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1. Introduction.

Our object is to give an overview of some basic results about holomorphic mappings of circular
domains in various spaces of operators. We begin by considering C*-algebras and pass to J*-algebras
and other spaces when this seems natural.

Our first result is a simple extension of the maximum principle where the unitary operators
play the role of the unit circle. We illustrate the power of this result by deducing some classical
theorems of functional analysis in a straightforward way. Next we apply Cartan’s uniqueness theorem
to determine biholomorphic mappings and to show that linear mappings between certain operator
domains are Jordan isomorphisms. This motivates the discussion of homogeneous domains.

Our first examples of homogeneous domains are the open unit balls of J*-algebras (which include
all the classical domains.) Next we discuss some affinely homogeneous upper half-planes in spaces
of operators called operator Siegel domains of genus 2. Although these are always holomorphically
equivalent to a bounded domain, they are (as far as I know) not necessarily holomorphically equivalent
to a ball. Our last examples are the domains of linear fractional transformations. These are symmetric
affinely homogeneous domains which are never holomorphically equivalent to a bounded domain.

Finally we show how certain extensions of the Riemann removable singularity theorem allow us
to determine the automorphisms of domains where an indefinite operator-valued form is positive.
This includes the operator analogue of the exterior of the open unit disc.

2. Basic definitions and notation.

Let X and Y be complex normed linear spaces. Denote the open and closed unit balls of X by
X0 and X1, respectively. Thus,

X0 = {x ∈ X : ‖x‖ < 1}, X1 = {x ∈ X : ‖x‖ ≤ 1}.

Let D be a domain in X. A function h : D → Y is said to be holomorphic (in D) if for each x ∈ D the
Fréchet derivative of h at x, denoted by Dh(x), exists and is a continuous complex-linear operator
from X to Y . If D′ is a domain in Y , a function h : D → D′ is said to be biholomorphic (and D and
D′ are called holomorphically equivalent) if h is a bijection and both h : D → Y and h−1 : D′ → X
are holomorphic.

Let L(H,K) denote the Banach space of all bounded (complex-) linear operators from a Hilbert
space H to a Hilbert space K. The norm of L(H,K) is the operator norm and is given by ‖A‖ =
sup{‖Ax‖ : x ∈ H1} for A ∈ L(H,K). We write L(H) for L(H,H).
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A C*-algebra is a closed complex subspace A of L(H) which contains the product of every two
operators in A and the adjoint of every operator in A. For example, the spaces L(H), LC(H)
and CI + LC(H) are C*-algebras, where LC(H) denotes the set of compact linear operators on
H. We say that A is a C*-algebra with identity if, in addition, A contains the identity operator I
on H. It is not difficult to show that if S is a compact Hausdorff space, then the space C(S) of all
continuous complex-valued functions on S is isometrically *-isomorphic to a commutative C*-algebra
with identity. Thus the space C(S) may be considered to be a C*-algebra with identity. From our
point of view, C*-algebras are natural non-commutative analogues of the complex plane.

See [17] for the properties of holomorphic functions and the basic facts of functional analysis that
we use. See [3] for a guide to the extensive literature on C*-algebras.

3. The maximum principle and applications.

We begin with a useful theorem about holomorphic functions of operators which has some imme-
diate applications to functional analysis. It has been presented in sharper and more general forms in
[7] and [8].

Theorem 1. (Maximum principle.) Let A be a C*-algebra with identity, let U be the set of all
unitary operators in A and let Y be a normed linear space. If h : A1 → Y is a continuous function
that is holomorphic in A0, then

‖h(Z)‖ ≤ sup
U∈U

‖h(U)‖ (1)

for all Z ∈ A1.

For example, let A be the C*-algebra of all diagonal n × n matrices and note that A may be
identified with Cn with the max norm. Then A0 is the open unit polydisc in Cn and U is its
distinguished boundary. When a power series (about 0) in a single complex variable has radius
of convergence R > 1, the holomorphic functional calculus defines a holomorphic function as in
Theorem 1. This leads to the following result.

