
SLR(1) and LALR(1) Parsing for Unrestricted Grammars

Lawrence A. Harris

Abstract

Simple LR(1) and lookahead LR(1) phrase structure grammars are de-
fined and corresponding deterministic two-pushdown automata which parse
all sentences are given. These grammars include a wide variety of grammars
for non context-free languages. A given phrase structure grammar is one of
these types if the parse table for the associated automaton has no multiple
entries. A technique for construction of this parse table is given which in
the lookahead case involves elimination of inverses in a grammar for looka-
head strings for LR(0) items and computation of first sets for strings of
symbols in the given grammar.

This paper extends the well-known SLR(1) and LALR(1) methods of determin-

istic bottom-up parsing to unrestricted grammars for use in compilers of higher

level programming languages. Previous work developing deterministic parsing

techniques for various classes of unrestricted grammars has been done, for exam-

ple, by Loeckx [12], Walters [19], Barth [4], Sebesta and Jones [16], Turnbull and

Lee [17], Kunze [11], Wegner [20], Vold’man [18] and Fisher [8]. In particular,

the LR method of Knuth [10] has been extended to context sensitive grammars

by Walters and, in a less general way, to unrestricted grammars by Turnbull and

Lee.

Our SLR(1) and LALR(1) parsing methods show the same compactness, effi-

ciency and simplicity as in the context-free case [6, 1] and apply to many grammars

not covered under the methods given in [19] and [17]. Thus context dependent

constructs can be included in a grammar specifying the syntax of a programming

language and there is less likelihood that it will be necessary to transform this

1

grammar into a canonical form, which frequently enlarges the grammar consid-

erably and complicates the writing of semantic actions. A disadvantage of our

method (and of the methods of [19] and [17]) is that there is no algorithm which

produces the SLR(1) or LALR(1) parse tables for a given unrestricted grammar.

However, we indicate a computational procedure which can be carried out by

hand in many cases. We believe that a procedure might be found which can be

implemented on a computer and which will construct the SLR(1) and LALR(1)

parse tables for most of the grammars programming language designers would

want to consider.

We begin in Section 1 by recalling basic definitions and fixing notation. In

Section 2, we give a construction for the LR(0) sets of items and define unrestricted

SLR(1) and LALR(1) grammars. We also introduce a grammar associated with

the sets of items, called the lookahead grammar, where there is a nonterminal

corresponding to each item in each state which derives all possible lookahead

strings for the item. In Section 3, we define an LR(1) automaton as a special

kind of nondeterministic two-pushdown automaton having only shift and reduce

moves. When this automaton is given the SLR(1) parse table for an unrestricted

grammar G it is called the SLR(1) automaton for G and when the automaton

is given the LALR(1) parse table for G it is called the LALR(1) automaton for

G. Both these types of automata have the same recognition power as that of a

Turing machine. As expected, G is an unrestricted SLR(1) or LALR(1) grammar

precisely when the corresponding automaton is deterministic.

Our main results are given in Section 4. The basic fact is that unrestricted

SLR(1) and LALR(1) grammars are parsed deterministically by their correspond-

ing automata and these simulate the reverse of a canonical derivation. For exam-

ple, this provides a method to show that an unrestricted grammar is unambiguous

2

or that a language is the language of a deterministic two-pushdown automaton.

Also, context-free LALR(k) grammars can sometimes be converted to equivalent

unrestricted SLR(1) or LALR(1) grammars which can be parsed efficiently. Fur-

ther, a condition is given which insures that our automata do not read past an

error.

In Section 5, we show that our methods apply to a large number of unre-

stricted grammars. In particular, we give unrestricted SLR(1) grammars for some

of the most well-known languages that are not context free. We also give an un-

restricted LALR(1) grammar where the associated automaton generates all the

n digit binary numbers in reverse order on input of n zeros. Finally, we give an

unrestricted LALR(1) grammar where the associated automaton loops through

the same sequence of configurations on certain inputs. Proofs of all our results

are collected in Section 6.

1. Unrestricted Grammars and Canonical Derivations

An unrestricted grammar is a 4-tuple G = (Σ, V, P, S), where V is a finite

set of symbols, Σ ⊆ V, S ∈ V − Σ and P is a finite set of pairs λ → µ, where

λ, µ ∈ V ∗ and λ contains at least one element of V − Σ. The elements of Σ

are called terminals, the elements of N = V − Σ are called nonterminals and

the elements of P are called productions. Unrestricted grammars are also known

as phrase structure or Chomsky type 0 grammars. Clearly G is a context-free

grammar exactly when |λ| = 1 for all productions λ → µ. We assume that all

given grammars satisfy $ 6∈ V and we follow the usual typographical conventions

[1, p. 87] for denoting terminals, nonterminals and strings of grammar symbols.

Let n ≥ 1. A sequence σ1, ..., σn+1 ∈ V ∗ is called a derivation and written

σ1 =⇒ ... =⇒ σn+1 if there exists strings φ1, ..., φn ∈ V ∗ and ψ1, ..., ψn ∈ V ∗ and

3

productions λ1 → µ1, ..., λn → µn such that σi = φiλiψi and σi+1 = φiµiψi for

i = 1, ..., n. This is just the condition that it is possible to obtain the next string

in the sequence by replacing a substring λ of the current string by the right-hand

side µ of a production λ → µ. We write σ1
∗

=⇒ σn+1 and say that σ1 derives

σn+1 if σn+1 = σ1 or if there exists a derivation σ1 =⇒ ... =⇒ σn+1. Define the

language of G by

L(G) = {w ∈ Σ∗ : S
∗

=⇒ w }.

A derivation is said to be (right-) canonical if φi+1 is a proper prefix of φiµi

for i = 1, ..., n−1. In other words, the string replaced at a derivation step starts

at or to the left of the last symbol introduced in the previous step. We write

σ1 =⇒
c

... =⇒
c

σn+1 if σ1 =⇒ ... =⇒ σn+1 is a canonical derivation, and we write

σ1
∗=⇒
c

σn+1 if σ1 = σn+1 or if there exists a derivation σ1 =⇒
c

... =⇒
c

σn+1. For

context-free grammars, any rightmost derivation is clearly a canonical derivation

but a canonical derivation is not necessarily a rightmost derivation except, for

example, when the string derived is in Σ∗. Griffiths [9] has defined an equivalence

relation on derivations corresponding to a change in the order of application of

production rules which do not interact with each other and has shown that each

of these equivalence classes contains exactly one canonical derivation. (One can

translate his results from left-canonical derivations to right-canonical derivations

by replacing the left- and right-hand sides of the production rules in the given

grammar by their reverses. See also [5].) For example, if S
∗

=⇒ σ then S ∗=⇒
c

σ.

