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Abstract. We extend the definition of Geronimus nodes to include pairs of

real numbers where each coordinate consists of the alternation points of a pos-

sibly different Geronimus polynomial of the same degree. We give an explicit
formula for the Lagrange polynomials for these nodes that involves the repro-

ducing kernel for the product polynomials and deduce a cubature formula for
polynomials in two variables with respect to a product measure.

1. Introduction

Geronimus polynomials are a normalization of the polynomials that can be
defined by a three-term recurrence relation having constant coefficients. These
include all four kinds of the Chebyshev polynomials and many other more subtle
examples. Each Geronimus polynomial has alternation points, which reduce to the
Chebshev points in the case of Chebyshev polynomials of the first kind. Our object
is to extend the discussion of Geronimus nodes in [6] to allow pairs of alternation
points for two different Geronimus polynomials of the same degree. This extends
our cubature formula to integrals with respect to the product of the measures for
each of the Geronimus polynomials. A similar extension for the Morrow-Patterson
nodes is given in [3].

2. Geronimus polynomials

Let a, b, c and d be real constants with a > 0 and c > 0. The corresponding
Geronimus polynomials are the terms of a sequence {pn} of polynomials defined
recursively by

(1) p0(x) = 1, p1(x) = ax+ b,

pn+1(x) = (cx+ d)pn(x)− pn−1(x), n ≥ 1.

These were first considered by Geronimus [5] in the case c = 2 and d = 0. An
important property of the Geronimus polynomials given in [6] is that for each
positive integer m there exists unique alternation points, i.e., numbers

h0 > h1 > · · · > hm such that

(2) pm−j(hn) = (−1)npj(hn), n, j = 0, 1, . . . ,m.
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In particular, pm(hn) = (−1)n for n = 0, 1, . . . ,m. The proof in [6] shows that
{hn}m0 is the set of roots of the polynomial πm = p1pm − pm−1.

The main examples of the Geronimus polynomials are the four kinds of Cheby-
shev polynomials {Tn}, {Un}, {Vn} and {Wn}, which correspond to the cases where
(a, b, c, d) is (1, 0, 2, 0), (2, 0, 2, 0), (2,−1, 2, 0) and (2, 1, 2, 0), respectively. (See Ta-
ble 1, [8] and [6].)

Table 1: The four kinds of Chebyshev polynomials

Kind Definition Weight hn = cos θn

1st Tn(cos θ) = cosnθ w1(x) = 2

π
√

1− x2
θn = nπ

m

2nd Un(cos θ) =
sin(n+ 1)θ

sin θ
w2(x) = 2

π
√

1− x2 θn =
(n+ 1)π
m+ 2

3rd Vn(cos θ) =
cos(n+ 1/2)θ

cos(θ/2)
w3(x) = 1

π

√
1 + x
1− x θn = nπ

m+ 1

4th Wn(cos θ) =
sin(n+ 1/2)θ

sin(θ/2)
w4(x) = 1

π

√
1− x
1 + x θn =

(n+ 1)π
m+ 1

Many Bernstein-Szegö polynomials are Geronimus polynomials. (See [2, p.
204-206] and [4] .) It follows by induction that every Geronimus polynomial satisfies

pn(x) = (ax+ b)Un−1

(
cx+ d

2

)
− Un−2

(
cx+ d

2

)
, n ≥ 1,

where U−1 = 0.
By Favard’s theorem [2, p. 21], the Geronimus polynomials are orthogonal

polynomials with respect to a moment functional ` satisfying

`(1) =
c

a
, `(p2n) = 1, n ≥ 1.

Define Hn = `(p2n) for all nonnegative integers n. Then {pn/
√
Hn} is an orthonor-

mal sequence. Clearly Hn = 1 for all positive integers n and H0 = c/a. For
example, the moment functional for the Chebyshev polynomials of the ith kind is
given by

`(p) =

∫ 1

−1
p(x)wi(x) dx,

where wi(x) is as given in Table 1.

3. Interpolation nodes

Let {pn} and {p̃n} be the Geronimus polynomials determined by the coefficients

(a, b, c, d) and (ã, b̃, c̃, d̃), respectively. Let m be a given positive integer and let

{hn}m0 and {h̃n}m0 be the corresponding decreasing sequences of alternation points.

We define the even Geronimus nodes N 0 to be the set of ordered pairs (hn, h̃q),
0 ≤ n, q ≤ m, where n and q are both even or both odd and the odd Geronimus
nodes N 1 to be the set of ordered pairs (hn, h̃q), 0 ≤ n, q ≤ m, where n is even and
q is odd or n is odd and q is even. Thus if k = 0 or k = 1, then the Geronimus
nodes are given by

N k = {(hn, h̃q) : (n, q) ∈ Qk},
where

Qk = {(n, q) : 0 ≤ n, q ≤ m, n− q = k mod 2}.
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The Geronimus nodes of [6] are the case where both sequences of Geronimus
polynomials are the same. Recall that in this case, the Chebyshev points of [10]
are the Geronimus nodes for the case a = 1, b = 0, c = 2, d = 0 in (1).

