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0. Introduction

Our object is to study domains which are the region of negative definite-

ness of an operator-valued Hermitian form defined on a space of operators

and to investigate the biholomorphic linear fractional transformations be-

tween them. This is a unified setting in which to consider operator balls,

operator half-planes, strictly J-contractive operators, strictly J-dissipative

operators, etc., and the biholomorphic images of these domains under lin-

ear fractional transformations. Our approach is close in spirit to that of

Potapov [28], Krein and Smuljan [27] and Smuljan [33]. At the same time,

because we consider subspaces of operators, our circular domains include the

matrix balls which E. Cartan [6] obtained as the classical bounded symmet-

ric domains and they include the Siegel domains of genus 2 and 3 which

Pyatetskii-Shapiro [29] associates with these domains as well as the infinite
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dimensional analogues of both types of domains given in [18] and [19]. Thus

we are able to use the ideas of functional analysis and operator theory to

study a highly general class of domains in a setting which allows explicit

constructions and computations.

The extensive applications of linear fractional transformations of matrices

and operators to problems in functional analysis is well documented in a series

of recent volumes on operator theory edited by I. Gohberg and others. In

particular, their importance is established in the study of indefinite inner

product spaces [15, 2], the spectral theory of operators [14, 12], the study of

the Riccati equation and control theory [37, 10, 16, 3], and the mathematical

analysis of electrical networks [11, 21].

A treatment of circular domains for the complex plane is given by Schw-

erdtfeger [32] and the several variable case is discussed by Hua [24, 25]. Hua

considers projective spaces and thus does not discuss questions of invertibil-

ity which are important for determining holomorphic equivalence of domains

and for applications to operator theory. The problem of holomorphic equiv-

alence is solved for a different kind of circular domains in [4]. A discussion

of linear fractional transformations in a more general context than ours is

given by N. Young [36]. See [30] and [31] for more properties of linear frac-
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tional transformations. See Upmeier [35] for an exposition of the infinite

dimensional theory of bounded symmetric domains and extensions.

Section 1 discusses basic definitions and facts about linear fractional

transformations of operators and their coefficient matrices. It is shown that

a linear fractional transformation which is defined at some point may be de-

composed as a product of elementary transformations. To avoid degeneracy,

the coefficient matrix is usually assumed to be invertible. In that case, the

domain and range of a linear fractional transformation and expressions for its

inverse are given. Finally, necessary and sufficient conditions are obtained for

a linear fractional transformation to map a domain in one space of operators

onto a subset with non-empty interior in another space of operators. These

conditions are algebraic in nature and are important for statements of later

results.

Our definition of circular domains is given in Section 2. Various examples

are given to show that these cover a wide range of domains of interest in

several complex variables and functional analysis. If E is the coefficient of

the quadratic term in the definition of a circular domain D , then D is convex

when E ≥ 0. According to our basic lemma, to show that a linear fractional

transformation T maps a given circular domain D1 onto the corresponding
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circular domain D2 computed from the coefficient matrix of T , it suffices to

show that T is defined on D1 and that T−1 is defined on D2. Our main result

is that if both circular domains D1 and D2 satisfy the convexity condition

mentioned, then T is a biholomorphic mapping of D1 onto D2. We also show

that under a compactness condition, if D1 satisfies the convexity condition

and if T maps D1 onto a domain in another operator space, then that domain

isD2. The last result of Section 2 obtains canonical models for domains which

are holomorphically equivalent to the open unit ball of a space of operators

under a linear fractional transformation. These model domains include the

operator Siegel domains of [19].

Section 3 discusses a dual notion of circular domains. Every dual circular

domain is the set of adjoints of the operators in some circular domain and

hence facts about circular domains can be carried over to analogous facts

about dual circular domains. Our main result in this section is an equivalence

of operator inequalities corresponding to the equality of a circular domain

and a dual circular domain. We present three applications. One of them

contains the result of Ginzburg that the adjoint of a strictly J-contractive

operator is strictly J-contractive when J = I − 2 E and E is a projection

with finite rank.
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1. Prerequisites and Identities

Let H and K be Hilbert spaces. We consider

M =

[
A B
C D

]
,

A ∈ L(K), B ∈ L(H,K)
C ∈ L(K,H), D ∈ L(H).

(1)

Clearly M ∈ L(K ×H) and, conversely, any M ∈ L(K ×H) can be written

in the form (1). The linear fractional transformation T with coefficient matrix

M is the function with values in L(H,K) defined by

T (Z) = (AZ +B)(CZ +D)−1 (2)

for Z ∈ L(H,K) where (CZ +D)−1 exists. For example, if n = dim H and

m = dim K are finite, then L(H,K) can be identified with the space of all

m× n matrices and

T (Z) =
[αij(Z)]

det(CZ +D)
,

where αij(Z) is the determinant of CZ + D with row j replaced by row

i of AZ + B. One can prove this by taking transposes in the equation

W (CZ +D) = AZ +B and solving for W with Cramer’s rule.

Proposition 1 Let M be as in (1) and suppose dim H <∞. If M−1 exists,

then there is a Z0 ∈ L(H,K) such that (CZ0 +D)−1 exists.
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The assumption dim H < ∞ cannot be omitted. Indeed, given H with

dim H = ∞, let K = H and let A ∈ L(H) be an operator with left inverse

D but no right inverse. (For example, A could be the shift operator on

H = `2 and D would be its adjoint.) Take M =

[
A I − AD
0 D

]
. Then

M−1 =

[
D 0

I − AD A

]
but CZ + D = D is not invertible. Thus the

linear fractional transformation with coefficient matrix M is undefined for

all operators in L(H,K) although M is invertible.

Proof. We first show that in the case where H = K, if (CZ + D)−1

does not exist for any Z ∈ L(H) then there is a non-zero x ∈ H satisfying

both xtC = 0 and xtD = 0. Put n = dimH. It suffices to show that all

determinants formed from n rows of

[
Ct

Dt

]
are 0 since then the null space

of

[
Ct

Dt

]
is nontrivial [5, p. 373]. By hypothesis, det(CZ + D) = 0 for

all n × n matrices Z. Clearly, CZ + D =

[
Ct

Dt

]t [
Z
I

]
and hence by the

Cauchy-Binet formula [23, p. 14], det(CZ + D) is the sum of the

(
2 n
n

)
products of pairs of the n th order determinants which can be formed by

choosing n rows from

[
Ct

Dt

]
and the same n rows from

[
Z
I

]
.

