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1. Introduction. In this note, we introduce a condition on an algebra motivated by
the situation in which Schur’s lemma [S1] is applicable. We say that algebras satisfying
this condition are Schurian. For such algebras, we prove some (purely algebraic) results
characterizing those elements associated with inner derivations having range in the radical.

We note that, among others, each Banach algebra over the complex numbers C is
Schurian. Our algebraic results are then applied, in conjunction with the theory of sub-
harmonic functions — notably, Vesentini’s result [V] on subharmonicity of the spectral
radius (of holomorphic, Banach-algebra-valued functions from a domain in C) — to deter-
mine those elements in a Banach algebra that exhibit certain spectral properties (spectral
additivity). These spectral-additivity results are themselves applied, in [H-K], to a topic
initiated by Frobenius [F] (and contributed to by Schur [S2]), the study of mappings that
preserve invertible elements.

2. Schurian algebras. In the definition that follows, we describe the condition that
plays the key role in our algebraic commutator results.

Definition 2.1. An algebra A with unit I over a field F is said to be Schurian when
LA ⊆ L for a maximal left ideal L in A and some A in A implies that there is a z in F
such that A− zI ∈ L.

Schur’s lemma, as commonly used in mathematical discussion, covers a range of com-
mutation and intertwiner statements. The literature of functional analysis has versions
of this lemma where the main point is an analytic argument. In practice this may be an
approximation result as, for instance, in von Neumann’s celebrated Double Commutant
theorem [N]. For our purposes, we shall say that a (one-)transitive representation π of a
unital algebra A over a field F on a vector space V over F satisfies the Schur condition when
each (F-)linear transformation of V into itself that commutes with π(A) is multiplication by
some element of F. This concept is closely related to the notion of absolute irreducibility in
the finite-dimensional case. (See the discussion of Section 3.) In place of “irreducible,” we
shall use “transitive,” which better describes our situation in the infinite-dimensional case:
no proper, non-zero, invariant (or “stable”) linear submanifolds (rather than “reducing”
linear submanifolds). Thus A acts (one-)transitively on V when Ax (= {Ax : A ∈ A})
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= V for each non-zero x in V. We are indebted to Walter Feit for bringing the relevance
of absolute irreducibility to our attention.

Theorem 2.2. An algebra A over a field F is Schurian if and only if each transitive
representation of A on a vector space over F satisfies the Schur condition.

Proof. Let A be an algebra represented transitively on a vector space V over F. We
may assume that A is an algebra of linear transformations on V (and the unit I of A is
the identity transformation on V). Let x be a non-zero element in V and let Lx be the left
ideal of elements of A that annihilate x. With A in A not in Lx, there is a B in A such
that BAx = x (by transitivity). Thus BA− I ∈ Lx. It follows that AA +Lx = A, and Lx

is a maximal left ideal in A.
Let T be a linear transformation on V that commutes with A. By transitivity, there

is an A in A such that Ax = Tx. For each B in A, T (Bx) = BTx = BAx. If B ∈ Lx, then
Bx = 0 and BAx = T (Bx) = 0. Thus BA ∈ Lx in this case. It follows that LxA ⊆ Lx. If
we assume that A is Schurian, there is an a in F such that A− aI ∈ Lx. Hence Ax = ax
and T (Sx) = STx = SAx = aSx for each S in A. But Ax = V, so T = aI, and the given
representation of A satisfies the Schur condition.

Suppose, next, that each transitive representation of A satisfies the Schur condition.
Let L be a maximal left ideal in A and V be the quotient vector space A/L (over F). With
A in A not in L, AA + L is a left ideal containing L properly. Thus AA + L = A and
A(A + L) = V, where we view A as represented on V by its left-multiplication action on
A/L, and this representation is transitive. If A in A is such that LA ⊆ L, the mapping T
that maps B + L to BA + L, for each B in A, is a well-defined linear mapping of V into
itself that commutes with the action of A on V. By assumption T = aI for some a in F.
Thus

aI + L = T (I + L) = I ·A + L = A + L,

and A− aI ∈ L. It follows that A is Schurian.

