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CARATHÉODORY METRICS ON COMPLEX BANACH

MANIFOLDS

CLIFFORD J. EARLE, LAWRENCE A. HARRIS, JOHN H. HUBBARD,
AND SUDEB MITRA

Abstract. We discuss the Carathéodory and Kobayashi pseudometrics and
their infinitesimal forms on complex Banach manifolds. Our discussiion in-
cludes a very elementary treatment of the Kobayashi pseudometric as an in-
tegral of its infinitesimal form. We also prove new distortion theorems for the
Carathéodory pseudometric under holomorphic maps from the open unit disk
to a complex Banach manifold.

1. Introduction

The geometry of the hyperbolic plane has played an important role in com-
plex function theory ever since the time of Poincaré, who brilliantly exploited the
fact that the open unit disk D in the complex plane C carries a hyperbolic metric
(commonly called the Poincaré metric) that is preserved by all holomorphic au-
tomorphisms of D. This metric therefore descends to a hyperbolic metric on any
Riemann surface whose universal covering surface is holomorphically isomorphic to
D, so (by the uniformization theorem) almost all Riemann surfaces carry natural
complete hyperbolic metrics.

A further link between function theory and the hyperbolic geometry of the unit
disk is provided by the Schwarz–Pick lemma. It states that a holomorphic map
of D into itself does not increase the hyperbolic lengths of tangent vectors or the
Poincaré distances between points. This result also descends to Riemann surfaces
whose universal covering surface is holomorphically isomorphic to D. If X and Y
are such surfaces with their natural hyperbolic metrics then a holomorphic map
from X to Y does not increase the hyperbolic lengths of tangent vectors or the
hyperbolic distances between points.

No higher dimensional complex manifold has the privileged position that D occu-
pies in the one-dimensional case, so the study of natural metrics on such manifolds
continues to be an active area of research. In particular, systems of pseudometrics
on complex spaces that satisfy the Schwarz–Pick lemma have been much studied.
See for example the papers [Har79], [Kob67], [PSh89], [Roy88], and [Ven89] and the
books [Din89], [FV80], [JP93], and [Kob98]. In [Roy88] Royden calls such systems
hyperbolic metrics, which partly explains the presence of this paper in this volume.

The Carathéodory and Kobayashi pseudometrics are the most widely studied of
these systems, and they are our focus of attention. In section 3 we combine results
of Harris [Har79] with an idea of Royden [Roy88] to give a very elementary proof
that the Kobayashi pseudometric can be defined by appropriately integrating an
associated infinitesimal metric. Sharper results that apply to a more general class
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of pseudometrics can be found in Venturini’s incisive paper [Ven89], which uses less
elementary methods and places the results of [Har79] in a broader setting.

In section 4 we shall define both the Carathéodory pseudometric and an associ-
ated inner pseudometric, and in section 5 we shall obtain sharp new forms of the
Schwarz–Pick lemma for holomorphic maps from D to X equipped with either of
these pseudometrics. These results describe in quantitative terms how close a holo-
morphic map from D to X comes to being a complex Carathéodory geodesic. They
are inspired by and derived from results in the beautiful paper [BMi] of Beardon
and Minda about holomorphic maps of D into itself. We thank David Minda for
sending us a preprint of [BMi] and for an additional private communication that
led us to formulate and prove Theorem 5.5.

2. Schwarz–Pick systems

General systems of pseudometrics with the Schwarz–Pick property were first
studied systematically in [Har79] by Harris, who coined the term Schwarz–Pick
system for them. These systems can be studied on various classes of complex spaces.
We choose to use the class of complex manifolds modelled on complex Banach
spaces of positive, possibly infinite, dimension. All our manifolds are assumed to
be connected Hausdorff spaces.

If X and Y are complex Banach manifolds, we shall denote the set of all holo-
morphic maps of X into Y by O(X, Y ).

Definition 2.1. (see Harris [Har79]) A Schwarz–Pick system is a functor, denoted
by X �→ dX , that assigns to each complex Banach manifold X a pseudometric dX

so that the following conditions hold:
(a) The pseudometric assigned to D is the Poincaré metric

(2.1) dD(z1, z2) = tanh−1

∣∣∣∣ z1 − z2

1 − z1z2

∣∣∣∣ if z1 ∈ D and z2 ∈ D.

(b) If X and Y are complex Banach manifolds then

(2.2) dY (f(x1), f(x2)) ≤ dX(x1, x2) if x1 ∈ X, x2 ∈ X and f ∈ O(X, Y ).

Remark 2.2. Because of conditions (a) and (b) the sets O(D, X) and O(X, D)
provide upper and lower bounds for dX . These upper and lower bounds lead to
the definitions of the Kobayashi and Carathéodory pseudometrics, which we shall
study in the remainder of this paper.

3. The Kobayashi pseudometric and its infinitesimal form

3.1. The classical definition. In this paper dD will always be the Poincaré metric
(2.1) on the unit disk D.

Definition 3.1. A Schwarz–Pick pseudometric on the complex Banach manifold
X is a pseudometric d such that

(3.1) d(f(z), f(w)) ≤ dD(z, w) for all z and w in D and f in O(D, X).

If X �→ dX is a Schwarz–Pick system, then dX is obviously a Schwarz–Pick
pseudometric on X for every complex Banach manifold X .
Definition 3.2. The Kobayashi pseudometric KX is the largest Schwarz–Pick
pseudometric on the complex Banach manifold X .
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As Kobayashi observed (see for example [Kob67] or [Kob98]), KX is easily de-
scribed in terms of the function δX : X × X → [0,∞] defined by

δX(x, x′) = inf{dD(0, z) : x= f(0) and x′ = f(z) for some f ∈ O(D, X)}
for all x and x′ in X . (As usual the infimum of the empty set is ∞.)

