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Bivariate Polynomial Interpolation
at the Geronimus Nodes

Lawrence A. Harris

Abstract. We consider a class of orthogonal polynomials that satisfy a three-

term recurrence formula with constant coefficients. This class contains the

Geronimus class and, in particular, all four kinds of the Chebyshev polynomi-
als. There are alternation points for each of these orthogonal polynomials that

have a special compatibility with the polynomials of lower index. These points

are the coordinates of two sets of nodes in R2, which we call Geronimus nodes.
The Chebyshev nodes considered separately by Yuan Xu and the author are a

special case.

We obtain an explicit formula (involving the reproducing kernel) for bi-
variate Lagrange polynomials for the Geronimus nodes and we apply this to

obtain a bivariate interpolation theorem and a cubature formula. These the-

orems are a consequence of a surprisingly elementary connection between La-
grange polynomials, interpolation formulas and cubature formulas, which we

explain in an appendix. Finally, we discuss a general bivariate Markov theorem
where polynomials in the Geronimus class are extremal.

1. A class of orthogonal polynomials

Given real constants a, b, c and d, let {pn} be the sequence of polynomials
defined recursively by

(1.1) p0(x) = 1, p1(x) = ax+ b,

pn+1(x) = (cx+ d)pn(x)− pn−1(x), n ≥ 1.

It follows from Favard’s Theorem [4, Th. 4.4] that if ac > 0 then {pn} is a sequence
of orthogonal polynomials with respect to a positive definite moment functional `
satisfying

(1.2) `(1) =
c

a
, `(p2n) = 1, n ≥ 1.

This functional gives the moments of a compactly supported positive Borel measure
µ which can have up to two atoms. (See [5] and [16] for an explicit expression.) We
shall always assume that a > 0 and c > 0. (If both a and c are negative, consider
instead p̃n(x) = pn(−x).)
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2 LAWRENCE A. HARRIS

Our discussion can be adapted to the more general case where there are real
constants α, β, γ, δ, λ and µ with µ > 0 and αγλ > 0 and qn is a sequence of
polynomials satisfying

(1.3) q0(x) = λ, q1(x) = αx+ β,

qn+1(x) = (γx+ δ)qn(x)− µqn−1(x), n ≥ 1,

since qn = λµn/2pn where pn satisfies (1.1). On the other hand, one can reduce to
the case c = 2 and d = 0. Specifically, if pn is a sequence of polynomials satisfying
(1.1) and if α = 2a/c and β = b− ad/c, then

(1.4) pn(x) = gn

(
cx+ d

2

)
where

(1.5) g0(x) = 1, g1(x) = αx+ β,

gn+1(x) = 2xgn(x)− gn−1(x), n ≥ 1.

The class (1.5) has been considered by Geronimus [9] (see also [15]) and is a special
case of the q-Racah polynomials [2, p. 27-28] by formula (1.6) below. See [17] for
the case where polynomials are normalized to monic polynomials.

We single out four special cases of the sequence pn of polynomials satisfying
(1.1) for fixed c and d. Put tn = pn when a = c/2, b = d/2, put un = pn when
a = c, b = d, put vn = pn when a = c, b = d − 1, and put wn = pn when a = c,
b = d+1. In these cases, equation (1.4) holds where gn is the Chebyshev polynomial
of the corresponding kind. These are given in Table 1 below where c = 2, d = 0

and kn = (2nn!)2

(2n)! . (See [14] for further details.)

Table 1: The four kinds of Chebyshev polynomials

Kind Constants Definition Jacobi polynomial

1st a = 1, b = 0 Tn(cos θ) = cosnθ Tn = knP
(−1/2,−1/2)
n

2nd a = 2, b = 0 Un(cos θ) =
sin(n+ 1)θ

sin θ
Un = n+1

2n+1knP
(1/2,1/2)
n

3rd a = 2, b = −1 Vn(cos θ) =
cos(n+ 1/2)θ

cos(θ/2)
Vn = knP

(−1/2,1/2)
n

4th a = 2, b = 1 Wn(cos θ) =
sin(n+ 1/2)θ

sin(θ/2)
Wn = knP

(1/2,−1/2)
n

For each of the kinds of the Chebyshev polynomials, the moment functional of (1.2)
is given by a weight function w(x) with support [−1, 1] and dµ(x) = w(x)dx. These
are given in Table 2 in the next section. Other examples are given in [4, p. 204-205].

