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Abstract

We obtain by elementary methods necessary and sufficient conditions for a
k-dimensional cubature formula to hold for all polynomials of degree up to
2m− 1 when the nodes of the formula have Lagrange polynomials of degree
at most m. The main condition is that the Lagrange polynomial at each
node is a scalar multiple of the reproducing kernel of degree m− 1 evaluated
at the node plus an orthogonal polynomial of degree m. Stronger conditions
are given for the case where the cubature formula holds for all polynomials
of degree up to 2m.

This result is applied in one dimension to obtain a quadrature formula
where the nodes are the roots of a quasi-orthogonal polynomial of order
2. In two dimensions the result is applied to obtain constructive proofs of
cubature formulas of degree 2m − 1 for the Geronimus and the Morrow-
Patterson classes of nodes. A cubature formula of degree 2m is obtained for
a subclass of Morrow-Patterson nodes. Our discussion gives new proofs of
previous theorems for the Chebyshev points and the Padua points, which are
special cases.
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1. Introduction

This paper focuses on the nodes for quadrature and bivariate cubature
that are derived from the Chebyshev polynomials. These usually can be
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computed explicitly and allow constructive, uncomplicated proofs. Our ar-
guments are based on two elementary lemmas that characterize the existence
of cubature formulas in terms of properties of the Lagrange polynomials at
each of the nodes. We need to consider to what extent the Lagrange inter-
polation formula holds and how close the Lagrange polynomial for a point is
to a multiple of the reproducing kernel evaluated at the point.

Most of the orthogonal polynomials we consider are Geronimus polyno-
mials. These are a normalization of the polynomials whose three-term re-
currence relation has constant coefficients. Thus the Geronimus polynomials
include all four kinds of the the Chebyshev polynomials as well as a number
of subtle examples that are not as amenable to computation.

An important property of the Geronimus polynomials {pn} is that there
exist roots of an associated quasi-orthogonal polynomial πm of order 2 that
are alternation points of pm and satisfy a compatibility condition with respect
to the previous terms. The Chebyshev points for Tn are a representative
example. We give a table of the alternation points for each of the four kinds
of Chebyshev polynomials.

The two classes of nodes we consider for bivariate cubature are the Geron-
imus nodes and the Morrow-Patterson nodes. They are extensions of exam-
ples given in the classic paper of Morrow-Patterson [24]. In both cases, the
even nodes are the pairs of alternation points whose indices have the same
parity and the odd nodes are the pairs of alternation points whose indices
have opposite parity. What differentiates the classes is that the Geronimus
nodes use the same alternation points in both coordinates but the Morrow-
Patterson nodes use alternation points of the next degree in the second co-
ordinate.

The Geronimus nodes include what are sometimes called the Chebyshev
points [28] or the Xu points [3] and were introduced in [20]. The Morrow-
Patterson nodes contain the Padua points [7] as well as the Morrow-Patterson
points as defined in [6]. An essential difference is that we consider the nodes
generated by any Geronimus polynomial rather than by just a single one of
the four kinds of Chebyshev polynomials. (References to examples of nodes
considered before 2001 can be found in Section 7 of [11]. Many of them
belong to the classes we consider.)

We prove cubature formulas of degree 2m − 1 for both classes of nodes.
Previous statements of our formula for the Geronimus nodes [24, 28, 2] con-
sidered only the case of the Chebyshev polynomials Tn. We show that a
cubature formula of degree 2m holds for the Morrow-Patterson nodes if and
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only if the coefficients of x are the same in the recurrence equations for the
Geronimus polynomials generating the nodes. There is no cubature formula
of degree 2m for the Geronimus nodes.

During the proofs we obtain explicit formulas for the Lagrange polyno-
mials for the Geronimus and Morrow-Patterson nodes. They are constructed
using Christoffel-Darboux formulas with polynomial coefficients having com-
mon zeros at the nodes. We also indicate another approach to our theorems
depending on arguments of Bojanov and Petrova in [2]. An important addi-
tional fact is that the Christoffel numbers in our bivariate cubature formulas
are twice the product of the Christoffel numbers in the associated quadrature
formulas.

See [10] for a readable survey of the extensive field of cubature and see [11]
for a summary of the connections with orthogonal polynomials. References
to early work can be found in [25].

