Chapter 6 - Day 3

Increasing and Decreasing Functions

f is increasing on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in I.

"rising"

f is decreasing on an interval I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ in I.

"falling"

f increasing

f decreasing
Where is f increasing and decreasing?

f increasing on $[a, b]$ and $[c, d]$
f decreasing on $[b, c]$

Where on this graph is the slope of the tangent line positive? (a, b) and (c, d)

Where negative? (b, c)
Ex: Suppose \(f(3) = 7 \) and \(f(5) = 12 \).
\(f \) is increasing on \((3, 5)\) and decreasing on \((-\infty, 3) \cup (5, \infty)\). Are the following possible?

a) \(f(1) = 3 \)
 not possible

b) \(f(1) = 10 \)
 possible

c) \(f(4) = 5 \)
 not possible

d) \(f(6) = 10 \) and \(f(8) = 15 \)
 not possible

e) \(f(6) = 10 \) and \(f(8) = 6 \)
 possible

The previous example tells us that:

- if \(f(x) \) is increasing then \(f'(x) > 0 \)
- if \(f(x) \) is decreasing then \(f'(x) < 0 \)
Mean Value Theorem: if f is continuous on $[a, b]$ and differentiable at every point between a and b, then there exists some point $x = c$ between a and b such that

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

ARoC from a to b = IRoC at c
Ex: let \(Q(t) = t^2 \). Find a value \(A \neq 1 \) such that the average rate of change of \(Q(t) \) from 1 to \(A \) equals the instantaneous rate of change of \(Q(t) \) at \(t = 3 \).

\[
\frac{Q(A) - Q(1)}{A - 1} = Q'(3)
\]

\[
\frac{A^2 - 1^2}{A - 1} = 2(3)
\]

\[
\frac{A^2 - 1}{A - 1} = 6
\]

\[
\frac{(A-1)(A+1)}{A-1} = 6
\]

\[
A+1 = 6
\]

\[
A = 5
\]
Ex: Let \(f(x) = x^3 - x \) on the interval \([-1, 3]\). Find all numbers \(c \) that satisfy the MVT.

\[
\frac{f(3) - f(1)}{3 - (-1)} = f'(c)
\]

\[
\frac{(3^3 - 3) - ((-1)^3 - (-1))}{4} = (3x^2 - 1)|_c
\]

\[
\frac{24}{4} = 3c^2 - 1
\]

\[
6 = 3c^2 - 1
\]

\[
7 = 3c^2
\]

\[
\frac{7}{3} = c^2
\]

\[
c = \pm \sqrt{\frac{7}{3}}
\]

\[-\sqrt{\frac{7}{3}} \text{ not in interval } [-1, 3] \]

\[
C = \sqrt{\frac{7}{3}}
\]