Now choose any n rows of

[
Ct

Dt

]
. This determines a set α of row

numbers of Ct and a set β of row numbers of Dt. Choose Z so that the rows
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of Z whose number is not in α are 0 rows and so that the other rows of Z are

the rows of I with row numbers not in β. Then the determinant formed from

the rows of

[
Z
I

]
corresponding to the n rows chosen from

[
Ct

Dt

]
is the

determinant of a permutation matrix and so it is ± 1. Also the determinant

formed from any other n rows of

[
Z
I

]
is 0. Thus the determinant formed

from any chosen n rows of

[
Ct

Dt

]
is ± det(CZ +D) = 0. This establishes

what we intended to show first.

To deduce the proposition, let M−1 =

[
P Q
R L

]
and note that CQ +

DL = I since MM−1 = I. If (CQX + D)−1 does not exist for any X ∈

L(H), then by what we have established there exists a non-zero x ∈ H with

xtCQ = 0 and xtD = 0. But then xt = xt(CQ + DL) = 0, a contradiction.

Thus (CZ0 +D)−1 exists for some Z0 ∈ L(H,K).

Proposition 2 Let M be as in (1) and suppose (CZ0 +D)−1 exists for some

Z0 ∈ L(H,K). Put X0 = (CZ0 + D)−1C and W0 = T (Z0), where T is as

in (2). Then

M =

[
I W0

0 I

] [
A−W0C 0

0 CZ0 +D

] [
I 0
X0 I

] [
I −Z0

0 I

]
. (3)

Also, M−1 exists iff. (A − W0C)−1 exists. If (A − W0C)−1 exists, then
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M−1 =

[
P Q
R L

]
, where

R = −X0(A−W0C)−1, L = (CZ0 +D)−1 −RW0,

P = (A−W0C)−1 + Z0R, Q = −PW0 + Z0(CZ0 +D)−1.

Note that the usual formulae [9, p. 3-4] for the inverse of block matrices

are consequences of Proposition 2 in the cases where Z0 = 0 and W0 = 0.

The decomposition of linear fractional transformations corresponding to (3)

is given by the following:

Proposition 3 If T is as in (2) and if (CZ0 + D)−1 exists, then T = T4 ◦

T3 ◦ T2 ◦ T1, where

T1(Z) = Z − Z0, T3(Z) = (A−W0C)Z(CZ0 +D)−1,

T2(Z) = Z(I +X0Z)−1, T4(Z) = Z +W0.

Proofs. Formula (3) of Proposition 2 follows by block multiplication of

operator matrices. It is easy to show that if D−1
1 exists, then

[
A1 0
C1 D1

]−1

exists if and only if A−1
1 exists and in that case

[
A1 0
C1 D1

]−1

=

[
A−1

1 0
−D−1

1 C1A
−1
1 D−1

1

]
.

A similar result holds for

[
A1 B1

0 D1

]−1

. In particular, the second factor on

the right-hand side of (3) is invertible if and only if A −W0C is invertible

and the other factors are always invertible. The remainder of Proposition 2
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follows from this and the fact that the inverse of a product is the product of

the inverses in reverse order.

Proposition 3 can be verified directly by a straightforward algebraic com-

putation.

Proposition 4 Suppose M−1 exists where M is as in (1) and write

M−1 =

[
P Q
R L

]
. If W ∈ L(H,K), then (A−WC)−1 exists if and only if

(RW + L)−1 exists and

(A−WC)−1(WD −B) = (PW +Q)(RW + L)−1. (4)

If T is the linear fractional transformation with coefficient matrix M , then

T is a biholomorphic mapping of D1 = {Z ∈ L(H,K) : (CZ +D)−1 exists}

onto D2 = {W ∈ L(H,K) : (A − WC)−1 exists} and T−1 is the linear

fractional transformation above with coefficient matrix M−1.

Proof. Let S be the linear fractional transformation with coefficient

matrix M−1. By multiplying out

[
I −Z
0 I

]
M−1M

[
Z
I

]
=

[
0
I

]
,

we see that

R(AZ +B) + L(CZ +D) = I
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(P − ZR)(AZ +B) + (Q− ZL)(CZ +D) = 0

so RW + L = (CZ + D)−1 and PW + Q = Z(RW + L), where W =

T (Z). Hence S(T (Z)) = Z for all Z ∈ D1. Interchanging the roles of S

and T , we have that T (S(W )) = W for all W ∈ D̂2, where D̂2 = {W ∈

L(H,K) : (RW + L)−1 exists}. Hence S = T−1 and T is a biholomorphic

mapping of D1 onto D̂2.

Now we show that D̂2 = D2. If W ∈ D̂2, then W = T (Z) for some

Z ∈ D1 so W ∈ D2 by Proposition 2. Let W ∈ D2 and define Z = (A −

WC)−1(WD −B). Then AZ +B = W (CZ +D) so

[
I −W
0 I

]
M

[
I Z
0 I

]
=

[
A−WC 0

C CZ +D

]

and this is invertible. Hence Z ∈ D1. Then W = T (Z) so W ∈ D̂2.

Equality (4) follows from cross multiplication and the identity MM−1 =

I.

Call a subset Γ of a normed linear space X thick if for any open connected

set Ω in X which contains Γ, every holomorphic function f : Ω → C which

vanishes on Γ vanishes on all of Ω. By the identity theorem [22, Th. 3.16.4],

a set is thick whenever it has non-empty interior. The following gives nec-

essary and sufficient conditions for a linear fractional transformation to be a
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biholomorphic mapping between domains in spaces of operators.

Proposition 5 Let A and B be closed complex subspaces of L(H,K) and

let T be a linear fractional transformation which is defined at some point

Z0 ∈ A and which has an invertible coefficient matrix M given by (1). Put

W0 = T (Z0) and X0 = (CZ0 +D)−1C. If each of the conditions

(i) ZX0Z ∈ A for all Z ∈ A

(ii) B = (A−W0C)A(CZ0 +D)−1

(iii) W0 ∈ B

holds, then T is a biholomorphic mapping of E1 onto E2, where

E1 = CompZ0
({Z ∈ A : (CZ +D)−1 exists}),

E2 = CompW0
({W ∈ B : (A−WC)−1 exists}).