Corollary 2. (von Neumann-Heins [5, p. 123].) If f is a complex-valued function that is holomorphic
in a neighborhood of the closed unit disc, then

‖f(Z)‖ ≤ sup
|λ|=1

|f(λ)|

for all Z ∈ L(H) with ‖Z‖ ≤ 1.

Proof. If U is a unitary operator in L(H), then U is normal so f(U) is normal. Hence, ||f(U)|| =
|f(U)|σ, where | · |σ denotes the spectral radius. By the spectral mapping theorem,

|f(U)|σ = sup
λ∈σ(U)

|f(λ)|,

where σ(·) denotes the spectrum. Hence

‖f(U)‖ ≤ sup
|λ|=1

|f(λ)|

since σ(U) is a subset of the unit circle. Corollary 2 now follows from Theorem 1. 2
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Corollary 3. ( Russo-Dye [20].) The closed convex hull of U is A1.

Proof. Let K be the closed convex hull of U . Clearly K ⊆ A1. Suppose there exists a Z ∈ A1

which is not in K. By the Hahn-Banach separation theorem, there exists a continuous (complex-)
linear functional ` on A and a real constant c such that Re `(U) ≤ c for all U ∈ U and Re `(Z) > c.
But this contradicts the maximum principle for h(W ) = exp(`(W )). 2

Our proof of Theorem 1 (and other results below) uses linear fractional transformations of A0

analogous to the linear fractional transformations of the open unit disc. (See [8, Theorem 2].)

Lemma 4. Let A be a C*-algebra and define

TB(Z) = (I −BB∗)−
1
2 (Z +B)(I +B∗Z)−1(I −B∗B)

1
2

for each B ∈ A0. Then TB is a biholomorphic mapping of A0 onto itself and a homeomorphism of
A1 that takes 0 to B. If I ∈ A, then TB maps the set U onto itself.

Proof of Theorem 1. We may suppose that Y = C. Indeed, by the Hahn-Banach theorem
there exists a continuous linear functional ` on Y with ‖`‖ = 1 and `(h(Z)) = ‖h(Z)‖. Hence (1)
holds for h if it holds when h is replaced by the composition ` ◦ h.

Thus given B ∈ A0, the complex-valued function f(λ) = h(TB(λI)) is continuous in the closed
unit disc and holomorphic in its interior. Hence by the classical maximum principle,

|h(B)| = |f(0)| ≤ sup
|λ|=1

|f(λ)| ≤ sup
U∈U

|h(U)|

and (1) follows by continuity. 2

Special cases of Theorem 1 were given in [27, p. 284] and [25].

4. Cartan’s uniqueness theorem and linear mappings.

The next result is an extension to Banach spaces of a result of H. Cartan for Cn. See [6], [23]
and [10] for a discussion and proofs.

Theorem 5. (Cartan’s uniqueness theorem.) Let D be a bounded domain in X and let h : D → D
be a holomorphic function. If there is a p ∈ D for which h(p) = p and Dh(p) = I, then h = I.

Every invertible linear isometry L : X → Y is a biholomorphic mapping of X0 onto Y0 taking 0
to 0. The following shows that these are the only such mappings.

Corollary 6. If h : X0 → Y0 is a biholomorphic mapping with h(0) = 0, then h is the restriction to
X0 of an invertible linear isometry of X onto Y .

Proof. Put L = Dh(0). By hypothesis and the chain rule, L−1 = Dh−1(0). Thus applying the
Cauchy estimates to h and h−1, we obtain ‖L‖ ≤ 1 and ‖L−1‖ ≤ 1 so L is an invertible isometry.
Hence, Theorem 5 applies to the function g = L−1 ◦ h with D = X0 and p = 0 to show that g = I,
i.e., h = L. 2

Theorem 7. Let A and B be C*-algebras. A function h is a biholomorphic mapping of A0 onto
B0 if and only if h = TB ◦ L, where B ∈B0 and L : A→B is an invertible linear isometry.
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Proof. Clearly TB◦L is a biholomorphic mapping since it is the composition of two biholomorphic
mappings. Conversely, if h : A0 →B0 is biholomorphic, let B = h(0) and define g = T−1