Lemma 2.3. Let A be an algebra over F with unit I and radical R. Then A/R (= Ã)
is Schurian if and only if A is Schurian.

Proof. The quotient mapping A → Ã carries the set of maximal left ideals in A onto
the corresponding set in Ã. If A is Schurian, L̃ is a maximal left ideal in Ã, L its inverse
image in A, and L̃Ã ⊆ L̃, then LA ⊆ L. By assumption, there is a z in F such that
A− zI ∈ L. Thus Ã− zĨ ∈ L̃. It follows that Ã is Schurian.

Suppose Ã is Schurian, L is a maximal left ideal in A and LA ⊆ L for some A in A.
Then L̃Ã ⊆ L̃. By assumption, there is a z in F such that Ã − zĨ ∈ L̃. Since R ⊆ L,
A− zI ∈ L. Hence A is Schurian.

Theorem 2.4. Let A be Schurian over a field F with radical R and unit I. Then
A in A has the property that LA ⊆ L for every maximal left ideal L in A if and only if
(ad A(B) =)AB −BA ∈ R for each B in A.

Proof. Suppose ad A has range in R and B lies in some maximal left ideal L in A.
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Then AB ∈ L and AB − BA ∈ R ⊆ L. Thus BA ∈ L. Hence LA ⊆ L for each maximal
left ideal L in A.

Suppose, now, that LA ⊆ L for each maximal left ideal L in A. If B is an element of
A and L is a maximal left ideal in A, then {T ∈ A : TB ∈ L} (= LB) is a left ideal in A.
If B ∈ L, then LB = A. Suppose S 6∈ LB . Then SB 6∈ L. Since L is a maximal left ideal
in A, there is an A′ in A such that A′SB − B ∈ L. Thus A′S − I ∈ LB . It follows that
LB is a maximal left ideal in A.

By assumption, LBA ⊆ LB . Since A is Schurian, there is a zB in F such that
A− zBI ∈ LB , equivalently, such that (A− zBI)B ∈ L. Thus AB − zBB ∈ L for each B
in A. The choice of zB in F is unique when B 6∈ L. If B ∈ L, each z in F will serve as zB .

Suppose B 6∈ L and B − zB′ ∈ L for some z in F and B′ in A. Then AB − zAB′,
AB− zBB, and zAB′− zzB′B

′ are in L. Thus zBB− zzB′B
′ ∈ L. But zBB− zBzB′ ∈ L.

Hence z(zB − zB′)B′ ∈ L. Now z 6= 0 since B 6∈ L. Moreover, B′ 6∈ L for the same reason.
Thus zB = zB′ .

Suppose B and B′ are not in L and B − zB′ 6∈ L for all z in F. Then A(B + B′) −
zB+B′(B + B′), AB − zBB, and AB′ − zB′B

′ are in L. Thus

(zB − zB+B′)B + (zB′ − zB+B′)B′ ∈ L.

By assumption on B, B′, and B − zB′ with z in F, we have that zB = zB+B′ = zB′ .
It follows that there is a z in F such that AB − zB ∈ L for all B in A. In particular,

A − zI ∈ L and BA − zB ∈ L for each B in A. Thus AB − BA ∈ L. As this holds for
each maximal left ideal L and each B in A, ad A has range in R.

Theorem 2.5. Let A be Schurian over a field F with radical R and unit I. Then A
in A has the property that AB−BA+ I is invertible for all B in A if and only if adA has
range in R. If A is semi-simple, as well (that is, R = (0)), then AB−BA+ I is invertible
for all B in A if and only if A lies in the center of A.

Proof. Suppose ad A has range in R. Then AB − BA lies in each maximal left and
right ideal in A, and AB−BA+I lies in no such maximal ideal. Hence AB−BA+I lies in no
proper left or right ideal. From this, we have that A(AB−BA+I) = A = (AB−BA+I)A.
In particular, AB−BA + I has a left and right inverse in A. It follows that AB−BA + I
is invertible in A.

