On this homework you can use the fact that $X \cup C(A)$ is homotopy equivalent to X / A if X and A are CW complexes.
(1) In an exact sequence

$$
A \xrightarrow{d} B \xrightarrow{f} C \xrightarrow{g} D \xrightarrow{h} E \xrightarrow{k} F
$$

of homomorphisms of abelian groups show the following are equivalent.
(a) g is an isomorphism.
(b) f and h are trivial homomorphisms.
(c) d is surjective and k is injective.
(2) (a) Compute the homology of $S^{1} \times S^{1}$ and $S^{1} \vee S^{1} \vee S^{2}$.
(b) Compute the homology of the universal covers of $S^{1} \times S^{1}$ and $S^{1} \vee$ $S^{1} \vee S^{2}$.
(3) (a) Use the Mayer-Vietoris sequence to compute the homology groups of the space obtained from a torus $S^{1} \times S^{1}$ by attaching a Mobius band via a homeomorphism from the boundary circle of the Mobius band to the circle $S^{1} \times\{0\}$ in the torus.
(b) Do the same for the space obtained by attaching a Mobius band to $\mathbb{R} P^{2}$ via a homeomorphism of its boundary circle to the standard $\mathbb{R} P^{1} \subset$ $\mathbb{R} P^{2}$.
(4) Compute the homology of the following spaces.
(a) The quotient of S^{2} obtained by identifying north and south poles to a point.
(b) $S^{1} \times\left(S^{1} \vee S^{1}\right)$.
(c) The quotient space of S^{2} under the identifications $x \sim-x$ for x in the equator S^{1}.
(5) (a) Show that the quotient map $S^{1} \times S^{1} \rightarrow S^{2}$ collapsing the subspace $S^{1} \vee S^{1}$ to a point is not nullhomotopic by showing that it induces an isomorphism on H_{2}.
(b) Show via covering spaces that any map $S^{2} \rightarrow S^{1} \times S^{1}$ is nullhomotopic.