In fact (3.1), the definition of δX , and the triangle inequality imply that any
Schwarz–Pick pseudometric d on X satisfies

(3.2) d(x, x′) ≤ inf

⎧⎨⎩
n∑

j=1

δX(xj−1, xj)

⎫⎬⎭ for all x and x′ in X,

where the infimum is taken over all positive integers n and all (n + 1)-tuples of
points x0, . . . , xn in X such that x0 = x and xn = x′.

The infimum on the right side of the inequality (3.2) defines a function on X×X
that is obviously a Schwarz–Pick pseudometric on X , so (3.2) implies that

(3.3) KX(x, x′) = inf

⎧⎨⎩
n∑

j=1

δX(xj−1, xj)

⎫⎬⎭ for all x and x′ in X.

(The infimum is of course taken over the same set as in (3.2) above.)
Equation (3.3) is Kobayashi’s definition of the pseudometric KX . It follows

readily from (3.3) and the Schwarz–Pick lemma that the functor assigning the
Kobayashi pseudometric KX to each complex Banach manifold X is a Schwarz–
Pick system. A slightly stronger property of this functor will follow from the arc
length description of KX that we shall explain in the remainder of section 2.

3.2. The infinitesimal Kobayashi pseudometric and its integrated form.
Every complex Banach manifold X has an infinitesimal Kobayashi pseudometric
kX , first introduced (in the finite dimensional case) by Kobayashi in [Kob67]. Since
kX is a function on the tangent bundle T (X) of X , we shall briefly review some
properties of tangent bundles.

For the moment let X be a C1 manifold modelled on a real Banach space V .
For each x in X the tangent space to X at x will be denoted by Tx(X). The
tangent bundle T (X) of X consists of the ordered pairs (x, v) such that x ∈ X and
v ∈ Tx(X) (see [Lan62]).

If X is an open set in V with the C1 structure induced by the inclusion map,
then each Tx(X), x in X , is naturally identified with V , and T (X) = X × V .

If X and Y are C1 manifolds and x is a point of X , every C1 map f : X → Y
induces a linear map f∗(x) from Tx(X) to Tf(x)(Y ) (see [Lan62]). If X and Y are
subregions of Banach spaces V and W and the tangent spaces Tx(X) and Tf(x)(Y )
are identified with V and W in the natural way, then f∗(x) is the usual Fréchet
derivative of f at x.

The tangent bundle T (X) has a natural C0 manifold structure modelled on
V × V . A convenient atlas for T (X) consists of the charts T (ϕ) defined by the
formula

T (ϕ)(x, v) = (ϕ(x), ϕ∗(x)v), (x, v) ∈ T (U),

where U is an open set in X , T (U) is the open subset {(x, v) ∈ T (X) : x ∈ U} of
T (X), and ϕ is a chart on X with domain U . The image of T (U) under T (ϕ) is
the open set ϕ(U) × V in V × V .
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If X is a complex Banach manifold modelled on a complex Banach space V ,
then each tangent space Tx(X) has a unique complex Banach space structure such
that the map ϕ∗(x) from Tx(X) to V is a C-linear isomorphism whenever ϕ is a
(holomorphic) chart defined in some neighborhood of x. Furthermore, T (X) has a
unique complex Banach manifold structure such that the map T (ϕ) from T (U) to
ϕ(U) × V is biholomorphic for every (holomorphic) chart ϕ on X with domain U
(see [Dou66]).

Now we are ready for Kobayashi’s definition of kX .

Definition 3.3. The infinitesimal Kobayashi pseudometric on the complex Banach
manifold X is the function kX on T (X) defined by the formula

(3.4) kX(x, v) = inf{|z| : x = f(0) and v = f∗(0)z for some f ∈ O(D, X)}.
Obviously kX(x, v) ≥ 0 and kX(x, cv) = |c|kX(x, v) for all complex numbers

c. The following Schwarz–Pick property is also an immediate consequence of the
definition (see [Roy88] or Theorem 1.2.6 in [NO90]).

Proposition 3.4. If X and Y are complex Banach manifolds and f ∈ O(X, Y ),
then

kY (f(x), f∗(x)v) ≤ kX(x, v) for all (x, v) ∈ T (X).

In particular, if f is biholomorphic then kY (f(x), f∗(x)v) = kX(x, v).

Corollary 3.5. kD(w, z) =
|z|

1 − |w|2 for all (w, z) in D × C.

Proof. Definition 3.3 and Schwarz’s lemma imply that kD(0, z) = |z| for all complex
numbers z. To prove the formula for kD(w, z), apply Proposition 3.4 with X = Y =
D and f(ζ) = (ζ − w)/(1 − ζw), ζ in D. �

We shall use the function kX to measure the lengths of piecewise C1 curves in
X . As usual, if the curve γ : [a, b] → X is differentiable at t in [a, b] the symbol γ′(t)
denotes the tangent vector γ∗(t)1 to X at γ(t). If γ is piecewise C1, it is natural
to define the Kobayashi length of γ by integrating the function kX(γ(t), γ′(t)) over
the parameter interval of γ. That function is upper semicontinuous when X is
either a domain in a complex Banach space (see [Har79] or [Din89]) or a finite
dimensional complex manifold (see [Roy71] and [Roy74] or [NO90]), but the case of
infinite dimensional complex manifolds is harder to deal with. In [Roy88] Royden
evades that difficulty by using the upper Riemann integral. Venturini [Ven89] gets
more refined results by using upper and lower Lebesgue integrals. We shall follow
Royden’s example, as it allows the very elementary arguments that we shall now
present.

