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Abstract

Let X and Y be real normed linear spaces and let φ : X → R be a
non-negative function satisfying φ(x+ y) ≤ φ(x) + ‖y‖ for all x, y ∈ X. We
show that there exist optimal constants cm,k such that if P : X → Y is any
polynomial satisfying ‖P (x)‖ ≤ φ(x)m for all x ∈ X, then ‖D̂kP (x)‖ ≤
cm,kφ(x)m−k whenever x ∈ X and 0 ≤ k ≤ m. We obtain estimates for
these constants and present applications to polynomials and multilinear
mappings in normed spaces.

1. Introduction. This note considers the growth of the Fréchet derivatives of
a polynomial on a normed linear space when the polynomial has restricted growth
on the space. Our main concern is with real normed linear spaces. Here we obtain
an estimate for the kth derivative of a polynomial bounded by an mth power where
the constant cm,k in our estimate is best possible even when only the special case
of the real line is considered. Moreover, we show that this inequality for the
real line is equivalent to a Markov inequality for homogeneous polynomials. Our
estimates are applied iteratively to obtain a bound for the values of a symmetric
multilinear mapping where certain of its arguments are repeated. This bound is
a constant multiple of the norm of the associated homogeneous polynomial.

Although we are unable to obtain a general formula for the constants cm,k, we
do establish elementary upper and lower bounds and provide a good estimate on
their asymptotic growth. We determine the value of the constants in some low
dimensional cases and find associated extremal polynomials with the aid of an
interpolation formula for homogeneous polynomials.

In the case of complex normed linear spaces, we give a simple derivation of an
estimate for the kth derivative which extends an inequality given in [2, Theorem
2] by allowing more general growth conditions. For comparison with the real case,
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we deduce an extension of an inequality of Bernstein and derive a bound for sym-
metric multilinear mappings where certain of its arguments are repeated. In both
the real and complex cases, we show that equality holds in most of our estimates
for some scalar-valued homogeneous polynomial defined on two dimensional `1

space.

2. Main results. Let m be a positive integer and let 0 ≤ k ≤ m. We
define cm,k to be the supremum of the values |p(k)(0)| where p varies through all
polynomials satisfying

|p(t)| ≤ (1 + |t|)m (1)

for every t ∈ R. Clearly any such polynomial p has degree at most m. Note that
if p satisfies (1) then so does the polynomial q(t) = tmp(1/t). Hence cm,k/k! =
cm,m−k/(m− k)! for 0 ≤ k ≤ m. In particular, cm,0 = 1 and cm,m = m!.

Proposition 1.

mm

kk(m− k)m−k
≤ cm,k

k!
≤

(
m
k

)
mm/2

kk/2(m− k)(m−k)/2
(2)

for 0 ≤ k ≤ m. There exists an absolute constant M such that

cm,k ≤ (Mm logm)k (3)

for 0 ≤ k ≤ m and m > 1.

Estimates (2) and (3) follow from work of Sarantopoulos [9] and Nevai and
Totik [8], respectively. See Section 5 for a proof and for values of some of the con-
stants. For comparison with (3), note that (2) implies only that cm,k = O(m3k/2).

Theorem 2. Let X and Y be normed linear spaces over F , where F = R or
F = C . Let φ : X → R be a non-negative function satisfying

φ(x+ y) ≤ φ(x) + ‖y‖ (4)

for all x, y ∈ X and let P : X → Y be a polynomial satisfying

‖P (x)‖ ≤ φ(x)m (5)

for all x ∈ X. If F = R then

‖D̂kP (x)‖ ≤ cm,kφ(x)m−k (6)
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and if F = C then

‖D̂kP (x)‖ ≤ mmk!

kk(m− k)m−k
φ(x)m−k (7)

whenever x ∈ X and 0 ≤ k ≤ m. Moreover, in the case where X = `1(F 2), Y = F
and φ(x) = ‖x‖, for each inequality (6) and (7), there exists a homogeneous
polynomial P as above and depending on m and k such that equality holds in the
given inequality for some x with φ(x) any given non-negative number.

