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Abstract. This talk discusses a conjecture of R. V. Kadison and myself. Our conjecture
is that each one-to-one linear map of one unital C*-algebra onto another that preserves the

identity is a Jordan isomorphism if it maps the invertible elements of the first C*-algebra
onto the invertible elements of the other C*-algebra. Connections are shown between this
conjecture and Cartan’s uniqueness theorem.

1. Definitions and notation
Throughout, A and B denote complex Banach algebras with identity (denoted

by e). Put
Ainv = {x ∈ A : x−1 exists }

and given x ∈ A, let
σ(x) = {λ ∈ C : λ e− x 6∈ Ainv}

denote the spectrum of x. The spectral radius of x is defined by

|x|σ = sup{|λ| : λ ∈ σ(x)}.

It is well known that σ(x) is a non-empty compact set and that

|x|σ = lim
n→∞

‖xn‖1/n ≤ ‖x‖

Indeed, these facts are proved by applying holomorphic properties of the resolvent
[12, p. 125].

By definition, A is semisimple if the only element z ∈ A satisfying σ(zx) = {0}
for all x ∈ A is z = 0. For example [12, Th. 24.8.7], if A is the Banach algebra L(X)
of all bounded linear operators on a Banach space X, then A is semisimple. Recall
that a C*-algebra is a closed complex subalgebra A of L(H) for some Hilbert space
H such that A contains the adjoints of each of its elements. Throughout, capital
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German letters denote C*-algebras and all C*-algebras are assumed to contain
the identity operator I on H. Clearly, A is a semisimple Banach algebra since
σ(XX∗) = 0 implies X = 0 for X ∈ A.

If A is commutative, it can be shown that |xy|σ ≤ |x|σ|y|σ for all x, y ∈ A.
Thus A is semisimple if and only if the only x ∈ A with |x|σ = 0 is x = 0.
For example, any closed complex subalgebra of the Banach algebra C(S) of all
continuous complex-valued functions on a compact Hausdorff space S is semisimple
since σ(x) = {x(s) : s ∈ S} for all x ∈ A. According to the Gelfand theory, every
commutative semisimple Banach algebra A is isomorphic to a subalgebra of C(S),
where S is the compact set of multiplicative linear functionals on A (excluding
the zero functional) with the w*-topology. In particular, the multiplicative linear
functionals on A separate the points of A.

2. Previous results and a conjecture
The following result, obtained independently by Gleason [6] and Kahane-Żelazko

[15, 22], is the first main result in this area. The proof given below is based on
a special case of the Hadamard factorization theorem. A different proof has been
given by Roitman and Sternfeld (see [2, p. 69-70]).

Theorem 1. Let φ : A→ B be a linear mapping with B commutative and semisim-
ple. Suppose φ(Ainv) ⊆ Binv and φ(e) = e. Then φ is continuous and multiplicative,
i.e., φ(xy) = φ(x)φ(y) for all x, y ∈ A.

Proof. To see that φ is continuous, we first show that ` and ` ◦ φ are continuous
whenever ` is a multiplicative linear functional on B different from the zero func-
tional. Let ψ be one of these and note that ψ(Ainv) does not contain 0. Hence if
x ∈ A with ‖x‖ = 1 and if |λ| < 1, then 1 − λψ(x) 6= 0 since e − λx ∈ Ainv and
`(e) = 1. It follows that |ψ(x)| ≤ 1 and therefore ‖ψ‖ ≤ 1.

Now we use the closed graph theorem to deduce the continuity of φ. Suppose
{xn} is a sequence in A such that xn → x0 and φ(xn) → y0, where x0 ∈ A and
y0 ∈ B. Then

(` ◦ φ)(xn) → (` ◦ φ)(x0),

`(φ(xn)) → `(y0),

so `(φ(x0)) = `(y0). Since the multiplicative linear functionals on B separate the
points of B, it follows that φ(x0) = y0, proving the continuity of φ.

