A chain complex is a sequence of homomorphisms of abelian groups

$$
\ldots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_{n} \xrightarrow{\partial_{n}} \ldots \longrightarrow C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0
$$

where $\partial_{n} \circ \partial_{n+1}=0$ for each $n \in \mathbb{N}$. We define the $n^{\text {th }}$ homology group of the chain complex to be the quotient $H_{n}(C)=\operatorname{Ker} \partial_{n} / \operatorname{Im} \partial_{n+1}$.
Exercise 1. Compute the homology of the following chain complexes:
(1) $\ldots \rightarrow 0 \rightarrow 0 \rightarrow \mathbb{Z} \xrightarrow{\text { id }} \mathbb{Z} \rightarrow 0$. Here $C_{1}=C_{0}=\mathbb{Z}$ and all other groups are zero.
(2) $\ldots \rightarrow \mathbb{Z} \xrightarrow{\text { id }} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{\text { id }} \mathbb{Z} \rightarrow 0$. All groups are \mathbb{Z} and the boundary maps alternate between the identity map and the zero map.
(3) $\ldots \rightarrow 0 \rightarrow \mathbb{Z}\{U, L\} \xrightarrow{\partial_{2}} \mathbb{Z}\{a, b, c\} \xrightarrow{\partial^{\prime}} \mathbb{Z} \rightarrow 0$ where $\partial_{1}(a)=\partial_{1}(b)=\partial_{1}(c)=0$ and $\partial_{2}(U)=\partial_{2}(L)=a+b-c$.
(4) $\ldots \rightarrow 0 \rightarrow \mathbb{Z}\{U, L\} \xrightarrow{\partial_{2}} \mathbb{Z}\{a, b, c\} \xrightarrow{\partial_{7}} \mathbb{Z}\{u, v, w\} \rightarrow 0 \partial_{1}(a)=u-v, \partial_{1}(b)=$ $u-w \partial_{1}(c)=w-v, \partial_{2}(U)=-a+b+c$, and $\partial_{2}(L)=a-b-c$.