Moreover, there is an invertible affine linear fractional transformation of E1

onto E2 which takes Z0 to W0. Conversely, if T is defined on a connected

domain D ⊆ A containing Z0 and if T (D) is a thick subset of B, then (i),

(ii) and (iii) hold.

Here CompP denotes the connected component containing P. Note that

by Proposition 5, if (i), (ii) and (iii) hold for some Z0 ∈ A, then they hold
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for any other value of Z0 in E1. An important special case of Proposition 5

occurs when

T (Z) = (I − AB∗)−
1
2 (Z + A)(I +B∗Z)−1(I −B∗A)

1
2 , (5)

where σ(B∗A) does not intersect [1,∞) and the square roots are defined

by the holomorphic functional calculus. (See [19, p. 146].) It follows from

Proposition 5 with Z0 = 0 and part (c) of Lemma 6 below that if A ∈ A and

if ZB∗Z ∈ A for all Z ∈ A, then T is a biholomorphic mapping of E1 onto

E2 and

E1 = Ω1, E2 = A− (I − AB∗)
1
2 Ω1(I −B∗A)

1
2 ,

where Ω1 is given by (6) below with X0 = B∗.

Lemma 6 Suppose ZX0Z ∈ A whenever Z ∈ A. Then

a) Zp(X0Z) ∈ A b) p(ZX0)W +Wp(X0Z) ∈ A

c) p(ZX0)Wp(X0Z) ∈ A d) WX0p(ZX0)W ∈ A

for all Z,W ∈ A and all polynomials p.

Proof. Let Z,W ∈ A and put Wn = Z(X0Z)n for n ≥ 0. By hypothesis,

ZX0W +WX0Z = (Z +W )X0(Z +W )− ZX0Z −WX0W ∈ A.
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Taking W = Wn, we see that Wn+1 ∈ A if Wn ∈ A. Hence (a) follows by

induction. Also (b) follows from the relation

(ZX0)n+1W +W (X0Z)n+1 = WnX0W +WX0Wn ∈ A,

which holds by what we have shown. Let L(p,W ) be the left-hand side of (b).

Then by (b),

2 p(ZX0)Wp(X0Z) = L(p, L(p,W ))− L(p2,W ) ∈ A,

which proves (c). Finally, applying (c) in the case where p(z) ≡ z, we have

that WX0(ZX0)n+1W = WX0WnX0W ∈ A. Hence (d) follows.

Proof of Proposition 5. Note that (A − W0C)−1 exists by Proposi-

tion 2. By (ii) and (iii), the transformations T1, T3 and T4 of Proposition 3

are everywhere defined biholomorphic maps. Thus to show that T is a bi-

holomorphic map of E1 onto E2, it suffices to show that T2 is a biholomorphic

map of Ω1 = T1(E1) onto Ω2 = T−1
3 ◦ T−1

4 (E2). It follows from the identities

I +X0T1(Z) = (CZ0 +D)−1(CZ +D)

A−WC = (A−W0C)(I − ZX0),

where W = T4 ◦ T3(Z), that

Ω1 = Comp0({Z ∈ A : (I +X0Z)−1 exists}) (6)
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Ω2 = Comp0({Z ∈ A : (I −X0Z)−1 exists}). (7)

Clearly T4 ◦ T3 ◦ (−T1) is affine and it maps E1 onto E2 since Ω2 = −Ω1.

Since (I + X0Z)−1 is a limit in the operator norm of polynomials in

X0Z when ||X0Z|| < 1, it follows from (i) and part (a) of Lemma 6 that

T2(Z) ∈ A whenever Z ∈ A and ||Z|| < 1/||X0||. Since T2 is holomorphic in

Ω1, this implies that T2(Ω1) ⊆ A by the Hahn-Banach and identity theorems.

In fact, T2(Ω1) ⊆ Ω2 since if Z ∈ Ω1 and W = T2(Z) then I − X0W =

(I+X0Z)−1. Define T−1
2 (W ) = W (I−X0W )−1 and note that T−1

2 ◦T2(Z) = Z

for Z ∈ Ω1. A similar argument applied to T−1
2 shows that T−1

2 (Ω2) ⊆ Ω1

and T2 ◦T−1
2 (W ) = W for all W ∈ Ω2. Hence T2 is a biholomorphic mapping

of Ω1 onto Ω2, as required.

To prove the converse assertion, suppose T (D) is a thick subset of B.

Clearly (iii) holds. Put R = T3 ◦ T2 and D1 = T1(D). Note that T3 = DR(0)

maps A into B since R(D1) ⊆ B. Define R−1 = T−1
2 ◦ T−1

3 , where T−1
2 is as

given above and T−1
3 (W ) = (A−W0C)−1W (CZ0 + D). Then Γ = R(D1) is

a thick subset of B and R−1(W ) ∈ A for all W ∈ Γ since R−1(R(Z)) = Z

for all Z ∈ D1. Hence if Ω = Comp0({W ∈ B : R−1(W ) exists}), then

R−1(Ω) ⊆ A since Ω is a connected neighborhood of 0 containing Γ and R−1
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is holomorphic on Ω. Consequently, T−1
3 = DR−1(0) maps B into A, which

proves (ii). Also T2(D1) ⊆ A since T2 = T−1
3 ◦ R. Given Z ∈ A, it follows

that

Z(I + tX0Z)−1 =
1

t
T2(tZ) ∈ A

for all small enough t 6= 0. Differentiating with respect to t at t = 0, we see

that ZX0Z ∈ A. This proves (i).

2. Circular Domains

If Z ∈ L(H), we write

Re Z =
Z + Z∗

2
, Im Z =

Z − Z∗

2i
.

Let A be a closed complex subspace of L(H,K). A circular domain in A is

a set of the form

D(J,A) = {Z ∈ A :

[
Z
I

]∗
J

[
Z
I

]
< 0},

where J ∈ L(K ×H) is self-adjoint. Hence a circular domain is an open set

but it is not necessarily connected. We write D(J) for D(J,A) when A is

understood. Since there is a decomposition

J =

[
E F
F ∗ G

]
(8)
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as in (1) where E∗ = E and G∗ = G, we have

D(J) = {Z ∈ A : Z∗EZ + 2 Re F ∗Z +G < 0}. (9)

For example, the circular domains in C are any open disc, the exterior of

any open disc, any half-plane, any punctured plane, the entire plane and the

empty set.