An unrestricted grammar G = (Σ, V, P, S) is said to be ambiguous if there

exists a w ∈ Σ∗ and two distinct derivations S ∗=⇒
c

w. Two derivations are con-

sidered distinct unless both sequences of strings are the same and the productions

applied are the same and are applied in the same order at the same locations.

Note that the notation we employ for derivations, although standard, does not

4

specify explicitly the production rules applied at each step and therefore may be

ambiguous. In our discussion, the rules applied will always be clear from the

context.

2. Unrestricted SLR(1) and LALR(1) Grammars

Let G = (Σ, V, P, S) be an unrestricted grammar. Augment G by adding

a new nonterminal S ′ to V and a new production S ′ → S to P . We call [λ →

µ1 · µ2] an LR(0) item for G if λ → µ1µ2 is a production. We view the LR(0)

items as the states of a nondeterministic finite automaton with starting state

[S ′ → ·S] and transitions as follows: For each item [λ → µ1 · Xµ2] there is

a transition on X to the item [λ → µ1X · µ2] and an ε -transition to any item

[Xδ → ·η], where X ∈ V . Then applying the subset construction [2, p.91],

we obtain a deterministic finite automaton with states Q = {q0, ..., qN} and

transition function GOTO: ⊆ Q× V → Q. (We extend the function GOTO to a

maximal subset of Q× V ∗ by iteration.) Each of the states qn is a non-empty set

of items and the starting state q0 contains the item [S ′ → ·S]. A basic property

is that the nondeterministic finite automaton arrives in a state [λ → µ1 · µ2]

upon reading a string γ if and only if [λ → µ1 · µ2] is in the state GOTO(q0, γ).

We call the set Q the preliminary LR(0) collection for G and we call a set in this

collection a preliminary LR(0) state. (Clearly the preliminary LR(0) collection for

G is just the canonical LR(0) collection in the sense of [1, p.384] for the context-

free grammar one obtains from G by ignoring all symbols but the first on the

left-hand side of productions and viewing these first symbols as nonterminals.)

Where convenient, we follow the usual convention of referring to a state qn as

state n and listing the items without brackets in tables of states.

5

Proposition 1. Let λ → µ1µ2 be a production of G and let φ, ψ ∈ V ∗. If

S ′ ∗=⇒
c

φλψ =⇒
c

φµ1µ2ψ (1)

then qn = GOTO(q0, φµ1) exists and [λ → µ1 · µ2] ∈ qn.

If γ ∈ V ∗ and γ = φµ1, where φ and µ1 are as in (1), then we call any

prefix of γ a viable prefix and we say that [λ → µ1 · µ2] is valid for γ. Unlike

the context-free case, there are strings γ such that q = GOTO(q0, γ) exists and

either of the conditions holds:

a) γ is not a viable prefix,

b) one item in q is valid for γ while another is not. (See Example 1 in

Section 5 below.)

Let Ω(G) denote the set of all X ∈ V such that X appears on the left-hand

side of a production of G in a position other than the first and put Θ(G) =

Σ ∪ Ω(G). Define FOLLOW(λ) to be the set of all W ∈ Θ(G) ∪ {$} such that

S ′ ∗=⇒
c

φλψ =⇒
c

φµψ for some φ, ψ ∈ V ∗ and some production λ → µ where

W is the first symbol of ψ $.

Definition. An unrestricted grammar is called unrestricted SLR(1) if

a) X 6∈ FOLLOW(λ) whenever [γ → ν1 ·Xν2] and [λ → µ·] are in

the same preliminary LR(0) state.

b) FOLLOW(λ)∩FOLLOW(γ) = ∅ whenever [λ → µ·] and [γ →

ν·] are distinct items in the same preliminary LR(0) state.

Clearly our definition agrees with the usual definition of SLR(1) for context-

free grammars [1]. A state having a pair of items as in the latter part of (a) or

(b) above is said to be inadequate.

6

For each X ∈ Ω(G), create a new symbol X−1 and define

(X1 · · · Xn)−1 = X−1
n · · · X−1

1 ,

forX1, ..., Xn ∈ Ω(G). We define the lookahead grammar for G to be the grammar

with productions

[0, S ′ → ·S] → $, (2)

[m, λ → µ1X · µ2] → [n, λ → µ1 ·Xµ2] , (3)

[n, Xδ → ·η] → δ −1µ2 [n, λ → µ1 ·Xµ2] , (4)

X−1X → ε, X ∈ Ω(G) , (5)

and including all productions of G. Here [λ → µ1 ·Xµ2] ∈ qn, GOTO(qn, X) =

qm, and Xδ → η is a production of G. We define the set of terminals of the

lookahead grammar to be Θ(G) ∪ {$}. Put Ω−1(G) = {X−1 : X ∈ Ω(G) }.

By Gaussian elimination [1, p. 106], one can obtain a regular expression over

V ∪ Ω−1(G) ∪ {$} for a set of strings which derive the same strings in V ∗$ that

[n, λ → µ1 · µ2] derives. The following result shows that these strings are all

possible lookahead strings for the item [λ → µ1 · µ2] of state n.

Proposition 2. Let λ → µ1µ2 be a production of G and let ψ ∈ V ∗. Then

S ′ ∗=⇒
c

φλψ =⇒
c

φµ1µ2ψ and GOTO(q0, φµ1) = qn for some φ ∈ V ∗ if and only

if [n, λ → µ1 · µ2]
∗

=⇒ ψ $.

For example, by Proposition 2 if G is context free then [A → α · β, w] is an

item in a set q of items in the LALR(k) collection for G if and only if [A → α ·β]

is an item in the core of q and w ∈FIRSTk([n, A → α · β]). The latter set can

be computed as in [1, p.357]. (See [3] for a related approach.)

In general, when I is an item in state qn of the preliminary LR(0) collection for

G, we define FIRST([n, I]) to be the set of all W ∈ Θ(G) ∪ {$} such that there

7

is a derivation [n, I] ∗=⇒
c

σ in the lookahead grammar where σ ∈ V ∗$ and W is

the first symbol of σ. We define the LR(0) collection to be the preliminary LR(0)

collection where an item I is removed from a state qn when [n, I] does not derive

any string in V ∗$ and where any resulting empty states are removed. A transition

from a state on a symbol X is removed when the state no longer contains an item

of the form [λ → µ1 ·Xµ2]. Clearly Propositions 1 and 2 still hold for the LR(0)

collection.

Definition. An unrestricted grammar is called unrestricted LALR(1) if

a) X 6∈FIRST([n, λ → µ·]) whenever [λ → µ·] and [γ → ν1 ·Xν2]

are in state qn of the LR(0) collection.

b) FIRST([n, λ → µ·])∩FIRST([n, γ → ν·]) = ∅, whenever [λ →

µ·] and [γ → ν·] are distinct items in state qn of the LR(0)

collection.