2. A condition for cubature

Given integers k and m with k ≥ 1 and m ≥ 0, let Pm(Rk) denote the
space of all real-valued polynomials in k variables with degree at most m. Let
µ be a positive measure on Rk with finite multivariate moments and suppose
that the only p ∈ Pm(Rk) satisfying∫

Rk
p(x)2 dµ(x) = 0

is p = 0. Then

(p, q) =

∫
Rk

p(x)q(x) dµ(x)

defines a complete inner product on Pm(Rk). For example, µ may be given by
dµ(x) = w(x) dx, where w is a weight function and dx is Lebesgue measure
on Rk. Let Sm be the space of all orthogonal polynomials on Rk of degree
m, i.e.,

Sm = {p ∈ Pm(Rk) : (q, p) = 0 for all q ∈ Pm−1(Rk)}.

It is well known [12] that there exists a reproducing kernel Km : Rk×Rk → R
with

p(y) = (p,Km(·, y)) =

∫
Rk

p(x)Km(x, y) dµ(x)

3



for all p ∈ Pm(Rk) and y ∈ Rk. In particular, for each y ∈ Rk, q(x) =
Km(x, y) is in Pm(Rk), Km(x, y) = Km(y, x) and Km(x, x) > 0 for all x ∈ Rk.

Let {xi}ni=1 be n distinct points of Rk and suppose {Pi}ni=1 is a corre-
sponding set of Lagrange polynomials in Pm(Rk), i.e.,

Pi(xj) = δi,j, 1 ≤ i, j ≤ n.

It is often a difficult problem to determine whether such Lagrange polyno-
mials exist. (A survey of results up to 2000 is given in [13].) The following
elementary lemmas show an equivalence between a cubature formula and a
formula for the Lagrange polynomials for the nodes.

Lemma 1. Suppose {λi}ni=1 are real numbers and m ≥ 1. Conditions (a)
and (b) below are equivalent.

a) If p ∈ Pm(Rk) then there is an S ∈ Sm with

p =
n∑

i=1

p(xi)Pi + S. (1)

Also, for each i = 1, . . . , n, there is an Si ∈ Sm with

Pi(x) = λiKm−1(x, xi) + Si(x), x ∈ Rk. (2)

b) ∫
Rk

p(x) dµ(x) =
n∑

i=1

λip(xi) (3)

for all p ∈ P2m−1(Rk).

Lemma 2. Suppose {λi}ni=1 are real numbers and m ≥ 1. Conditions (a′)
and (b′) below are equivalent.

a′) If p ∈ Pm(Rk) then p =
∑n

i=1 p(xi)Pi and Pi(x) = λiKm(x, xi) for all
x ∈ Rk and i = 1, . . . , n.

b′) Equation (3) holds for all p ∈ P2m(Rk).

Proof. We first prove Lemma 1.

(a)⇒(b). Let q1 ∈ Pm−1(Rk). For each i = 1, . . . , n, by the reproducing
property,

λiq1(xi) = (q1, λiKm−1(·, xi)) = (q1, Pi − Si) = (q1, Pi)
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since (q1, Si) = 0. Now if q2 ∈ Pm(Rk), then it follows from (1) that

(q1, q2) =
n∑

i=1

q2(xi)(q1, Pi) + (q1, S) =
n∑

i=1

λiq1(xi)q2(xi).

Therefore (3) holds when p = q1q2 and thus it holds when p ∈ P2m−1(Rk)
since p is a linear combination of monomials of the form q1q2.

(b)⇒(a). Let p ∈ Pm(Rk) and take q = p −
∑n

i=1 p(xi)Pi. Clearly
q(xi) = 0 whenever i = 1, . . . , n. If q1 ∈ Pm−1(Rk) then q1q ∈ P2m−1(Rk)
and so (q1, q) = 0 by (3). Hence q ∈ Sm, which is (1).

Now, given i = 1, . . . , n, take q(x) = Pi(x) − λiKm−1(x, xi). If q1 ∈
Pm−1(Rk), then (q1, Pi) = λiq1(xi) by (3) and (q1, Km−1(·, xi)) = q1(xi) by
the reproducing property. Hence (q1, q) = 0 for all q1 ∈ Pm−1(Rk) so q ∈ Sm,
as required.