Example 1 Take J = J0 =

[
I 0
0 −I

]
. Then

D(J) = {Z ∈ A : ||Z|| < 1},

where || || is the operator norm. Thus D(J) is the open unit ball of A , which

we denote by A0. If A is a J∗-algebra, i.e., ZZ∗Z ∈ A whenever Z ∈ A, then

D(J) is a bounded symmetric homogeneous domain. In fact, it is shown in

[18, Th. 2] that

TB(Z) = (I −BB∗)−
1
2 (Z +B)(I +B∗Z)−1(I −B∗B)

1
2

is a biholomorphic mapping of A0 onto itself for each B ∈ A0. This also

follows from the remarks after (5) and Theorem 8 below. For more on J∗-

algebras, see [20] and [7, §9.1].

Example 2 Let V be a partial isometry in A and take

J =

[
I − V V ∗ −iV
iV ∗ −(I − V ∗V )

]
.
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Then

D(J) = {Z ∈ A : 2 Im V ∗Z − Z∗(I − V V ∗)Z + I − V ∗V > 0}.

If (A, V ) is a P ∗-algebra, i.e. V Z∗Z + ZZ∗V ∈ A whenever Z ∈ A and

(I −V V ∗)A(I −V ∗V ) is a J∗-algebra, then it is shown in [19] that D(J) is a

homogeneous operator Siegel domain of genus 3. When V = 0 this reduces to

the result mentioned in Example 1. When V = I, D(J) is the set of strictly

dissipative operators in a JC∗-algebra [35].

Example 3 A given Hilbert space H can be identified with A =

L(C, H). Hence any circular domain D in H is of the form

D = {x ∈ H : (Ex, x) + 2 Re (x, f) + g < 0},

where E ∈ L(H) is self adjoint, f ∈ H and g ∈ R.

Example 4 Given a Hilbert space H, the space H × C is a Hilbert

space. Hence we may take E =

[
I 0
0 −1

]
, f = 0 and g = 0 in Example 3

to obtain

D = {(x, z) ∈ H × C : ||x|| < |z|}.

This circular domain is homogeneous. In fact, the group of linear automor-

phisms of D operates transitively on D. To see this, let (v, λ) ∈ D and let
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L ∈ L(H × C) be given by

L =

[
λA v
v∗ λ

]
, A = Ev +

√√√√1− ||v||
2

|λ|2
(I − Ev),

where the elements of H × C are viewed as column matrices and where Ev

is the projection of H onto the space spanned by v. Then

L∗EL = (|λ|2 − ||v||2)E, L−1 =
1

|λ|2 − ||v||2

[
λA −v
−v∗ λ

]
.

Hence L is an automorphism of D and L(0, 1) = (v, λ).

Next we list some elementary geometrical properties of circular domains.

Suppose that D is a non-empty circular domain in A given by (9). If E ≥ 0,

then D is convex. In fact, if E > 0 and E−1F ∈ A, then D is affinely

equivalent to the open unit ball of B = E1/2AY −1/2, where Y = F ∗E−1F −

G > 0. (Compare [33, Lemma 2.1].) If we know only that E−1 exists and

E−1F ∈ A, then D is circled with respect to Z0 = −E−1F i.e., λ(D−Z0) ⊆

D − Z0 whenever |λ| = 1, and if, in addition, Y ≥ 0 or Y ≤ 0, then

λ(D − Z0) ⊆ D − Z0 whenever 0 < |λ| ≤ 1 or |λ| ≥ 1, respectively. The

first assertion follows immediately from the fact that if Z1 and Z2 are in

D = D(J) and if Z = tZ1 + (1− t)Z2, where 0 ≤ t ≤ 1, then[
Z
I

]∗
J

[
Z
I

]
= t

[
Z1

I

]∗
J

[
Z1

I

]
+ (1− t)

[
Z2

I

]∗
J

[
Z2

I

]

−t(1− t)(Z2 − Z1)∗E(Z2 − Z1).
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To prove the second assertion, observe that T1(Z) = Z−Z0 is a biholomorphic

mapping of D onto D1 = {Z ∈ A : Z∗EZ < Y } by Lemma 7 (below), and

Y > 0 since D1 6= ∅. Also T2(Z) = E1/2ZY −1/2 is a biholomorphic mapping

of D1 onto D2 = {W ∈ B : ||W || < 1} by Lemma 7. The third assertion

follows from Lemma 7 and the identity

|λ|2(M−1)∗JM−1 = J + (1− |λ|2)

[
0 0
0 Y

]
,

where M is the coefficient matrix for Tλ(Z) = λ(Z − Z0) + Z0.

In general, one cannot expect linear fractional transformations to map

circular domains biholomorphically onto circular domains since the range

of a linear fractional transformation defined on a circular domain may not

completely cover a circular domain. The simplest example of this is the

transformation T (z) = z−1 which maps the circular domain D1 = {z ∈

C : |z| > 1} biholomorphically onto the domain D2 = {z ∈ C : 0 < |z| < 1}.

Even when a linear fractional transformation with coefficient matrix M maps

a circular domain D1 = D(J1) onto a circular domain D2, it may not be true

that D2 = D(J2), where J2 = (M−1)∗J1M
−1. For example, let T (z) = 1/z

and D1 = {z ∈ C : z 6= 0}. Then J1 =

[
−1 0
0 0

]
so D(J2) = C but

D2 = D1. We shall obtain conditions which imply that a linear fractional
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transformation is defined on a convex circular domain and that its image is

a circular domain given by the coefficient matrix.

Lemma 7 Suppose the hypotheses of Proposition 5 are satisfied. Given a

self-adjoint J1 ∈ L(K ×H), put J2 = (M−1)∗J1M
−1. Then T is a biholo-

morphic mapping of D1 = D(J1,A) ∩ E1 onto D2 = D(J2,B) ∩ E2.