Any unrestricted SLR(1) grammar is unrestricted LALR(1) since

FIRST([n, λ → µ·]) ⊆ FOLLOW(λ) (6)

for all productions λ → µ of G by Proposition 2. Clearly our definition agrees

with the usual definition [1] of LALR(1) for context-free grammars by Proposi-

tion 2.

3. LR(1) automata

Intuitively, the automata we define to parse unrestricted grammars are deter-

ministic finite automata where the states traversed and symbols read are saved

in stacks. When a state is obtained where the last symbols read agree with a

8

given string and when the next input symbol is right, the automaton returns to

the state where it was just before the string was read and an alternate string to

be read is inserted at the front of the remaining unread input. More formally, a

LR(1) automaton is a 6-tuple M = (Q, Σ, Γ, δ, q0, S
′), where Q is a finite set

with q0 ∈ Q, Γ is a finite set of symbols satisfying Σ ⊆ Γ and $, S ′ 6∈ Γ, and

δ : Q× (Γ ∪ {$}) → F (A) is a function, where

A = {(S, q) : q ∈ Q, q 6= q0 } ∪ {(R, λ, µ) : λ ∈ Γ∗ ∪ {S ′}, µ ∈ Γ∗ }

and F (A) is the set of all finite subsets of A. An interpretation of these symbols

is as follows: Q is a set of states with q0 the initial state, Σ is the alphabet of

permissible input strings, Γ is the stack alphabet, δ defines a table of parsing

actions from A, and S ′ signals the end of a successful parse. A configuration of M

is a triple (π, α, β $), where π ∈ Q∗ with π 6= ε, α ∈ Γ∗ and β ∈ Γ∗ ∪ {S ′}. We

call π the state stack, α the parsing stack and β $ the input stack. We consider

the top of π and α to be on the right and the top of β $ to be on the left. Suppose

π = π′q and β $ = Xβ′. If (S, r) ∈ δ(q, X) and X 6= $, we write

(π, α, β $) ` (πr, αX, β′) (7)

and we call (7) a shift move to state r. If (R, λ, µ) ∈ δ(q, X) and α = α0µ, we

write

(π, α, β $) ` (π0, α0, λβ $), (8)

where π = π0π̂0 and |π̂0| = |µ|, and we call (8) a reduction move by λ → µ.

Note that the possible next moves in a given configuration depend only on the

symbols on top of the state and input stacks. Clearly the parsing and state stacks

operate in parallel so that |π| = |α| + 1. The parsing stack may be viewed as

part of the output of the automaton.

9

If (π1, α1, β1$) and (πn, αn, βn$) are configurations, we write

(π1, α1, β1$) ∗̀ (πn, αn, βn$)

if (π1, α1, β1 $) = (πn, αn, βn$) or if there exists a sequence of moves

(π1, α1, β1$) ` · · · ` (πn, αn, βn$).

The language of M is defined by

L(M) = {w ∈ Σ∗ : (q0, ε, w$) ∗̀ (q0, ε, S
′ $) } (9)

and the configurations in (9) are called the initial and final configurations, respec-

tively. Note that the final configuration is determined by the top symbols of the

state and input stacks and that there is no move possible in the final configura-

tion. It is not difficult to show that an LR(1) automaton can be simulated by a

(nondeterministic) two-pushdown automaton as defined in [12] or [15] and that

the languages accepted are the same. Our definition is similar to the definition of

the CS(1) processors given by Walters [19].

Define an LR(1) automaton M to be deterministic if δ(q, X) contains at most

one element for each q ∈ Q and X ∈ Γ∪{$}. When M is deterministic we regard

δ as a function defined on a subset of Q × (Γ ∪ {$}) with values in A. Given

an unrestricted grammar G = (Σ, V, P, S), we construct an LR(1) automaton

M = (Q, Σ, Γ, δ, q0, S
′) in two different ways. In both, Γ = V and S ′ is the new

nonterminal introduced to augment G. Define the SLR(1) automaton for G to be

the automaton M where Q is the preliminary LR(0) collection and where δ(q, X)

consists of all pairs (S, r) satisfying r = GOTO(q, X) and all triples (R, λ, µ)

satisfying [λ → µ·] ∈ q and X ∈FOLLOW(λ). Define the LALR(1) automaton

for G to be the automaton M where Q is the LR(0) collection and where δ(q, X)

consists of all pairs (S, r) satisfying r = GOTO(q, X) and all triples (R, λ, µ)

10

satisfying [λ → µ·] ∈ q, q = qn and X ∈FIRST([n, λ → µ·]). Note that the

SLR(1) (resp., LALR(1)) automaton for G is deterministic if and only if G is

unrestricted SLR(1) (resp., LALR(1)).

The next result shows that, unlike the context-free case, there is no algorithm

which can compute every SLR(1) or LALR(1) parsing table.

Proposition 3. For an arbitrary unrestricted grammar G, it is undecidable

whether δ(q0, $) contains at most one element, where δ is the parsing action func-

tion of the SLR(1) (resp., LALR(1)) automaton for G.

LetM be an SLR(1) or LALR(1) automaton forG. Clearly there is at most one

shift move in any configuration. Also, the parsing stack can be obtained directly

from the state stack in any configuration (π, α, β $) arrived at by the automaton

beginning in an initial configuration. Indeed, α = f(π), where f : Q∗ → V ∗ is

the multiplicative extension of the function which takes a state q to the symbol

preceding the dot of an item in the kernel of q. Moreover, after each reduction

move by a production Xδ → η different from S ′ → S, there exists a shift move

by X. (See Lemma 2 below.) We shall always assume that this shift move is

taken after the reduction move.

In implementations of SLR(1) or LALR(1) automata, it is convenient to read

a symbol from the input string into the input stack only when the input stack

is empty. Thus the automaton’s input stack may be viewed as the implemented

input stack followed by the remaining unread input. It is also convenient to

combine a reduction move as above with the following shift move so that δ is

pushed onto the input stack and X and the appropriate state are pushed onto the

grammar and state stacks, respectively.

11

4. Main Results

Proposition 4 (below) shows that SLR(1) and LALR(1) automata simulate

the reverse of a canonical derivation. An immediate consequence is the following

theorem, which establishes that unrestricted SLR(1) and LALR(1) grammars are

parsed deterministically by their corresponding automata. The author has found

that a large number of interesting unrestricted grammars are covered by this

theorem.

Theorem 1. Let G be an unrestricted SLR(1) (resp., LALR(1)) grammar

and let w ∈ Σ∗. Then w ∈ L(G) if and only if the SLR(1) (resp., LALR(1))

automaton with initial configuration (q0, ε, w$) halts in configuration (q0, ε, S
′$).

In this case, the successive reduction moves are reductions by the productions used

in a canonical derivation but in reverse order.

Corollary 1. No unrestricted LALR(1) grammar is ambiguous.