Basic definitions and facts concerning polynomials on normed spaces can be
found in [6] and [7]. Throughout, D̂kP (x) denotes the homogeneous polynomial
associated with the kth order Fréchet derivative DkP (x) and is given by

D̂kP (x)y =
dk

dtk
P (x+ ty)

∣∣∣∣∣
t=0

.

In Theorem 2 and in all our other estimates we take 00 = 1. The hypothesis (4) of
Theorem 2 is satisfied, for example, when φ(x) = f(‖x‖), where f : [0,∞) → R
is a continuous non-negative function satisfying |f ′(t)| ≤ 1 for all t > 0. In
particular, hypothesis (4) is satisfied when φ(x) = ‖x‖ and when φ(x) = (1 +
‖x‖p)1/p, where p ≥ 1. It is easy to verify that this hypothesis is also satisfied
when φ(x) = max{1, ‖x‖}. The degree of any polynomial P satisfying (5) is at
most m since

‖P (y)‖ ≤ (M + ‖y‖)m, M = φ(0),

for all y ∈ X by (4).
Proof of Theorem 2. By composing P with a given linear functional and

applying the Hahn-Banach theorem, we may suppose that Y = F . Let x, y ∈ X
with ‖y‖ ≤ 1. Given r > φ(x), define

p(α) =
P (x+ αry)

rm
.

Then p(α) is a polynomial with p(k)(0) = D̂kP (x)(ry)/rm and

|p(α)| ≤ φ(x+ αry)m

rm
≤
[
φ(x) + |α|r

r

]m
≤ (1 + |α|)m

for all α ∈ F . If F = R then |p(k)(0)| ≤ cm,k by the definition of cm,k. Hence,

‖D̂kP (x)‖ ≤ cm,kr
m−k
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for all r > φ(x), and (6) follows.
If F = C, the function p(α) is entire and by the Cauchy estimates,

|p(k)(0)| ≤ k!(1 +R)m

Rk
,

for a given R > 0. Hence,

‖D̂kP (x)‖ ≤ k!(1 +R)m

Rk
rm−k

for all r > φ(x). Taking R = k/(m − k) when k 6= m and letting R → ∞
otherwise, we obtain (7).

To prove the remainder of Theorem 2, recall that by definition X is F 2 with
the norm ‖x‖ = |x1| + |x2|, where x = (x1, x2). Suppose 0 ≤ k ≤ m. We
first consider the case F = R. It follows from Proposition 1 that there exists
a polynomial p satisfying (1) for which p(k)(0) = cm,k. Define a homogeneous
polynomial P : X → R of degree m by

P (x1, x2) = xm1 p(
x2
x1

) for x1 6= 0. (8)

Then |P (x)| ≤ ‖x‖m for all x ∈ X and

D̂kP (r, 0)(0, 1) =
dk

dtk
P (r, t)

∣∣∣∣∣
t=0

= rm−kcm,k.

Thus equality holds in (6) with x = (r, 0) for r ≥ 0.
We next consider the case F = C. Define

P (x1, x2) = Mkx
m−k
1 xk2, Mk =

mm

kk(m− k)m−k
. (9)

Since the geometric mean is less than the arithmetic mean,∣∣∣∣∣
(

x1

m− k

)m−k (x2

k

)k∣∣∣∣∣
1
m

≤ |x1|+ |x2|
m

,

so |P (x)| ≤ ‖x‖m for all x ∈ X. Moreover, D̂kP (r, 0)(0, 1) = Mkk!rm−k. Thus
equality holds in (7) with x = (r, 0) for r ≥ 0. 2

In the applications which follow, we use the notation

X1 = {x ∈ X : ‖x‖ ≤ 1},
‖P‖ = sup{‖P (x)‖ : x ∈ X1}
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when P : X → Y is a polynomial. Since by definition a polynomial is a sum of
continuous homogeneous polynomials, ‖P‖ is finite and thus clearly a norm.

3. Applications to complex spaces. The complex case of Theorem 2 can
be applied to obtain an extension of the Bernstein theorem given in [2, Corollary
2] to the case ‖x‖ > 1.