The proof of Lemma 2 is simpler since the stronger hypotheses allow us
to take q1 ∈ Pm(Rk) in the above proof. Lemma 2 is immediate from [10,
Th. 7.3], which also proves the existence of the Lagrange polynomials for
nodes satisfying (b′).

3. The classical case

Our condition for cubature is useful even in the classical case of one
variable. Let {pn}∞n=0 be a sequence of real-valued orthogonal polynomials
on R with respect to a positive measure µ as described in Section 2. As
usual, the degree of pn is n and the highest coefficient of pn is denoted by kn.
We shall assume that kn > 0 for all n ≥ 0. Set

Hn =

∫
R
pn(x)2 dµ(x)

and note that Hn > 0 for all n ≥ 0 by our hypothesis.

Theorem 3. For m ≥ 1, let πm(x) = (ax+ b)pm(x)− pm−1(x), where a and
b are real constants with a > 0. Then the roots x0, . . . , xm of πm are distinct
and ∫

R
p(x) dµ(x) =

m∑
i=0

λip(xi) (4)
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for all p ∈ P2m−1(R), where pm(xi)π
′
m(xi) 6= 0 and

λi =
kmHm−1

km−1pm(xi)π′m(xi)
> 0

for i = 0, . . . ,m.

As is well known [1, p. 244], orthogonal polynomials satisfy a three-term
recurrence relation

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x), n ≥ 0,

where An =
kn+1

kn
, Cn+1 =

An+1Hn+1

AnHn

> 0, and p−1 = 0.

If a = Am/Cm and b = Bm/Cm, then Cmπm = pm+1 so (4) is Gaussian
quadrature and holds for all p ∈ P2m+1(R).

Proof. Suppose we modify the three-term recurrence relation for n ≥ m
by taking An = a, Bn = b and Cn = 1. By Favard’s theorem, the new set of
polynomials is orthogonal with respect to some positive measure and hence
the roots of πm are real and distinct. (See [8].)

Let i = 0, . . . ,m and put ci = π′m(xi). By Lemma 1, it suffices to show
that pm(xi)ci > 0 and

Pi(x) = λiKm−1(x, xi) + βipm(x), (5)

where βi = a/ci. Clearly πm(x) = ci(x− xi)Pi(x), where Pi is the Lagrange
polynomial for xi. By the classical Christoffel-Darboux formula [1, p. 246]
and the equation πm(xi) = 0, we have

kmHm−1

km−1
(x− xi)Km−1(x, xi) = pm(x)pm−1(xi)− pm(xi)pm−1(x)

= pm(xi)[(axi + b)pm(x)− pm−1(x)]

= pm(xi)[πm(x)− a(x− xi)pm(x)]

= pm(xi)(x− xi)[ciPi(x)− apm(x)].

In particular, dividing by x− xi and taking the limit as x→ xi, we obtain

pm(xi)ci =
kmHm−1

km−1
Km−1(xi, xi) + apm(xi)

2 > 0.

Thus one can solve for Pi(x) to obtain (5).
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Remark 1. Theorem 3 applies to the roots of most quasi-orthogonal poly-
nomials of order 2. By definition, a polynomial p of degree m + 1 is quasi-
orthogonal of order 2 if there exist real constants α1 and α2 such that

p = pm+1 + α1pm + α2pm−1.

Suppose α2 < Cm and take πm = p/(Cm−α2). Then Theorem 3 applies with

a =
Am

Cm − α2

, b =
Bm + α1

Cm − α2

.

In particular, if α2 = 0 then a > 0 and

βi =
Am

Cmci
=
Am−1Hm−1

Hmci
=

kmHm−1

km−1Hmci
=
λipm(xi)

Hm

,

so
Pi(x) = λiKm(x, xi), i = 0, . . . ,m,

by (5). Hence (4) holds for all p ∈ P2m(R) by Lemma 2. Of course, if
α1 = α2 = 0, then (4) is Gaussian quadrature. See [14, p. 21] and [29] for
references.

4. The Geronimus polynomials

Let α, β, γ, and δ be real constants with α > 0 and γ > 0. The Geronimus
polynomials are the sequence {pn}∞n=0 of polynomials defined by the recursive
equations

p0(x) = 1, p1(x) = αx+ β, (6)

pn+1(x) = (γx+ δ)pn(x)− pn−1(x), n ≥ 1.