The required upper Riemann integrals exist because the function kX is locally
bounded on T (X). To prove this we use special charts on X . By definition, a
standard chart at x in X is a biholomorphic map ϕ of an open neighborhood of x
onto the open unit ball of V with ϕ(x) = 0.

Lemma 3.6. If ϕ is a standard chart at the point x in X, then

kX(y, v) ≤ 2‖ϕ∗(y)v‖
for all (y, v) in T (X) such that y is in the domain of ϕ and ‖ϕ(y)‖ ≤ 1/2.
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Proof. If v = 0 the inequality is trivial. If v 	= 0 we derive it from (3.4) by setting

f(z) = ϕ−1

(
ϕ(y) + z

ϕ∗(y)v
2‖ϕ∗(y)v‖

)
, z ∈ D,

so that f ∈ O(D, X), f(0) = y, and f∗(0)c =
c

2‖ϕ∗(y)v‖v for all c in C. �

Corollary 3.7. The function kX is locally bounded in T (X).

Proof. Let U be the domain of the standard chart ϕ in Lemma 3.6. Since holomor-
phic maps are C1, the function (y, v) �→ 2‖ϕ∗(y)v‖ is locally bounded in the open
set T (U) = {(y, v) ∈ T (X) : y ∈ U}. �

Following Royden [Roy88], we can now define the arc length LX(γ) of a piecewise
C1 curve γ : [a, b] → X in X to be the upper Riemann integral

(3.5) LX(γ) =
∫ b

a

kX(γ(t), γ′(t)) dt,

and the distance ρX(x, y) to be the infimum of the lengths of all piecewise C1 curves
joining x to y in X . The resulting pseudometric ρX on X is the integrated form of
the Kobayashi infinitesimal pseudometric kX . By Proposition 3.4,

(3.6) ρY (f(x1), f(x2)) ≤ ρX(x1, x2) for all x1 and x2 in X

whenever f ∈ O(X, Y ). In fact even more is true. If f ∈ O(X, Y ) and γ is a
piecewise C1 curve in X , then LY (f ◦ γ) ≤ LX(γ).

Remark 3.8. The upper Riemann integral of an upper semicontinuous function
equals its Lebesgue integral, so we can use a Lebesgue integral in (3.5) if X is finite
dimensional or a region in a complex Banach space, but that is an unnecessary
luxury.

Remark 3.9. By Corollary 3.5, ρD is the Poincaré metric dD on D. Therefore,
by (3.6), the functor that assigns ρX to each complex Banach manifold X is a
Schwarz–Pick system. In particular ρX is a Schwarz–Pick pseudometric on X , so
ρX(x, y) ≤ KX(x, y) for all x and y in X . In the next subsection we shall use
methods of Harris [Har79] to prove that the pseudometrics ρX and KX are in fact
equal.

3.3. Upper bounds for Schwarz–Pick pseudometrics. We begin with a simple
estimate.

Lemma 3.10. Let d be a Schwarz–Pick pseudometric on X and let ϕ be a standard
chart at the point x0 in X. If 0 < r < 1/3 there is a constant C(r) such that

d(x, y) ≤ C(r)‖ϕ(x) − ϕ(y)‖
for all x and y in the domain of ϕ such that ‖ϕ(x)‖ ≤ r and ‖ϕ(y)‖ ≤ r.

Proof. There is nothing to prove if x = y. If x, y and r satisfy the stated conditions
and x 	= y, define f in O(D, X) by

f(z) = ϕ−1

(
ϕ(x) + (1 − r)z

ϕ(y) − ϕ(x)
‖ϕ(y) − ϕ(x)‖

)
, z ∈ D.
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Our hypothesis implies that z0 = ‖ϕ(y)−ϕ(x)‖/(1−r) belongs to D. Since f(z0) = y
and f(0) = x, inequality (3.1) gives

d(x, y) ≤ dD(0, ‖ϕ(y) − ϕ(x)‖/(1 − r)).

Since dD(0, s)/s is an increasing function of s in the interval (0, 1) the required
inequality holds with C(r) = dD(0, 2r/(1 − r))/2r. �

The crucial step is the following result from [Har79] (see pp. 368 and 371).

Lemma 3.11 (Harris). Let γ : [a, b] → X be a C1 curve in X. If d is a Schwarz–
Pick metric on X then

lim sup
t→s

d(γ(t), γ(s))
|t − s| ≤ kX(γ(s), γ′(s)) for all s ∈ [a, b].

Proof. Choose s in [a, b] and a standard chart ϕ at γ(s). Let c be a complex number
such that there is f in O(D, X) with f(0) = γ(s) and f∗(0)c = γ′(s).

Since the curves t �→ ϕ(γ(t)) and t �→ ϕ(f(c(t − s))) are tangent at t = s,

ϕ(γ(t)) − ϕ(f(c(t − s))) = o(t − s)

as t approaches s in [a, b]. Therefore, by Lemma 3.10 and inequality (3.1),

d(γ(t), γ(s)) ≤ d(f(c(t − s)), f(0)) + o(t − s) ≤ dD(c(t − s), 0) + o(t − s)

and

lim sup
t→s

d(γ(t), γ(s))
|t − s| ≤ lim sup

t→s

dD(c(t − s), 0)
|t − s| = |c|.

