Assignment 6

1. Can a square matrix with two identical columns be invertible? Why or why not?
2. Show that if $A B$ is invertible then so is B.
3. If $T\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}x_{2} \\ x_{1}-x_{2} \\ 2 x_{2}+x_{3}\end{array}\right]$ find T^{-1}.
4. The following regions are not subspaces of \mathbb{R}^{2}. For each example give pairs of a vectors or a pair of a vector and a real number that demonstrates this.

5. (a) Is $\left[\begin{array}{c}-4 \\ 6\end{array}\right]$ and $\left[\begin{array}{c}2 \\ -3\end{array}\right]$ a basis for \mathbb{R}^{2} ?
(b) Is $\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{c}7 \\ 0 \\ -5\end{array}\right]$ and $\left[\begin{array}{c}-5 \\ -1 \\ 2\end{array}\right]$ a basis for \mathbb{R}^{3} ?
