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Abstract. We discuss Lagrange interpolation on two sets of nodes in two

dimensions where the coordinates of the nodes are Chebyshev points having
either the same or opposite parity. We use a formula of Xu for Lagrange poly-

nomials to obtain a general interpolation theorem for bivariate polynomials at

either set of Chebyshev nodes. An extra term must be added to the interpola-
tion formula to handle all polynomials with the same degree as the Lagrange

polynomials. We express this term as a specifically determined linear com-

bination of canonical polynomials that vanish on the set of Chebyshev nodes
being considered.

As an application we deduce in an elementary way known minimal and near

minimal cubature formulas applying to both the even and the odd Chebyshev
nodes. Finally, we restrict to triangular subsets of the Chebyshev nodes to

show unisolvence and deduce a Lagrange interpolation formula for bivariate

symmetric and skew-symmetric polynomials. This result leads to another proof
of the interpolation formula.

1. Introduction

Given a natural number m, let Tm(t) = cos(m arccos(t)) denote the Chebyshev
polynomial of degree m. The corresponding Chebyshev points are given by

hn = cos
(nπ

m

)
, n = 0, . . . ,m,

and satisfy Tm(hn) = (−1)n for these n. In [5] we defined the sets of even and
odd Chebyshev nodes as two dimensional generalizations of the Chebyshev points.
These are important because they are the nodes of a Duffin-Schaeffer-type extension
of Markov’s theorem for derivatives of polynomials on the unit square of R2 (see
[6]) and the nodes of a minimal (or near minimal) Gauss-Lobatto-type cubature
formula in R2 (see [1]). More generally, these nodes arise naturally in bivariate
polynomial inequalities on the unit square when the Chebyshev polynomials of a
single variable are extremal. (See Lemma 6 of [5].)

The Padua points are a related set of nodes that have the advantage of being
unisolvent so no additional terms are needed in the corresponding interpolation
formula. In particular, cubature formulas and Lagrange polynomials at these nodes
are developed in [2], [3] and [4].
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We recall from [5] the definition and properties of an explicit form of Lagrange
polynomials for the Chebyshev nodes. Specifically, the set N 0 of even (respectively,
N 1 of odd) Chebyshev nodes is the set of ordered pairs (hn, hq), 0 ≤ n, q ≤ m, where
n and q are both even or both odd (respectively, n is even and q is odd or n is odd
and q is even). Thus, if k = 0 or k = 1,

N k = {(hn, hq) : (n, q) ∈ Qk}, where
Qk = {(n, q) : 0 ≤ n, q ≤ m, n− q = k mod 2}.

As in [5], we define (by a single formula) a set of Lagrange polynomials for the
even Chebyshev nodes and a set of Lagrange polynomials for the odd Chebyshev
nodes. Let cj = 1 for j = 1, . . . ,m − 1 and cj = 1/2 when j = 0 or j = m. For
0 ≤ n, q ≤ m, define

(1.1) Pn,q(s, t) =
2

m2
cncqGm(s, t, hn, hq),

where

Gm(s, t, u, v) = 4
m∑′′

i=0

i∑′′

j=0

Ti−j(s)Tj(t)Ti−j(u)Tj(v)

−1
2

[Tm(s)Tm(u) + Tm(t)Tm(v)] .(1.2)

Here the symbol ′′ in a sum indicates that the first and last terms of the sum
are divided by 2. (When the sum has only one term, this term is divided by 2
only once.) Clearly each Pn,q is a polynomial of degree m. Our formula has been
obtained from [8].

The following Lagrange property of these polynomials is basic to our main results.
An elementary proof is given in the Appendix of [6].

Lemma 1.1. Suppose 0 ≤ n, q ≤ m. Let k = 0 when n − q is even and let k = 1
when n − q is odd. Then Pn,q(hn, hq) = 1 and Pn,q(x) = 0 whenever x ∈ N k and
x 6= (hn, hq).