Suppose AB−BA+ I is invertible for each B in A. If ad A does not have range in R,
then there is a maximal left ideal L in A such that LA is not contained in L, from Theorem
2.4. Thus there is a B′ in L such that B′A 6∈ L. Since L is a maximal left ideal, there is a
T in A such that TB′A− I ∈ L. Now, ATB′ ∈ L, whence ATB′−TB′A + I ∈ L. Letting
B be TB′, we have that AB − BA + I is not invertible — contradicting our assumption.
Thus ad A has range in R. In the case where R is semi-simple, A lies in the center of A.

Corollary 2.6. If A is semi-simple, Schurian and such that AB−BA+I is invertible
for all A and B in A, then A is commutative.

Corollary 2.7. If A is semi-simple and Schurian, then each commutator is nilpotent
if and only if A is commutative.
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Proof. If Nk = 0 for some positive integer k, then I − N + N2 − · · · (−1)k−1Nk−1

is inverse to I + N . In particular, I + N is invertible for each nilpotent N . With the
assumption on commutators, Corollary 2.6 applies and A is commutative.

The algebra of upper triangular n × n matrices over C is Schurian (from Example
3.2) in which each commutator is nilpotent, yet it is not commutative. Its radical is the
set of all elements with 0 diagonal. Thus the hypothesis of semi-simplicity is essential in
Corollary 2.7. At the same time, Corollary 2.6 is strictly stronger than Corollary 2.7, as
the next result shows. For it, we make use of Example 4.3.

Corollary 2.8. If A is a semi-simple Banach algebra over C, then each commutator
in A is quasi-nilpotent if and only if A is commutative.

Corollary 2.7 is curiously akin to a commutativity theorem of Herstein. Theorem 3.1.3
of [H] states that if each commutator in a ring is equal to some power n of itself, where
n is an integer greater than 1, then the ring is commutative. This result applies to all
rings, while Corollary 2.7 holds for semi-simple Schurian algebras and may fail, as we saw,
if semi-simplicity is not assumed.

3. The finite-dimensional case. We assume that A is an n-dimensional algebra
over a field F. Suppose π is a representation of A on an m-dimensional vector space V (over
F). Choosing a basis for V and representing each linear transformation of V into itself as
an m×m matrix over F relative to this basis and elements of V as ordered m-tuples with
entries from F, we may consider π as a representation of A in Mm(F) acting on column
vectors in Fm. Again, letting A act on itself by left multiplication and choosing a linear
basis for A, we may view A as a subalgebra of Mn(F). Let K be a field containing F and
Ã the subalgebra of Mn(K) generated by A and {aI : a ∈ K}, where I denotes the unit
matrix in Mn(K). Let π̃ be the (unique) (K-)linear extension of π mapping Ã into Mm(K)
acting on Km. We say that π is absolutely transitive when π̃ is transitive for each field
extension K of F; when each transitive representation of A is absolutely transitive, we
say that the algebra A (over F) is absolutely transitive. Though A (over F) need not be
absolutely transitive, Ã (over K) may be. In this case, K is said to be a splitting field for
the algebra A (over F).

A basic result (proved by a dimension counting argument) states:

A representation π of A on V is absolutely transitive if and only if it satisfies the
Schur condition.

Applying this result and Theorem 2.2, we have the following corollary.

Corollary 3.1. A finite-dimensional algebra A over a field F is Schurian if and only
if it is absolutely transitive.