Since kX(γ(s), γ′(s)) is the infimum of all such complex numbers |c|, the lemma is
proved. �

We also need a simple fact from integration theory. (See pp. 369 and 370 of
[Har79] for a proof that uses only the Riemann integrability of the positive function
h.)

Lemma 3.12. Let h be a positive continuous function on the closed interval [a, b]
and let ρ be a pseudometric on [a, b]. If

(3.7) lim sup
t→s

ρ(s, t)
|s − t| ≤ h(s) for all s ∈ [a, b],

then ρ(a, b) ≤
∫ b

a

h(t) dt.

Proof. Set J = ρ(a, b)/
∫ b

a
h. If a ≤ x < c < y ≤ b and ρ(x, y) ≥ J

∫ y

x
h then, by

the triangle inequality, either ρ(x, c) ≥ J
∫ c

x
h or ρ(c, y) ≥ J

∫ y

c
h.

We can therefore inductively define sequences {xn} and {yn} in [a, b] such that
x1 = a, y1 = b, xn ≤ xn+1 < yn+1 ≤ yn, (yn+1 − xn+1) = 1

2 (yn − xn), and

ρ(xn, yn) ≥ J

∫ yn

xn

h(t) dt

for every n. Let s = limn→∞ xn = limn→∞ yn. For each n we can choose tn equal
to one of the points xn or yn so that tn 	= s and

ρ(s, tn)
|s − tn| ≥ J

∣∣∣∣∣
∫ tn

s
h(t) dt

s − tn

∣∣∣∣∣ .
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As n → ∞ the right side of this inequality converges to Jh(s). By hypothesis
h(s) > 0 and the lim sup of the left side is at most h(s), so J ≤ 1. �

The following theorem, which follows readily from Lemmas 3.11 and 3.12, is
a special case of Theorem 3.1 of Venturini [Ven89]. Venturini’s treatment of arc
length uses both a more refined theory of integration and a wider class of admissible
curves.

Theorem 3.13. If d is a Schwarz–Pick metric on X, then d(x, y) ≤ ρX(x, y) for
all x and y in X.

Proof. We follow the proof of Proposition 14 in [Har79]. It suffices to prove that
d(γ(a), γ(b)) ≤ LX(γ) for all C1 curves γ : [a, b] → X . By definition

LX(γ) =
∫ b

a

f(t) dt,

with f(t) = kX(γ(t), γ′(t)) for t in [a, b].
Let ε > 0 be given. By the definition of upper Riemann sums and integrals there

is a continuous function h on [a, b] such that h(t) > f(t)(≥ 0) for all t in [a, b] and

(3.8)
∫ b

a

h(t) dt < LX(γ) + ε.

Consider the pseudometric ρ(s, t) = d(γ(s), γ(t)) on [a, b]. By Lemma 3.11, ρ
and h satisfy (3.7), so Lemma 3.12 and the inequality (3.8) give

d(γ(a), γ(b)) = ρ(a, b) ≤
∫ b

a

h(t) dt < LX(γ) + ε.

Since ε is arbitrary the proof is complete. �

Corollary 3.14. The pseudometric ρX is the Kobayashi pseudometric on X.

This is obvious since Theorem 3.13 identifies ρX as the largest Schwarz–Pick
pseudometric on X . We conclude that KX is the integrated form of the infinitesimal
pseudometric kX .

4. The Carathéodory pseudometric and its infinitesimal form

4.1. The definitions. Let x and y be points of the complex Banach manifold X
and let v be a tangent vector to X at x. Since the Kobayashi pseudometrics form
a Schwarz–Pick system, Definition 2.1 implies that

(4.1) dD(f(x), f(y)) ≤ KX(x, y) for all f in O(X, D).

Similarly, Proposition 3.4 and Corollary 3.5 give

(4.2) |f∗(x)v| ≤ |f∗(x)v|
1 − |f(x)|2 ≤ kX(x, v) for all f in O(X, D).

Therefore the numbers

(4.3) CX(x, y) = sup{dD(f(x), f(y)) : f ∈ O(X, D)}
and

(4.4) cX (x, v) = sup{|f∗(x)v| : f ∈ O(X, D)}
are finite and are bounded by KX(x, y) and kX(x, v) respectively.
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By definition, CX(x, y) is the Carathéodory pseudo-distance between x and y,
and c

X
(x, v) is the Carathéodory length of v. The functions CX and c

X
are called

the Carathéodory pseudometric and the infinitesimal Carathéodory pseudometric
respectively.

When X is the unit disk D, we can take f in O(D, D) to be the identity map
and obtain

dD(z, w) ≤ CD(z, w) ≤ KD(z, w) = dD(z, w) for all z and w in D

from (4.3) and (4.1).
Similarly, given any w in D, we use the map ζ �→ (ζ − w)/(1 − ζw) in O(D, D)

to obtain
|z|

1 − |w|2 ≤ cΔ(w, z) ≤ kD(w, z) =
|z|

1 − |w|2 for all z in C

from (4.4)), (4.2), and Corollary 3.5. These observations verify the well-known
fact that the functions CD and c

D
are respectively the Poincaré metric and the

infinitesimal Poincaré metric on D.
It is evident from the definition (4.3) that the functor assigning the Carathéo-

dory pseudometric CX to each complex Banach manifold X is a Schwarz–Pick
system. This Carathéodory functor is the first Schwarz–Pick system, having been
introduced by Carathéodory in [Car26] for domains in C2.