The expected identities

2tn = un − un−2, vn = un − un−1, wn = un + un−1

follow by induction for n ≥ 1, where we take u−1 = 0. It is easy to show by
backward induction on j that

pn = pjun−j − pj−1un−j−1, 1 ≤ j ≤ n
since this equation is obviously true when j = n and (1.1) with n = j − 1 shows
that it is true for j − 1 when it is true for j and j ≥ 2. In particular, when j = 1,

pn(x) = (ax+ b)un−1(x)− un−2(x), n ≥ 1,
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and it follows that

(1.6) pn =
a

c
un +

(
b− ad

c

)
un−1 +

(a
c
− 1
)
un−2, n ≥ 1.

In the next section, we will apply the identities

pn+j + pn−j = 2pntj , 0 ≤ j ≤ n,(1.7)

pn+j − pn−j = (pn+1 − pn−1)uj−1, 0 ≤ j ≤ n,(1.8)

pn+j + pn−j−1 = (pn + pn−1)vj , 0 ≤ j ≤ n− 1,(1.9)

pn+j − pn−j−1 = (pn − pn−1)wj , 0 ≤ j ≤ n− 1,(1.10)

which are easily proved. For example, to prove (1.9), let qj = pn+j + pn−j−1 and
note that

qj(x) = (cx+ d)qj−1(x)− qj−2(x), 2 ≤ j ≤ n− 1.

Thus, by induction, it suffices to show that qj = q0vj holds for j = 0 and j = 1.
When j = 0 this is clear and when j = 1 we can obtain this by adding the identities

pn+1(x) = (cx+ d)pn(x)− pn−1(x)

pn−2(x) = (cx+ d)pn−1(x)− pn(x).

The proofs of the other identities are similar.
If desired, one can remove the restrictions on the subscripts in the above iden-

tities for pn by adding the equation p−n = 2tn − pn to the definition of pn in
(1.1).

For purposes of comparison, we observe that the generating function for the
polynomials pn is given by

1 + [(ax+ b)− (cx+ d)]z
z2 − (cx+ d)z + 1

=

∞∑
n=0

pn(x)zn, |cx+ d| ≤ 2, |z| < 1.

The moments µn = `((cx+ d)n) can be computed recursively from the identities

µ0 = E, µ1 = Fµ0,

µn = Fµn−1 + E

[n/2]∑
k=1

1

k

(
2(k − 1)

k − 1

)
µn−2k, n ≥ 2,

where E = c/a, F = (ad − bc)/a and
(
0
0

)
= 1. If p is any polynomial, the value

of `(p) can be obtained from this and the Taylor expansion for p at −d/c. When
F = 0, we have

µ2k−1 = 0,

µ2k = µ0

k−1∑
j=0

[(
k + j − 1

j

)
−
(
k + j − 1

j − 1

)]
Ek−j

for k ≥ 1, where
(
n
−1
)

= 0.
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2. Alternation points for the Geronimus polynomials

For a given m ≥ 1, we show that the polynomial pm has m + 1 alternation
points h0, . . . , hm that satisfy a critical compatibility condition with polynomials
of lower index. In particular, pm(hn) = (−1)n for n = 0, . . . ,m.

Theorem 2.1. For each positive integer m there exist unique numbers

h0 > h1 > · · · > hm such that

(2.1) pm−j(hn) = (−1)npj(hn), n, j = 0, . . . ,m.