Example 3.2. It is known that a finite-dimensional algebra over an algebraically
closed field is absolutely transitive. Thus the algebraic closure of F is a splitting field for
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each finite-dimensional algebra over F. A proof is not difficult. If F is algebraically closed,
A is a finite-dimensional algebra over F and π is a transitive representation of A on the
vector space V over F, then V is finite dimensional (has dimension not exceeding that of A).
Let T be a linear transformation commuting with each π(A) (A in A). Then the null space
and range of T are stable under π(A). By transitivity, these subspaces are either (0) or V.
Thus T is either 0 or is invertible. Since the determinant of T−xI is a polynomial in x over
F and F is algebraically closed, this polynomial has a root a in F. As T−aI commutes with
each π(A) (A in A) and is not invertible, T = aI. It follows that π is absolutely transitive.
Hence A is absolutely transitive. In particular, each finite-dimensional algebra over C is
Schurian. In Example 4.1, we shall see that this need not be the case if the assumption
of finite dimensionality is not present. We shall also see (Example 4.3) that an analytic
argument proves this same result when the field is C since each finite-dimensional algebra
over C is a Banach algebra.

Example 3.3. The concepts of absolute transitivity and Schurian algebra are not as
completely field dependent in finite dimensions as Example 3.2 might lead us to believe.
We note that Mn(F) is Schurian over an arbitrary field F. This follows from an appro-
priately stated version of Wedderburn’s theorem, but is easily proved from the familiar
ideal structure of Mn(F): the only proper two-sided ideal is (0) (Mn(F) is simple), and
each maximal left ideal is similar to the left ideal of matrices with 0 at each first-column
entry. If π is a transitive representation of Mn(F) on the vector space V (over F) and x is
a non-zero vector in V, then Lx, the set of matrices A in Mn(F) such that π(A)x = 0, is
a maximal left ideal (as in the proof of Theorem 2.2). Thus Mn(F)/Lx is a vector space
of dimension n over F that is (linearly) isomorphic to V. It follows that L(V), the linear
space (over F) of linear transformations of F into itself has dimension n2. Since Mn(F) is
simple and has dimension n2 (over F), π is an isomorphism of Mn(F) onto L(V). It remains
to note that only scalars commute with L(V) and to apply Theorem 2.2 to conclude that
Mn(F) is Schurian.

4. Further examples. We begin with a class of algebras that are Schurian.

Example 4.1. Let K be a proper field extension of the field F. Viewed as an algebra
over F, the only (left) ideal, other than K is (0). This algebra is simple, and can be finite
dimensional. Of course (0)a = (0) for each a in K, and a− b ∈ (0) for some b in F if and
only if a = b ∈ F. Choosing a in K \ F, we see that, as an an algebra over F, K is not
Schurian. A proper field extension of another field is not Schurian over that field. A case
in point is C as a two-dimensional, simple algebra over R. This same argument applies
when K is a division algebra over F, and shows that K is Schurian in this case only when
K is F.

The field C(x) of rational functions over C provides us, now, with an example of (an
infinite dimensional) algebra over the algebraically closed field C, that is not Schurian (cf.
Example 3.2).

Example 4.2. The algebra C[z] of complex polynomials in a single variable z is
infinite-dimensional over C; unlike C(z), it is Schurian. More generally, we show that the
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algebra of polynomials F[x] over each algebraically closed field F is Schurian. In this case,
each maximal left ideal is a maximal two-sided ideal M, and F[x]/M is a field K extending
F. If k is the image of x under the quotient mapping, its inverse k−1 is the image of some
polynomial p(x) in F[x]. It follows that k−1 = p(k) and that k satisfies the polynomial
equation kp(k)−1 = 0 over F. Since F is algebraically closed, kp(k)−1 factors completely
over F. As K is a field, one of those factors is 0. Thus k lies in F, and F[x]/M is F. It
follows that F[x] is Schurian over F.

Example 4.3. Each unital Banach algebra over the complex numbers is Schurian.
To see this, we note, first, that if T ′ is a bounded operator on a Banach space Y and
T ′ commutes with each operator in a transitive family F of operators on Y, then T ′ is a
scalar. If z is in the spectrum of T ′, then T ′−zI is not invertible. Now, the null space and
the range of T ′ − zI are both invariant under F . Since F is assumed to be transitive, the
range of T ′ − zI is either (0), in which case, T ′ = zI, or the range is Y. We may assume
that it is Y. Thus the null space of T ′ − zI is not Y and must be (0). It follows that
T ′ − zI is a continuous linear isomorphism of Y onto Y. The Banach inversion theorem
(cf. [K-R: Theorem 1.8.5]) applies, and T ′− zI is invertible — contradicting our choice of
z. Hence T ′ = zI.