Corollary 3. Let X and Y be complex normed linear spaces and let P : X → Y
be a polynomial of degree at most m. Then

‖D̂kP (x)‖ ≤ mmk!

kk(m− k)m−k
‖P‖, ‖x‖ ≤ 1,

‖D̂kP (x)‖ ≤ mmk!

kk(m− k)m−k
‖P‖‖x‖m−k, ‖x‖ > 1,

for 0 ≤ k ≤ m and x ∈ X. Moreover, for each m and k there exists a non-
trivial homogeneous polynomial P as above for which equality holds in the above
inequalities (for some x ∈ X with ‖x‖ any given number ≥ 1) when X = `1(C2)
and Y = C.

Proof. As in the previous proof, we may suppose that Y = C. Since the case
where P ≡ 0 is obvious, we may also suppose that ‖P‖ = 1. By Theorem 2, all we
need to establish is that (5) holds when φ(x) = max{1, ‖x‖}. This is clear when
‖x‖ ≤ 1. Let x ∈ X with ‖x‖ > 1 and define f(λ) = λmP (x/λ) for all complex
λ 6= 0. Then f extends to a polynomial on C satisfying |f(λ)| ≤ ‖x‖m for all λ
on the circle |λ| = ‖x‖, so by the maximum principle, |P (x)| = |f(1)| ≤ ‖x‖m.
Thus (5) holds in all cases, as required. 2

One can apply Corollary 3 to obtain the case p = 1 of [2, Theorem 1] given
next. See [3] for a discussion of this and related inequalities.

Corollary 4. Let X and Y be complex normed linear spaces and let F : X×· · ·×
X → Y be a continuous symmetric m-linear mapping with associated homogeneous
polynomial F̂ defined by F̂ (x) = F (x, . . . , x). If x1, . . . , xn are vectors in X1, then

‖F (xk1
1 · · ·xknn )‖ ≤ k1! · · · kn!

kk1
1 · · · kknn

mm

m!
‖F̂‖ (10)

for all non-negative integers k1, . . . , kn with k1 + · · · + kn = m. The constant in
this inequality cannot be replaced by a smaller one.

Here and elsewhere,

F (xk1
1 · · ·xknn ) = F (x1, . . . , x1︸ ︷︷ ︸

k1

, . . . , xn, . . . , xn︸ ︷︷ ︸
kn

).
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Proof. Define f(k) = kk/k! for all non-negative integers k. By the binomial
theorem for homogeneous polynomials [6, Th. 26.2.3],

1

k!
D̂kF̂ (x)y =

(
m
k

)
F (xm−kyk)

and hence by Corollary 3 (or Theorem 2 with φ(x) = ‖x‖),

‖F (ykxm−k)‖ ≤ f(m)

f(k)f(m− k)
‖F̂‖ (11)

for x, y ∈ X1 and 0 ≤ k ≤ m. Now x→ F (xk1
1 x

m−k1) is a homogeneous polynomial
of degree m− k1 and hence (11) applies again to show that

‖F (xk1
1 x

k2
2 x

m−k1−k2)‖ ≤ f(m)

f(k1)f(k2)f(m− k1 − k2)
‖F̂‖

for x ∈ X1. Continuing in this way, we obtain (10).
An example given in [2, p. 148] (which generalizes (9)) shows that the constant

in (10) is best possible. 2

4. Applications to real spaces. The following is an immediate consequence
of Theorem 2 with φ(x) = 1 + ‖x‖.

Corollary 5. Let X and Y be real normed linear spaces. If P : X → Y is a
polynomial satisfying ‖P (x)‖ ≤ (1 + ‖x‖)m for all x ∈ X, then

‖D̂kP (x)‖ ≤ cm,k(1 + ‖x‖)m−k

whenever x ∈ X and 0 ≤ k ≤ m.

It is easy to see from Corollary 5 with X = Y = R that

cm,n ≤ cm,k cm−k,n−k

whenever 0 ≤ n ≤ m and 0 ≤ k ≤ n.