Proof. Let {xk,j}kj=1 denote the k distinct real roots of pk in decreasing order.
Note that the leading coefficient of pk is positive since a > 0 and c > 0. We first
consider the case where m = 2k − 1. By the separation property [4, Theorem 5.3],

xk−1,j < xk,j < xk−1,j−1, j = 1, . . . , k,

where xk−1,0 = ∞ and xk−1,k = −∞. Define qk = pk + εpk−1. If ε = 1 then
qk(xk−1,j) and qk(xk,j) have opposite signs so there exists a number y−j with

xk−1,j < y−j < xk,j and y−j is a root of pk + pk−1. If ε = −1 then qk(xk,j)

and qk(xk−1,j−1) have opposite signs so there exists a number y+j with xk,j < y+j <

xk−1,j−1 and y+j is a root of pk − pk−1.

It follows from (1.9) and (1.10) with n = k and j replaced by k − 1 − j that
pm−j + pj and pm−j − pj are polynomial multiples of pk + pk−1 and pk − pk−1,
respectively, for j = 0, . . . , k − 1. Thus we may take {hn} to be the sequence
y+1 , y

−
1 , . . . , y

+
k , y

−
k .

Now suppose m = 2k. It follows from the classical Christoffel-Darboux formula
[4, p. 24] that

p′k+1pk − p′kpk+1 > 0,

p′kpk−1 − p′k−1pk > 0,

and adding these we obtain

(2.2) q′k+1pk − p′kqk+1 > 0,

where qk+1 = pk+1 − pk−1. Let {y−j }kj=1 be the k distinct real roots of pk in

decreasing order and note that the sign of p′k(y−j ) is (−1)j−1 for each j. It follows

from (2.2) evaluated at y−j that the sign of qk+1(y−j ) is (−1)j . Also, qk+1(y−1 ) and

qk+1(y) have opposite signs for large y and qk+1(y−k ) and qk+1(y) have opposite

signs for large −y. Hence qk+1 has k + 1 distinct real roots {y+j }
k+1
j=1 satisfying

y+j+1 < y−j < y+j , j = 1, . . . , k.

It follows from (1.7) and (1.8) that pm−j + pj is a polynomial multiple of pk for
j = 0, . . . , k and pm−j−pj is a polynomial multiple of pk+1−pk−1 for j = 0, . . . , k−1.
Thus we may take {hn} to be the sequence y+1 , y

−
1 , . . . , y

+
k+1.

Uniqueness follows since in each case the sequence hn with n even must be the
sequence of roots {y+j } and the sequence hn with n odd must be the sequence of

roots {y−j }. �

The Table 2 below gives the values of the points hn, 0 ≤ n ≤ m, for each of
the four kinds of Chebyshev polynomials.
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Table 2: Alternation points for the Chebyshev polynomials

Kind Weight on (−1, 1) hn = cos θn πm

1st w1(x) = 2

π
√

1− x2
θn = nπ

m
1
2 (Tm+1 − Tm−1)

2nd w2(x) = 2
π
√

1− x2 θn =
(n+ 1)π
m+ 2 Um+1

3rd w3(x) = 1
π

√
1 + x
1− x θn = nπ

m+ 1 Vm+1 − Vm

4th w4(x) = 1
π

√
1− x
1 + x θn =

(n+ 1)π
m+ 1 Wm+1 +Wm

Note that by the proof of Theorem 2.1, the numbers hn in (2.1) are just the
roots in decreasing order of the polynomial πm (of degree m+ 1) defined by

πm =

{
p2k − p2k−1 if m = 2k − 1,
(pk+1 − pk−1)pk if m = 2k

.

