_1, \vec{a}_2\}$ is linearly independent and \vec{a}_3 is not in the span of \vec{a}_1 and \vec{a}_2 .
- 2. Suppose an $m \times n$ matrix A has n pivot columns. Explain why the equation $A\vec{x} = \vec{b}$ can have at most one solution for each \vec{b} .
- 3. Show that the transformation T defined by $T(x_1, x_2) = (2|x_2|, 3x_1 x_2)$ is not linear.
- 4. This figure shows the vectors \vec{a} , \vec{b} , \vec{u} , \vec{v} , \vec{w} , and \vec{z} .

If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and the images of \vec{a} and \vec{b} are shown below, draw the images of $\vec{u}, \vec{v}, \vec{w}$, and \vec{z} .

- 5. Let \vec{u} and \vec{v} be vectors in \mathbb{R}^2 . It can be shown that the set P of all points in the parallelogram determined by \vec{u} and \vec{v} has the form $a\vec{u} + b\vec{v}$, for $0 \le a \le 1$, $0 \le b \le 1$. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. Explain why the image of a point in P under the transformation T lines in the parallelogram determined by $T(\vec{u})$ and $T(\vec{v})$.
- 6. (a) Give the matrix for the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that first reflects points through the *x*-axis and then reflects through the line y = x.
 - (b) How else can you describe this transformation?