B ◦ h. Then
by Corollary 6, there is an invertible linear isometry L : A→B with g = L. Hence, h = TB ◦ L. 2

To discuss an application of Cartan’s uniqueness theorem to linear mappings, let A and B be
C*-algebras with identity, and set

Ainv = {Z ∈ A : Z−1 exists}, Arhp = {Z ∈ A : Re Z > 0},

where ReZ = (Z +Z∗)/2. The set Arhp is thought of as the right half-plane of A. Clearly ReZ > 0
holds if and only if inf ReW (Z) > 0, where W (Z) denotes the numerical range of Z. Hence Arhp ⊂
Ainv since the spectrum of an operator is contained in the closure of its numerical range. (Of course,
this discussion applies to B also.)

It is conjectured in [15] that if L : A→B is a linear bijection such that L(I) = I and L(Ainv) =
Binv, then L(Z2) = L(Z)2 for all Z ∈ A. (See also [1, p. 36–37].) The following result may be
viewed as supporting this conjecture.

Proposition 8. If L : A → B is a linear bijection such that L(I) = I and L(Arhp) = Brhp, then
L(Z2) = L(Z)2 for all Z ∈ A.

Proof. We first show that L is continuous. If Z ∈ A0, then I − λZ is in Arhp for all |λ| ≤ 1
so I − λL(Z) is in Brhp for all |λ| ≤ 1. Hence, |W (L(Z))| < 1, where |W (·)| denotes the numerical
radius, so

‖L(Z)‖ ≤ 2|W (L(Z))| < 2.

Similarly, L−1 is continuous. It follows that L is a biholomorphic mapping of Arhp onto Brhp.
Next note that since Re Z−1 = (Z−1)∗(Re Z)Z−1 for Z ∈ Ainv, the function f(Z) = Z−1 is a

biholomorphic mapping of Arhp (resp., Brhp) onto itself with Df(Z)W = −Z−1WZ−1. Hence, the
function

h(Z) = L−1(L(Z−1)−1)

is a biholomorphic mapping of Arhp onto itself with h(I) = I. By the chain rule, Dh(I) = I. In order
to apply Cartan’s uniqueness theorem, it suffices to show that Arhp is holomorphically equivalent
to a bounded domain. This is true since it is easy to verify that T (Z) = (I − Z)(I + Z)−1 is a
biholomorphic mapping of Arhp onto A0.

Therefore, h = I, i.e., L(Z−1) = L(Z)−1 for all Z ∈ Arhp. Taking the Fréchet derivative of each
side of the last equality, we obtain

L(−Z−1WZ−1) = −L(Z)−1L(W )L(Z)−1

for all Z ∈ Arhp and W ∈ A. In particular, when W = Z2, we obtain L(Z2) = L(Z)2 and this holds
for all Z ∈ A by the identity theorem. 2

Note that the above proof shows that if h : Arhp → Brhp is a biholomorphic mapping with
h(I) = I, then h(Z−1) = h(Z)−1 for all Z ∈ Arhp. If Cartan’s uniqueness theorem holds when
D = Ainv and p = I, then the above proof establishes the conjecture once we know that L is
continuous.
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5. Generalizations of C*-algebras.

A careful examination of the linear fractional transformations TB shows that Lemma 4 holds for
any closed complex subspace of L(H,K) such that ZW ∗Z ∈ A whenever Z,W ∈ A. Such spaces are
called J*-algebras. These were introduced in [8] and studied in [11] and [12], respectively. The above
arguments show that Theorem 7 holds for J*-algebras and that Theorem 1 and Corollary 3 hold for
J*-algebras containing the identity operator I. Proposition 8 holds for power algebras (defined in [6])
by the example preceding Proposition 12 below.