Proof. Let W = T (Z). Then[
W
I

]
= M

[
Z
I

]
(CZ +D)−1

so [
W
I

]∗
J2

[
W
I

]
= [(CZ +D)−1]∗

[
Z
I

]∗
J1

[
Z
I

]
(CZ +D)−1. (10)

Hence T (D1) ⊆ D2 by Proposition 5. By Proposition 4, the same argument

applies to T−1 to show that T−1(D2) ⊆ D1.

By Lemma 7, the open operator balls with invertible left and right radii

as defined in [33] are circular domains since they are just the images of the

open unit ball of L(H,K) under affine linear fractional transformations with

invertible coefficient matrices.

In the theorem below and throughout, we assume that a self-adjoint oper-

ator J ∈ L(K ×H) is written as in (8) with corresponding subscripts when

J is subscripted.
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Theorem 8 Suppose the hypotheses of Proposition 5 are satisfied. Given

a self-adjoint J1 ∈ L(K ×H), put J2 = (M−1)∗J1M
−1 and suppose Z0 ∈

D(J1,A). If E1 ≥ 0 and E2 ≥ 0, then T is a biholomorphic mapping of

D1 = D(J1,A) onto D2 = D(J2,B).

For example, if J1 is as in Example 1, then D(J1,A) is the open unit

ball of A and the hypotheses on J1 and J2 are satisfied when D−1 exists and

||D−1C|| ≤ 1. (Take Z0 = 0 in (11) below.) A converse to Theorem 8 holds

for this choice of J1 when J2 = J1 and A = L(H,K). See Krein and Smuljan

[27, Th. 3.2].

The assumption that T is defined at some point Z0 ∈ D(J1,A) cannot

be omitted from Theorem 8. For example, let A = B = L(H), T (Z) = Z−1,

E1 ≥ 0, G1 ≥ 0 and suppose F1 is not invertible. Then E2 = G1 ≥ 0.

However, T is not defined anywhere in D1 since if Z ∈ D1, then Re F ∗1Z < 0

and this implies that F ∗1Z is invertible because the spectrum of an operator

is contained in the closure of its numerical range. (Note that if D1 is not

empty, then F1 must have a left inverse.)

As an example of Theorem 8, we state an extension to circular domains of

a part of the fundamental theorem of [27]. (Note that J-expansive rather than
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J-contractive coefficient matrices are considered in [27] since the associated

linear fractional transformations are defined differently there.)

Corollary 9 Given a self-adjoint J ∈ L(K ×H) with E ≥ 0, suppose M ∈

L(K ×H) is invertible and satisfies M∗JM ≤ J . Let A = L(H,K). If

the linear fractional transformation T with coefficient matrix M is defined at

some point of D(J,A), then T maps D(J,A) biholomorphically onto a convex

circular subdomain of itself.

The hypothesis E2 ≥ 0 in Theorem 8 is equivalent to

X∗0

[
Z0

I

]∗
J1

[
Z0

I

]
X0 − 2 Re (E1Z0 + F1)X0 + E1 ≥ 0 (11)

since E2 = Y ∗J1Y , where Y =

[
I − Z0X0

−X0

]
(A−W0C)−1, and this follows

from Proposition 2 since Y =

[
P
R

]
. The next result shows that under

a compactness restriction the hypothesis E2 ≥ 0 may be replaced by the

assumption that T is defined on D1.

Proposition 10 Let A and B be closed complex subspaces of L(H,K) and

let T be a linear fractional transformation with an invertible coefficient matrix

M given by (1). Suppose C is compact or A contains only compact operators.

Let J1 and J2 be as in Theorem 8 and suppose D(J2,B) is connected. If E1 ≥

0 and if T maps D1 = D(J1,A) onto a domain D2 in B , then D2 = D(J2,B).
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The domain D2 need not be convex, as Example 5 (below) shows. How-

ever, it is easy to show that if A is a Hilbert space (in the sense of Example 3)

then E2 ≥ 0 and, in particular, D2 is convex.

Proofs. We deduce Theorem 8 from Lemma 7. Let T1, T2, T3 and T4 be

defined as in Proposition 3. By Lemma 7, T1 maps D1 biholomorphically onto

D(Ja,A) and T−1
3 ◦ T−1

4 maps D2 biholomorphically onto D(Jb,A), where

Ea = E1, Eb = (A−W0C)∗E2(A−W0C).

It suffices to show that T2 is a biholomorphic mapping of D(Ja,A) onto

D(Jb,A). To do this, we first show that D(Ja,A) ⊆ Ω1, where Ω1 is given

by (6), and this is equivalent to the invertibility of I + X0Z for each Z ∈

D(Ja,A) since D(Ja,A) is a convex set containing 0.

By Proposition 3, Ja = M∗
2JbM2, where M2 is the coefficient matrix of

T2, and hence[
Z
I

]∗
Ja

[
Z
I

]
= Z∗EbZ + Re Y ∗(I +X0Z), (12)

where Y = 2 F ∗b Z + Gb(I + X0Z). Also, Fb = Fa − X∗0Ga and Gb = Ga,

so Y = 2 F ∗aZ + Ga(I − X0Z). Clearly Ga < 0 since 0 ∈ D(Ja,A) so

P = (−Ga)
1
2 is an invertible positive operator. Suppose Z ∈ D(Ja,A) and

put U = 2 (F ∗aZ + Ga). Then by (9), Re U < 0 since Ea ≥ 0 so U−1 exists
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and by (12), Re Y ∗(I + X0Z) < 0 since Eb ≥ 0. Let W = P (I + X0Z) and

put Q = WU−1P . Then Y = P (P−1U +W ) so

(U−1P )∗Y ∗(I +X0Z)U−1P = (Q+ I)∗Q.

Hence Re (Q + I)∗Q < 0 so (2 Q + I)∗(2 Q + I) < I and consequently

||2 Q + I|| < 1. Therefore −2 Q = I − (2 Q + I) is invertible and it follows

that I + X0Z is invertible. A similar argument with the roles of Ja and

Jb interchanged shows that D(Jb,A) ⊆ Ω2, where Ω2 is given by (7). This

proves Theorem 8.

We prove Proposition 10 by a variant of the above argument. It suffices

to show that (I − X0Z)−1 exists whenever Z ∈ D(Jb,A). By an argument

similar to the one establishing (12), we have

[
Z
I

]∗
Jb

[
Z
I

]
= Z∗EaZ + Re Y ∗(I −X0Z),

where Y = 2F ∗aZ+Ga(I−X0Z). Let Z ∈ D(Jb,A). Then Re Y ∗(I−X0Z) <

0 since E1 ≥ 0, so I−X0Z has a left inverse. By hypothesis, X0Z is compact

so I −X0Z is invertible by [17, prob. 140] or Lemma 18 below.