Proposition 4. Let M be the SLR(1) or LALR(1) automaton for an unre-

stricted grammar G. Then the following are equivalent:

a) There exists a derivation

S ′ = φ1λ1ψ1 =⇒
c
· · · =⇒

c
φnµnψn = σ,

where the productions λ1 → µ1, ..., λn → µn have been applied

successively and the first symbol of each ψi is in Θ(G) when ψi 6= ε.

b) There exist moves of M beginning in the initial configuration (q0, ε, σ $)

such that M arrives at configurations

(πn, φn, λnψn$) ` · · · ` (π1, φ1, λ1ψ1$) = (q0, ε, S
′$)

after each reduction move, where the reductions are by λn →

µn, ..., λ1 → µ1, respectively.

12

Corollary 2. L(G) = L(M).

In view of Proposition 4, grammars more general than the unrestricted LALR(1)

grammars might still be parsed by methods employing backtrack or parallel com-

putation.

Unlike the context-free case, an LALR(1) automaton for an unrestricted gram-

mar may not detect an error until it has read arbitrarily many symbols beyond a

symbol which cannot follow the string previously read. Moreover, the automaton

can cycle indefinitely on certain (non-sentence) inputs. (See Examples 1 and 6

below.) The following result gives a condition which insures that errors will be

detected as early as possible.

Proposition 5. Let G be an unrestricted SLR(1) (resp., LALR(1)) grammar

and suppose that γ is a viable prefix whenever GOTO(q0, γ) is defined for the

preliminary LR(0) (resp., LR(0)) collection. Then the SLR(1) (resp., LALR(1))

automaton for G reads a symbol only when it follows the symbols previously read

in some sentential form.

Clearly any context-free SLR(1) or LALR(1) grammar G satisfies the hypothe-

ses of Proposition 5.

As an example of the usefulness of Theorem 1, we give a technique to con-

vert certain context-free LALR(k) grammars to equivalent unrestricted SLR(1) or

LALR(1) grammars where the associated automaton parses the original grammar

in an obvious way. In many instances, this approach is a considerably simpler

alternative to the methods of [14].

Define a production A → α of a context-free grammar G to be an LALR(p)

production of G if p is the least non-negative integer such that no completed

LALR(p) item with production A → α is involved in an LALR(p) conflict, i.e.,

there are no items [A → α·, x] and [B → β1 · β2, y] in the same LALR(p)

13

state where x ∈ EFFp(β2y). (See [1, p.381].) Given a context-free LALR(k)

grammar G = (Σ, V, P, S) where k > 1, choose Z 6∈ V and let G′ = (Σ, V ∪

{Z}, P ′, S ′) be the unrestricted grammar with productions S ′ → SZ and Z → ε

and productions Au → αu (resp., AuZ → αuZ) where A → α is an LALR(p)

production of G, u ∈ Σ∗ and u (resp., u$) is in FOLLOWp−1(A). The latter set

is assumed to be {ε} when p ≤ 1. It is not difficult to show that L(G′) = L(G).

(See Example 5 below.)

5. Examples

Example 1. Let G1 be the grammar

(1) S → aSBD (2) S → abD (3) DB → BD

(4) bB → bb (5) D → c .

Then L(G1) = {anbncn : n ≥ 1} and Θ(G1) = {a, b, c, B}. The preliminary

LR(0) states are given in Table 1. State 8 is the only inadequate state. Note

that all the items of state 2 are valid for the viable prefix an when n ≥ 1 except

that [bB → ·bb] is not valid for a. For the SLR(1) case, one can easily obtain

the FOLLOW sets of the left-hand sides of productions and thus the table for the

function δ of the SLR(1) automaton M for G1. (See Tables 4 and 5.) Clearly G1

is unrestricted SLR(1) since Table 5 has no multiple entries. Table 6 shows the

configurations and moves of M as it parses the sentence a2b2c2. It can be shown

that if 1 ≤ n < m then M reads the string anbmcn before it halts signaling an

error.

For the LALR(1) case, the productions of the lookahead grammar are con-

structed as the preliminary LR(0) states are generated and these are solved as

a system of regular expression equations. (See Tables 2 and 3.) In these tables,

[n, k, p] denotes the item nonterminal [n, λ → µ1 ·µ2], where λ → µ1 ·µ2 is the

14

kth production and |µ1| = p. In Table 3, all inverses in the regular expressions

have been eliminated by the application of productions (5) and productions of

G1. In doing this, one must be careful to insure that on the application of each

production the resulting regular expression derives the same strings of V ∗$ as the

original one. Since each item nonterminal of the lookahead grammar derives a

string in V ∗$, the LR(0) states and the preliminary LR(0) states agree. One then

computes the FIRST sets of those item nonterminals where the item is completed

and the table for the function δ of the LALR(1) automaton follows immediately.

(See Tables 4 and 5.) For G1 it happens that the SLR(1) and LALR(1) tables

coincide.

15

Table 1: Preliminary LR(0) states for G1

State 0 State 6
S ′ → ·S DB → ·BD
S → ·aSBD DB → B ·D
S → ·abD D → ·c

State 1 State 7
S ′ → S· S → abD·

State 2 State 8
S → ·aSBD bB → ·bb
S → a · SBD bB → b · b
S → ·abD bB → bb·
S → a · bD
bB → ·bb

State 3 State 9
S → aS ·BD D → c·

State 4 State 10
S → ab ·D S → aSBD·
DB → ·BD
bB → ·bb
bB → b · b State 11
D → ·c DB → BD·

State 5
S → aSB ·D
DB → ·BD
D → ·c

16

Table 2: Lookahead grammar for G1 (without productions of G1)

[0, 0, 0]→ $ [6, 3, 0]→ B−1[6, 3, 1]
[0, 1, 0]→ [0, 0, 0] [6, 3, 1]→ [4, 3, 0]
[0, 2, 0]→ [0, 0, 0] [6, 3, 1]→ [5, 3, 0]

[6, 3, 1]→ [6, 3, 0]
[1, 0, 1]→ [0, 0, 0] [6, 5, 0]→ [6, 3, 1]

[2, 1, 0]→ BD [2, 1, 1] [7, 2, 3]→ [4, 2, 2]
[2, 1, 1]→ [0, 1, 0]
[2, 1, 1]→ [2, 1, 0] [8, 4, 0]→ B−1b [8, 4, 0]
[2, 2, 0]→ BD [2, 1, 1] [8, 4, 0]→ B−1[8, 4, 1]
[2, 2, 1]→ [0, 2, 0] [8, 4, 1]→ [4, 4, 0]
[2, 2, 1]→ [2, 2, 0] [8, 4, 1]→ [8, 4, 0]
[2, 4, 0]→ B−1D [2, 2, 1] [8, 4, 2]→ [4, 4, 1]
[2, 4, 0]→ B−1b [2, 4, 0] [8, 4, 2]→ [8, 4, 1]