4.2. The derivative of CX . It is well known (see for example [Din89], [Har79],
[JP93], or [Ven89]) that the function c

X
is continuous on T (X) and is the derivative

of CX in the sense that

(4.5) lim
t→0

CX(γ(0), γ(t))
|t| = cX (γ(0), γ′(0))

whenever γ : (−ε, ε) → X is a C1 curve in X . Since the cited references provide
detailed proofs of (4.5) only when X is an open subset of V , we shall prove (4.5)
here by extending the treatment of CX and c

X
in [EH70] to the manifold case. Our

proof will show that (4.5) also holds when t is a complex variable and γ(t) is a
holomorphic map of a neighborhood of 0 into X (see Corollary 4.5 below).

We need two well-known lemmas.

Lemma 4.1. Let H∞(X) be the Banach space of bounded holomorphic functions
on X, and let H∞(X)∗ be its dual space. The map φ : X → H∞(X)∗ defined by

φ(x)(f) = f(x), x ∈ X and f ∈ H∞(X),

is holomorphic.

Proof. Fix x0 in X and a neighborhood U of x0 that is biholomorphically equiva-
lent to a bounded open set in V . It follows readily from Cauchy’s estimates that
the formula φU (x)(f) = f(x), x in U and f in H∞(U), defines a holomorphic
embedding of U in H∞(U)∗. (See [EH70] for details.) The restriction of φ to U
is the composition of φU with the bounded linear map from H∞(U)∗ to H∞(X)∗

that takes 	 in H∞(U)∗ to the linear functional f �→ 	(f |U) on H∞(X), so φ is
holomorphic in U . �
Corollary 4.2. If x is a point of X and v is a tangent vector to X at x, then the
Carathéodory length c

X
(x, v) of v equals the norm ‖φ∗(x)v‖ of the linear functional

φ∗(x)v on H∞(X). In particular, c
X

is a continuous function on T (X).
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Proof. Let γ(t) be a C1 curve in X , defined in a neighborhood of 0, with γ(0) = x
and γ′(0) = v. For each f in H∞(X) we have

(φ∗(x)v)(f) = lim
t→0

φ(γ(t))(f) − φ(γ(0))(f)
t

= lim
t→0

f(γ(t)) − f(x)
t

= f∗(x)v.

Therefore φ∗(x)v is the linear functional that takes f in H∞(X) to f∗(x)v. By
(4.4), the norm of that functional is c

X
(x, v). �

The statements and proofs of the following lemma and its first corollary are
implicit in Lewittes’s paper [Lew66], particularly in the reasoning on its final page.

Lemma 4.3. If a and b are points of D, then |a−b| ≤ 2 tanh
dD(a, b)

2
, with equality

if and only if b = ±a.

Proof. If a = b there is nothing to prove. If a 	= b choose a positive number r < 1
and a conformal map g of D onto itself so that g(r) = a and g(−r) = b. Then
dD(a, b) = dD(r,−r) = 2dD(r, 0), so

2 tanh
dD(a, b)

2
= 2 tanhdD(r, 0) = 2r.

It therefore suffices to prove that |g(r) − g(−r)| ≤ 2r with equality if and only if
g(0) = 0. That is easily done by writing g in the form

g(z) = eiθ(z − α)/(1 − αz)

with |α| < 1. �

Corollary 4.4. ‖φ(x) − φ(y)‖ = 2 tanh
CX(x, y)

2
for all x and y in X,

Proof. Let x and y be given. For any f in H∞(X) with norm less than one, let gf

be a conformal map of D onto itself that satisfies gf (f(x)) = −gf(f(y)). Lemma 4.3
and the definition of φ give

|(φ(x) − φ(y))(f)| ≤ 2 tanh
dD(f(x), f(y))

2
= |(φ(x) − φ(y))(gf ◦ f)|.

The corollary follows by taking suprema over f . �

We have already established the convention that if a curve γ in X is differentiable
at some point t in its parameter interval, then γ′(t) is the tangent vector γ∗(t)1 to
X at γ(t). It will be convenient from now on to use the same convention when t is
a complex variable and γ is a holomorphic map from a neighborhood of t to X .

Corollary 4.5. If t �→ γ(t) is either a C1 map of an open interval (−ε, ε) into X
or a holomorphic map of an open disk {t ∈ C : |t| < ε} into X, then (4.5) holds.

Proof. Under either hypothesis on γ, Corollary 4.4 and Lemma 4.1 imply that

lim
t→0

CX(γ(0), γ(t))
|t| = lim

t→0

2
|t| tanh−1 ‖φ(γ(0)) − φ(γ(t))‖

2
= ‖(φ ◦ γ)′(0)‖,

which equals c
X

(γ(0), γ′(0)) by Corollary 4.2. �
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4.3. The Carathéodory–Reiffen pseudometric. In general CX(x, y) cannot be
defined as the infimum of lengths of curves joining x to y. In fact there are bounded
domains of holomorphy X in C2 such that not all open CX balls are connected (see
[JP93]). For that reason the pseudometric C̃X generated by the infinitesimal Car-
athéodory metric c

X
has independent interest.

Since it was first systematically studied (in the finite dimensional case) by Reiffen
in [Ref65], C̃X is called the Carathéodory–Reiffen pseudometric on X . It is defined
in the obvious way. The Carathéodory length of a piecewise C1 curve γ : [a, b] → X
in X is

(4.6) L̃X(γ) =
∫ b

a

c
X

(γ(t), γ′(t)) dt

and the distance C̃X(x, y) is the infimum of the lengths of all piecewise C1 curves
joining x to y. Observe that the integrand in (4.6) is piecewise continuous.