Corollary 9 follows easily from Theorem 8 with J1 = J . Indeed, J1 ≤ J2

by hypothesis so D(J2,A) ⊆ D(J1,A) and 0 ≤ E1 ≤ E2.
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Remark The proofs of Theorem 8 and Proposition 10 are much easier

when both H and K are finite dimensional since left invertibility of operators

on these spaces implies invertibility. Indeed, it follows from J1 = M∗J2M

that

[
Z
I

]∗
J1

[
Z
I

]
= (AZ +B)∗E2(AZ +B) + Re Y ∗(CZ +D), (13)

where Y = 2F ∗2 (AZ+B) +G2(CZ+D). Hence if E2 ≥ 0 then Re Y ∗(CZ+

D) < 0 for all Z ∈ D(J1,A), so T (Z) is defined in D(J1,A). A similar

argument assuming E1 ≥ 0 shows that T−1(Z) is defined in D(J2,B).

The following theorem obtains up to affine equivalence all domains which

are holomorphically equivalent to the open unit ball of a space of operators

under a linear fractional transformation satisfying a mild restriction. These

domains are extensions of the operator Siegel domains of Example 2.

Theorem 11

a) Let A be a closed complex subspace of L(H,K) and suppose F ∈ A

satisfies ZF ∗Z ∈ A for all Z ∈ A and ||F || ≤ 1. Then B = F [I + (I −

F ∗F )
1
2 ]−1 satisfies the same hypotheses as F and

SB(Z) = i (I +BB∗)−
1
2 (Z +B)(I −B∗Z)−1(I +B∗B)

1
2
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is a biholomorphic mapping of the open unit ball A0 of A onto the convex

circular domain

HF = {Z ∈ A : 2 Im F ∗Z − Z∗(I − FF ∗)
1
2Z + (I − F ∗F )

1
2 > 0}.

b) Let A and B be closed complex subspaces of L(H,K) and suppose that

T is a linear fractional transformation which maps the open unit ball A0

of A biholomorphically onto a domain D in B . Let the coefficient matrix

of T be given by (1), put X0 = D−1C and suppose X∗0 ∈ A. Then D is

a convex circular domain and there is an invertible affine linear fractional

transformation of D onto a domain HF as in part (a). Also D is bounded

if and only if ||X0|| < 1, and in that case there is an invertible affine linear

fractional transformation of D onto A0.

The following example shows that the condition X∗0 ∈ A cannot be omit-

ted from part (b).

Example 5 Let A = {
[
z1 z2

0 z3

]
: z1, z2, z3 ∈ C}, X0 =

[
1 1
0 0

]
and

T (Z) = Z(I + X0Z)−1. Then T is a biholomorphic mapping of A0 onto a

domain D in A which is not convex and hence is not affinely equivalent to

any domain HF . To see this, note that

A0 = {
[
z1 z2

0 z3

]
: |z2|2 < (1− |z1|2)(1− |z3|2), |z3| < 1}
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T−1(

[
z1 z2

0 z3

]
) =

1

1− z1

[
z1 z2 + z1z3

0 z3(1− z1)

]

so

D = {
[
z1 z2

0 z3

]
: |z2 + z1z3|2 < (1− 2 Re z1)(1− |z3|2), |z3| < 1}.

Clearly 0 ∈ D and given 0 < r < 1, if z1 = r/2 + i s, z3 = r and z2 = −z1z3,

then Zs =

[
z1 z2

0 z3

]
∈ D for all real s. However, if 0 < t < 1, it is easy

to verify that tZs 6∈ D for all large enough s. Hence D is not starlike with

respect to 0 and, in particular, not convex.

Proof. To prove (a), note that ||B|| ≤ 1 since B∗B ≤ I. By part (a) of

Lemma 6, Fp(F ∗F ) ∈ A for all polynomials p so B ∈ A. Also, by part (d) of

Lemma 6, if Z ∈ A then Z[Fp(F ∗F )]∗Z ∈ A for all polynomials p so ZB∗Z ∈

A. By our remarks following (5) and Theorem 8, we conclude that SB is a

biholomorphic mapping of A0 onto D(J2,A), where J2 = (M−1)∗J1M
−1 and

J1 is as in Example 1. Since

M−1 =

[
−i (I +BB∗)−

1
2 −(I +BB∗)−

1
2B

−i (I +B∗B)−
1
2B∗ (I +B∗B)−

1
2

]

and

F = 2B(I +B∗B)−1

(I − FF ∗)
1
2 = (I −BB∗)(I +BB∗)−1
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(I − F ∗F )
1
2 = (I −B∗B)(I +B∗B)−1,

we have

J2 =

[
(I − FF ∗) 1

2 −i F
i F ∗ −(I − F ∗F )

1
2

]
. (14)

This proves part (a).

To prove part (b), we first show that ||X∗0 || ≤ 1. If |λ| > ||X∗0 ||, then

I + X0(−λ−1X∗0 ) is invertible since T is defined in A0 and X∗0 ∈ A. Hence

the spectral radius r of X0X
∗
0 satisfies r ≤ ||X∗0 ||, so ||X∗0 || ≤ 1 since r =

||X∗0 ||2. Let B = −X∗0 and observe that B ∈ A and ||B|| ≤ 1. It is an

easy exercise to modify the proof of Proposition 5 (so that invertibility of

M is not assumed) to show that ZB∗Z ∈ A whenever Z ∈ A. Hence the

proof of part (a) shows that SB is a biholomorphic mapping of A0 onto HF ,

where F = 2B(I+B∗B)−1. By applying Proposition 3 with Z0 = 0, we may

write T = Ta ◦ T2 and SB = Sa ◦ S2, where both Ta and Sa are invertible

affine linear fractional transformations and where S2 = T2 by our choice of

B. Hence SB = Sa ◦ T−1
a ◦ T so Sa ◦ T−1

a maps D onto HF .