[3, 1, 2]→ [2, 1, 1] [9, 5, 1]→ [4, 5, 0]
[9, 5, 1]→ [5, 5, 0]

[4, 2, 2]→ [2, 2, 1] [9, 5, 1]→ [6, 5, 0]
[4, 3, 0]→ B−1[4, 2, 2]
[4, 4, 0]→ B−1b [4, 4, 0] [10, 1, 4]→ [5, 1, 3]
[4, 4, 0]→ B−1[4, 4, 1]
[4, 4, 1]→ [2, 4, 0] [11, 3, 2]→ [6, 3, 1]
[4, 5, 0]→ [4, 2, 2]

B−1B → ε
[5, 1, 3]→ [3, 1, 2]
[5, 3, 0]→ B−1[5, 1, 3]
[5, 5, 0]→ [5, 1, 3]

17

Table 3: Regular expressions for lookahead grammar for G1

[0, 0, 0] = $ [6, 3, 0] = D2D∗(BD)∗$
[0, 1, 0] = $ [6, 3, 1] = D+(BD)∗$
[0, 2, 0] = $ [6, 5, 0] = D+(BD)∗$

[1, 0, 1] = $ [7, 2, 3] = (BD)∗$

[2, 1, 0] = (BD)+$ [8, 4, 0] = D4D∗(BD)∗$
[2, 1, 1] = (BD)∗$ [8, 4, 1] = D3D∗(BD)∗$
[2, 2, 0] = (BD)+$ [8, 4, 2] = D2D∗(BD)∗$
[2, 2, 1] = (BD)∗$
[2, 4, 0] = D2(BD)∗$ [9, 5, 1] = D∗(BD)∗$

[3, 1, 2] = (BD)∗$ [10, 1, 4] = (BD)∗$

[4, 2, 2] = (BD)∗$ [11, 3, 2] = D+(BD)∗$
[4, 3, 0] = D(BD)∗$
[4, 4, 0] = D3(BD)∗$
[4, 4, 1] = D2(BD)∗$
[4, 5, 0] = (BD)∗$

[5, 1, 3] = (BD)∗$
[5, 3, 0] = D(BD)∗$
[5, 5, 0] = (BD)∗$

18

Table 4: SLR(1) and LALR(1) lookahead symbols for G1

FOLLOW(S ′) = {$} FOLLOW(S) = {$, B}

FOLLOW(DB) = {c, B} FOLLOW(bB) = {c, B}

FOLLOW(D) = {$, c, B}

FIRST([1, 0, 1]) = {$} FIRST([7, 2, 3]) = {$, B}

FIRST([8, 4, 2]) = {c, B} FIRST([9, 5, 1]) = {$, c, B}

FIRST([10, 1, 4]) = {$, B} FIRST([11, 3, 2]) = {c, B}

Table 5: SLR(1) and LALR(1) parse table for G1

State a b c $ B D S

0 S2 S1

1 R0

2 S2 S4 S3

3 S5

4 S8 S9 S6 S7

5 S9 S6 S10

6 S9 S6 S11

7 R2 R2

8 S8 R4 R4

9 R5 R5 R5

10 R1 R1

11 R3 R3

19

Table 6: Parse of a2b2c2

π α β $ move

0 ε aabbcc$ S2
0 2 a abbcc$ S2
0 2 2 aa bbcc$ S4
0 2 2 4 aab bcc$ S8
0 2 2 4 8 aabb cc$ R4
0 2 2 aa bBcc$ S4
0 2 2 4 aab Bcc$ S6
0 2 2 4 6 aabB cc$ S9
0 2 2 4 6 9 aabBc c$ R5
0 2 2 4 6 aabB Dc$ S11
0 2 2 4 6 11 aabBD c$ R3
0 2 2 4 aab DBc$ S7
0 2 2 4 7 aabD Bc$ R2
0 2 a SBc$ S3
0 2 3 aS Bc$ S5
0 2 3 5 aSB c$ S9
0 2 3 5 9 aSBc $ R5
0 2 3 5 aSB D$ S10
0 2 3 5 10 aSBD $ R1
0 ε S$ S1
0 1 S $ R0
0 ε S′$

20

It is easy to show as above that each of the grammars below is an unrestricted

SLR(1) grammar with the indicated language and FOLLOW sets. The SLR(1)

parse table can be obtained easily in each case.

L(G2) = {a2n : n ≥ 0}

(1) S → AaDE (2) aD → Da (3) AD → AC

(4) Ca → aaC (5) CE → DE (6) CE → B

(7) aB → Ba (8) AB → ε

FOLLOW(S ′) = {$} FOLLOW(S) = {$}
FOLLOW(aD) = {a, E} FOLLOW(AD) = {a}
FOLLOW(Ca) = {a, E} FOLLOW(CE) = {$}
FOLLOW(aB) = {a, $} FOLLOW(AB) = {a}

L(G3) = {nhan : n ≥ 1}

(1) S → TE (2) T → 1TaF (3) T → 0TF

(4) T → h (5) Fa → aaF (6) FE → E

(7) aE → a

FOLLOW(S ′) = {$} FOLLOW(S) = {$}
FOLLOW(T) = {a, E} FOLLOW(Fa) = {a, E}
FOLLOW(FE) = {$} FOLLOW(aE) = {$}

L(G4) = {wcw : w ∈ (a|b)∗}

(1) S → CD (2) C → aCA (3) C → bCB

(4) C → c (5) AD → aD (6) BD → bD

(7) Aa → aA (8) Ba → aB (9) Ab → bA

(10) Bb → bB (11) D → ε

21

FOLLOW(S ′) = {$} FOLLOW(S) = {$}
FOLLOW(C) = {a, b, D, $} FOLLOW(AD) = {$}
FOLLOW(BD) = {$} FOLLOW(Aa) = {a, b, D}
FOLLOW(Ba) = {a, b, D} FOLLOW(Ab) = {a, b, D}
FOLLOW(Bb) = {a, b, D} FOLLOW(D) = {$}

L(G5) = {anbmcndm : n,m ≥ 1}

(1) S → aSC (2) S → aTC (3) T → bTD

(4) T → bD (5) DC → CD (6) bC → bc

(7) cC → cc (8) D → d

FOLLOW(S ′) = {$} FOLLOW(S) = {C, $}
FOLLOW(T) = {d, C} FOLLOW(DC) = {d, C, $}
FOLLOW(bC) = {d, C} FOLLOW(cC) = {d, C}
FOLLOW(D) = {d, C, $}

Example 2. Let G6 be the grammar

(1) S → EAE (2) EA → EC (3) CA → AAC

(4) CE → AAE (5) A → a (6) E → ε

Then L(G6) = {a2n : n ≥ 0} and Θ(G6) = {a, A, E}. Since FOLLOW(E) =

{a, A, $}, there are both shift and reduce moves for a and A in states 3 and 7 of

the SLR(1) automaton for G6. Hence G6 is not an unrestricted SLR(1) grammar.