Given k = 0 or k = 1, define

(1.3) Vi(s, t) = Tm−i(s)Ti(t)− (−1)kTi(s)Tm−i(t), i = 0, . . . ,m,

and note that Vi is a polynomial of degree m (except when Vi ≡ 0). An important
property of these polynomials is that they vanish on the set N k of Chebyshev
nodes. This is easy to verify since Tm−i(hn) = (−1)nTi(hn) for i = 0, . . . ,m and
n = 0, . . . ,m.

The following is an interpolation formula for the Chebyshev nodes that is shown
in [5] to follow from Lemma 1.1 by basic linear algebra.

Lemma 1.2. Let k = 0 or k = 1. If p(s, t) is a polynomial of degree at most m,
then

p =
∑

(n,q)∈Qk

p(hn, hq)Pn,q + pk,

where pk is a linear combination of the polynomials (1.3).

Our motivation for considering Lagrange interpolation in this context is to obtain
multivariate polynomial inequalities similar to those that have been obtained with
single-variable Lagrange interpolation. (See [6].)
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2. Lagrange interpolation

The next theorem obtains an explicit determination of the linear combination
mentioned in Lemma 1.2. In particular, the theorem shows that Lagrange interpo-
lation holds on N 0 and N 1 for all bivariate polynomials of degree at most m − 1.
This case has been considered previously in [1, Theorem 2.4] but the polynomials
in the interpolation formula there are not the Lagrange polynomials for the points
of interpolation.

Theorem 2.1. Let k = 0 or k = 1. Suppose p(s, t) is a polynomial of degree at
most m and write

(2.1) p(s, t) =
m∑

i=0

ais
m−iti + pm−1(s, t),

where pm−1 is a polynomial of degree at most m− 1. Then

(2.2) p =
∑

(n,q)∈Qk

p(hn, hq)Pn,q +
1

2m−1

m∑′′

i=0

aiVi.

Corollary 2.2. If p is given by (2.1), then

(2.3) p =
∑

(n,q)∈Qk

p(hn, hq)Pn,q

if and only if am−i = (−1)kai for i = 0, . . . ,m.

Proof. To prove Theorem 2.1, put

(2.4) αi =
ciai

2m−2
, i = 0, . . . ,m,

where ci is defined before (1.1). Since each of the polynomials

ais
m−iti − αiTm−i(s)Ti(t), i = 0, . . . ,m,

has degree at most m− 1, equation (2.1) may be written as

(2.5) p(s, t) =
m∑

i=0

αiTm−i(s)Ti(t) + pm−1(s, t),

where pm−1 is a (different) polynomial of degree at most m − 1. By Lemma 1.2,
we may write

(2.6) p =
∑

(n,q)∈Qk

p(hn, hq)Pn,q + pk,

where pk =
∑m

i=0 αiVi and α0, . . . , αm are constants. Thus it suffices to show that
pk = 1

2

∑m
i=0 αiVi. We do this by taking the inner product of each side of (2.6)

with Vi.
Specifically, define an inner product on the space X of real polynomials in two

variables of degree at most m by

(2.7) (f, g) =
∫ 1

−1

∫ 1

−1

f(s, t)g(s, t)w(s)w(t) dsdt, f, g ∈ X,

where w(t) = 1/(π
√

1− t2). Clearly {Ti−j(s)Tj(t) : 0 ≤ j ≤ i ≤ m} is an
orthogonal basis for X. Put γi = ‖Tm−i(s)Ti(t)‖2 and note that γm−i = γi for
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i = 0, . . . ,m. Given 0 ≤ i ≤ m, one can verify by taking inner products term by
term that

(p, Vi) = [αi − (−1)kαm−i]γi,

(pk, Vi) = 2[αi − (−1)kαm−i]γi.

Also, (Pn,q, Vi) = 0 for all (n, q) ∈ Qk since (Gm(·, ·, u, v), Vi) = 2c2
i γiVi(u, v).

Hence by (2.6),
αi − (−1)kαm−i = 2[αi − (−1)kαm−i].