Note that since {pn} and {p̃n} are both orthogonal polynomials with respect
to inner products, the set

{pi−j(s)p̃j(t) : 0 ≤ j ≤ i, i = 0, 1, . . .}

is a set of orthogonal polynomials in two variables in the product space. Thus the
reproducing kernel for the polynomials of degree at most n in two variables is given
by

Kn(s, t, u, v) =

n∑
i=0

i∑
j=0

pi−j(s)p̃j(t)pi−j(u)p̃j(v)

Hi−jH̃j

,

where Hn is as given in Section 2 for {pn} and H̃n is defined similarly for {p̃n}. By
considering the first term in the above sum, we see that Kn(s, t, s, t) > 0.

4. Construction of Lagrange polynomials

Our construction follows a plan given in [9, §4.2]. Let m be a given positive
integer, fixed throughout, and define

Gm(s, t, u, v) =
1

2
[Km−1(s, t, u, v) +Km(s, t, u, v)]

+
1

2cc̃
[ã(a− c)pm(s)pm(u) + a(ã− c̃)p̃m(t)p̃m(v)].

Clearly Gm(s, t, u, v) is a polynomial of degree at most m in (s, t) and in (u, v).
Also, we may write

Gm(s, t, u, v) = Km−1(s, t, u, v) +
1

2
Sm(s, t, u, v),

where

Sm(s, t, u, v) =

m−1∑
i=1

pm−i(s)p̃i(t)pm−i(u)p̃i(v) +
aã

cc̃
[pm(s)pm(u) + p̃m(t)p̃m(v)].

Hence Gm(s, t, s, t) > 0 for all (s, t) ∈ R2. Given (n, q) ∈ Qk, define

Pn,q(s, t) = λn,qGm(s, t, hn, h̃q), where λn,q =
1

Gm(hn, h̃q, hn, h̃q)
.

Theorem 1. Let k = 0 or k = 1 and let (n, q) ∈ Qk. Then Pn,q is a polynomial

of degree m satisfying Pn,q(hn, h̃q) = 1 and Pn,q(x) = 0 for all x ∈ N k with

x 6= (hn, h̃q).

Our proof of Theorem 1 follows easily from two Christoffel-Darboux identities
for bivariate polynomials. (Compare [9, Theorem 4.2.1].) To state the identities,
first define polynomials

Xi(s, t) = pm−i(s)p̃i(t)− ε pi(s)p̃m−i(t), i = 0, 1, . . . ,m,

Y0(s, t) = (as+ b)pm(s)− pm−1(s) = πm(s),

Yi(s, t) = pm−i+1(s)p̃i(t)− ε pi−1(s)p̃m−i(t), i = 1, 2, . . . ,m,

Ym+1(s, t) = (ãt+ b̃)p̃m(t)− p̃m−1(t) = π̃m(t),
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where ε is a constant. It follows from (2) that all of these polynomials vanish at
the nodes N k when ε = (−1)k and k = 0, 1.

Proposition 2.

2c(s− u)Gm(s, t, u, v) =

m−1∑
i=0

′ [Xi(s, t)pm−i−1(u)p̃i(v)−Xi(u, v)pm−i−1(s)p̃i(t)]

+

m∑
i=0

′′ [Yi(s, t)pm−i(u)p̃i(v)− Yi(u, v)pm−i(s)p̃i(t)].

Here ′ means that the term for i = 0 is multiplied by ã/c̃ and ′′ means that the
terms for i = 0 and i = m are multiplied by ã/c̃.

Proposition 3.

2c̃(t− v)Gm(s, t, u, v) =

m−1∑
i=0

′ [Xm−i(s, t)pi(u)p̃m−i−1(v)−Xm−i(u, v)pi(s)p̃m−i−1(t)]

+

m∑
i=0

′′ [Yi+1(s, t)pm−i(u)p̃i(v)− Yi+1(u, v)pm−i(s)p̃i(t)].

Here ′ means that the term for i = 0 is multiplied by a/c and ′′ means that the
terms for i = 0 and i = m are multiplied by a/c.

To deduce Theorem 1, note that Pn,q(hn, h̃q) = 1 by definition. If x = (hn′ , h̃q′)
is a node in N k, then

(hn′ − hn)Pn,q(x) = 0,

(h̃q′ − h̃q)Pn,q(x) = 0,

by Propositions 2 and 3. Hence, if x 6= (hn, h̃q) then Pn,q(x) = 0, as required.
The same arguments that established [6, Theorem 3.3] apply in this case to

obtain a cubature theorem for our more general Geronimus nodes. (A still more
general theorem is given in [7, Theorem 7]).

Theorem 4. Let {pn} and {p̃n} be two sequences of Geronimus polynomials
and suppose their moment functionals are given by weight functions w and w̃. Let m
be a positive integer and let {hn}m0 and {h̃q}m0 be corresponding alternation points.
Then ∫ ∫

R2
p(s, t)w(s)w̃(t) ds dt =

∑
(n,q)∈Qk

λn,q p(hn, h̃q)

for all bivariate polynomials p of degree at most 2m− 1 and for k = 0, 1.