The main advantage of considering J*-algebras rather than C*-algebras is that the open unit
balls of J*-algebras include all the classical Cartan domains [18], their infinite dimensional analogues
and all finite and infinite products of these. To see this, recall that A is called a Cartan factor of

Type I if A = L(H,K),
Type II if A = {A ∈ L(H) : At = A},
Type III if A = {A ∈ L(H) : At = −A},
Type IV if A∗ ∈ A and A2 ∈ CI whenever A ∈ A.

Here, At = QA∗Q, where Q(x) = x̄ is a conjugation on H. Any Hilbert space H can be considered
to be a Cartan factor of type I since H is isometrically isomorphic to L(C,H). It is shown in [8]
that if H is a Hilbert space with conjugation x→ x̄, then there is a Cartan factor A of type IV such
that A0 is linearly equivalent to the Lie ball

D = {z ∈ H : 2‖z‖2 − |(z, z̄)|2 < 1, |(z, z̄)| < 1}.

Thus the Cartan domains of types I-IV are the open unit balls of the Cartan factors of the corre-
sponding type.

It is easy to verify that the Cartan factors are J*-algebras. No Cartan factor is isomorphic to a
product of two nonzero J*-algebras, except the two dimensional Cartan factor of type IV, and no
two Cartan factors of different types are isomorphic, except for some cases in dimensions at most
six. A J*-algebra is said to be of finite rank if it is a Hilbert space in an equivalent norm (as, for
example, when it is finite dimensional.) Every J*-algebra of finite rank is isomorphic to finite product
of Cartan factors of type I-IV.

The central idea of the theory is that questions about the holomorphic structure of the open unit
ball of a J*-algebra reduce to corresponding questions about the algebraic structure of the J*-algebra,
which can be attacked with the methods of functional analysis. For example, the open unit balls of
two J*-algebras are holomorphically equivalent if and only if the J*-algebras are isomorphic. The
open unit ball of a J*-algebra is not holomorphically equivalent to a product of balls of normed linear
spaces if and only if the J*-algebra is not isomorphic to a product of two (nonzero) J*-algebras. The
open unit ball of a J*-algebra has an invariant Hermitian metric if and only if the J*-algebra is of
finite rank. The open unit ball ball of a J*-algebra is holomorphically equivalent to a Siegel domain
of genus 2 (see [26]) if and only if the closed unit ball of the J*-algebra has an extreme point.

Call a domain D homogeneous if for any two points p, q ∈ D there exists a biholomorphic mapping
h : D → D with h(p) = q. (If h can always be chosen to be affine, we say that D is affinely
homogeneous.) Call D symmetric if for each p ∈ D there exists a symmetry at p, i.e., a biholomorphic
mapping h : D → D with h(p) = p, h2 = I and Dh(p) = −I. Note that any homogeneous ball is
symmetric since for each p ∈ D there exists a biholomorphic mapping T : D → D with T (0) = p
and we may take h(z) = T (−T−1(z)) for z ∈ D. For example, the open unit ball of any J*-algebra
is a homogeneous and symmetric domain. However, there are two Banach spaces with dimension 16
and 27, respectively, whose open unit balls are homogeneous domains that are not holomorphically
equivalent to the open unit ball of any J*-algebra. To include these exceptional domains, Kaup
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[21, 22] defined an axiomatization of the triple product

{A,B,C} =
AB∗C + CB∗A

2

on Banach spaces which he called JB*-triples and showed that every bounded symmetric domain is
holomorphically equivalent to the open unit ball of a JB*-triple. See [19] for an exposition.

The results we have stated for J*-algebras continue to hold for JB*-triples. According to a
Gelfand-Naimark type theorem of Friedman and Russo, every JB*-triple is isomorphic to the product
of a J*-algebra and a subtriple of a space of continuous functions with values in the exceptional triple
of dimension 27. See [2] and [28] for a guide to the extensive literature on JB*-triples.