These were first considered by Geronimus in [16] for the case γ = 2 and
δ = 0. It follows from Favard’s theorem [8, Theorem 4.4] that {pn}∞n=0 is a
sequence of orthogonal polynomials with respect to a compactly supported
positive Borel measure µ with H0 = γ/α and Hn = 1 for all n ≥ 1. (The
measure can have up to two atoms. See [9] and [26].) Let πm(x) be defined
as in Theorem 3. It is shown in [20] that if a = α, b = β and x0, . . . , xm are
the roots of πm in decreasing order then

pm−j(xi) = (−1)ipj(xi), i, j = 0, . . . ,m. (7)
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In particular, pm(xi) = (−1)i for i = 0, . . . ,m. Theorem 3 for this case has
been given in [20, Theorem 2.2]. It is easy to verify that

πm+1(x) = (γx+ δ)πm(x)− πm−1(x), m ≥ 2.

The main examples of the Geronimus polynomials are the four kinds of
Chebyshev polynomials, which correspond to four choices of the pair (α, β)
with γ = 2 and δ = 0. See Table 1. The associated measure µ is given
by dµ(x) = wi(x) dx where the weight function wi is taken to be 0 outside
the interval (−1, 1). Many Bernstein-Szegö polynomials derived from these
weights are also Geronimus polynomials. (See [15] and the examples given
in [8, p. 204–206].)

Table 1: The four kinds of Chebyshev polynomials

Kind (α, β) Definition for x = cos θ weight xi = cos θi

1st (1, 0) Tn(x) = cosnθ w1(x) = 2
π
√

1− x2
θi = iπ

m

2nd (2, 0) Un(x) =
sin(n+ 1)θ

sin θ
w2(x) = 2

π
√

1− x2 θi =
(i+ 1)π
m+ 2

3rd (2,−1) Vn(x) =
cos(n+ 1/2)θ

cos(θ/2)
w3(x) = 1

π

√
1 + x
1− x θi = iπ

m+ 1

4th (2, 1) Wn(x) =
sin(n+ 1/2)θ

sin(θ/2)
w4(x) = 1

π

√
1− x
1 + x θi =

(i+ 1)π
m+ 1

It follows easily by induction that

pn(x) = (αx+ β)Un−1

(
γx+ δ

2

)
− Un−2

(
γx+ δ

2

)
, n ≥ 1.

Hence, for example, the conclusions of Theorem 3 hold with dµ(x) = w2(x) dx
when x0, . . . , xm are the roots of any Geronimus polynomial pm+1 with γ = 2
and δ = 0 since in this case we may take πm = pm+1.

If {pn}∞n=0 is one of the kinds of Chebyshev polynomials, then it is easy
to verify from (6) that

πm = 1
2
(pm+1 − pm−1) when a = 1, b = 0,

πm = pm+1 when a = 2, b = 0,
πm = pm+1 − pm when a = 2, b = −1,
πm = pm+1 + pm when a = 2, b = 1.

In each case, the roots of πm and the values in Theorem 3 can be computed
easily with elementary trigonometry. The results are given in Table 2. (See
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[21, Chapter 8] and compare [22].) The last column of Table 2 gives the
value(s) of i where one obtains the required weight by dividing the formula
for λi by 2. Thus each row of the table specifies a quadrature formula. For
example, the quadrature formula corresponding to the first row is the Gauss-
Lobatto formula [14, p. 26]∫ 1

−1
p(x)

2

π
√

1− x2
dx =

1

m
p(1)+

m−1∑
i=1

2

m
p

(
cos

iπ

m

)
+

1

m
p(−1), p ∈ P2m−1(R).

The quadrature formula corresponding to the second row for each weight
function is Gaussian quadrature and thus is valid for all p ∈ P2m+1(R). The
quadrature formulas corresponding to the third and fourth rows for each
weight function are valid for all p ∈ P2m(R) by Remark 1.