However, it is not difficult to show that G6 is an unrestricted LALR(1) grammar.

(See Tables 7 and 8.)

22

Table 7: LR(0) states for G6

State 0 State 5
S ′ → ·S A→ a·
S → ·EAE
EA→ ·EC State 6
E → ε· S → EAE·

State 1 State 7
S ′ → S· CA→ ·AAC

CA→ AA · C
State 2 CE → ·AAE
S → E · AE CE → AA · E
EA→ E · C A→ ·a
CA→ ·AAC E → ε·
CE → ·AAE
A→ ·a State 8

CA→ A · AC
State 3 CE → A · AE
S → EA · E A→ ·a
CA→ A · AC
CE → A · AE State 9
A→ ·a CE → AAE·
E → ε·

State 10
State 4 CA→ AAC·
EA→ EC·

23

Table 8: LALR(1) parse table for G6

State a A E $ C S

0 R6 R6 S2 S1

1 R0

2 S5 S3 S4

3 S5 S7 S6 R6

4 R2 R2 R2 R2

5 R5 R5 R5 R5

6 R1

7 S5 S8 S9 R6 S10

8 S5 S7

9 R4

10 R3 R3 R3 R3

Example 3. Let G7 be the grammar

(1) S → FTE (2) T → 0T (3) T → 0

(4) 0E → 1E (5) 1E → B0C (6) 0B → 1A

(7) 1B → B0 (8) FB → D (9) A0 → 0A

(10) AC → E (11) D0 → 0D (12) DC → ε

Then L(G7) = {0n : n ≥ 1}. It is not difficult to show that G7 is an unre-

stricted LALR(1) grammar and to construct its LALR(1) parse table. (G7 is not

an unrestricted SLR(1) grammar.) Unlike the case of unambiguous context-free

grammars [7] where a string of length n can always be parsed in time O(n2), the

string 0n requires time O(2n) to parse. Indeed, the LALR(1) automaton for G7

24

requires 7 · 2n + n reductions (not counting the last reduction by S ′ → S) and

a total of three times as many moves to parse 0n+1 for n ≥ 0. If the contents

of the parsing stack followed by the contents of the input stack are printed just

before each reduction by T → 0, 0E → 1E and AC → E, then the output is

a backward listing of the n digit binary numbers.

Example 4. Following Turnbull and Lee [17 p.200], let G8 be the grammar

(1) S → ABSc (2) S → Abc (3) Ab → ab

(4) Aa → aa (5) Bb → bb (6) BA → AB

and note that L(G8) = {anbncn : n ≥ 1}. It is easy to see that none of the

preliminary LR(0) states is inadequate so G8 is an unrestricted SLR(1) grammar.

It is also easy to verify that if the transition function for the LR(0) collection is

defined for a string γ, then γ is a prefix of one of the strings

S, (AB)nAmaa, (AB)nAmab, (AB)nAbc,

(AB)nABSc, (AB)nAm+2bb, (AB)nAm+2B,

where n,m ≥ 0, and therefore that γ is a viable prefix. Hence by Proposition 4

the LALR(1) automaton for G8 reads a symbol only when it follows the symbols

previously read in some sentential form. (This is not true of the SLR(1) automaton

for G8.)

Example 5. Let G9 be the LALR(2) grammar

(1) S → bSS (2) S → a (3) S → aac

It is easy to see that productions (1) and (3) are LALR(0) and that production (2)

is LALR(2). Since FOLLOW(S) = {a, b, $}, the equivalent unrestricted grammar

G′9 is

25

(1) S ′ → SZ (2) Z → ε (3) S → bSS

(4) Sa → aa (5) Sb → ab (6) SZ → aZ

(7) S → aac

and it is easy to verify that this grammar is unrestricted SLR(1). Note that

the method of [14] obtains an equivalent context-free SLR(1) grammar with 16

productions. In fact, it is easy to verify that G′ is unrestricted SLR(1) when G is

any of the LR(2) examples of [14].

Example 6. Let G10 be the grammar

(1) S → AT (2) S → pTcd (3) T → U

(4) T → bc (5) Ab → AU (6) U → bF

(7) Fcd → cd (8) A → a (9) U → q

Then G10 is an unrestricted LALR(1) grammar and the LALR(1) automaton for

G10 on input abcd cycles infinitely through the same 9 configurations after 2 initial

moves. The corresponding derivation cycle is

Abcd =⇒
c

AUcd =⇒
c

AbFcd =⇒
c

Abcd.

Here the reduction of cd to Fcd is not correct since the item [Fcd → cd·] is not

valid for any viable prefix beginning with A. On the other hand, this item is valid

for the sentence pbcd and the state arrived at on reading pbcd is the same as the

state arrived at on reading Abcd. Hence the LALR(1) automaton must make the

erroneous reduction.

It can be shown that when productions (1) and (5) are replaced by the pro-

ductions S → AS, S → T and AAb → AU , the resulting grammar is still

unrestricted LALR(1) and the corresponding LALR(1) automaton on input abcd

cycles through a sequence of 10 moves in such a way that the parsing stack grows

without bound. Note that although the two stack machine of Turnbull and Lee

enters an infinite loop on certain inputs for the grammar of [17, p.195], the SLR(1)

automaton for this grammar is deterministic and does not loop.

26

6. Proofs of Propositions and Theorems

Lemma 1. Let Xδ → η be a production and let S ′ ∗=⇒
c

αXδβ =⇒
c

αηβ be a

derivation with at least two steps. Then there exists a production λ → ν1Xν2 and

φ, ψ ∈ V ∗ such that the first steps of the given derivation are S ′ ∗=⇒
c

φλψ =⇒
c

φν1Xν2ψ

and both φν1 = α and ν2ψ
∗=⇒
c

δβ.

Proof. Let the given canonical derivation be σ1 =⇒
c

... =⇒
c

σn+1 , where the

σi’s are given as in the definition of a derivation in §1. Let k be the smallest

number less than n such that αX is a prefix of φi for all k < i < n. (Possibly

k = n− 1.) Then for each k < i < n, there is a θi ∈ V ∗ with αXθi = φi and

θk+1λk+1ψk+1 =⇒
c

... =⇒
c

θn−1µn−1ψn−1 = δβ

if k < n − 1. Also, since the given derivation is canonical and αX is a prefix of

φk+1 when k < n− 1, we see that αX is a prefix of φkµk. Since αX is not a prefix

of φk, we may write µk = ν1Xν2 and α = φkν1. If k < n− 1 then

αXν2ψk = φkµkψk = αXθk+1λk+1ψk+1 ,

so ν2ψk = θk+1λk+1ψk+1 , and if k = n−1 then αXν2ψk = αXδβ, so ν2ψk = δβ.

