Assignment 5

1. A rental car company has three locations in Lexington. One at the airport, one downtown, and one on Nicholasville road. 95% of cars rented at the airport are returned there, 2% are returned downtown and 3% on Nicholasville road. Of cars rented downtown, 80% are returned there, 15% are returned at the airport and 5% are returned on Nicholasville road. Of cars rented at the Nicholasville road location, 90% are returned there and the remaining 10% are retuned at the airport.
(a) What matrix describes the movement of cars between locations?
(b) If the company has a fleet of 90 cars and there are 30 at each location on Monday morning, how many cars are at the airport on Thursday morning?
2. Find a 2×2 nonzero matrix B (with two different columns) so that $\left[\begin{array}{cc}3 & -6 \\ -1 & 2\end{array}\right] B$ is the zero matrix.
3. Suppose A and B are matrices and $A B$ is defined.
(a) If the second column of B is all zeros what can you say about the second column of $A B$?
(b) If the second column of $A B$ is all zero and B has no columns that entirely consists of zeros what can you say about the columns of A ?
4. If A is a $3 \times n$ matrix whose columns span \mathbb{R}^{3}, describe how to find a $n \times 3$ matrix D so that $A D=I_{3}$.
5. Show that if $a d-b c=0$ then the equation $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \vec{x}=\overrightarrow{0}$ has more than one solution.
6. Let $A=\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right]$. Construct a 4×2 matrix D using only 1 and 0 entries so that $A D=I_{2}$. Is it possible for $C A=I_{4}$ for some 2×4 matrix C ? (Justify your answers!)