It is not difficult to show that

(2.3) πm(x) = (ax+ b)pm(x)− pm−1(x)

for all positive integers m. Indeed, when m = 2k − 1, one can obtain (2.3) by
applying the identity

pk(x)− pk−1(x) = (ax+ b)vk−1(x)− vk−2(x)

in the equations (1.9) with j = k − 1 and j = k − 2, where n = k. When m = 2k,
one can obtain (2.3) by applying the identity

pk+1(x)− pk−1(x) = 2[(ax+ b)tk(x)− tk−1(x)]

in the equations (1.7) with j = k and j = k − 1, where n = k. It is easy to deduce
from (2.3) and (1.1) that

(2.4) πm =
a

c
pm+1 +

(
b− ad

c

)
pm +

(a
c
− 1
)
pm−1.

The numbers hn of Theorem 2.1 are the points of evaluation in an m+ 1-point
quadrature formula that has at most one more point than Gaussian quadrature and
reduces to the Lobatto-Chebyshev formula [7, 2.7.1.14] when w = w1. Let Pn(R)
denote the space of all polynomials in a single variable with degree at most n.

Theorem 2.2. Suppose the moment functional for the polynomials (1.1) with
fixed a, b, c, d is given by a nonnegative weight function w(x) on (−∞,∞). Then

(2.5)

∫
R
p(x)w(x) dx =

m∑
n=0

αnp(hn)

for all p ∈ P2m−1(R), where

(2.6) αn =
(−1)nc

π′m(hn)
> 0, n = 0, . . . ,m.

This theorem applies, in particular, to each of the kinds of the Chebyshev
polynomials where w(t) and hn are as given in Table 2 and the weights are as given
below.

1st) αn = 2
m for 0 < n < m and αn = 1

m for n = 0,m,

2nd) αn =
2(1− h2n)
m+ 2 for 0 ≤ n ≤ m,



6 LAWRENCE A. HARRIS

3rd) αn = 1 + hn
m+ 1 for 0 < n ≤ m and α0 = 1

m+ 1 ,

4th) αn = 1− hn
m+ 1 for 0 ≤ n < m and αm = 1

m+ 1 .

Note that when w = w2, formula 2.5 is just the classical Gaussian quadrature and
holds for all p ∈ P2m+1(R).

Proof of Theorem 2.2. The Lagrange polynomials for the points {hn} are
given by

Pn(x) =
πm(x)

π′m(hn)(x− hn)
, 0 ≤ n ≤ m.

It follows from the classical Christoffel-Darboux formula [1, p. 261] and (2.3) that

Km−1(x, hn) =
(−1)n

c

[
πm(x)

x− hn
− apm(x)

]
so

Pn(x) = αnKm−1(x, hn) + βnpm(x),

where

αn =
(−1)nc

π′m(hn)
, βn =

a

π′m(hn)
.

The inequality αn > 0 can be deduced from the identity

πm(x) = a2cm−1
m∏
n=0

(x− hn), m ≥ 1.

Thus Theorem 2.2 follows from the 1-dimensional case of Theorem A-2 of the
Appendix. �

By (2.4), the polynomial πm is quasi-orthogonal of order 2 (or less) and thus is
included in the discussion of quadrature given in [19].

3. Interpolation at the Geronimus nodes

The Geronimus nodes are finite sets of points in R2 associated with linear
functionals on polynomials of two variables where the Geronimus polynomials in
each of the variables are extremal. (See [10, Lemma 6].)

We define the even Geronimus nodes N 0 to be the set of ordered pairs (hn, hq),
0 ≤ n, q ≤ m, where n and q are both even or both odd and the odd Geronimus
nodes N 1 to be the set of ordered pairs (hn, hq), 0 ≤ n, q ≤ m, where n is even and
q is odd or n is odd and q is even. Thus if k = 0 or k = 1, then the Geronimus
nodes are

N k = {(hn, hq) : (n, q) ∈ Qk},
where

Qk = {(n, q) : 0 ≤ n, q ≤ m, n− q = k mod 2}.
For example, the Chebyshev nodes given in [10] are the Geronimus nodes for the
case a = 1, b = 0, c = 2, d = 0 in (1.1). (See also [20].)

