Ex: A 13 ft ladder rests against a wall. If the bottom slides away from the wall at a rate of \(\frac{dx}{dt} = 1 \text{ ft/sec} \), how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 5 ft from the wall?

Solve for \(y \):

\[5^2 + y^2 = 13^2 \]
\[y^2 = 169 - 25 = 144 \]
\[y = \sqrt{144} = 12 \]

Differentiate \(x^2 + y^2 = 13^2 \) with respect to \(t \):

\[2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0 \]
\[2(5)(1) + 2(12) \frac{dy}{dt} = 0 \]
\[24 \frac{dy}{dt} = -10 \]
\[\frac{dy}{dt} = \frac{-10}{24} \approx -0.416 \text{ ft/sec} \]
*Note: the answer is negative since the ladder is falling down and distance y is decreasing.

The top of the ladder is falling down the wall at
\[
\frac{10}{24} \text{ or } .416 \text{ ft/sec}
\]
Ex: A cylindrical water tank is being filled at the rate of $4 \text{ ft}^3/\text{min}$. The radius of the tank is 3 ft. How fast is the level of the water in the tank rising when the tank is half full?

Volume of a Cylinder

$V = \pi r^2 h$

Since $r = 3$

$V = \pi (3^2)h = 9\pi h$

differentiate $V = 9\pi h$

$\frac{dv}{dt} = 9\pi \cdot \frac{dh}{dt}$

$4 = 9\pi \frac{dh}{dt}$

$\frac{dh}{dt} = \frac{4}{9\pi} \approx 0.14147 \text{ ft/min}$
Ex: An annual advertising revenue for a newspaper is \(R(x) = 0.4x^2 + 6x + 150 \) thousand dollars when \(x \) is in thousands. Current circulation is 8,000 papers and is increasing by 1,000 papers per year. Two years from now, at what rate will the advertising revenue be increasing?

$$\frac{dx}{dt} = 1$$

Differentiate \(R(x) = 0.4x^2 + 6x + 150 \)

$$\frac{dR}{dt} = (0.8x + 6) \cdot \frac{dx}{dt}$$

In 2 years \(x = 8000 + 1000(2) = 10,000 \) so \(x = 10 \)

Plug in what we know

$$\frac{dR}{dt} = (0.8(10) + 6) \cdot (1)$$

$$= 8 + 6 = 14$$

$14,000 \text{ per year}$
Ex: A stock is increasing in value by $8 per share per year. An investor buys shares at a rate of 20 shares per year. How fast is the value of his stock growing when the stock price is $40 per share and the investor owns 150 shares?

What is the total value?

\[n = \# \text{ of shares} \]
\[P = \$ \text{ per share} \]
\[V = \text{total value} \]

\[V = nP \]

Take derivative!

\[\frac{dv}{dt} = \frac{dn}{dt} \cdot P + n \cdot \frac{dp}{dt} \]

\[\frac{dv}{dt} = (20) \cdot (40) + (150) \cdot (8) \]
\[= 800 + 1200 \]
\[= 2,000 \text{ per year} \]