Since c
D

is the infinitesimal Poincaré metric on D, its integrated form C̃D is the
Poincaré metric. In addition, it follows readily from the definitions (4.4) and (4.6)
that L̃Y (f ◦γ) ≤ L̃X(γ) for every piecewise C1 curve in X and f ∈ O(X, Y ). There-
fore the functor assigning C̃X to each complex Banach manifold X is a Schwarz–Pick
system. In particular, if x and y are points in X , then

dD(f(x), f(y)) ≤ C̃X(x, y) for all f in O(X, D).

Definition (4.3) therefore implies that

(4.7) CX(x, y) ≤ C̃X(x, y) for all x and y in X.

The relationship between C̃X and CX is explored more fully in [Din89], [Har79],
and [JP93].

5. Distortion theorems for complex non-geodesics

5.1. Complex geodesics. Since X �→ C̃X is a Schwarz–Pick system, C̃X is a
Schwarz–Pick pseudometric on X for every complex Banach manifold X . Therefore
C̃X ≤ KX for every X . Combining that inequality with (4.7) we obtain

(5.1) CX(f(z), f(w)) ≤ C̃X(f(z), f(w)) ≤ KX(f(z), f(w)) ≤ dD(z, w)

whenever X is a complex Banach manifold, f ∈ O(D, X), and z and w are points
of D.

Following Vesentini [Ves81], we call f in O(D, X) a complex geodesic (more
precisely a complex CX -geodesic) if there is a pair of distinct points z and w in D

with

(5.2) CX(f(z), f(w)) = dD(z, w),

so that none of the inequalities in (5.1) is strict. By a theorem of Vesentini (see
Proposition 3.3 in [Ves81]), if f is a complex geodesic then in fact (5.2) holds for
all z and w in D (see also [Din89], [JP93], and [Ves82]).

In other words, if the inequality CX(f(z), f(w)) < dD(z, w) holds for some pair
of points then it must hold for all pairs of distinct points in D. Our results in this
section study quantitatively how the distortion of distance at one pair of points
influences the degree of distortion at another.
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5.2. The Beardon–Minda quotient. The prototypes for our theorems can be
found in the paper [BMi], where Beardon and Minda make an elegant systematic
study of the situation when the target manifold X = D. Their results indicate that
the distortion of distance is appropriately measured by the quotient

(5.3) QX(f, a, b) =
tanhCX(f(a), f(b))

tanhdD(a, b)
,

where f ∈ O(D, X) and a and b are distinct points of D. We call QX(f, a, b) the
Beardon–Minda quotient because for f in O(D, D) the number QD(f, a, b) is the
absolute value of the “hyperbolic difference quotient” f∗(a, b) on which Beardon
and Minda base their study (see section 2 of [BMi]) .

It is obvious that 0 ≤ QX(f, a, b) ≤ 1, and QX(f, a, b) = 1 if and only if f is a
complex geodesic. The size of QX provides a quantitative measure of how close f
is to being a complex geodesic.

Our next result is inspired by and follows readily from Theorem 3.1 of [BMi]. Its
proof provides a new proof (without use of normal family arguments) of Vesentini’s
theorem.

Theorem 5.1. If X is a complex Banach manifold, f ∈ O(D, X), and equation
(5.2) fails for some pair of points in D, then QX(f, a, b) < 1 whenever the points a
and b in D are distinct. Moreover, if a, b, and c are points of D and neither b nor
c equals a, then

(5.4) dD (QX(f, a, b), QX(f, a, c)) ≤ dD(b, c).

5.3. Proof of Theorem 5.1. Assume first that X = D. In this case CX = dD and
Theorem 5.1 reduces to a weak version of Theorem 3.1 in [BMi]. For the reader’s
convenience we include its proof, imitating the proof in [BMi].

By pre- and post-composing f with appropriate Poincaré isometries, we may
assume that a = f(a) = 0. Then QD(f, 0, z) = |f(z)|/|z| for all nonzero z in D, so
the conclusion of Theorem 5.1 reduces to the inequalities |f(b)| < |b| for all nonzero
b in D and

dD

( |f(b)|
|b| ,

|f(c)|
|c|

)
≤ dD(b, c) for all nonzero b and c in D.

Since f(0) = 0 and f is not a rotation, the first inequality follows immediately from
Schwarz’s lemma. To obtain the second, define g in O(D, D) by the formula

g(0) = f ′(0) and g(z) = f(z)/z if 0 < |z| < 1,

apply the Schwarz-Pick lemma to g, and observe that dD(|ζ|, |ζ′|) ≤ dD(ζ, ζ′) for all
ζ and ζ′ in D.

Now we consider the general case. Given f in O(D, X) we choose any pair of
distinct points a and b in D. Suppose QX(f, a, b) < 1.

Given any g in O(X, D), set h = g ◦ f . Then QD(h, a, b) < 1, so (by what we
already proved) for all c in D \ {a} we have QD(h, a, c) < 1 and

(5.5) dD(QD(h, a, b), QD(h, a, c)) ≤ dD(b, c).

Set k = tanh dD(b, c), r = QD(h, a, b), and r̂ = QX(f, a, b). By hypothesis these
three numbers all lie in the half-open interval [0, 1). In terms of k and r, (5.5)
becomes the double inequality
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(5.6)
r − k

1 − kr
≤ QD(h, a, c) ≤ r + k

1 + kr
.