Hence ν2ψk
∗=⇒
c

δβ and clearly

S ′ ∗=⇒
c

φkλkψk =⇒
c

φkν1Xν2ψk.

Proof of Proposition 1. It suffices to show that there exists a path of transitions

through the NFA of LR(0) items from [S ′ → ·S] to [λ → µ1 · µ2] reading φµ1.

The proof is by induction on the number of steps of the derivation (1). Suppose

the derivation is one step. Then φ = ψ = ε, λ = S ′ and µ1µ2 = S. If µ1 = ε,

27

then φµ1 = ε and the path of no transitions takes [S ′ → ·S] to itself. If µ1 = S,

then φµ1 = S and there is a transition on S from [S ′ → ·S] to [S ′ → S·].

Suppose such a path exists when the number of steps in (1) is less than m and

let

S ′ ∗=⇒
c

αXδβ =⇒
c

αη1η2β (10)

be a derivation with m steps, where Xδ → η1η2 is a production. Then by

Lemma 1 there is a path of transitions from [S ′ → ·S] to [λ → ν1 ·Xν2] reading

α = φν1. Since there is an ε -transition from [λ → ν1 · Xν2] to [Xδ → ·η1η2]

and there is a path of transitions from [Xδ → ·η1η2] to [Xδ → η1 · η2] reading

η1, there is a path of transitions from [S ′ → ·S] to [Xδ → η1 · η2] reading αη1.

Proof of Proposition 2. We prove the equivalence by induction on the number

of steps in the given derivations. To prove the forward implication, suppose the

given derivation has only one step. Then φ = ψ = ε, λ = S ′ and µ1µ2 = S. If

µ1 = ε, then n = 0 and [0, S ′ → ·S]
∗

=⇒ $, and if µ1 = S, then

[n, S ′ → S·] =⇒ [0, S ′ → ·S] =⇒ $,

as required.

Suppose the forward implication holds for all given derivations with fewer than

m steps and let a derivation (10) be given with m steps and with GOTO(q0, αη1)

= qn. Then by Lemma 1, [k, λ → ν1 ·Xν2]
∗

=⇒ ψ $ and δ −1ν2ψ
∗

=⇒ β, where

GOTO(q0, α) = qk. Hence since qn = GOTO(qk, η1), we have

[n, Xδ → η1 ·η2]
∗

=⇒ [k, Xδ → ·η1η2] =⇒ δ −1ν2 [k, λ → ν1 ·Xν2]
∗

=⇒ β $,

as required.

To prove the reverse implication, suppose the given derivation has only one

step. Then it is [0, S ′ → ·S] =⇒ $ and clearly S ′ ∗=⇒
c

S ′ =⇒
c

S and GOTO(q0, ε)

= q0, as required.

28

Suppose the reverse implication holds when the given derivation has m steps

and let [n, λ → µ1 · µ2]
∗

=⇒ ψ $ be an m+ 1 step derivation. Consider the case

where µ1 6= ε. Then we may write µ1 = µ′1X and clearly

[n, λ→ µ1 · µ2] =⇒ [k, λ→ µ′1 ·Xµ2]
∗

=⇒ ψ$

for some state qk with GOTO(qk, X) = qn. By the induction hypothesis, there

is a derivation

S ′ ∗=⇒
c

φλψ =⇒
c

φµ1µ2ψ

and GOTO(q0, φµ
′
1) = qk. Hence GOTO(q0, φµ1) = qn, as required. In the case

where µ1 = ε, we have

[n, Xδ → µ1 · µ2] =⇒ δ −1ν2 [n, γ → ν1 ·Xν2]
∗

=⇒ ψ$,

where λ = Xδ. Since the last derivation may be taken to be canonical, there

is a string β of symbols in V ∪ Ω−1(G) with [n, γ → ν1 · Xν2] ∗=⇒
c

β$ and

δ −1ν2β
∗=⇒
c

ψ. By the induction hypothesis, there exists a derivation

S ′ ∗=⇒
c

αγβ =⇒
c

αν1Xν2β

and GOTO(q0, αν1) = qn. Put φ = αν1. Since ν2β
∗=⇒
c

δψ, we have

S ′ ∗=⇒
c

φλψ =⇒
c

φµ1µ2ψ ,

as required.

Proof of Proposition 3. Given an unrestricted grammar G, we may suppose

that S does not appear in the right-hand side of any production. Add the pro-

duction S → ε and consider the LALR(1) automaton of the resulting grammar.

Clearly [S → ε·] ∈ q0 and $ ∈FIRST([0, S → ε·]). Hence | δ(q0, $) | > 1

29

if and only if there is a production λ → ε of G with [λ → ε·] ∈ q0 and

$ ∈FIRST([0, λ → ε·]). By Proposition 2, the latter condition is equivalent to

ε ∈ L(G), and this is undecidable [15, p.102].

Given an unrestricted grammar G, create new symbols S ′ and Z, and let S ′

be the new start symbol. Add productions S ′ → ε and S ′ → ZSZ, and add the

production ZλZ → λ for each production λ → ε of G. Consider the SLR(1)

automaton of the resulting grammar. Clearly [S ′ → ε·] ∈ q0 and FOLLOW(S ′)

= {$}. Also $ ∈FOLLOW(λ) where λ → µ is a production if and only if µ = ε

and

S ′
∗

=⇒ ZλZ =⇒ λ =⇒ ε.

Hence | δ(q0, $) | > 1 if and only if ε ∈ L(G).

Lemma 2. Let p and q be (preliminary) LR(0) states and suppose that [Xδ →

η·] ∈ q and GOTO(p, η) = q. Then GOTO(p, X) is a (preliminary) LR(0) state

unless Xδ → η is the production S ′ → S.

Proof. In both cases it is easy to show that [Xδ → ·η] ∈ p. If the given

states are preliminary LR(0) states, then there is an item [λ → µ1 · Xµ2] ∈ p

since p is the closure of its kernel. The same conclusion also holds for LR(0) states

by Lemma 1.

Proof of Proposition 4. To avoid considering the initial configuration sepa-

rately, define πn+1 = q0, φn+1 = λn+1 = ε and ψn+1 = σ. Suppose (b) holds

and suppose M is in a configuration (πk+1, φk+1, λk+1ψk+1$), where 1 ≤ k ≤ n.