In the next sections we use the Geronimus polynomials to specify classes
of nodes in R2 for cubature.
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Table 2: Quadrature for the Chebyshev weights

weight (a, b) πm(x) xi = cos θi λi λi/2

w1 (1, 0) (x2 − 1)Um−1(x) θi = iπ
m

2
m i = 0,m

w1 (2, 0) Tm+1(x) θi =
(2i+ 1)π
2(m+ 1)

2
m+ 1

w1 (2,−1) (x− 1)Wm(x) θi = 2iπ
2m+ 1

4
2m+ 1 i = 0

w1 (2, 1) (x+ 1)Vm(x) θi =
(2i+ 1)π
2m+ 1

4
2m+ 1 i = m

w2 (1, 0) Tm+1(x) θi =
(2i+ 1)π
2(m+ 1)

2(1− x2i )
m+ 1

w2 (2, 0) Um+1(x) θi =
(i+ 1)π
m+ 2

2(1− x2i )
m+ 2

w2 (2,−1) Vm+1(x) θi =
(2i+ 1)π
2m+ 3

4(1− x2i )
2m+ 3

w2 (2, 1) Wm+1(x) θi =
2(i+ 1)π
2m+ 3

4(1− x2i )
2m+ 3

w3 (1, 0) (x− 1)Wm(x) θi = 2iπ
2m+ 1

2(1 + xi)
2m+ 1 i = 0

w3 (2, 0) Vm+1(x) θi =
(2i+ 1)π
2m+ 3

2(1 + xi)
2m+ 3

w3 (2,−1) 2(x− 1)Um(x) θi = iπ
m+ 1

1 + xi
m+ 1 i = 0

w3 (2, 1) 2Tm+1(x) θi =
(2i+ 1)π
2(m+ 1)

1 + xi
m+ 1

w4 (1, 0) (x+ 1)Vm(x) θi =
(2i+ 1)π
2m+ 1

2(1− xi)
2m+ 1 i = m

w4 (2, 0) Wm+1(x) θi =
2(i+ 1)π
2m+ 3

2(1− xi)
2m+ 3

w4 (2,−1) 2Tm+1(x) θi =
(2i+ 1)π
2(m+ 1)

1− xi
m+ 1

w4 (2, 1) 2(x+ 1)Um(x) θi =
(i+ 1)π
m+ 1

1− xi
m+ 1 i = m

5. The Geronimus nodes

In this section we apply Lemma 1 to obtain a two dimensional analogue
of Theorem 3. Let {pn}∞n=0 be a sequence of Geronimus polynomials given
by (6) and let µ be the corresponding measure. Let πm be defined as in
Theorem 3 with a = α and b = β, i.e., πm = p1pm− pm−1, and let x0, . . . , xm
be the roots of πm in decreasing order.

We consider two sets of nodes where we evaluate functions of two vari-
ables. Define the even Geronimus nodes N 0 to be the set of ordered pairs
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(xn, xq) with 0 ≤ n, q ≤ m, where n and q are both even or both odd and
define the odd Geronimus nodes N 1 to be the set of ordered pairs (xn, xq)
with 0 ≤ n, q ≤ m, where n is even and q is odd or n is odd and q is even.
Thus if k = 0 or k = 1, then the Geronimus nodes are given by

N k = {(xn, xq) : (n, q) ∈ Qk},

where
Qk = {(n, q) : 0 ≤ n, q ≤ m, n− q = k mod 2}.

Theorem 4. Let m ≥ 1 and let k = 0 or k = 1. Then there exist positive
real numbers λn,q satisfying∫

R2
p(x, y) d(µ× µ)(x, y) =

∑
(n,q)∈Qk

λn,q p(xn, xq) (8)

for all p ∈ P2m−1(R2).

It is easy to verify that the number of nodes satisfies

n(N 0) = n(N 1) =
(m+ 1)2

2
for m odd,

n(N 0)− 1 = n(N 1) =
m(m+ 2)

2
for m even.

By a theorem of Möller [23], if µ is a measure induced by a centrally symmet-
ric weight function, the number of nodes in any bivariate cubature formula
of degree 2m− 1 is at least (

m+ 1

2

)
+
[m

2

]
.

Thus for these measures, the number of nodes in Theorem 4 is at most one
more than the minimal number and is minimal when m is even and k = 1.

The coordinates of the nodes and their weights are given explicitly for each
of the four kinds of the Chebyshev polynomials in Table 2 and in this case the
nodes lie in the unit square [−1, 1] × [−1, 1]. The Chebyshev nodes are the
special case of the Geronimus nodes where pn(x) = Tn(x) so that πm(x) =
(x2−1)Um−1(x). Proofs of Theorem 4 have been given only for the Chebyshev
nodes. (See [24, 28, 2, 18].) We point out that the Chebyshev nodes also arise
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naturally in the extension of V. Markov’s polynomial inequality to higher
dimensions [20].

