Assignment 7

1. Let $\mathcal{B}=\left\{\left[\begin{array}{c}-3 \\ 1 \\ -4\end{array}\right],\left[\begin{array}{c}7 \\ 5 \\ -6\end{array}\right]\right\}$.
(a) Find the coordinate vector of $\left[\begin{array}{c}4 \\ 6 \\ -10\end{array}\right]$ relative to \mathcal{B}.
(b) Find the coordinate vector of $\left[\begin{array}{c}11 \\ 0 \\ 7\end{array}\right]$ relative to \mathcal{B}.
2. The matrices

$$
A=\left[\begin{array}{ccccc}
1 & -2 & 9 & 5 & 4 \\
1 & -1 & 6 & 5 & -3 \\
-2 & 0 & -6 & 1 & -2 \\
4 & 1 & 9 & 1 & -9
\end{array}\right] \quad\left[\begin{array}{ccccc}
1 & -2 & 9 & 5 & 4 \\
0 & 1 & -3 & 0 & -7 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

are row equivalent. Find bases for $\operatorname{Col} A$ and $\operatorname{Nul} A$ and give the dimensions of these subspaces.
3. Compute the determinant of

$$
\left[\begin{array}{cccc}
1 & -2 & 5 & 2 \\
0 & 0 & 3 & 0 \\
2 & -4 & -3 & 5 \\
2 & 0 & 3 & 5
\end{array}\right]
$$

by first expanding along the first row (at every stage) and then by expanding along whatever row or column requires the fewest computations.
4. If A is a 2×2 matrix, what is $\operatorname{det}(4 A)$ in terms of $\operatorname{det}(A)$?
5. Use row operations to compute the following determinant

$$
\left|\begin{array}{ccc}
3 & 3 & -3 \\
3 & 4 & -4 \\
2 & -3 & -5
\end{array}\right|
$$

6. Explain why a square matrix A with $\operatorname{det}\left(A^{3}\right)=0$ cannot be invertible.
