Assignment 8

1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by the matrix $A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$ where a, b and c are positive numbers. Let S be the unit ball. Show that $T(S)$ is bounded by the ellipsoid with the equation $\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}}=1$ and find the volume of this ellipsoid.
2. Let A be the tetrahedron in \mathbb{R}^{3} with vertices $\overrightarrow{0}, \vec{e}_{1}, \vec{e}_{2}$, and \vec{e}_{3}. Let B be the tetrahedron in \mathbb{R}^{3} with vertices $\overrightarrow{0}, \vec{v}_{1}, \vec{v}_{2}$, and \vec{v}_{3}.

(a) Find a transformation T so that $T(A)=B$.
(b) Find the volume of B using the fact that the volume of A is $\frac{1}{3}$ (area of the base)(height).
3. Use the definition of eigenvalue to fined the eigenvalues of the matrix

$$
\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & -3
\end{array}\right]
$$

4. Show that if A^{2} is the zero matrix then the only eigenvalue of A is 0 .
5. Find the eigenvalues and eigenspaces for the matrix

$$
\left[\begin{array}{lll}
4 & 2 & 2 \\
2 & 4 & 2 \\
2 & 2 & 4
\end{array}\right]
$$

6. Show that A and A^{T} have the same characteristic polynomial.
