On this homework you can use the fact that $X \cup C(A)$ is homotopy equivalent to X/A if X and A are CW complexes.

(1) In an exact sequence

 $A \xrightarrow{d} B \xrightarrow{f} C \xrightarrow{g} D \xrightarrow{h} E \xrightarrow{k} F$

of homomorphisms of abelian groups show the following are equivalent.

- (a) g is an isomorphism.
- (b) f and h are trivial homomorphisms.
- (c) d is surjective and k is injective.
- (2) (a) Compute the homology of $S^1 \times S^1$ and $S^1 \vee S^1 \vee S^2$.
 - (b) Compute the homology of the universal covers of $S^1 \times S^1$ and $S^1 \vee S^1 \vee S^2$.
- (3) (a) Use the Mayer-Vietoris sequence to compute the homology groups of the space obtained from a torus S¹ × S¹ by attaching a Mobius band via a homeomorphism from the boundary circle of the Mobius band to the circle S¹ × {0} in the torus.
 - (b) Do the same for the space obtained by attaching a Mobius band to $\mathbb{R}P^2$ via a homeomorphism of its boundary circle to the standard $\mathbb{R}P^1 \subset \mathbb{R}P^2$.
- (4) Compute the homology of the following spaces.
 - (a) The quotient of S^2 obtained by identifying north and south poles to a point.
 - (b) $S^1 \times (S^1 \vee S^1)$.
 - (c) The quotient space of S^2 under the identifications $x \sim -x$ for x in the equator S^1 .
- (5) (a) Show that the quotient map $S^1 \times S^1 \to S^2$ collapsing the subspace $S^1 \vee S^1$ to a point is not nullhomotopic by showing that it induces an isomorphism on H_2 .
 - (b) Show via covering spaces that any map $S^2 \to S^1 \times S^1$ is nullhomotopic.