If ||X0|| < 1, take B = X∗0 and recall that the transformation TB of

Example 1 is a biholomorphic mapping of A0 onto itself. Hence the above

argument holds with SB replaced by TB to prove the the existence of the
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required affine mapping of D onto A0. The existence of this mapping can

also be deduced from Lemma 6 and the comments following Example 4.

If D is bounded, then T2 is bounded on A0 by some number M . To show

that ||X0|| < 1, suppose ||X0|| = 1 and take Z = −tX∗0 , where 0 < t < 1.

Since Z∗Z ≤ M2(I + X0Z)∗(I + X0Z), by the spectral mapping theorem,

st2 ≤ M2(1 − st)2 for all s ∈ σ(X0X
∗
0 ). We may take s = t = 1 in this

inequality to obtain the desired contradiction.

3. Dual Circular Domains

Because of the general non-commutativity of operators, there is another

obvious choice for the definition of linear fractional transformations of oper-

ators. Let N ∈ L(K ×H) and write

N =

[
P Q
R L

]
(15)

as in (1). Define the linear fractional transformation S with alternate coeffi-

cient matrix N by

S(Z) = (ZR + P )−1(ZL+Q) (16)

for Z ∈ L(H,K) where (ZR+P )−1 exists. By Proposition 4, these transfor-

mations agree with the linear fractional transformations previously defined

in (2). Specifically, let J0 be as in Example 1 and put M = J0N
−1J0. If
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T is the linear fractional transformation with coefficient matrix M , then S

and T both have the same domain of definition and are equal there. (For

example, N = M for the transformations (5) by [19, §3].) It is easy to see

that if W = S(Z) then

[I W ] = (ZR + P )−1[I Z]N

so

[I W ]J2[I W ]∗ = (ZR + P )−1[I Z]NJ2N
∗[I Z]∗[(ZR + P )−1]∗, (17)

where J2 ∈ L(K ×H). In view of Lemma 7, this suggests the following

definition, which leads directly to an analogous result.

Let A be a closed complex subspace of L(H,K). A dual circular domain

in A is a set of the form

D̃(J,A) = {Z ∈ A : [I Z]J [I Z]∗ > 0},

where J ∈ L(K ×H) is self-adjoint. The decomposition (8) gives

D̃(J,A) = {Z ∈ A : E + 2 Re ZF ∗ + ZGZ∗ > 0}.

It is not difficult to reformulate and prove our results about circular do-

mains for dual circular domains. Basically, D(J,A) is replaced by D̃(J,A),
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J2 = (M−1)∗J1M
−1 is replaced by J2 = N−1J1(N−1)∗, and E ≥ 0 is replaced

by G ≤ 0. Analogous arguments or the following lemma can be used to carry

over results for circular domains to dual circular domains.

Define D∗ = {Z∗ : Z ∈ D} for sets D ⊆ A and define T ∗(Z) = T (Z∗)∗ for

functions T : D1 → D2. Also, define Ĵ = −U∗JU for J ∈ L(K ×H), where

U ∈ L(H ×K,K ×H) is given by U =

[
0 I
I 0

]
. (Thus A∗ is not the dual

space of A and U∗ 6= U unless H = K.)

Lemma 12

a) D is a dual circular domain in A iff. D∗ is a circular domain in A∗.

Moreover, D̃(J,A)∗ = D(Ĵ ,A∗).

b) T is a linear fractional transformation which maps a domain D1 in

A biholomorphically onto a domain D2 in B iff. T ∗ is a linear fractional

transformation which maps D∗1 biholomorphically onto D∗2. Moreover, if N

is an alternate coefficient matrix for T , then M = N̂∗ is a coefficient matrix

for T ∗.

c) If M = N̂∗, then J2 = N−1J1(N−1)∗ iff. Ĵ2 = (M−1)∗Ĵ1M
−1.

The proof of the above lemma is straightforward and will be omitted.

Note that by Proposition 2, the value of X0 for T is R(Z0R + P )−1 so the
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corresponding value for T ∗ is X∗0 . Also, observe that if J =

[
E F
F ∗ G

]
then

Ĵ =

[
−G −F ∗
−F −E

]
. Thus, for example, D̃(J,A) is convex when G ≤ 0.

As another example, we state an analogue of Theorem 8 for dual circular

domains.

Theorem 13 Suppose the hypotheses of Proposition 5 are satisfied. Given

a self-adjoint J1 ∈ L(K ×H), put J2 = N−1J1(N−1)∗, where N = J0M
−1J0,

and suppose Z0 ∈ D̃(J1,A). If G1 ≤ 0 and G2 ≤ 0, then T is a biholomorphic

mapping of D̃(J1,A) onto D̃(J2,B).

The hypothesis G2 ≤ 0 is equivalent to

X0[I Z0]J1[I Z0]∗X∗0 − 2 ReX0(F1 + Z0G1) +G1 ≤ 0.

Note that if N is as in (15), it follows from J1 = NJ2N
∗ that

[I Z]J1[I Z]∗ = Re (ZR + P )Y ∗ + (ZL+Q)G2(ZL+Q)∗, (18)

where Y = 2(ZL + Q)F ∗2 + (ZR + P )E2. Thus a remark for dual circular

domains analogous to the one before Theorem 11 is true.

Many circular domains are also dual circular domains. Specifically, given

a J ∈ L(K ×H), we wish to find a J ′ ∈ L(K ×H) such that D(J,A) =
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D̃(J ′,A). For example, if J = J0 then D(J,A) = {Z ∈ A : ||Z|| < 1} and

J ′ = J0 since Z∗Z − I < 0 iff. I − ZZ∗ > 0. Also, if J =

[
0 −i Y
i Y ∗ 0

]
,

where Y is an invertible operator in L(H,K), then

D(J,A) = {Z ∈ A : Im Y ∗Z > 0} (19)

and J ′ =

[
0 i(Y −1)∗

−i Y −1 0

]
since (Y −1)∗(Im Y ∗Z)Y −1 = Im ZY −1.

The following theorem shows how to compute the representation of a

circular domain as a dual circular domain when the matrix giving the domain

is Hermitian congruent to the matrix of a domain where the representation

as a dual circular domain is known. (Note that this does not require the

domains to be holomorphically equivalent.) We state our result in operator-

theoretic terms. Let N be the set of normal operators on H and let K be

the set of compact operators on H.

