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Two major combinatorial problems are to characterize the f -vectors and
flag f -vectors of convex d-polytopes. For 3-polytopes these problems were
solved by Steinitz [24, 25] nearly a century ago. They also were solved for
the class of simplicial polytopes by Stanley [23] and Billera and Lee [10]
more than 25 years ago. For d ≥ 4, however, the problems of characteriz-
ing the f -vectors and flag f -vectors of general d-polytopes are unresolved.
Several linear and non-linear inequalities for flag f -vectors of d-polytopes
have been established, but in order to confirm whether a set of conditions
is sufficient for describing the flag f -vectors of d-polytopes it is necessary
to develop new methods for constructing classes of nonsimplicial polytopes.
This paper will focus on a new technique for constructing d-polytopes, which
is a generalization of Shemer’s sewing construction for simplicial neighborly
polytopes [22], and which has been modified to allow the construction of
nonsimplicial polytopes as well. One motivation for this construction is that
the ordinary polytopes of Bisztriczky [11, 13], a nice generalization of cyclic
polytopes, can be constructed by generalized sewing. We also will construct
several infinite families of polytopes in this manner, including one whose g-
vectors satisfy the relation g2 = 0, and we will consider bounds on the flag
f -vectors of 4-polytopes that can be inductively constructed when beginning
with the 4-simplex.

1 Introduction

The basic terms and ideas in this paper can be found in many standard
sources on convex polytopes such as Ziegler [26], Grünbaum [18], or Bayer
and Lee [8].

A convex polytope, or polytope for short, is defined to be the convex
hull of a finite number of points in Euclidean space. The dimension of
a polytope is one less than the maximum number of affinely independent
points contained therein, and a polytope of dimension d often is referred
to as a d-polytope. Given a d-polytope P , the f -vector of P is defined
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by f(P ) := (f0(P ), f1(P ), . . . , fd−1(P )), where fj(P ) is the number of j-
dimensional faces of P . Faces of dimensions 0, 1, and d−1 are often referred
to as vertices, edges, and facets, respectively.

In order to obtain a more complete description of the combinatorial
structure of an arbitrary d-polytope, attention has been focused on both
the numbers of faces of all possible dimensions and the numbers of chains
of faces of the polytope. A flag is a strictly increasing sequence of faces
T1 ⊂ T2 ⊂ · · · ⊂ Tq. Given a set S ⊆ {0, . . . , d−1}, an S-flag is a flag {Tj}q

j=1

for which S = {dim(Tj) : j = 1, . . . , q}. The flag f -vector of a d-polytope P
is defined by

fS = |{{Tj}q
j=1 : {Tj}q

j=1 is an S-flag of P}|,

where S ranges over all subsets of {1, . . . , d− 1}.
Let a and b be noncommuting indeterminates. For S ⊆ {0, . . . , d − 1},

define wS = w0 · · ·wd−1, where wi = a−b if i 6∈ S, and wi = b if i ∈ S. The
ab-index of P is then

Ψ(P ) =
∑

S

fSwS,

where the sum is taken over all subsets S ⊆ {0, . . . , d−1}. Bayer-Klapper [7]
proved that the ab-index can be written as a polynomial in the indetermi-
nates c = a+b and d = ab+ba. In this form, Ψ(P ) is known as the cd-index,
which is known to concisely capture a basis for the set of ab-indices of convex
d-polytopes.

2 4-Polytopes

For d ≥ 4, the problem of characterizing flag f -vectors, and equivalently cd-
polynomials [7], of general d-polytopes is unresolved. Bayer [2] and Ziegler
and Höppner [19] provide overviews of what is currently known in the d = 4
case.

The generalized Dehn-Sommerville equations [5] imply that the dimension
of the affine span of the flag vectors of 4-polytopes is four, and hence any four
linearly independent components of the flag f -vector of a 4-polytope deter-
mine the remaining components. We will use the components (f0, f1, f2, f02),
and we henceforth will refer to such a 4-tuple as the flag f -vector of a 4-
polytope.
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Bayer observed that the set of all flag f -vectors of 4-polytopes is not the
intersection of the integer lattice with a convex set, nor is its convex hull
closed.