Recall that h = g ◦ f for some g in O(X, D). Taking suprema in (5.6) over all
such g, we obtain

(5.7)
r̂ − k

1 − kr̂
≤ QX(f, a, c) ≤ r̂ + k

1 + kr̂
.

Since 0 ≤ r̂ < 1, (5.7) implies the inequalities QX(f, a, c) < 1 and (5.4).
We have proved that if QX(f, a, b) < 1 for some a and b in D then for all c in

D \ {a} we have both QX(f, a, c) < 1 and the inequality (5.4). Theorem 5.1 follows
readily. �

5.4. Two corollaries of Theorem 5.1. In [BMi] Beardon and Minda derive many
consequences of their Theorem 3.1. Some of them require only the inequality (5.5)
and can therefore be generalized to our situation. We shall concentrate on results
that involve the distortion of the infinitesimal Carathéodory pseudometric at points
of D. We measure that distortion by the Carathéodory norm of the derivative of
the map f in O(D, X), which is defined as follows.

Definition 5.2. Let X be a complex Banach manifold and let f ′(a) = f∗(a)1 be
the derivative of the map f in O(D, X) at the point a in D. The Carathéodory
norm of f ′(a) is the ratio of the Carathéodory length of the tangent vector 1 to D

at a and the Carathéodory length of its image in the tangent space to X at f(a).
Since it equals the limit of the Beardon–Minda quotient QX(f, a, c) as c ap-

proaches a (see (5.10)), we shall denote the Carathéodory norm of f ′(a) by the
symbol q

X
(f, a). Explicitly,

(5.8) qX (f, a) =
c

X
(f(a), f ′(a))
c

D
(a, 1)

= (1 − |a|2)cX (f(a), f ′(a)).

For f in O(D, D) the number q
D
(f, a) is the absolute value of the “hyperbolic

derivative” fh(a) of Beardon and Minda (see section 2 of [BMi]).
Our next result quantifies Vesentini’s theorem (Proposition 3.2 in [Ves81]) that if

f in O(D, X) is not a complex geodesic then it shortens the Carathéodory lengths of
all nonzero tangent vectors. For f in O(D, D) it is a weak special case of Theorem 3.1
in Beardon-Minda [BMi].

Corollary 5.3. If X is a complex Banach manifold and f in O(D, X) is not a
complex geodesic, then q

X
(f, a) < 1 for all a in D and

(5.9) dD (QX(f, a, b), q
X

(f, a)) ≤ dD(a, b)

whenever a and b are distinct points of D.

Proof. Let a and b be distinct points of D. As QX(f, a, b) < 1 by hypothesis, (5.4)
holds for any c in D \ {a}. We shall obtain (5.9) as the limiting case of (5.4) when
c → a while a and b are held fixed.

As our first step, we apply Corollary 4.5 to the holomorphic maps z �→ a+z and
z �→ f(a + z) from {z ∈ C : |z| < 1 − |a|} to D and X , obtaining the equations

lim
z→a

CX(f(a), f(z))
|z − a| = c

X
(f(a), f ′(a))
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and

lim
z→a

dD(a, z)
|z − a| = c

D
(a, 1)

(
=

1
1 − |a|2

)
.

Using these equations, (5.3), and Definition 5.2, we obtain

(5.10) lim
c→a

QX(f, a, c) = lim
c→a

CX(f(a), f(c))
dD(a, c)

=
c

X
(f(a), f ′(a))
c

D
(a, 1)

= q
X

(f, a).

Since dD(QX(f, a, b), QX(f, a, c)) ≤ dD(b, c) ≤ dD(a, b) + dD(c, a) for all c in
D \ {a}, it follows readily from (5.10) that q

X
(f, a) belongs to D and satisfies

(5.9). �

For f in O(D, D) our next corollary is a restatement of Corollary 3.7 of Beardon
and Minda [BMi]. The general case has essentially the same proof.

Corollary 5.4. If X is a complex Banach manifold and f in O(D, X) is not a
complex geodesic, then

(5.11) dD(q
X

(f, a), q
X

(f, b)) ≤ 2dD(a, b) for all a and b in D.

Proof. If a = b there is nothing to prove. If a 	= b then Corollary 5.3 implies that
the number

dD (QX(f, a, b), q
X

(f, a)) + dD (QX(f, a, b), q
X

(f, b))

is bounded by 2dD(a, b), so (5.11) follows from the triangle inequality. �

5.5. The C̃X version of Corollary 5.3. We do not know whether Theorem 5.1 re-
mains valid when CX is replaced by C̃X in its conclusion, but Corollary 5.3 does,
as we shall now prove. Our method of proof is to use the inequality (5.11) to bound
the Carathéodory length of appropriate curves in X . It was suggested to us in a
private communication from David Minda about the classical case when X = D.

Theorem 5.5. If X is a complex Banach manifold and f in O(D, X) is not a
complex CX-geodesic, then C̃X(f(a), f(b)) < dD(a, b) and

(5.12) dD

(
tanh C̃X(f(a), f(b))

tanh dD(a, b)
, q

X
(f, a)

)
≤ dD(a, b).

whenever the points a and b in D are distinct.

Proof. Let distinct points a and b in D be given. Setting k = tanh dD(a, b) and
r = qX (f, a), we can write (5.12) as a double inequality

(5.13) k
r − k

1 − rk
≤ tanh C̃X(f(a), f(b)) ≤ k

r + k

1 + rk
.