Theorem 14 Let J1, J
′
1 ∈ L(K ×H) be self-adjoint with E1 ≥ 0 and G′1 ≤

0, and suppose

[
Z
I

]∗
J1

[
Z
I

]
< 0 iff. [I Z]J ′1[I Z]∗ > 0

for all Z ∈ L(H,K). Let M be an invertible operator as in (1) and put

J2 = M∗J1M, J ′2 = NJ ′1N
∗,
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where N = J0M
−1J0. Suppose (CZ0 + D)−1 exists for some Z0 ∈ L(H,K).

If Z ∈ L(H,K) and if one of the conditions

a) (CZ +D)−1 exists,
b) E2 ≥ 0, G′2 ≤ 0 and Z0 satisfies both inequalities of (20),
c) X0(Z − Z0) ∈ N +K,
d) (Z − Z0)X0 ∈ N +K,

holds, then

[
Z
I

]∗
J2

[
Z
I

]
< 0 iff. [I Z]J ′2[I Z]∗ > 0. (20)

Clearly (c) and (d) are satisfied if C is compact. Also, note that if J ′1 =

J0J
−1
1 J0, then J ′2 = J0J

−1
2 J0. The following contains a result of Ginzburg

[13] on uniformly J-expansive operators. (See also [26, p. 77].)

Corollary 15 Let Y be an invertible self-adjoint operator on a Hilbert space

H and let Z ∈ L(H). If one of the operators (I−Y )(I−Z) or (I−Z)(I−Y )

is in N +K or if (I − Z)−1 exists, then Z∗Y Z < Y iff. ZY −1Z∗ < Y −1.

Clearly the first assumption holds when I − Y or I − Z is compact. The

conclusion of Corollary 15 is false without some restriction on Y or Z. For

example, suppose H = H1 × H2, where dim H2 = ∞, and let V be a non-

unitary isometry on H2. Take Y =

[
I 0
0 −I

]
and Z =

[
0 0
0 rV

]
, where

r > 1. Then Z∗Y Z < Y but ZY Z∗ < Y is false.
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Corollary 16 Let J ∈ L(K ×H) be given by (8) and suppose E > 0 and

Y = F ∗E−1F − G > 0. Then D(J,A) = D̃(J ′,A), where J ′ = J0J
−1J0.

Specifically,

J ′ =

[
E−1 − E−1FY −1F ∗E−1 −E−1FY −1

−(E−1FY −1)∗ −Y −1

]
.

For example, Corollary 16 in the case E = Q−1, F = 0 and G = −P implies

[1].

Corollary 17 Suppose A and F satisfy the hypotheses of part (a) of Theo-

rem 11. Then

HF = {Z ∈ A : 2 Im ZF ∗ − Z(I − F ∗F )
1
2Z∗ + (I − FF ∗)

1
2 > 0}.

Lemma 18 If F ∈ N + K and if F has a left or right inverse, then F is

invertible.

Proof (See [8, Ch. 5].) Suppose F has a left inverse. Write F = N +K,

where N ∈ N and K ∈ K, and let π be the natural homomorphism of L(H)

onto the Calkin algebra C. Then π(F ) is a normal element of C with a left

inverse so F is Fredholm and indF = indN = 0. By hypothesis, kerF = {0}

so (ran F )⊥ = {0}. Hence ran F = H so F is invertible. If F has a right

inverse then the above argument applies to F ∗.
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Proof of Theorem 14. We first consider the case where condition (a)

holds. Let T be given by (2), let N be given by (15) and let S be given

by (16). By our previous comments, T (Z) and S(Z) are both defined and

equal to some operator W . By our hypothesis, (10) holds with J1 and J2

interchanged and (17) holds with J2 replaced by J ′1. This implies (20). More

generally, (20) holds for any Z such that CZ + D is invertible when either

one of the operator inequalities in (20) holds. We will show that this is the

case when one of the conditions (b), (c) or (d) holds. Let A = L(H,K).

If (b) holds, then T (Z) is defined in D(J2) by Theorem 8 and T (Z) is

defined on D̃(J ′2) by Theorem 13 so (20) holds.

Suppose (c) holds and let Z ∈ D(J2). By our hypotheses, E1 ≥ 0 and

(13) holds with J1 and J2 interchanged so CZ + D has a left inverse. Then

Fl = I +X0(Z −Z0) has a left inverse since CZ +D = (CZ0 +D)Fl. Hence

by Lemma 18, Fl is invertible so CZ +D is invertible.

Now let Z ∈ D̃(J ′2). By our hypotheses, G′1 ≤ 0 and (18) holds with J1

replaced by J ′2 and J2 replaced by J ′1, so ZR + P has a right inverse. Then

Fr = I + (Z − Z0)X0 has a right inverse Y since ZR + P = Fr(Z0R + P ).

Hence Fl has a right inverse given by I −X0Y (Z −Z0) so Fl is invertible by

Lemma 18. Therefore CZ + D is invertible. A similar argument also leads
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to this conclusion when (d) is assumed.

Proofs of Corollaries. To prove Corollary 15, we first consider the case

where one of the mentioned operators is in N + K. Take J1 = J ′1 = J0 and

M = 1
2

[
I + Y I − Y
I − Y I + Y

]
in Theorem 14. Then J2 =

[
Y 0
0 −Y

]
and J ′2 =[

Y −1 0
0 −Y −1

]
since J ′2 = J0J

−1
2 J0. If Z0 = I, then X0 = (I − Y )/2. By

hypothesis, (c) or (d) holds so the required equivalence follows from from (20).

Now suppose (I − Z)−1 exists and let J1 and J ′1 be those given for (19).

Take M = 1√
2

[
i I i I
−I I

]
. Then J2 and J ′2 are as in the previous case. By

hypothesis, (a) holds so the required equivalence follows from (20).

Corollary 16 follows immediately from Theorem 14 with J1 = J ′1 = J0,

J2 = J and M =

[
E

1
2 E−

1
2F

0 Y
1
2

]
since (a) holds.

To prove Corollary 17, take J ′1 = J1 = J0 and let M be the inverse of the

coefficient matrix of SB. Then J2 is given by (14) and J ′2 = J0J
−1
2 J0 = J0J2J0

since J2
2 = I. Now (b) holds with Z0 = iB so HF = D̃(J ′2,A) by (20).
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