We deduce Theorem 4 from Lemma 1. (Compare [28].) It is easy to check
that the set of polynomials

{pi−j(x)pj(y) : 0 ≤ j ≤ i, i = 0, 1, . . .}

forms an orthogonal system with respect to the product measure µ× µ and
hence the reproducing kernel for Pm(R2) is given by

Km(x, y, u, v) =
m∑
i=0

i∑
j=0

pi−j(x)pj(y)pi−j(u)pj(v)

Hi−jHj

=
m∑
i=0

′
i∑

j=0

′′pi−j(x)pj(y)pi−j(u)pj(v). (9)

Here ′ means that the first term of the sum is multiplied by α/γ and ′′ means
that the first and last terms of the sum are multiplied by α/γ (but only once
if these terms are the same). Define polynomials

Xi(x, y) = pm−i(x)pi(y)− ε pi(x)pm−i(y), i = 0, . . . ,m,

Y0(x, y) = (αx+ β)pm(x)− pm−1(x) = πm(x),

Yi(x, y) = pm−i+1(x)pi(y)− ε pi−1(x)pm−i(y), i = 1, . . . ,m,

where ε is a constant. All of these polynomials vanish at the nodes N k when
ε = (−1)k and k = 0, 1 by (7). It can be shown as in [19, p. 380] that the
polynomial

Pm(x, y, u, v) =
m−1∑
i=0

′ [Xi(x, y)pm−i−1(u)pi(v)−Xi(u, v)pm−i−1(x)pi(y)]

+
m∑
i=0

′′ [Yi(x, y)pm−i(u)pi(v)− Yi(u, v)pm−i(x)pi(y)] (10)

is independent of ε. When ε = 0 it is evident that Pm(x, y, u, v) = 0 when
x = u so we can write

Pm(x, y, u, v) = 2γ(x− u)Gm(x, y, u, v),
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where Gm is a polynomial. The previous identity can be regarded as a
Christoffel-Darboux formula since it can be verified as in [19] that

Gm(x, y, u, v) =
1

2
[Km−1(x, y, u, v) +Km(x, y, u, v)]

+
α(α− γ)

2γ2
[pm(x)pm(u) + pm(y)pm(v)].

Clearly Gm is a polynomial of degree at most m in its first two and last two
variables and Gm(y, x, v, u) = Gm(x, y, u, v). By separating off the last term
in the sum for Km, we obtain

Gm = Km−1 +
Sm

2
, (11)

where

Sm(x, y, u, v) =
m−1∑
i=1

pm−i(x)pi(y)pm−i(u)pi(v)+
α2

γ2
[pm(x)pm(u)+pm(y)pm(v)].

Given (n, q) ∈ Qk, define

Pn,q(x, y) = λn,qGm(x, y, xn, xq), λn,q =
1

Gm(xn, xq, xn, xq)
,

and note that λn,q is well defined and positive by (11). Hence Pn,q is a
Lagrange polynomial of degree m for (xn, xq) in N k by (10) with ε = (−1)k.
Moreover,

Pn,q(x, y) = λn,qKm−1(x, y, xn, xq) + Sn,q(x, y), (12)

where

Sn,q(x, y) =
λn,q

2
Sm(x, y, xn, xq)

and Sn,q is an orthogonal polynomial of degree m. This establishes condition
(2) of Lemma 1 and condition (1) follows from an elementary dimension
argument given in [17, Theorem 5]. Note that the equality λn,q = 2λnλq is
not evident from this approach although it is true by Theorem 7 in the last
section.

We point out that none of the Geronimus nodes have a cubature formula
of degree 2m, i.e., satisfying (b′) in Lemma 2. Indeed, the first equality of
(a′) in Lemma 2 does not hold since there is at least one polynomial Xi

with ε = (−1)k and degree m such that Xi vanishes on a given set N k of
Geronimus nodes.
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6. The Morrow-Patterson nodes

Let {pn}∞n=0 be a sequence of Geronimus polynomials given by (6) and let
µ be the corresponding measure. Let a = α and b = β in both πm and πm+1

and let x0, . . . , xm and y0, . . . , ym+1 be the corresponding roots in decreasing
order. As in the previous section, we define two sets of nodes, N 0 and N 1,
which we call the Morrow-Patterson nodes. Given k = 0 or k = 1, define

N k = {(xn, yq) : (n, q) ∈ Qk},

where

Qk = {(n, q) : 0 ≤ n ≤ m, 0 ≤ q ≤ m+ 1, n− q = k mod 2}.