5. Proof of Propositions 2 and 3

Our first step is to obtain the following identity for the reproducing kernel:
(3)

c(s− u)Km(s, t, u, v) =

m∑
j=0

p̃j(t)p̃j(v)

H̃j

[pm−j+1(s)pm−j(u)− pm−j(s)pm−j+1(u)] .

To verify this, define

aj =
p̃j(t)p̃j(v)

H̃j

, bj =
pj(s)pj(u)

Hj
, j = 0, 1, . . . ,m,



INTERPOLATION AND CUBATURE 5

and note that

Km(s, t, u, v) =

m∑
i=0

i∑
j=0

ajbi−j =

m∑
j=0

aj

(
m−j∑
i=0

bi

)
.

Thus (3) follows from the following Christoffel-Darboux formula

n∑
i=0

bi =
pn+1(s)pn(u)− pn(s)pn+1(u)

c(s− u)

with n = m− j. (See [1, p. 246].)
Define

fj(s, u) = [pm−j+1(s)− pm−j−1(s)]pm−j(u),

gj(s, t, u, v) = pm−j−1(s)p̃j(t)pj(u)p̃m−j(v)

for j = 0, 1, . . . ,m− 1. Then

c(s− u)[Km−1(s, t, u, v) +Km(s, t, u, v)] = A0 +

m−1∑
j=1

aj [fj(s, u)− fj(u, s)],

where

A0 = a(s− u)p̃m(t)p̃m(v) +
ã

c̃
[f0(s, u)− f0(u, s)].

By a computation,

ajfj(s, u) + ε[gj(s, t, u, v)− gm−j(s, t, u, v)]

= Yj(s, t)pm−j(u)p̃j(v)−Xj(u, v)pm−j−1(s)p̃j(t)

for j = 1, 2, . . . ,m− 1 and a similar identity is obtained when (s, t) and (u, v) are
interchanged. Since

m−1∑
j=1

(gj − gm−j) = 0

by symmetry, it follows that

c(s− u)[Km−1(s, t, u, v) +Km(s, t, u, v)](4)

= A0 +

m−1∑
j=1

[Xj(s, t)pm−j−1(u)p̃j(v)−Xj(u, v)pm−j−1(s)p̃j(t)]

+

m−1∑
j=1

[Yj(s, t)pm−j(u)p̃j(v)− Yj(u, v)pm−j(s)p̃j(t)].

Let

h(s, t, u, v) = Y0(s, t)pm(u) +X0(s, t)pm−1(u)− Ym(u, v)p̃m(t)− f0(s, u).

Then the right-hand side of the identity in Proposition 2 is just the sum of the
right-hand side of the equation (4) and

(5)
ã

c̃
[h(s, t, u, v)− h(u, v, s, t)]− a(s− u)p̃m(t)p̃m(v).
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We simplify this expression and take its sum also with the left-hand side of (4).
Applying (1) and the definitions of each of the terms of h(s, t, u, v), we obtain

h(s, t, u, v) =

[p1(s)− (cs+ d)]pm(s)pm(u) + pm−1(s)pm(u) + pm(s)pm−1(u)− p1(u)p̃m(t)p̃m(v).

Hence

h(s, t, u, v)− h(u, v, s, t) = (s− u)[(a− c)pm(s)pm(u) + ap̃m(t)p̃m(v)].

Thus (5) reduces to

s− u
c̃

[ã(a− c)pm(s)pm(u) + a(ã− c̃)p̃m(t)p̃m(v)],

which verifies Proposition 2. One can deduce Proposition 3 from Proposition 2 by
interchanging p and p̃, s and t, and u and v.

6. Further comments

In [6] the author gave a rather complicated proof of the identity

πm =

{
p2k − p2k−1 if m = 2k − 1,
(pk+1 − pk−1)pk if m = 2k

.

To deduce this more easily, we first observe that Qj = pjpm−j+1 − pj−1pm−j is
independent of j for j = 1, . . . ,m− 1 since

Qj+1 −Qj = (pj+1 + pj−1)pm−j − pj(pm−j+1 + pm−j−1) = 0

by the second equation of (1). Since Q1 = πm, if m = 2k − 1 then πm = Qk =
p2k − p2k−1 and if m = 2k then πm = Qk = pk(pk+1 − pk−1).

These equations reduce finding the roots of πm to solving polynomial equations
of lower degree. For example, given real a, b, c and d with a > 0 and c > 0, explicit
formulas for the alternation points {hn}m0 can be obtained by solving a quadratic
equation form = 1, 2, 3. If also ad−bc = 0, then explicit formulas for the alternation
points that involve a radical within a radical can be obtained for m = 4, 6, 8.

I wish to thank Norman Levenberg for asking whether the results about Geron-
imus nodes in [6] still hold when the coordinates are obtained from different poly-
nomials.
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