To establish the multiplicativity of φ, it suffices to consider only the case where
B = C since the multiplicative linear functionals on B separate its points. Thus,
given x ∈ A, define f(λ) = φ(exp(λx)). Then f : C → C is an entire function
having no zeros since every value of the exponential function on a Banach algebra
is invertible. Hence there exists an entire function g : C → C with f(λ) = eg(λ) for
all λ ∈ C. Moreover, g(0) = 0 and Re g(λ) ≤ |λ| ‖x‖ for all λ ∈ C and it follows
from a Schwarz lemma argument that g(λ) = αλ for some complex constant α.
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(See [19, Lemma 10.8].) Thus,

φ

(
e+ λx+

λ2 x2

2!
+ · · ·

)
= 1 + αλ+

α2 λ2

2!
+ · · ·

for all λ ∈ C. Comparing coefficients, we see that φ(x) = α and φ(x2) = α2, so
φ(x2) = φ(x)2.

A slightly tricky algebraic computation shows that φ is multiplicative. Define
[x, y] = xy − yx and x ◦ y = xy + yx. Since φ is a Jordan homomorphism (see
below), for any x, y ∈ A,

φ(x ◦ y) = φ(x) ◦ φ(y),

φ([x, y])2 = φ([x, y]2) = [φ(x), φ(y)]2 = 0.

Hence φ([x, y]) = 0 so

2φ(xy) = φ([x, y] + x ◦ y) = 2φ(x)φ(y).

Remark. Theorem 1 is not true if A and B are allowed to be real Banach
algebras. For example, let A be the real Banach algebra of all continuous real-
valued functions f on the interval [0, 1] with the max norm, let B be the real line
and define

φ(f) =
∫ 1

0

f(t) dt.

Clearly Ainv is the set of all nonzero functions in A so φ satisfies the hypotheses by
the intermediate value theorem. However, φ is not multiplicative.

In 1970, Kaplansky [16] posed the problem of extending Theorem 1. A natural
extension to consider is where B is not necessarily commutative.

A basic observation is that if φ : A → B is a linear mapping with φ(Ainv) ⊆
Binv and φ(e) = e, then σ(φ(x)) ⊆ σ(x) for all x ∈ A. Indeed, if x ∈ A then
φ(λ e − x) = λ e − φ(x) so λ 6∈ σ(φ(x)) whenever λ 6∈ σ(x). If φ is also one-to-one
and satisfies φ(Ainv) = Binv, then σ(φ(x)) = σ(x) for all x ∈ A. Since such a φ

must be surjective, one can show this by applying the above to φ−1.
Note that if both A and B are taken to be the space Mn of all n × n matrices

of complex numbers, the transpose mapping φ(Z) = Zt takes the identity to the
identity and invertible matrices to invertible matrices but it is not multiplicative
since it reverses products. It is a classical fact that the identity and the transpose
are up to similarity all the linear mappings taking the identity to the identity and
invertible matrices to invertible matrices.

Theorem 2. (Marcus-Purves [17]) Let φ : Mn → Mn be a linear mapping such
that φ(GLn) ⊆ GLn and φ(I) = I, where GLn is the group of invertible elements
of Mn. Then there exists a matrix A ∈ GLn such that either φ(Z) = AZ A−1 for
all Z ∈Mn or φ(Z) = AZtA−1 for all Z ∈Mn.

This theorem was extended to the full algebra of operators on a Banach space
37 years later under the additional assumption that φ is a bijection.
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Theorem 3. (Jafarian-Sourour [14, 21]) Let X and Y be complex Banach spaces
and let φ : L(X) → L(Y ) be a linear bijection such that φ(L(X)inv) ⊆ L(Y )inv and
φ(I) = I. Then either there exists an invertible A ∈ L(X,Y ) such that φ(Z) =
AZ A−1 for all Z ∈ L(X) or there exists an invertible B ∈ L(X∗, Y ) such that
φ(Z) = B Z∗B−1 for all Z ∈ L(X).