To define Lagrange polynomials for each set of Geronimus nodes, we first define

Gm(s, t, u, v) =
1

2
[Km−1(s, t, u, v) +Km(s, t, u, v)](3.1)

+
a(a− c)

2c2
[pm(s)pm(u) + pm(t)pm(v)],
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where

Kn(s, t, u, v) =

n∑
i=0

′
i∑

j=0

′′pi−j(s)pj(t)pi−j(u)pj(v)

is the reproducing kernel for the inner product space of polynomials of degree at
most n. (See (A-2) in the Appendix.) Here ′ means that the first term of the
sum is multiplied by a/c and ′′ means that the first and last terms of the sum are
multiplied by a/c (but only once if these terms are the same). This convention
allows us to treat the polynomials (1.1) as an orthonormal set in view of (1.2).
(The function Gm in (3.1) is one half of the function Gm in [13] and one quarter
of the function G in [11].)

By (3.1), we can write

Gm(s, t, u, v) = Km−1(s, t, u, v) +
1

2

m−1∑
j=1

pm−j(s)pj(t)pm−j(u)pj(v)(3.2)

+
a2

2c2
[pm(s)pm(u) + pm(t)pm(v)].

In particular, Gm(s, t, s, t) > 0. Put cn,q = 1/Gm(hn, hq, hn, hq) and define

(3.3) Pn,q(s, t) = cn,qGm(s, t, hn, hq).

Theorem 3.1. Let k = 0 or k = 1 and let (n, q) ∈ Qk. Then Pn,q is a
polynomial of degree m satisfying Pn,q(hn, hq) = 1 and Pn,q(x) = 0 for all x ∈ N k

with x 6= (hn, hq).

Theorem 3.1 can be deduced easily from a bivariate Christoffel-Darboux iden-
tity that plays an important role in our proofs. To state this identity, let ε be an
arbitrary real number and define

Vj(s, t) = pm−j(s)pj(t)− ε pj(s)pm−j(t), j = 0, . . . ,m,(3.4)

W0(s, t) = (as+ b)pm(s)− pm−1(s) = πm(s),(3.5)

Wj(s, t) = pm−j+1(s)pj(t)− ε pj−1(s)pm−j(t), j = 1, . . . ,m.(3.6)

(Thus the symbols V and W from here on no longer denote the Chebyshev poly-
nomials of the third and fourth kinds.) It follows from (2.3) and Theorem 2.1 that
the even Geronimus nodes are common zeros of the polynomials (3.4)-(3.6) with
ε = 1 and the odd Geronimus nodes are common zeros of these polynomials with
ε = −1. The Christoffel-Darboux identity

2c(s− u)Gm(s, t, u, v) =

m−1∑
j=0

′ [Vj(s, t)pm−j−1(u)pj(v)− Vj(u, v)pm−j−1(s)pj(t)]

+

m∑
j=0

′′ [Wj(s, t)pm−j(u)pj(v)−Wj(u, v)pm−j(s)pj(t)]
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can be verified as in [11]. (An extra term is needed in [11] since W0 is defined
differently there.) Taking ε = 0 in this identity, we obtain

2cGm(s, t, u, v) =
1

s− u

m−1∑
j=0

′ [pm−j+1(s)pm−j(u)− pm−j+1(u)pm−j(s) +

pm−j(s)pm−j−1(u)− pm−j(u)pm−j−1(s)
]
pj(t)pj(v)

+
a(a− c)

c
pm(s)pm(u) +

a2

c
pm(t)pm(v).

The first statement of the following theorem is a consequence of Proposition A-
1 of the Appendix as in [10]. Let Pn(R2) denote the space of all real-valued
polynomials in two variables with degree at most n.

Theorem 3.2. If p ∈ Pm(R2) and if k = 0 or k = 1 then there exists a linear
combination pk of V1, . . . , Vm of (3.4) with ε = (−1)k such that

(3.7) p =
∑

(n,q)∈Qk

p(hn, hq)Pn,q + pk.

If p has degree at most m− 1 then (3.7) holds with pk = 0.

