A chain complex is a sequence of homomorphisms of abelian groups

$$\dots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} \dots \longrightarrow C_1 \xrightarrow{\partial_1} C_0 \to 0$$

where $\partial_n \circ \partial_{n+1} = 0$ for each $n \in \mathbb{N}$. We define the n^{th} homology group of the chain complex to be the quotient $H_n(C) = \text{Ker}\partial_n/\text{Im}\partial_{n+1}$.

Exercise 1. Compute the homology of the following chain complexes:

- (1) $\ldots \to 0 \to 0 \to \mathbb{Z} \xrightarrow{\text{id}} \mathbb{Z} \to 0$. Here $C_1 = C_0 = \mathbb{Z}$ and all other groups are zero.
- (2) $\dots \to \mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z} \to 0$. All groups are \mathbb{Z} and the boundary maps alternate between the identity map and the zero map.
- (3) ... $\rightarrow 0 \rightarrow \mathbb{Z}\{U, L\} \xrightarrow{\partial_2} \mathbb{Z}\{a, b, c\} \xrightarrow{\partial_1} \mathbb{Z} \rightarrow 0$ where $\partial_1(a) = \partial_1(b) = \partial_1(c) = 0$ and $\partial_2(U) = \partial_2(L) = a + b c$. (4) ... $\rightarrow 0 \rightarrow \mathbb{Z}\{U, L\} \xrightarrow{\partial_2} \mathbb{Z}\{a, b, c\} \xrightarrow{\partial_1} \mathbb{Z}\{u, v, w\} \rightarrow 0$ $\partial_1(a) = u v$, $\partial_1(b) = u w$ $\partial_1(c) = w v$, $\partial_2(U) = -a + b + c$, and $\partial_2(L) = a b c$.