(3) Compute the homology of the following complex.

$$
\cdots \rightarrow 0 \rightarrow \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0
$$

The left most nontrivial group is C_{2}. That group is is generated by U and L, C_{1} is generated by a, b, c. Define $\partial_{1}(a)=\partial_{1}(b)=\partial_{1}(c)=0$ and $\partial_{2}(U)=\partial_{2}(L)=a+b-c$.
(4) Compute the homology of the following complex.

$$
\cdots \rightarrow 0 \rightarrow \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z} \rightarrow 0
$$

The left most nontrivial group is C_{2}. That group is generated by U and L, C_{1} is generated by a, b, c, C_{0} is generated by v and w. Define $\partial_{1}(a)=$ $\partial_{1}(b)=w-v, \partial_{1}(c)=0 \partial_{2}(U)=-a+b+c$, and $\partial_{2}(L)=a-b+c$.
(5) In an arbitrary exact sequence

$$
A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D
$$

of homomorphisms of Abelian groups, show the following are equivalent
(a) f is an epimorphism.
(b) g is the trivial homomorphism.
(c) h is a monomorphism.
(6) In an arbitrary exact sequence

$$
A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D \xrightarrow{k} E
$$

of homomorphisms of Abelian groups show $C=0$ if and only if f is an epimorphism and k is a monomorphism.