With L a maximal left ideal in the Banach algebra A and A an element of A such that
LA ⊆ L, the mapping ρA of the quotient Banach space A/L into itself that assigns BA+L
to B + L is a bounded linear transformation of the quotient into itself that commutes
with the family {λB : B ∈ A} (= F), where λB assigns BT + L to T + L. Since L is
maximal, F is a transitive family of (bounded) linear transformations of A/L into itself.
Thus ρA is some scalar multiple z of the identity transformation on A/L. In particular,
A + L = ρA(I + L) = zI + L. Hence A is Schurian.

Combining the results of the preceding example and Example 4.1, we see that C(z)
cannot be normed as a Banach algebra over C. This follows as well from the fact that a
normed field over C must coincide with C. From Example 4.2, C[z] is Schurian and can
be normed as a normed algebra (for example, by restricting each polynomial to the closed
unit disk in C and taking its supremum norm on that disk). As normed, it is not a Banach
algebra nor can it be normed to be a Banach algebra. To see this, note that with t small
and positive, 1+ tz will be near 1, the unit of C[z], relative to a given norm on C[z]. If C[z]
were a Banach algebra with that norm, then 1 + tz would have an inverse in C[z] which,
of course, it does not. As remarked in Example 4.1, C, as a two-dimensional algebra over
R, is not Schurian. It is, however, a Banach algebra over R.

If A is a (unital) commutative, normed algebra over C and M is a maximal ideal in
A, the question of whether or not A is Schurian amounts to the question of whether or not
the field A/M is C. If each such M is closed (as is the case when A is a Banach algebra),
then the quotient is a normed field over C, and coincides with C. But such ideals need not
be closed. For an example of this, we may turn back to C[z] normed with the supremum
norm of restriction to [0, 1]. Let ρ be the mapping that assigns to each polynomial in C[z]
its value at 2. The kernel M of ρ is a maximal ideal since ρ is a homomorphism of C[z]
onto a field (as it happens to be, C). If M were closed in C[z], then ρ would be continuous
(see [K-R: Corollary 1.2.5]) and extend, by uniform continuity, to a homomorphism of the
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algebra C of all continuous complex-valued functions on [0, 1]. But such a homomorphism
corresponds to evaluating each function in C at some point of [0, 1] (cf. [K-R: Corollary
3.4.2]). Thus ρ would assign to each polynomial, in particular, to z, its value at this
point of [0, 1] and at 2 — a contradiction. Thus M is not closed. Nonetheless, C[z] is
Schurian (Example 4.2) and the quotient by all maximal ideals is C. Is this the case for
each commutative normed algebra over C? — for all normed algebras over C?

Example 4.4. From Example 4.1, the quaternions Q, as a 4-dimensional (associa-
tive, division) algebra over R, is not Schurian.

At the same time, Q provides us with an example where the conclusions of Theorems
2.4 and 2.5 fail. For the conclusion of Theorem 2.4 to apply, since (0)q ⊆ (0) for each q, ad q
would have to map Q into (0) — that is, Q would have to be commutative. For Theorem
2.5, let e0 be the unit and e1, e2, e3 be elements of Q satisfying e2

1 = e2
2 = e2

3 = −e0 and
eiej is ek or −ek as (i, j, k) is an even or an odd permutation of (1, 2, 3). Then e1q−qe1+e0

is 0 for no q in Q and is, accordingly, invertible for all q. But e1 is not in the center of Q.

