If we want to compute the **Instantaneous Rate of Change** at a point \(x = a \), then we usually compute the ARoC between \(x = a \) and \(x = a + h \) where we think of \(h \) as being a small number.

Then

\[
ARoC = \frac{f(a+h) - f(a)}{(a+h) - a} = \frac{f(a+h) - f(a)}{h}
\]

We then let \(h \) get closer and closer to 0, we find a limit.

\[
v(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}
\]

IRoC at \(x \) compute

ARoC from \(x \) to \(x + h \) then let \(h \to 0 \)
Ex: A car travels along a straight line with position given by \(f(x) = 9x^2 + 1 \).

a) Find the velocity when \(x = 3 \) seconds.

* Find IROC from \(x = 3 \) to \(x = 3 + h \)

\[
\text{ARoC} = \frac{f(3 + h) - f(3)}{(3 + h) - 3} = \frac{[9(3 + h)^2 + 1] - [9(3)^2 + 1]}{h}
\]

\[
= \frac{9(9 + 6h + h^2) + 1 - 81}{h}
\]

\[
= \frac{81 + 54h + 9h^2 + 1 - 82}{h}
\]

\[
= \frac{54h + 9h^2}{h} = \frac{h(54 + 9h)}{h}
\]

\[
= 54 + 9h
\]

* Now let \(h \to 0 \)

\[
54 + 9(0) = \sqrt{54}
\]
b) Find the velocity when \(x = t \) seconds.

\[
ARoC = \frac{f(t+h) - f(t)}{(t+h) - t} = \frac{[9(t+h)^2 + 1] - [9t^2 + 1]}{h}
\]

\[
= \frac{9(t^2 + 2th + h^2) + 1 - 9t^2 - 1}{h}
\]

\[
= \frac{9t^2 + 18th + 9h^2 + 1 - 9t^2 - 1}{h}
\]

\[
= \frac{h(18t + 9h)}{h}
\]

\[
= 18t + 9h
\]

Let \(h \to 0 \)

\[
18t + 9(0) = 18t
\]

So \(v(t) = 18t \)
Ex: let \(g(k) = k^2 + 4k + 9 \)

a) find the IROC as a function of \(k \).

 * find AROC from \(k^\text{th} \) to \(k \)

 \[
 \text{ARoC} = \frac{g(k+h) - g(k)}{(k+h) - k} = \frac{[(k+h)^2 + 4(k+h) + 9] - [k^2 + 4k + 9]}{h}
 \]

 \[
 = \frac{k^2 + 2kh + h^2 + 4k + 4h + 9 - k^2 - 4k - 9}{h}
 \]

 \[
 = \frac{2kh + h^2 + 4h}{h} = h(2k + h + 4)
 \]

 \[
 = 2k + h + 4
 \]

 * IROC let \(h \to 0 \)

 \[
 2k + (0) + 4 = 2k + 4 = \text{IROC}
 \]

b) find the IROC at \(k = 1 \).

 \[
 \text{IROC} = 2(1) + 4 = 6
 \]
the derivative of \(f(x) \) at \(x \),

denoted \(f'(x) \) is

\[
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
\]

Other notations:

\[
f'(x) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \frac{df}{dx}
\]

or if \(y = f(x) \) then

\[
y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}
\]
Ex: let \(f(x) = mx + b \). Show \(f'(x) = m \).

\[
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{m(x+h)+b - (mx+b)}{h}
\]

\[
= \lim_{h \to 0} \frac{mx+mh+b-mx-b}{h}
\]

\[
= \lim_{h \to 0} \frac{mh}{h} = \lim_{h \to 0} m = m
\]

Ex: let \(f(x) = ax^2 + bx + c \). Show \(f'(x) = 2ax + b \).

\[
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
\]

\[
= \lim_{h \to 0} \frac{[a(x+h)^2 + b(x+h) + c] - [ax^2 + bx + c]}{h}
\]

\[
= \lim_{h \to 0} \frac{a(x^2 + 2xh + h^2) + bx + bh + c - ax^2 - bx - c}{h}
\]

\[
= \lim_{h \to 0} \frac{2axh + ah^2 + bh}{h}
\]

\[
= \lim_{h \to 0} \frac{2ax + ah + b}{1}
\]

\[
= 2ax + a(0) + b
\]

\[
= 2ax + b
\]