Note that the number n(N k) of Morrow-Patterson nodes is given by

n(N k) =
(m+ 2)(m+ 1)

2
, k = 0, 1,

which is also the dimension of Pm(R2). The Morrow-Patterson nodes for each
of the four kinds of Chebyshev polynomials lie in the unit square and satisfy
N 1 = −N 0, which can be deduced from the identity cos(π − θ) = − cos(θ).
The classical Morrow-Patterson nodes were given in [24, p. 960] and are the
nodes for the case where pn = Un, k = 1 and m is even.

We will deduce the following theorems from Lemmas 1 and 2. Let

C(n, q) =
m∑
j=0

′
m−j∑
i=0

′ pi(xn)2pj(yq)
2, (n, q) ∈ Qk.

Theorem 5. Let m ≥ 1 and k = 0 or k = 1. Then there exist positive real
numbers λn,q satisfying∫

R2
p(x, y) d(µ× µ)(x, y) =

∑
(n,q)∈Qk

λn,qp(xn, yq) (13)

for all p ∈ P2m−1(R2) and

1

λn,q
= C(n, q) +

α

γ2
(α− γ), (n, q) ∈ Qk. (14)
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Theorem 6. Let m ≥ 1 and k = 0 or k = 1. Then there exist real numbers
λn,q satisfying (13) for all p ∈ P2m(R2) if and only if α = γ for the Geronimus
polynomials generating the nodes. In that case, λn,q is positive and λn,q =
1/C(n, q) for all (n, q) ∈ Qk.

Note that the Chebyshev polynomials of the second, third and fourth
kind all satisfy the equation α = γ but the Chebyshev polynomials of the
first kind do not. The cubature formula of Theorem 6 does not hold for any
choice of a fewer number of nodes since the number of nodes in a bivariate
cubature formula of degree 2m is at least (m+ 2)(m+ 1)/2 by a result of A.
H. Stroud [27, p. 118].

To apply Lemma 1, we first construct Lagrange polynomials for the nodes
N k as in the previous section. Define polynomials of degree m+ 1 by

Y0(x, y) = (αx+ β)pm(x)− pm−1(x) = πm(x),

Yi(x, y) = pm−i+1(x)pi(y)− (−1)kpi−1(x)pm−i+1(y), i = 1, . . . ,m+ 1.

Then N k is a set of common zeros for these polynomials by (7). (Again we
could introduce a parameter ε but choose the more direct approach.) Define

Gm(x, y, u, v) = Km(x, y, u, v) +
α(α− γ)

γ2
pm(x)pm(u).

Then
Gm = Km−1 + Sm, (15)

where

Sm(x, y, u, v) =
m−1∑
i=1

pm−i(x)pi(y)pm−i(u)pi(v)+
α2

γ2
pm(x)pm(u)+

α

γ
pm(y)pm(v).

The Christoffel-Darboux formulas

γ(x− u)Gm(x, y, u, v) =
m∑
i=0

′ [Yi(x, y)pm−i(u)pi(v)− Yi(u, v)pm−i(x)pi(y)],

γ(y − v)Gm(x, y, u, v) =
m∑
i=0

′′ [Yi+1(x, y)pm−i(u)pi(v)− Yi+1(u, v)pm−i(x)pi(y)]

can be verified as in [19, p. 380]. Given (n, q) ∈ Qk, define

Pn,q(x, y) = λn,qGm(x, y, xn, yq), λn,q =
1

Gm(xn, yq, xn, yq)
, (16)
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and note that λn,q is well defined and positive by (15). Hence Pn,q is a La-
grange polynomial of degree m for the node (xn, yq) in N k by the Christoffel-
Darboux formulas. Moreover,

Pn,q(x, y) = λn,qKm−1(x, y, xn, yq) + Sn,q(x, y),

where
Sn,q(x, y) = λn,qSm(x, y, xn, yq),

and Sn,q is an orthogonal polynomial of degree m.
Note that {Pn,q : (n, q) ∈ Qk} is a basis for Pm(R2) since it is a set of

N linearly independent polynomials in Pm(R2) where N is the dimension of
Pm(R2). Hence, if p ∈ Pm(R2) then

p =
∑

(n,q)∈Qk

p(xn, yq)Pn,q

since one can compute the coordinates of p in this basis by evaluating at the
nodes of N k. Thus the nodes N k satisfy hypothesis (a) of Lemma 1 and
hence Theorem 5 holds with weights λp,q given by (16). One can obtain the
expression for C(n, q) by reversing the sums in (9). Our arguments also show
that N k is unisolvent. (See [4].)