6. Upper half-planes.

Let A be a J*-algebra and suppose V is a partial isometry in A. (Equivalently, V = V V ∗V by
[5, p. 63].) Then the generalized Cayley transform

SV (Z) = i(I + V V ∗)−
1
2 (Z + V )(I − V ∗Z)−1(I + V ∗V )

1
2

is a biholomorphic mapping of A0 onto the convex homogeneous domain

HV = {Z ∈ A : 2 Im V ∗Z − Z∗(I − V V ∗)Z + I − V ∗V > 0}, (2)

where Im Z = (Z − Z∗)/(2i). For example, if V = I then HV = {Z ∈ A : Im Z > 0} and HV is
affinely homogeneous since

A(Z) = Re Z0 + (Im Z0)
1
2Z(Im Z0)

1
2

is an affine biholomorphic mapping of HV with A(iI) = Z0 when Z0 ∈ HV . The next result shows
that with even weaker conditions on A, if A contains a “maximal” partial isometry V then HV is an
affinely homogeneous Siegel domain of genus 2.

Theorem 9. Let A be a closed complex subspace of L(H,K). Suppose there exists a partial isometry
V in A which is an extreme point of A1 and such that A contains V Z∗W+WZ∗V whenever Z and W
are in A. Then HV is an affinely homogeneous convex domain which is holomorphically equivalent to
a bounded domain. Moreover, there exists a J*-algebra X in L(H) containing I and a closed complex
subspace W of L(K1,H)×L(H,K2), which contains (XW1,W2X) whenever X is in X and (W1,W2)
is in W, such that HV is linearly equivalent to

D = {(X,W ) ∈ X ×W : 2 ImX − F (W,W ) > 0},

where F :W ×W → X is the operator-valued Hermitian map given by

F (W,W ) = W1W
∗
1 +W ∗2W2, W = (W1,W2).

The extreme points of A1 are the partial isometries V ∈ A satisfying (I − V V ∗)Z(I − V ∗V ) = 0
for all Z ∈ A. There is at least one extreme point when A is closed in the weak operator topology
as, for example, when A is a Cartan factor or a J*-algebra of finite rank.

The domain D of the above theorem is a special kind of Siegel domain of genus 2 called an
operator Siegel domain. See [9] for a proof of the above theorem and further details. A discussion of
the generalized Cayley transform and HV when V is not necessarily a partial isometry can be found
in [13, Theorem 11] (where the sign in the definition of B should be omitted).
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7. Domains of linear fractional transformations.

We begin with some facts about linear fractional transformations given in [13]. If M ∈ L(K ×H),

let M =

[
A B
C D

]
be the corresponding partition and define the linear fractional transformation

with coefficient matrix M to be

T (Z) = (AZ +B)(CZ +D)−1.

Clearly, if Z ∈ L(H,K) and T (Z) exists, then T (Z) ∈ L(H,K). To avoid degeneracy, we always
assume that M is invertible. We write TM for T when we wish to indicate the dependence on M . It
can be shown that TM−1 = TM−1 and, in particular, that both these transformations have the same
domain of definition.

Let A and B be any closed complex subspaces of L(H,K) and suppose T is defined at some
point Z0 ∈ A. Put W0 = T (Z0), X0 = (CZ0 +D)−1C,

E1 = CompZ0
({Z ∈ A : (CZ +D)−1 exists}),

E2 = CompW0
({W ∈B : (A−WC)−1 exists}),

where Compp(S) denotes the topological component of S containing p.

Theorem 10. The following are equivalent:

a) T maps a domain D in A into B and the closure of T (D) contains some ball in B,

b) T is a biholomorphic mapping of E1 onto E2,

c) B = (A−W0C)A(CZ0 +D)−1, W0 ∈B and ZX0Z ∈ A whenever Z ∈ A.

We define a domain D to be the domain of a linear fractional transformation in A if D = E1

for some T satisfying the hypotheses of Theorem 10 and this is equivalent to the condition that
ZX0Z ∈ A whenever Z ∈ A since the other conditions of part (c) are satisfied, for example, when
T (Z) = (Z − Z0)[I +X0(Z − Z0)]−1. (See [14].) Clearly, E2 is also the domain of a linear fractional
transformation (e.g., T−1) in B. If A is finite dimensional, D is the complement of the algebraic
variety in Cn defined by det(CZ +D) = 0.