In general, a Banach algebra A might be a direct sum of spaces L(X) on which
φ is sometimes product preserving and other times product reversing. However, in
all cases,

(1) φ(z2) = φ(z)2

for all z ∈ A. A linear mapping φ : A→ B satisfying φ(e) = e and equation (1) is
called a Jordan homomorphism and this is the conclusion sought by Kaplansky. It
is easy to show [13] that if φ is a Jordan homomorphism then

φ(zw + wz) = φ(z)φ(w) + φ(w)φ(z)

φ(zn) = φ(z)n

φ(zwz) = φ(z)φ(w)φ(z)

φ(z−1) = φ(z)−1 if z−1 exists

for all z, w ∈ A and positive integers n. Moreover, if φ : A→ B is surjective, then
φ maps the center of A onto the center of B provided that the center of B has no
nonzero nilpotents (which is true for C*-algebras).

Example 1. (Russo [20]) This example shows that an “onto” condition is
needed when A 6= B. Define a one-to-one linear mapping φ : M2 →M4 by

φ(Z) =
[
Z Z − Zt

0 Z

]
.

Then φ(GL2) ⊆ GL4, φ(I) = I and even σ(φ(Z)) = σ(Z) but

φ(Z)2 − φ(Z)2 =
[

0 (Z − Zt)2

0 0

]
6≡ 0.

Example 2. (Aupetit [1]) This example shows that semisimplicity cannot be
dropped even when φ is a bijection. Let

A =
{ [

W X

0 Y

]
: W,X, Y ∈M2

}
and define

φ(Z) =
[
W X

0 Y t

]
, where Z =

[
W X

0 Y

]
.

Note that Z is invertible if and only if bothW and Y are invertible. Thus φ : A → A

is a linear bijection satisfying φ(Ainv) = Ainv and φ(I) = I but

φ(Z2)− φ(Z)2 =
[

0 X(Y − Y t)
0 0

]
6≡ 0.
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Conjecture 1. (Harris-Kadison [11]) Let A and B be C*-algebras with identity
I and let φ : A → B be a linear bijection such that φ(Ainv) = Binv and φ(I) = I.
Then φ is a Jordan isomorphism of A onto B.

Theorem 1 shows that the conjecture holds when B is commutative. By [4]
the conjecture holds when B is finite dimensional, when B = L(H), where H is a
Hilbert space, and when B is the C*-algebra of compact operators on H with the
identity operator adjoined. Aupetit has further shown in [3] that the conjecture
holds when A and B are any von Neumann algebras. Note that if the conjecture
is true then by our previous comments, φ maps the center of A onto the center of
B. This is indeed the case, as shown in [11, Th. 3.6].

There is no known counterexample to the conjecture even when A and B are
arbitrary semisimple Banach algebras.

The following result implies the automatic continuity theorem of B. E. Johnson
and shows that φ is continuous in almost all the cases we consider.

Theorem 4. ([2, Theorem 5.5.2]) Let B be semisimple and let φ : A → B be a
surjective linear mapping with φ(Ainv) ⊆ Binv and φ(e) = e. Then φ is continuous.

3. Holomorphic methods
In this section we use the theorem below to deduce theorems related to the

conjecture. This theorem has also been used in [7, 8] to prove Kadison’s charac-
terization of isometries of C*-algebras and extensions.

Theorem 5. (Cartan’s Uniqueness Theorem [7, 9]) Let X be a complex normed
linear space and let D be a bounded domain in X. Suppose that h : D → D is
a holomorphic function such that h(x0) = x0 and Dh(x0) = I for some x0 ∈ D.
Then h = I.

By definition, h is holomorphic in D if for each x ∈ D the Fréchet derivative
Dh(x) exists and is a complex linear map. The theorem has been extended in [9]
to hyperbolic domains but it does not hold for all unbounded domains.

Example 3. This example shows that Cartan’s Uniqueness Theorem does not
hold when D = GL2 even when h is biholomorphic and homogeneous of degree 1.
Let A = M2 and define a biholomorphic mapping h : Ainv → Ainv by

h(Z) = A(Z)−1Z A(Z)

where

A(Z) =
[

1 0
f(Z) 1

]
, f(Z) = z2

2
det(Z) ,

and where z2 is the entry in row 1 and column 2 of Z. Clearly, h(I) = I and
Dh(I) = I but h 6≡ I. In fact, σ(h(Z)) = σ(Z) and h(λZ) = λh(Z) for all λ ∈ C
and Z ∈ A.
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Example 4. Let A be a C*-algebra and define

D = {Z ∈ A : ReZ > 0} where ReZ = 1
2 (Z + Z∗).