5. Spectral additivity. In this section, we study a spectral property, spectral ad-
ditivity , of certain elements in a (unital) Banach algebra over C. Making use of the fact
that such Banach algebras are Schurian (see Example 4.3), the results of Section 2 on
Schurian algebras, the subharmonicity of the spectral radius [V], and results for subhar-
monic functions [H-Ke], we identify the elements that are spectrally additive as those
whose commutators lie in the radical of the Banach algebra (the central elements, when
the algebra is semi-simple). We use the notation ‘sp(T )’ to denote the spectrum of the
element T of a Banach algebra A relative to A. When it is necessary to indicate the algebra
relative to which the spectrum occurs, we use the notation ‘spA(T )’.

Definition 5.1. An element A of a unital Banach algebra A over C is said to be
spectrally additive (in A) when sp(A + B) ⊆ sp(A) + sp(B) for each B in A.

We show, first, that central elements in a Banach algebra are spectrally additive.

Proposition 5.2. If A and B are commuting elements of a Banach algebra A over
C with unit I, then sp(A + B) ⊆ sp(A) + sp(B).

Proof. Let A be a maximal abelian subalgebra of A containing A and B. If TS = ST
with T and S in A, and S is invertible, then S−1T = S−1TSS−1 = S−1STS−1 = TS−1.
Thus the inverse of an invertible element in A commutes with A, hence lies in A. It follows
that A, B, and A+B, have spectra relative to A identical with their spectra relative to A.
With C in A, λ ∈ spA(C) if and only if there is a non-zero multiplicative linear functional
ρ on A such that ρ(C) = λ (since C − λI is in a maximal ideal of A if and only if there
is such a ρ). If λ ∈ spA(A + B), there is a multiplicative (non-zero) linear functional ρ on
A such that λ = ρ(A + B) = ρ(A) + ρ(B). Since ρ(A) ∈ spA(A) and ρ(B) ∈ spA(B), our
assertion follows.

Corollary 5.3. Each central element of a unital Banach algebra over C is spectrally
additive.
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Lemma 5.4. If A is a Banach algebra over C with unit I and radical R, then for
each A in A, spA(A) = spA/R(ϕ(A)), where ϕ is the quotient mapping of A onto A/R.

Proof. We prove that B is invertible in A if and only if ϕ(B) is invertible in A/R.
Since ϕ(I) is the unit of A/R, if B is invertible in A, then ϕ(B−1) is the inverse of ϕ(B)
in A/R.

Suppose ϕ(T ) is inverse to ϕ(B) in A/R. Then ϕ(TB − I) = 0 = ϕ(BT − I). Thus
TB − I and BT − I are in R. It follows that TB (= TB − I + I) and BT are invertible.
Since B has both a right and left inverse, B is invertible in A.

We conclude, now, that A−zI is invertible in A if and only if ϕ(A)−zϕ(I) is invertible
in A/R. Thus spA(A) = spA/R(ϕ(A)).

Corollary 5.5. An element A of a unital Banach algebra A over C is spectrally
additive in A if and only if ϕ(A) is spectrally additive in A/R, where R is the radical of
A and ϕ is the quotient mapping of A onto A/R.

Theorem 5.6. An element A of a unital Banach algebra A over C with radical R is
spectrally additive in A if and only if AT − TA ∈ R for each T in A. If A is semi-simple,
A is spectrally additive if and only if A lies in the center of A.

Proof. If AT − TA ∈ R for each T in A and ϕ is the quotient mapping of A onto
A/R, then ϕ(A) lies in the center of A/R. From Corollary 5.3, ϕ(A) is spectrally additive
in A/R. From Corollary 5.5, A is spectrally additive in A.

Suppose, next, that A is spectrally additive in A. Then sp(A+T ) ⊆ sp(A)+sp(T ), for
each T in A. Thus r(A+T ) ≤ r(A)+r(T ), for each T in A, where r(S) denotes the spectral
radius of S (that is, r(S) = sup{|z| : z ∈ sp(S)}). The function f from C into A defined at
z as exp(−zT ) A exp(zT ) is entire. Moreover, f(z), the image of A under an automorphism
of A, is spectrally additive, whence r(f(z) + T ) ≤ r(f(z)) + r(T ) = r(A) + r(T ) for each z
in C and T in A. Let g(z) be (f(z)− f(0))/z for z in C \ {0}. Then g is holomorphic on
C \ {0}. At the same time, g(z) → AT − TA as z → 0. If we define g(0) to be AT − TA,
then g, so extended, is entire. Now,

r(g(z)) = r(
f(z)− f(0)

z
) ≤ r(f(z)) + r(A)

|z| =
2
|z| r(A).