In view of what we have shown, Theorem A-2 and Corollary A-3 of the Appen-
dix apply to prove the second statement of the above theorem and the following
cubature formula.

Theorem 3.3. Let w(x) be as in Theorem 2.2 and let k = 0 or k = 1. Then

(3.8)

∫ ∫
R2

p(s, t)w(s)w(t) ds dt =
∑

(n,q)∈Qk

cn,qp(hn, hq)

for all p ∈ P2m−1(R2).

Note that Theorem 3.3 applies, in particular, to each of the kinds of the Cheby-
shev polynomials where w(x) and hn are as given in Table 2.

Suppose w is centrally symmetric, i.e., w(−x) = w(x) for all x ∈ R. By a
theorem of Möller, the number N of nodes of a cubature formula for the integral
of (3.8) that holds for all p ∈ P2m−1(R2) satisfies

N ≥
(
m+ 1

2

)
+
[m

2

]
.

The number of elements in Qk has been counted in [10]. Thus the number of nodes
in (3.8) is minimal when m is even and k = 1 and is at most one more than the
minimal number of nodes otherwise.

Theorem 3.3 and a similar theorem of Bojanov and Petrova [3] combine to give
a simpler formula for the coefficients cn,q in (3.3).

Theorem 3.4. cn,q = 2αnαq, 0 ≤ n, q ≤ m.

Proof. Define

E(p) =
∑
even

αnp(hn), F (p) =
∑
odd

αnp(hn),
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where the sums are taken over the even and odd integers n from 0 to m, respectively.
By Theorem 2.2,

E(pj) + F (pj) =

∫
R
pj(x)w(x) dx = 0, 1 ≤ j ≤ 2m− 1,

E(1) + F (1) =

∫
R
w(x) dx = `(1),

E(pj)− F (pj) =

∫
R
pj(x)pm(x)w(x) dx = 0, 0 ≤ j ≤ m− 1.

Hence, E(1) = F (1) = `(1)/2 and E(pj) = F (pj) = 0 for 1 ≤ j ≤ m− 1. Thus, in
view of Theorem 2.2, Theorem 2.1 of [3] applies to show that∫ ∫

R2
p(s, t)w(s)w(t) ds dt = 2

∑
(n,q)∈Qk

αnαqp(hn, hq)

for all p ∈ P2m−1(R2) and k = 0, 1. The required equality now follows from this
and Theorem 3.3 with p = Pn,q. �

4. A general Markov theorem

In this section we apply the interpolation results in the preceding section to
obtain a general Markov theorem. Let m ≥ 1 and k ≥ 0. Define

α(k)
n,q(r) = (−1)nD̂kGn,q(r, r)(1,−1)

for r ≥ 0, where Gn,q(s, t) = Gm(s, t, hn, hq). Here D̂k denotes the kth order

directional derivative as defined in [11]. It follows as in [10, p. 354] that α
(k)
n,q(r) =

α
(k)
q,n(r) for (n, q) ∈ Qk.

Theorem 4.1. The following statements are equivalent.

a) α
(k)
n,q(r) ≥ 0 for all (n, q) ∈ Qk.

b) If p ∈ Pm(R2) and if |p(hn, hq)| ≤ 1 whenever (n, q) ∈ Qk, then

|D̂kp(r, r)(1,−1)| ≤ p(k)m (r).

It is shown in [11] that V. A. Markov’s classical theorem and its extension to
any real normed linear space is a consequence of Theorem 4.1. In fact, by [13],

if pm = Tm and (n, q) ∈ Qk, then α
(k)
n,q(r) ≥ 0 for r ≥ 1 when k is even and for

r ≥ cos( π
2m ) when k is odd. Also, if pm = Um and (n, q) ∈ Qk, then α

(k)
n,q(r) ≥ 0

for r ≥ cos( π
m+2 ) when k is even and for r ≥ cos( π

2(m+2) ) when k is odd. However,

condition (a) does not hold in many instances even for polynomials with degree 2.