By definition, ReZ > 0 if and only if inf ReW (Z) > 0, where

W (Z) = {(Zx, x) : ‖x‖ = 1}

is the numerical range of Z. If Z ∈ D then Z is invertible since σ(Z) ⊆ W (Z).
Then f(Z) = Z−1 is a biholomorphic mapping of D since

ReZ−1 = (Z−1)∗(ReZ)Z−1,

Df(Z)W = −Z−1WZ−1.

Define

T (Z) = (I − Z)(I + Z)−1.

It is not difficult to show that T is a biholomorphic mapping of D onto the open
unit ball of A. It follows that Theorem 5 holds for D

Theorem 6. Let φ : A → B be a continuous linear bijective mapping such that
φ(e) = e. Let D be a domain in A containing e that is holomorphically equivalent
to a bounded domain. Suppose that both D and φ(D) contain the inverses of each
of their elements. Then φ is a Jordan isomorphism.

Proof. By the open mapping theorem, the inverse of φ is also continuous. Define

(2) h(z) = φ−1(φ(z−1)−1).

Then h : D → D is a biholomorphic mapping with h(e) = e and Dh(e) = I. Hence
h = I by Theorem 5. It follows that φ(z−1) = φ(z)−1 whenever z ∈ D. Taking the
Fréchet derivative of both sides, we have

φ(−z−1wz−1) = −φ(z)−1φ(w)φ(z)−1

for all z ∈ D and w ∈ A. In particular, when w = z2 we obtain (1). By the identity
theorem [12, Th. 3.16.4], this equation holds for all z ∈ A.

Note that Proposition 8 of [10] follows immediately from Theorem 6 and Exam-
ple 4. In view of Example 3, there seems little hope that the previous argument will
establish the conjecture, as was suggested in [10, p. 3496]. However, by applying
Theorem 6 to the domain of Example 4, one can easily deduce the following result
when “⊆” is replaced by “=”.

Theorem 7. ([5]) Let φ : A → B be a linear bijection. Suppose φ(I) = I, φ(Ainv) ⊆
Binv and φ(Z∗) = φ(Z)∗ for all Z ∈ A. Then φ is a Jordan isomorphism.

Corollary 8. Let φ : A → B be a linear bijection. Suppose φ(I) = I, φ(Ainv) ⊆
Binv and ‖φ‖ ≤ 1. Then φ is a Jordan isomorphism.
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The corollary follows since if φ is a linear mapping of one C*-algebra into another
satisfying φ(I) = I and ‖φ‖ ≤ 1, then φ preserves adjoints. This can be deduced
from the fact that this holds for complex-valued mappings φ (states) and that the
states separate points. (Alternately, see [20, Lemma 2].) A counterexample given
in [5] shows that there exists a mapping φ which is not a Jordan homomorphism
even though it satisfies all the hypotheses of the corollary except that its range is
not a C*-algebra.

Theorem 9. Let φ : A → B be a linear bijection with A semisimple. If φ(e) = e

and φ(Ainv) = Binv, then φ(z2) = φ(z)2 for all z in the center of A.

Proof. Clearly φ is continuous by Theorem 4 and σ(φ(z)) = σ(z) for all z ∈ A by
hypothesis and our preliminary comments. Let h be defined as in (2), put

D = {z ∈ A : |z|σ < 1}

and define g(z) = h(e + z) − e for z ∈ D. Then σ(h(z)) = σ(z) for all z ∈ Ainv so
σ(g(z)) = σ(z) for all z ∈ D.

Hence g : D → D is holomorphic with g(0) = 0 and Dg(0) = I. By a spectral
version of Cartan’s Uniqueness Theorem due to Ransford [18], it follows that g(z) =
z for all z ∈ D∩Z(A), where Z(A) is the center of A. Then φ(z−1) = φ(z)−1 for all
z ∈ Z(A) with ‖z− e‖ < 1. The theorem now follows as in the proof of Theorem 6.
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