Assignment 4

1. Describe the possible echelon forms for matrices with the following properties:
(a) A is a 2×2 matrix with linearly dependent columns.
(b) A is a 4×3 matrix, $A=\left[\vec{a}_{1} \vec{a}_{2} \vec{a}_{3}\right]$, such that $\left\{\vec{a}_{1}, \vec{a}_{2}\right\}$ is linearly independent and \vec{a}_{3} is not in the span of \vec{a}_{1} and \vec{a}_{2}.
2. Suppose an $m \times n$ matrix A has n pivot columns. Explain why the equation $A \vec{x}=\vec{b}$ can have at most one solution for each \vec{b}.
3. Show that the transformation T defined by $T\left(x_{1}, x_{2}\right)=\left(2\left|x_{2}\right|, 3 x_{1}-x_{2}\right)$ is not linear.
4. This figure shows the vectors $\vec{a}, \vec{b}, \vec{u}, \vec{v}, \vec{w}$, and \vec{z}.

If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation and the images of \vec{a} and \vec{b} are shown below, draw the images of $\vec{u}, \vec{v}, \vec{w}$, and \vec{z}.

5. Let \vec{u} and \vec{v} be vectors in \mathbb{R}^{2}. It can be shown that the set P of all points in the parallelogram determined by \vec{u} and \vec{v} has the form $a \vec{u}+b \vec{v}$, for $0 \leq a \leq 1,0 \leq b \leq 1$. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation. Explain why the image of a point in P under the transformation T lines in the parallelogram determined by $T(\vec{u})$ and $T(\vec{v})$.
6. (a) Give the matrix for the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that first reflects points through the x-axis and then reflects through the line $y=x$.
(b) How else can you describe this transformation?