Example 4.2. Let m = k = 2 and r ≥ 0. We show that condition (a) holds if
and only if ad = bc. Thus, in particular, condition (a) does not hold for Chebyshev
polynomials of the third and fourth kinds. Put

A = ad− bc, B = ad+ bc, C =
√
A2 + 8ac.

Then

h0 =
−B + C

2ac
, h1 = − b

a
, h2 =

−B − C
2ac

,
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and

α
(2)
0,0(r) =

a2A(C −A)

2c2
, α

(2)
1,1(r) =

2a3

c
,

α
(2)
2,0(r) =

4a3

c
, α

(2)
2,2(r) = −a

2A(C +A)

2c2
.

Thus (a) holds if and only A = 0.

Proof of Theorem 4.1. Define a linear functional ` on Pm(R2) by

`(p) = D̂kp(r, r)(1,−1).

(a)⇒ (b). If p ∈ Pm(R2), then it follows from Theorem 3.2 that

`(p) =
∑

(n,q)∈Qk

p(hn, hq)`(Pn,q)

since `(Vj) = 0 for j = 0, . . . ,m by formula (13) of [10]. In particular, taking
p(s, t) = pm(s), we obtain

p(k)m (r) =
∑

(n,q)∈Qk

(−1)n`(Pn,q).

If |p(hn, hq)| ≤ 1 for all (n, q) ∈ Qk, then by the triangle inequality

|`(p)| ≤
∑

(n,q)∈Qk

|`(Pn,q)| = p(k)m (r)

since |`(Pn,q)| = (−1)n`(Pn,q) for (n, q) ∈ Qk by (a).

(b)⇒ (a). Define p(s, t) = pm(s) − (−1)n0Pn0,q0(s, t), where (n0, q0) ∈ Qk.
Then |p(hn, hq)| ≤ 1 for all (n, q) ∈ Qk so `(p) ≤ `(pm) by (b). Thus (a) follows. �

APPENDIX: Interpolation and Cubature in R2

The purpose of this appendix is to give the basic general facts we use that
connect Lagrange polynomials, reproducing kernels and cubature formulas. It is
based on ideas in [12]. (Another approach is given in [18].) See [6] and [8] for
surveys of these extensive areas.

Given m ≥ 1, let Pm(R2) denote the space of all real-valued polynomials in
two variables with degree at most m. Let {xi}ni=1 be n distinct points in R2 and

suppose {Pi}ni=1 is a corresponding set of Lagrange polynomials in Pm(R2).

Proposition A-1. Suppose V1, . . . , VN are linearly independent polynomials
in Pm(R2) such that Vj(xi) = 0 for all i = 1, . . . , n and j = 1, . . . , N . If n +

N ≥ dimPm(R2) then for every p ∈ Pm(R2) there is a linear combination p of
V1, . . . , VN such that

(A-1) p =

n∑
i=1

p(xi)Pi + p.

Proof. Define a linear map L : Pm(R2) → Rn by L(p) = (p(x1), . . . , p(xn)).
Since Pm(R2) contains Lagrange polynomials for {xi}ni=1, the range of L contains
the standard basis for Rn so Rank(L) = n. By hypothesis, N ≤ Nullity(L).
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Since Rank(L) + Nullity(L) = dimPm(R2), it follows from the hypotheses that
Nullity(L) = N . Thus, V1, . . . , VN is a basis for the null space of L.

Now let p = p −
∑n
i=1 p(xi)Pi. Then p is in the null space of L so p satisfies

(A-1). �

Let µ be a positive measure on R and let µ×µ be the product measure on R2.
Given a positive integer m, we suppose that

(A-2) (p, q) =

∫ ∫
R2

p(s, t)q(s, t)d(µ× µ)(s, t)

defines an inner product on Pm(R2). For example, if w(t) is a weight function (as
defined in [4]), then we may take dµ(t) = w(t) dt so that (·, ·) is an inner product
with

d(µ× µ)(s, t) = w(s)w(t) ds dt.