Let θk+1 ∈ V ∗ be the string of symbols shifted from the input stack until the

reduction move by λk → µk and let π̂k+1 ∈ Q∗ be the string of the corresponding

states entered. Since the configuration after that move is (πk, φk, λkψk$), we have

φk+1θk+1 = φkµk and πk+1π̂k+1 = πkπ̂k, where |µk| = |π̂k|. Also, the next move

30

of M is a shift move by our assumption so θk 6= ε. Hence

φkλkψk =⇒ φkµkψk = φk+1λk+1ψk+1,

where the production λk → µk has been applied and φk+1 is a proper prefix of

φkµk. Thus (a) holds.

Suppose (a) holds and supposeM arrives at a configuration (πk+1, φk+1, λk+1ψk+1$),

where πk+1 is the string of states traversed upon reading φk+1 from state q0 and

1 ≤ k ≤ n. Since the given derivation is canonical, there is a θk+1 ∈ V ∗ with

φk+1θk+1 = φkµk and θk+1 6= ε if k 6= n. By Proposition 1, there is a string π̂k+1

of states traversed upon reading θk+1 from the last state of πk+1. Then we may

write πk+1π̂k+1 = πkπ̂k, where πk is the string of states traversed upon reading

φk and |π̂k| = |µk|. Hence since φk+1λk+1ψk+1 = φkµkψk, we have

(πk+1, φk+1, λk+1ψk+1$) ∗̀ (πkπ̂k, φkµk, ψk$)

through successive shift moves. By Proposition 1, the item [λk → µk·] is in the

last state q of πkπ̂k, and the first symbol W of ψk$ is in Θ(G) ∪ {$}. Hence by

Proposition 2, δ(q, W) contains (R, λk, µk), so

(πkπ̂k, φkµk, ψk$) ` (πk, φk, λkψk$)

through a reduction move by λk → µk. This proves (b).

Theorem 1 and Corollary 2 follow immediately from Proposition 4 and the

observation that if σ ∈ Σ∗ then ψi ∈ Θ(G)∗ for all 1 ≤ i ≤ n; indeed, if ψi

contains a suffix γ with first symbol in V − Θ(G) then γ is also a suffix of ψi+1.

Proof of Proposition 5. Let M be the mentioned automaton and suppose

M reads a string w ∈ Σ∗, i.e., there exists a π ∈ Q∗ and an α ∈ V ∗ with

(q0, ε, w$) ∗̀ (π, α, $). It can be shown as in the proof of Proposition 4 that

31

α ∗=⇒
c

w. Clearly GOTO(q0, α) is defined since π is a path of transitions (in the

appropriate collection of states) reading α. Hence by hypothesis, there exists a

derivation S ′ ∗=⇒
c

φλψ =⇒
c

φµψ, where α is a prefix of φµ. Write αβ = φµ.

Then S ′ ∗=⇒
c

αβψ ∗=⇒
c

wβψ, as required.

Remark. To simplify computations of parse tables, we have chosen the most

restrictive of three obvious definitions for unrestricted SLR(1) and LALR(1) gram-

mars. These different definitions arise from the fact that a sentential form in an

unrestricted grammar may not derive a sentence. (It is often difficult to determine

whether this is the case for a given sentential form.) One can obtain a more gen-

eral definition by requiring that ψ ∈ Θ(G)∗ and σ ∈ Θ(G)∗$ in the definitions of

FOLLOW(λ) and FIRST([n, I]), respectively. The LR(0) collection is obtained

by removing all items I from qn where FIRST([n, I]) = ∅. Then Proposition 4

holds when σ ∈ Θ(G)∗.

One can obtain a still more general definition by requiring that the derivation

in the definition of FOLLOW(λ) and the derivation in Proposition 2 giving an

equivalent formulation of the definition of FIRST([n, I]) derive sentences. The

LR(0) collection is defined in terms of this definition of FIRST as before. Then

Proposition 4 holds when σ ∈ Σ∗. This definition has the advantage that each

table entry is exercised in the parse of some sentence.

Note that all three definitions agree for reduced context-free grammars.

References

1. Aho, A.V., Ullman, J.D.: The theory of parsing, translation, and compiling,
Vols. I & II. Englewood Cliffs, N.J.: Prentice-Hall 1972

2. Aho, A.V., Ullman, J.D.: Principles of compiler design. Reading, Mass.:
Addison-Wesley 1977

32

3. Ancona, M., Dodero, G., Gianuzzi, V.: Building collections of LR(k) items
with partial expansion of lookahead strings. ACM SIGPLAN Notices 17
(4), 25-28 (1982)

4. Barth, G.: Fast recognition of context-sensitive structures. Computing 22,
243-256 (1979)

5. Buttelmann, H.W.: On the syntactic structures of unrestricted grammars,
I & II. Information and Control 29, 29-101 (1975)

6. DeRemer, F.L.: Practical translators for LR(k) languages. MIT, Cam-
bridge, Mass.. Project MAC Report TR-65, 1969

7. Earley, J.: An efficient context-free parsing algorithm. Communications of
the ACM 13, 94-102 (1970)

8. Fisher, A.J.: Practical LL(1)-based parsing of van Wijngaarden grammars.
Acta Informatica 21, 559-584 (1985)

9. Griffiths, T.V.: Some remarks on derivations in general rewriting systems.
Information and Control 12, 27-54 (1968)

10. Knuth, D.E.: On the translation of languages from left to right. Information
and Control 8, 607-639 (1965)

11. Kunze, M.: Grammars for efficient non-context-free parsing. Conference on
Information Sciences and Systems, University of Patras, Greece, 1979 (D.G.
Lainiotis and N.S. Tzannes, eds.), Applications of Information and Control
Systems. pp.217-225. Dordrecht-Boston-London: D. Reidel 1980

12. Loeckx, J.: The parsing for general phrase-structure grammars. Information
and Control 16, 443-464 (1970)

13. Mayer, O.: On deterministic canonical bottom-up-parsing. Information and
Control 43, 280-303 (1979)

14. Mickunas, M.D., Lancaster, R.L., Schneider, V.B.: Transforming LR(k)
grammars to LR(1), SLR(1), and (1,1) bounded right-context grammars.
Journal of the ACM 23, 511-553 (1976)

15. Revesz, G.E.: Introduction to formal languages. New York: McGraw-Hill
1983

33

16. Sebesta, R.W., Jones, N.D.: Parsers for indexed grammars. Int. J. of
Computer and Information Sciences 7, 345-359 (1978)

17. Turnbull, C.J.M., Lee, E.S.: Generalized deterministic left to right parsing.
Acta Informatica 12, 187-207 (1979)

18. Vold’man, G.Sh.: A parsing algorithm for context-sensitive grammars. Pro-
gramming and Computer Software 7, 302-307 (1981)

19. Walters, D.A.: Deterministic context-sensitive languages, I & II. Informa-
tion and Control 17, 14-61 (1970)

20. Wegner, L.M.: On parsing two-level grammars. Acta Informatica 14, 175-
193 (1980)

Mathematics Department
University of Kentucky
Lexington Kentucky 40506

34