Theorem 11. The domain of a linear fractional transformation is a symmetric, affinely homoge-
neous domain.

Proof. Given Y ∈ D, define

UY (Z) = Y − (Z − Y )(CZ +D)−1(CY +D)

for Z ∈ D. It is not difficult to deduce from Theorem 10 and the identity

CUY (Z) +D = (CY +D)(CZ +D)−1(CY +D)

that UY is a symmetry at Y . Hence D is symmetric. Given Z0,W0 ∈ D with ‖X0(W0 − Z0)‖ < 1,
define

φ(Z) = W0 + [I + (W0 − Z0)X0]
1
2 (Z − Z0)[I +X0(W0 − Z0)]

1
2 ,
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where the square roots are defined by the binomial series. Similar methods show that the affine
mapping φ is a biholomorphic mapping of D with φ(Z0) = W0. If Z0,W0 ∈ D are arbitrary, there is
a sequence Z1, . . . , Zn in D with

‖(CZk−1 +D)−1C(Zk − Zk−1)‖ < 1, k = 1, . . . , n,

and Zn = W0. Hence if φk is the mapping constructed above with φk(Zk−1) = Zk, the composition
h = φn ◦ · · · ◦ φ1 is a biholomorphic mapping of D with h(Z0) = W0. Therefore, D is affinely
homogeneous. 2

For example, let A = L(H,K), C ∈ L(K,H) and D ∈ L(H), and consider D = {Z ∈ A : (CZ +
D)−1 exists}. Then D is the domain of a linear fractional transformation when D is non-empty and
the range of C is closed (since then D is connected). In particular, D = A and UY (Z) = 2Y − Z,
when C = 0 and D = I. Any Hilbert space H can be identified with A = L(C,H) and, under this
identification, D = {z ∈ H : (z, c) 6= −d}, where c ∈ H and d ∈ C. Hence D is the domain of a
linear fractional transformation if c 6= 0.

For another example, let A be a closed complex subspace of L(H) containing I, take Z0 = I and
put D = CompI{Z ∈ A : Z−1 exists}. Then D is the domain of a linear fractional transformation
if and only if Z2 ∈ A whenever Z ∈ A, i.e., A is a power algebra. In this case, UY (Z) = Y Z−1Y .
Under the identification of the Hilbert space Cn with the associated Cartan factor of type IV, we
have D = {z ∈ Cn : z · z 6= 0} and

Uy(z) =
2(z · y)y − (y · y)z

z · z
.

Domains of linear fractional transformations are very much unlike the previous homogeneous
domains we have considered since they are not holomorphically equivalent to any bounded domains
by the next result. (See [14, Theorem 2].)

Proposition 12. Every bounded holomorphic function on the domain of a linear fractional trans-
formation is constant.

Let D be the domain of a linear fractional transformation in A. An important question is whether
every bounded holomorphic function h : D ∩ A0 → C extends to A0 when D intersects A0. This is
true when A is finite dimensional by the Riemann removable singularities theorem. This is also true
when C is a trace class operator by [14, Theorem 3] and when C = I, D = 0 and A is W*-closed
by [14, Proposition 8]. We apply these facts in the next section. (Note that Proposition 12 is a
consequence of the general case, if true.)

8. Determination of automorphisms.

Let A = L(H,K), where H and K are Hilbert spaces with different dimensions. As we learned,
Theorem 7 holds for this space. It can be shown that any invertible linear isometry L : A→ A is of
the form L(Z) = UZV , where U ∈ L(K) and V ∈ L(H) are unitary operators. (The assumption of
different dimensions excludes the map L(Z) = Zt.) Thus the following is obtained.

Theorem 13. (Greenfield-Wallach-Franzoni [4].) A function h : A0 → A0 is a biholomorphic
mapping of A0 if and only if h = TM , where M is a J-unitary operator in L(K ×H), i.e., M is

invertible and M∗JM = J , where J =

[
I 0
0 −I

]
.
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Theorem 14. Suppose A = L(H,K ×H), where H and K are Hilbert spaces with K 6= {0} and H
is finite dimensional. Let

D =

{ [
Z1

Z2

]
∈ A : I + Z∗1Z1 < Z∗2Z2

}
.