Thus, it follows from the identity Vi = −(−1)kVm−i that

pk =
1
2

(
m∑

i=0

αiVi +
m∑

i=0

αm−iVm−i

)
=

1
2

m∑
i=0

αiVi =
1

2m−1

m∑′′

i=0

aiVi,

as asserted.

To prove Corollary 2.2, note that (2.3) holds if and only if
m∑′′

i=0

aiVi = 0. Hence

this corollary follows from the identity
m∑′′

i=0

aiVi =
m∑′′

i=0

[ai − (−1)kam−i]Tm−i(s)Ti(t).

�

As an application of Lemma 1.2, we deduce the following minimal and near
minimal cubature formulas. (See [8], [1] and [5]).

Corollary 2.3. Let w(t) = 1
π
√

1−t2
and let k = 0 or k = 1. Then

(2.8)
∫ 1

−1

∫ 1

−1

p(s, t)w(s)w(t) ds dt =
2

m2

∑
(n,q)∈Qk

cncqp(hn, hq),

for all polynomials p(s, t) of degree at most 2m− 1.

Proof. Let X be the space of all real polynomials in two variables of degree at most
m− 1 with inner product given by (2.7). The reproducing kernel for X is given by

Km−1(s, t, u, v) =
m−1∑
i=0

i∑
j=0

1
αi−jαj

Ti−j(s)Tj(t)Ti−j(u)Tj(v),

where

αj =
∫ 1

−1

Tj(t)2w(t) dt, j = 0, . . . ,m− 1.

Since αj = 1 when j = 0 and αj = 1/2 when j > 0, we may write

Km−1(s, t, u, v) = 4
m−1∑′

i=0

i∑′′

j=0

Ti−j(s)Tj(t)Ti−j(u)Tj(v),

where the symbol ′ indicates that the first term of the sum is divided by 2. Hence,
for fixed real numbers u and v, it follows that Gm(s, t, u, v) −Km−1(s, t, u, v) is a
linear combination of the functions {Tm−j(s)Tj(t) : 0 ≤ j ≤ m}. Therefore, if p1

is in X, then p1 is orthogonal to these functions, so

(2.9) p1(u, v) = (p1,Km−1(·, ·, u, v)) = (p1, Gm(·, ·, u, v)).
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In a similar way, (p1, Vi) = 0 for i = 0, . . . ,m.
If p2 is a polynomial in two variables of degree at most m, then by (2.6),

p2(s, t) =
∑

(n,q)∈Qk

βn,qGm(s, t, hn, hq) +
m∑

i=0

αiVi(s, t),

where βn,q = 2
m2 cncqp2(hn, hq) for (n, q) ∈ Qk. Hence by (2.9),

(p1, p2) =
∑

(n,q)∈Qk

βn,qp1(hn, hq)

=
2

m2

∑
(n,q)∈Qk

cncqp1(hn, hq)p2(hn, hq).

Therefore (2.8) holds when p = p1p2 and thus it holds when p is any polynomial in
two variables of degree at most 2m−1 since p is a linear combination of monomials
of the form p1p2. �

3. Interpolation of symmetric and skew-symmetric polynomials

In this section we show without appealing to Theorem 2.1 or Corollary 2.2 that
the Lagrange interpolation formula holds without extra terms in the case of sym-
metric and skew symmetric polynomials. We then sketch an alternate proof of
Theorem 2.1 using this fact and the cubature formula.

To state our results, suppose k = 0 or k = 1 and let Sk be the space of all poly-
nomials p in two variables with degree at most m satisfying p(t, s) = (−1)kp(s, t)
for all (s, t) ∈ R2. Hence S0 is a space of symmetric polynomials and S1 is a space
of skew-symmetric polynomials. Since the value of such a polynomial on a node
(hq, hn) is known when its value at (hn, hq) is known, we restrict to the case q ≤ n
and denote this with the superscript ∆. Thus, we define

Q∆
k = {(n, q) : 0 ≤ q ≤ n ≤ m, n− q = k mod 2} and

N∆
k = {(hn, hq) : (n, q) ∈ Q∆

k }.