From [V], z → r(g(z)) is subharmonic. Liouville’s theorem for subharmonic functions
yields, now, that z → r(g(z)) is constant on C. Since r(g(z)) → 0 as z → ∞, we have
that r(g(z)) = 0 for all z in C. In particular, r(AT − TA) = r(g(0)) = 0. Thus AT − TA
is quasi-nilpotent (has spectrum (0)) for each T in A. It follows that AB − BA + I is
invertible for each B in A. Since A is Schurian, Theorem 2.5 applies, and AT − TA ∈ R
for each T in A. If A is semi-simple, R = (0), and A lies in the center of A.

Remark 5.7. The following argument allows us to avoid appealing to the theory of
subharmonic functions in the preceding proof. At the point where we have shown that
r(g(z)) ≤ 2 r(A)/|z|, we prove that r(g(z)) = 0 for all z in C by using the maximum modulus
principle. Assume, on the contrary, that r(g(z0)) 6= 0 for some z0 in C. Suppose c > 2 r(A),
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r > |z0| and c/r < r(g(z0)). According to the spectral radius formula [K-R: Theorem 3.3.3],
r(T ) = limn→∞ ‖Tn‖1/n for each T in A. Hence for each z in Cr (= {z : |z| = r}), there
is a positive integer m with ‖g(z)m‖1/m < c/r. By continuity of g, this inequality holds
for all complex numbers in some neighborhood of z. By compactness of Cr, there is a
finite set of such neighborhoods that covers Cr. Let n1, . . . , nk be the positive integers
corresponding to these neighborhoods. If |z| = r, the inequality ‖g(z)nj‖1/nj < c/r holds
for some j. Let n be n1 · · ·nk and mj be n/nj . With z in Cr, we have

‖g(z)n‖ = ‖[g(z)nj ]mj‖ ≤ ‖g(z)nj‖mj < ( c
r )n.

By the Hahn-Banach Theorem [K-R: Corollary 1.6.2], there is a linear functional
ρ on A with norm 1 satisfying ρ(g(z0)n) = ‖g(z0)n‖. Let h(z) be ρ(g(z)n). Then h
is entire and |h(z)| ≤ ‖g(z)n‖ < (c/r)n for all z in Cr. By the maximum principle,
‖g(z0)n‖ = |h(z0)| ≤ (c/r)n. If λ is in the spectrum of g(z0), then λn is in the spectrum
of g(z0)n. Thus |λn| ≤ (c/r)n (since the spectral radius is bounded by the Banach algebra
norm [K-R: Remark 3.2.7]). Therefore, r(g(z0)) ≤ c/r, contradicting our choice of r.

Remark 5.8. In a unital Banach algebra A over C, the elements of the form C + R
with C in C and R in R, where C is the center of A and R is the radical of A, are spectrally
additive since they are the obvious elements that “derive” A into R. But not all elements
that derive a Banach algebra into its radical need be such a sum (hence, not all spectrally
additive elements of a Banach algebra are the sum of a central element and an element of
the radical). For an example of this, we can take for A the algebra of all upper triangular
n × n complex matrices (those (ajk) for which ajk = 0 when j > k). In this case, the
center C consists just of scalar multiples of I, the unit matrix, and the radical consists
of those matrices (ajk) for which ajk = 0 when j ≥ k. The elements that are sums of a
central element and an element of the radical are those upper triangular matrices all of
whose diagonal entries are equal. Thus a non-scalar diagonal matrix is an element of the
algebra that is not such a sum. But each element of this algebra derives the algebra into
the radical, thus all elements are spectrally additive in this algebra.
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