Then a function h : D → D is a biholomorphic mapping if and only if h(Z) = MZU , where M is a
J-unitary operator in L(K ×H) and U is a unitary operator in L(H).

Proof. Let T be the linear fractional transformation on A defined by

T

[
Z1

Z2

]
=

[
Z1Z2

−1

Z2
−1

]

and let E be the domain of T . It is easy to check that T is a biholomorphic mapping of D onto
A0 ∩ E with T−1 = T . Given a biholomorphic mapping h of D, define f = T ◦ h ◦ T−1 and note that
f is a biholomorphic mapping of A0 ∩ E . Since H is finite dimensional, the coefficient C = [ 0 I ]
of T is a trace class operator and thus f extends to a biholomorphic mapping of A0. Hence by the

previous theorem, f(Z) = (AZ +B)(CZ +D)−1, where M̃ =

[
A B
C D

]
is a J-unitary operator in

L((K ×H)×H). Also, f−1(Z) = (A∗Z − C∗)(−B∗Z +D∗)−1 since M̃−1 = JM̃∗J .
By the mapping properties of f , if Z ∈ A0, the second component (AZ + B)2 is invertible or

singular according as Z2 is invertible or singular, and a similar result holds for f−1. Since such
mappings are linear in Z2 (see [14, p. 462] and compare [15, Corollary 4.2]), we have that

A =

[
A1 0
0 A4

]
, B =

[
B1

0

]
, C = [ C1 0 ].

Since h = T−1 ◦ f ◦ T , it follows that h(Z) = MZU , where M =

[
A1 B1

C1 D

]
and U = A4

−1.

Moreover, M is J-unitary and U is unitary since M̃ is J-unitary.
The converse assertion is easily verified. 2

An argument with a similar approach establishes the following result.

Theorem 15. Suppose A is a W*-closed subspace of L(H) which contains the squares of each of its
elements and the identity operator I on H. Let Ae

inv denote the identity component of the set of all
invertible operators in A and put

D = {Z ∈ Ae
inv : I < Z∗Z}.

Then h is a biholomorphic mapping of D onto itself if and only if h = L, where L is a linear isometry
of A onto itself with L(I) ∈ Ae

inv.

See [14] for further details and results.
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9. Summary.

Throughout, most of the domains we have considered are circular domains in the sense of [13].
Specifically, if A is a closed complex subspace of of L(H,K), a circular domain in A is a set of the
form

D = {Z ∈ A : Z∗EZ + 2 Re F ∗Z +G < 0},

where E ∈ L(K), F ∈ L(H,K), G ∈ L(H) and both E and G are self adjoint. For example, A0 is a
circular domain since A0 = {Z ∈ A : Z∗Z − I < 0}. The circular domains of the complex plane are
any open disc, the exterior of any open disc, any open half-plane, any punctured plane, the entire
plane and the empty set. (This terminology is taken from [24, p. 57] and [16, p. 464]. A different
definition, which is also referred to as “circled,” is given in [19, p. 113] and [2, p. 104].)

One of our main objectives has been to determine the automorphisms of circular domains and to
discover circular domains that are homogeneous. Linear fractional transformations have served as a
basic tool.

References

[1] B. Aupetit and H. du T. Mouton, Spectrum preserving linear mappings in Banach Algebras,
Studia Math. 109(1994), 91–100.

[2] S. Dineen, The Schwarz Lemma, Oxford Math. Monographs, Oxford, 1989.

[3] J. Dixmier, C*-algebras, North Holland, Amsterdam, 1977.

[4] T. Franzoni, The group of holomorphic automorphisms in certain J∗-algebras, Ann. Mat. Pura
Appl. 127(1981), 51–66.

[5] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, 1967.

[6] L. A. Harris, Schwarz’s lemma in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 62(1969),
1014–1017.

[7] , Banach algebras with involution and Möbius transformations, J. Functional Anal.
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