If (n0, q0) and (n, q) are different elements of Qk, then

γ2Km(xn, yq, xn0 , yq0) = (−1)n+n0α(γ − α) (17)

by the definition of Gm and (16). Theorem 6 follows from this and Lemma 2.

Remark 2. Since 2005, many papers have appeared discussing one or more
of the four families of Padua points defined in [7]. It is not difficult to see
that the first and third families are the Morrow-Patterson nodes for pn = Tn
with k = 1 and k = 0, respectively. The second and fourth families are the
first and third families with the coordinates interchanged. In particular, the
paper [5] considers the first family of Padua points and hence our results
include Theorem 3.2, Proposition 3.4 and Corollary 2.4 given there.

7. An alternate approach

Let µ and ν be positive measures as described in the beginning of Sec-
tion 2 and let {pn}∞n=0 and {qn}∞n=0 be sequences of real-valued orthogonal
polynomials on R for µ and ν, respectively. The following product theorem
follows directly from the extension of Theorem 2.1 of [2] to two measures and
the arguments given in the proof of Theorem 3.4 of [20].
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Theorem 7. Suppose that quadrature formulas∫
R
p(x) dµ(x) =

I∑
i=0

λip(xi), p ∈ P2I−1(R),

∫
R
q(y) dν(y) =

J∑
j=0

γjq(yj), q ∈ P2J−1(R)

hold with given weights and nodes. If pI(xi) = (−1)i and qJ(yj) = (−1)j for
0 ≤ i ≤ I and 0 ≤ j ≤ J , then∫

R2
p(x, y) d(µ× ν)(x, y) = 2

∑
(i,j)∈Qk

λiγj p(xi, yj)

for all p ∈ P2m−1(R2), where m = min{I, J},

Qk = {(i, j) : 0 ≤ i ≤ I, 0 ≤ j ≤ J, i− j = k mod 2}

and k = 0 or k = 1.

Theorems 4 and 5 follow immediately from Theorem 3, equation (7) and
Theorem 7. Moreover, λn,q = 2λnλq in both of the theorems.

Suppose the measures, orthogonal polynomials and quadrature formu-
las are the same in each variable. The next two examples show that the
conclusions of Theorem 7 can fail dramatically when the hypothesis that
pm(xi) = (−1)i is omitted.

Example 1. Let the given sequence of orthogonal polynomials be the Cheby-
shev polynomials of the first kind. Take a = 2, b = −1, m = 2 and k = 0.
Then by the third row of Table 2, we have that the roots of π2 are x0 = 1,
x1 = (

√
5− 1)/4, and x2 = −(

√
5 + 1)/4. Thus

N 0 = {(x0, x0), (x0, x2), (x1, x1), (x2, x0), (x2, x2)}.

One can obtain quadratic Lagrange polynomials for each of these nodes by
solving a consistent system of 5 linear equations in 6 unknowns. However, for
each node inN 0, the system of equations obtained from (2) by replacement of
x by each of the nodes in N 0 is a system of 5 linear equations in 4 unknowns
that has no solution. Thus none of the Lagrange polynomials for N 0 have
the form of (2). In particular, there is no cubature formula of the form (3)
for the nodes of N 0.
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Example 2. Let the given sequence of orthogonal polynomials and a, m
and k be as in the previous example but let b = 0. Then π2 = T3 so
the roots of π2 are x0 =

√
3/2, x1 = 0, and x2 = −

√
3/2. Again, the

Lagrange polynomials exist for the corresponding set N 0 and one can show
that λi = 2/3 in Theorem 3 while an equation of the form (12) holds with
λn,q = 2/3 except that λ1,1 = 4/3. Thus the equality λn,q = 2λnλq never
holds in this case.
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