By hypothesis, 0 < k < 1 and (by Corollary 5.3) 0 ≤ r < 1. Therefore the right
side of (5.13) is less than k, so (5.13) implies both C̃X(f(a), f(b)) < dD(a, b) and
(5.12). We shall prove (5.13).

In terms of r and k, the known inequality (5.9) can be written in the form

(5.14) k
r − k

1 − rk
≤ tanhCX(f(a), f(b)) ≤ k

r + k

1 + rk
.

Since CX(f(a), f(b)) ≤ C̃X(f(a), f(b)), the left side of (5.14) implies the left side
of (5.13) but the right side of (5.13) requires proof.
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For the proof we may pre-compose f with a Poincaré isometry so that a = 0 and
b > 0. Then b = tanh dD(0, b) = k and the curve γ(t) = f(t), 0 ≤ t ≤ k, joins f(a)
to f(b). Therefore

C̃X(f(a), f(b)) ≤ L̃X(γ) =
∫ k

0

cX (f(t), f ′(t)) dt =
∫ k

0

q
X

(f, t)
1 − t2

dt,

and it suffices to prove the inequality

(5.15)
∫ k

0

q
X

(f, t)
1 − t2

dt ≤ tanh−1

(
k

r + k

1 + rk

)
.

Following a suggestion of David Minda, we use the identity

(5.16) tanh−1

(
k

r + k

1 + rk

)
=
∫ k

0

r(1 + t2) + 2t

(1 − t2)(1 + 2rt + t2)
dt.

Comparison of the integrands in (5.15) and (5.16) shows that it suffices to prove
that

(5.17) q
X

(f, t) ≤ r(1 + t2) + 2t

1 + 2rt + t2
if 0 < t < 1.

If X = D and f(0) = 0, (5.17) is contained in the inequality (6.1) in Beardon and
Minda [BMi]. For the general case, we imitate their proof, using our Corollary 5.4
as follows. If 0 < t < 1, then

2dD(0, t) = dD(−t, t) = dD

(
0,

2t

1 + t2

)
and (by definition of r)

dD(qX (f, 0), qX (f, t)) = dD(r, qX (f, t)) = dD

(
0,

qX (f, t) − r

1 − rqX (f, t)

)
.

Therefore, by Corollary 5.4, dD

(
0,

q
X

(f, t) − r

1 − rqX (f, t)

)
≤ dD

(
0,

2t

1 + t2

)
, so∣∣∣∣ q

X
(f, t) − r

1 − rq
X

(f, t)

∣∣∣∣ ≤ 2t

1 + t2
if 0 < t < 1.

The required inequality (5.17) follows readily. �

The qualitative part of Theorem 5.5 provides the following strengthening of
Proposition 3.3 in [Ves81].

Corollary 5.6. If X is a complex Banach manifold, f ∈ O(D, X), and the equation
C̃X(f(a), f(b)) = dD(a, b) holds for some pair of distinct points a and b in D, then
f is a complex CX -geodesic.

Remark 5.7. In [BMi] Beardon and Minda show that the inequalities (5.4), (5.9),
(5.11), and (5.12) are already sharp when X = D. For example, equality occurs in
all four of them if f(z) = z2, a = 0, and c in (5.4) is a positive multiple of b. The
cases of equality are fully analysed in [BMi].

Remark 5.8. As Theorems 5.1 and 5.5 illustrate, CX and C̃X are on an equal footing
in the theory of complex geodesics. If f in O(D, X) preserves the distance between
two distinct points in either pseudometric, then it preserves the distance between
any two points in both pseudometrics.
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The Kobayashi pseudometric, however, stands apart. The methods we have used
in this section do not apply to it, and simple examples show that the stated results
cannot be extended to the Kobayashi pseudometric without additional hypothe-
ses. For instance, holomorphic universal covering maps are known (see [Din89] or
[Kob98]) to be local isometries in the Kobayashi pseudometric, so if X is any hy-
perbolic Riemann surface other than D none of the theorems and corollaries in this
section holds true when CX or C̃X is replaced by KX .

One might ask whether KX can be substituted for CX or C̃X in these results if
X is required to be simply connected, but there are difficulties even for contractible
domains of holomorphy in Cn, n > 1. For example, let

X = {(z, w) ∈ C
2 : |z| < 1, |w| < 1, and |zw| < a2},

where 0 < a < 1
2 . Vigué [Vig85] remarks that the map ζ �→ (aζ, aζ) from D to

X preserves the Kobayashi lengths of the tangent vectors at ζ = 0 but decreases
the Kobayashi distances from 0. Thus the KX version of Corollary 5.3 fails for
holomorphic maps of D into this domain X .

But Theorem 5.1 could still hold, for Venturini uses the same map in [Ven89]
to show that the infinitesimal Kobayashi metric is not the derivative of KX at
the origin in X . The limiting argument by which we obtained Corollary 5.3 from
Theorem 5.1 therefore fails in this case, and the question whether some form of
Theorem 5.1 holds for KX in this domain appears to be still open.

Remark 5.9. Samuel Krushkal’s preprint [Kru01] contains the remarkable result
that the Carathéodory and Teichmüller metrics on the universal Teichmüller space
are equal. Using that result we can use the Teichmüller metric in the formulas
for QX and q

X
when X is the universal Teichmüller space. The inequalities (5.4),

(5.9), (5.11) then become remarkable strengthenings of the classical principle of
Teichmüller contraction (see [Ear02]).
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