Let {pj(t)}∞j=0 be an orthonormal system of polynomials with respect to µ

and let Sm be the subspace of Pm(R2) spanned by the polynomials φj(s, t) =

pm−j(s)pj(t), j = 0, . . . ,m. LetKm−1(x, y) be the reproducing kernel for Pm−1(R2)
with respect the inner product (A-2) on this space.

Theorem A-2. Suppose {αi}ni=1 are real numbers. Conditions (a) and (b)
below are equivalent.

a) If p ∈ Pm(R2) then there is an S ∈ Sm with

(A-3) p =

n∑
i=1

p(xi)Pi + S.

Also, for each i = 1, . . . , n, there is an Si ∈ Sm with

(A-4) Pi(x) = αiKm−1(x, xi) + Si(x), x ∈ R2.

b)

(A-5)

∫ ∫
R2

p(s, t)d(µ× µ)(s, t) =

n∑
i=1

αip(xi)

for all p ∈ P2m−1(R2).

Proof. (a)⇒(b). Let p1 ∈ Pm−1(R2). For each i = 1, . . . , n, by the reproduc-
ing property,

αip1(xi) = (p1, αiKm−1(·, xi)) = (p1, Pi − Si) = (p1, Pi)

since (p1, Si) = 0. Now if p2 ∈ Pm(R2), then it follows from (A-3) that

(p1, p2) =

n∑
i=1

p2(xi)(p1, Pi) + (p1, S) =

n∑
i=1

αip1(xi)p2(xi).

Therefore (A-5) holds when p = p1p2 and thus it holds when p ∈ P2m−1(R2) since
p is a linear combination of monomials of the form p1p2.

(b)⇒(a). We first observe that if q ∈ Pm(R2) and if (q, p1) = 0 for all p1 ∈
Pm−1(R2), then q ∈ Sm. Indeed, by the orthogonal decomposition there exists a
p1 ∈ Pm−1(R2) and an S ∈ Sm with q = p1+S. Then (p1, p1) = (p1, p1)+(S, p1) =
(q, p1) = 0 so p1 = 0.
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Let p ∈ Pm(R2) and take q = p −
∑n
i=1 p(xi)Pi. Clearly q(xi) = 0 whenever

i = 1, . . . , n. If p1 ∈ Pm−1(R2) then qp1 ∈ P2m−1(R2) and so (q, p1) = 0 by (A-5).
Hence q ∈ Sm, which is (A-3).

Now, given i = 1, . . . , n, take q(x) = Pi(x)−αiKm−1(x, xi). If p1 ∈ Pm−1(R2),
then (p1, Pi) = αip1(xi) by (A-5) and (p1,Km−1(·, xi)) = p1(xi) by the reproducing
property. Hence (q, p1) = (p1, q) = 0 for all p1 ∈ Pm−1(R2) so q ∈ Sm, as required.

�

Corollary A-3. (Compare [3].) Suppose {Pi} satisfies (A-3) and suppose
Pi(x) = αiGm(x, xi) for i = 1, . . . , n, where

(A-6) Gm(x, y) = Km−1(x, y) +

m∑
j=0

m∑
k=0

βj,kφj(x)φk(y), x, y ∈ R2,

with βj,k = βk,j for 0 ≤ j, k ≤ m. Then p =

n∑
i=1

p(xi)Pi for all p ∈ Pm−1(R2).

Proof. Note that the hypotheses of part (a) of Theorem A-2 are satisfied since
(A-6) implies (A-4). Let y ∈ R2 and p ∈ Pm−1(R2). By the reproducing property,
(A-6) and part (b), we have

p(y) = (p,Km−1(·, y)) = (p,Gm(·, y)) =

n∑
i=1

αip(xi)Gm(xi, y).

Since Gm is symmetric in x and y, we have αiGm(xi, y) = Pi(y) and the asserted
identity follows. �
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