Theorem 6. Let X and Y be real normed linear spaces. If P : X → Y is a
homogeneous polynomial of degree m, then

‖D̂kP‖ ≤ cm,k‖P‖

for 0 ≤ k ≤ m. Moreover, for each m and k there exists a non-zero polynomial
P as above for which equality holds when X = `1(R2) and Y = R.
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Corollary 7. Let X and Y be real normed linear spaces and let F : X × · · · ×
X → Y be a continuous symmetric m-linear mapping with associated homogeneous
polynomial F̂ . If x1, . . . , xn are vectors in X1, then

‖F (xk1
1 · · ·xknn )‖ ≤

√
mm

kk1
1 · · · kknn

‖F̂‖ (12)

for all non-negative integers k1, . . . , kn with k1 + · · ·+ kn = m.

The case n = 2 of the above corollary is essentially part (a) of the Corollary in
[9]. The constants we give are rather far from being the best. For example, when
k1 = 1, . . . , kn = 1, the constant in (12) is mm/2 while the best constant in this
case (determined by R. S. Martin in 1932) is mm/m!. The problem of determining
the best constant in (12) is open. (See [3].)

Proof of Theorem 6 and Corollary 7. Theorem 6 follows from the fact
that if P 6≡ 0, Theorem 2 applies with P replaced by P/‖P‖ and φ(x) = ‖x‖.
Thus (12) follows from the upper bound given in Proposition 1 and the proof of
Corollary 4 with f(k) = kk/2. 2

Note that in Corollary 5, a bound on the derivative which holds for X =
Y = R continues to hold when X and Y are any real normed linear spaces.
According to a theorem of Sarantopoulos [9, Theorem 2], this is also the case
with Markov’s inequality for the first derivative. It is an open question whether
Markov’s inequality for the higher derivatives continues to hold for arbitrary real
Banach spaces. However, in general, one cannot expect Bernstein-type estimates
for polynomials on the real line to hold for arbitrary real (or even complex) Banach
spaces.

For example, it was shown by S. N. Bernstein [1, p. 56] that

|q′(t)| ≤ m(1 + t2)
m−1

2 (13)

for any polynomial q satisfying |q(t)| ≤ (1 + t2)m/2 for all t ∈ R. Suppose X =
`1(R2) and let P : X → R be the homogeneous polynomial defined by (9) with
k = 1. Then, |P (x)| ≤ (1 + ‖x‖2)m/2 for all x ∈ X since ‖P‖ ≤ 1. If the result
analogous to (13) held for X, we would have

‖DP (x)‖ ≤ m(1 + ‖x‖2)
m−1

2

for all x ∈ X. Now x → DP (x) is a homogeneous polynomial of degree m − 1.
Hence, replacing x by tu, where u ∈ X with ‖u‖ ≤ 1 and letting t → ∞, we
obtain ‖DP (u)‖ ≤ m. Thus, M1 ≤ m, which is impossible when m > 1.

Inequality (13) and other classical polynomial inequalities are extended to
Hilbert spaces in [2] and [4].
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5. Estimating cm,k.
Proof of Proposition 1. The lower bound for cm,k in (2) follows with p(t) =

atk, where a is the minimum of the function (1 + t)m/tk for t > 0. This minimum
occurs at t = k/(m − k). To obtain the upper bound in (2), suppose p satisfies
(1) and put q(t) = p(st), where s > 0. Then q(k)(0) = skp(k)(0) and by the
Cauchy-Schwarz inequality,

|q(t)| ≤ (1 + s|t|)m ≤ (1 + s2)m/2(1 + t2)m/2.

Hence,

|p(k)(0)| ≤ k!

(
m
k

)
(1 + s2)m/2

sk

by k applications of (13). The minimum of the right-hand side of the above occurs
when s2 = k/(m− k) and this gives the asserted estimate. (Compare [9, p. 311].)