Clearly,
N∆

k = {(hn, hq) ∈ N k : q ≤ n}.
We refer to the above as a triangular set of nodes. An important property of these
nodes is that they have the same cardinality as the dimension of the corresponding
space of symmetric or skew-symmetric polynomials. The following theorem shows
that the Lagrange interpolation problem is unisolvent with respect to the triangular
even (respectively, odd) Chebyshev nodes for the space of symmetric (respectively,
skew-symmetric) polynomials in two variables with degree at most m.

Theorem 3.1.. Let k = 0 or k = 1. For every real-valued function f on Q∆
k

there exists exactly one polynomial p in Sk such that p(hn, hq) = f(n, q) for all
(n, q) ∈ Q∆

k .

Given (n, q) ∈ Q∆
k , define

(3.1) P∆
n,q(s, t) =

{
Pn,q(s, t) + (−1)kPn,q(t, s) if q < n

Pn,n(s, t) if q = n
.
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Clearly P∆
n,q is in Sk. By Lemma 1.1, P∆

n,q(hn, hq) = 1 and P∆
n,q(x) = 0 whenever

x ∈ N∆
k and x 6= (hn, hq). Thus {P∆

n,q : (n, q) ∈ Q∆
k } is a set of Lagrange

polynomials for N∆
k .

Corollary 3.2. If p is a polynomial in Sk, then

(3.2) p =
∑

(n,q)∈Q∆
k

p(hn, hq)P∆
n,q =

∑
(n,q)∈Qk

p(hn, hq)Pn,q.

Proof. We first observe that the number Nk of nodes in N∆
k is the same as the

dimension of Sk. Indeed, given (n, q) ∈ Q∆
k , define

φn,q(s, t) = sitj + (−1)ksjti, where

i =
n + q + k

2
, j =

n− q − k

2
.

Then {φn,q : (n, q) ∈ Q∆
k } is a basis for Sk. Clearly, P∆

n,q is a linear combination
of the polynomials {φn,q : (n, q) ∈ Q∆

k } since it is in Sk. Since there is a linear
combination p of the P∆

n,q’s that satisfies the required equations, the Nk×Nk system
of equations

(3.3)
∑

(n,q)∈Q∆
k

φn,q(hn′ , hq′)xn,q = f(n′, q′), (n′, q′) ∈ Q∆
k ,

has a solution {xn,q : (n, q) ∈ Q∆
k } for each f . Thus these solutions are unique,

which proves Theorem 3.1.
To prove the corollary, observe that the difference between the the sides of the

first equality of (3.2) is a polynomial in Sk that vanishes on all points of N∆
k

and hence is identically zero by uniqueness. The second inequality of (3.2) follows
directly from (3.1), the identity Pn,q(t, s) = Pq,n(s, t) and the symmetry of Qk. �

Alternate proof of Theorem 2.1. We deduce Theorem 2.1 from the cubature for-
mula given in Corollary 2.3 and from Corollary 3.2. Indeed, it follows from formula
(2.9) and Corollary 2.3 that Theorem 2.1 holds whenever p is a polynomial of degree
at most m− 1. (Compare [1, p. 120].) Thus by (2.5), it suffices to show that

(3.4) Tm−i(s)Ti(t) =
∑

(n,q)∈Qk

Tm−i(hn)Ti(hq)Pn,q(s, t) +
1
2
Vi(s, t)

for i = 0, . . . ,m. Given such i, note that Corollary 3.2 applies to

Si(s, t) =
1
2
[Tm−i(s)Ti(t) + (−1)kTi(s)Tm−i(t)]

since Si is in Sk. Hence (3.4) follows since Si(hn, hq) = Tm−i(hn)Ti(hq) for all
(n, q) ∈ Qk and

Tm−i(s)Ti(t) = Si(s, t) +
1
2
Vi(s, t).

�
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