To prove (3), suppose p satisfies (1) and put q(t) = p(t/m). Then q is a
polynomial of degree at most m satisfying

|q(t)| ≤
(

1 +
|t|
m

)m
≤ e|t|

for all t ∈ R. By k applications of a Markov-Bernstein theorem given in [8,
Theorem 3] with weight exp(−|t|), we obtain

sup
−∞<t<∞

|e−|t|q(k)(t)| ≤ (M logm)k sup
−∞<t<∞

|e−|t|q(t)|,

where M is an absolute constant. Thus

|p(k)(0)| = |mkq(k)(0)| ≤ (Mm logm)k,

completing the proof. (I am grateful to Prof. Tamás Erdélyi for providing the
argument in the above paragraph.) 2

In view of Theorems 2 and 6, it is important to know the value of cm,k as
accurately as possible, especially for the case k = 1. Below is a table of a few
values with a corresponding extremal polynomial which attains this value. Note
that these extremal polynomials can be converted to extremal polynomials for
Theorem 6 using (8).
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m cm,k Extremal polynomial p(t)

1 c1,1 = 1 t+ b, |b| ≤ 1

2 c2,1 = 4 c2,1t

3 c3,1 = 6.976850 c3,1t− t3

4 c4,1 = 6
√

3 c4,1t(1− t2)

c4,2 = 36 1
2
c4,2t

2 − t4 − 1

6 c6,1 = 17.61468 c6,1t(1− t2)2 − 64t3

c6,3 = 595.3761 1
12
c6,3t(1− t2)2 − 32t(1 + t4)

The values of cm,1 and the corresponding extremal polynomials given in the
table can be deduced from the estimate below.

Lemma 8. If t1, . . . , tm are any distinct real numbers, then

cm,1 ≤
m∑
i=1

(1 + |ti|)m∏
j 6=i |ti − tj|

(14)

To obtain the extremal polynomials of the table, choose the interpolation
points t1, . . . , tm symmetric with respect to the origin (with the origin included
for odd values of m) and select the positive points from t, 1/t and 1, in that order,
where t > 0. The value of cm,1 is obtained by minimizing over t.

For example, when t1 = t, t2 = 1/t, t3 = −t2, t4 = −t1, where 0 < t < 1, the
right-hand side of (14) reduces to

f(t) =
t(1 + t)4

1− t4
+

(1 + t)4

t(1− t4)
=

(1 + t)4

t(1− t2)
=

(1 + t)3

t(1− t)
.

Let a = min{f(t) : 0 < t < 1} and define p(t) = at(1 − t2). Then c4,1 ≤ a by
(14) and clearly |p(t)| ≤ (1 + t)4 for 0 < t < 1. It follows from the identities
p(−t) = −p(t) and t4p(1/t) = −p(t), that |p(t)| ≤ (1 + |t|)4 for all t ∈ R. Since
p′(0) = a, we have c4,1 = a. By calculus, a = f(2−

√
3) = 6

√
3.

The entries in the table for c4,2 and c6,3 can be obtained from an interpolation
formula for homogeneous polynomials given in [3, (4)]. (The oversize Γ given
there is a misprint for the symbol denoting a product.) For the case of c4,2, take
the interpolation sets to be −r, 0, r and −s, 0, s and set t = r/s. For the case of
c6,3, take both interpolation sets to be −s,−r, r, s and again set t = r/s. It is
easy to deduce that c6,3 = 12(c6,1 + 32) by comparison of the expressions being
minimized; hence the last two extremal polynomials in the table are the same.
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Proof of Lemma 8. One can deduce the estimate (14) easily from the
interpolation formula given in [3, (4)], where t1, . . . , tm and 1,−1 are the sets of
interpolation points and where W is the homogeneous polynomial P defined by
(8).

To give a direct proof, suppose p satisfies (1) and define

q(t) = tmp1

(
1

t

)
, where p1(t) =

p(t)− p(−t)
2

.

Then q extends to a polynomial on R of degree at most m− 1 satisfying |q(t)| ≤
(1 + |t|)m for all t ∈ R. Moreover, the coefficient of tm−1 in q is the coefficient of t
in p, i.e., p′(0). By equating the coefficients of tm−1 in both sides of the Lagrange
interpolation formula for q, we obtain

p′(0) =
m∑
i=1

q(ti)∏
j 6=i(ti − tj)

and (14) follows. 2

See [5] for further discussion of the determination of the values cm,k and related
problems.
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