Theorem 2.1 (Bayer) If (f0, f1, f2, f02) = (f0(P ), f1(P ), f2(P ), f02(P ))
for some 4-polytope P , then

1. f02 − 3f2 ≥ 0

2. f02 − 3f1 ≥ 0

3. f02 − 3f2 + f1 − 4f0 + 10 ≥ 0

4. 6f1 − 6f0 − f02 ≥ 0

5. f0 − 5 ≥ 0

6. f2 − f1 + f0 − 5 ≥ 0

The closed convex setN as determined by the known linear inequalities listed
in Theorem 2.1 is a 4-dimensional cone with apex (5, 10, 10, 30), the flag f -
vector of the 4-simplex. If we let M ⊂ R4 denote the convex hull of flag
vectors (f0(P ), f1(P ), f2(P ), f02(P )), where P ranges over all 4-polytopes,
then the cone N has six facets and seven extreme rays and contains M.

Ziegler and Höppner [19] enumerated the 4-tuples with f0 ≤ 8 that satisfy
the known linear and quadratic inequalities but are not the flag f -vectors of
any 4-polytope.

3 Sewing and A-Sewing

We say that a point x ∈ Rd outside a d-polytope P is beneath a facet F of P
provided that x belongs to the open half-space determined by the supporting
hyperplane aff F (the affine span of F ) and containing intP . We say that
x is beyond F if x belongs to the open half-space determined by aff F that
does not contain intP . If x is an element of aff F , we say that x is on F .

Given a d-polytope P and a point x, we can construct a new d-polytope,
Q := [P, x], the convex hull of P together with the point x. The following
theorem of Grünbaum, as formulated by Altshuler and Shemer [1], describes
the facial structure of Q.
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Theorem 3.1 (Grünbaum) Let P ⊂ Rd be a d-polytope, and let x ∈ Rd be
a point outside P . Let A, B, C be the partition of the facets F of P such that
x lies in the affine hull of every A ∈ A, beyond every B ∈ B, and beneath
every C ∈ C. Define three types of sets G:

(i) G is a face of a member of C.
(ii) G = conv (F ∪ {x}), where F is the intersection of a subset of A (or,

equivalently, F is a face of P and x ∈ aff F ). (∩∅ = P.)

(iii) G = conv (F ∪ {x}), where F is a face of a member of B and also a
face of a member of C.

Then the sets of types (i), (ii), and (iii) are faces of Q := [P, x], and each
face of Q is of exactly one of the above types.

This theorem provides a mechanism for creating new polytopes and new
classes of polytopes by choosing x to be on, beyond, and beneath certain
collections of facets of P . We also can reverse the process by partitioning the
facets F of P into A,B, C and trying to determine whether or not there exists
an actual point that would yield the same partition. To address the latter
question Altshuler and Shemer [1] defined a pair B | A to be coverable
if there exists a point x ∈ Rd such that x ∈ ⋂

F∈A aff F ; x lies beyond all
members of B; and x lies beneath all members of C =: F \ (A ∪ B). We say
that the point x covers B | A, and if x covers B | ∅ then we say that x lies
exactly beyond B.

Although Shemer [22] used the term tower to refer to a particular type of
flag, his results show that any flag determines a certain partition of F that is
always coverable. Given a flag T = {Tj}q

j=1, we let Fj := {F ∈ F : Tj ⊆ F}.

Proposition 3.2 (Shemer) Let T = {Tj}q
j=1 be a flag of a d-polytope P ,

and let B = B(P, T ) := F1\(F2\(· · · \Fq) · · · ). Then there is a point x ∈ Rd

that lies exactly beyond B.

Proof: Inducting on q, we define B := ∅ for q = 0, and observe that every
point x ∈ int P lies exactly beyond B. If q ≥ 1, we let T ′ := T \T1 and
B′ := B(P, T ′). The induction hypothesis guarantees the existence of a
point x′ ∈ Rd, which lies exactly beyond B′. Observing that B′ ⊂ F1 and
B = F1\B′, we choose a point p ∈ relint F1, and let x := (1 + ε)p− εx′. For
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a sufficiently small and positive ε, x lies exactly beyond B. ¤

We will say that the point x provided by Proposition 3.2 is exactly beyond
T . We also observe that

F1\(F2\(· · · \Fq) · · · ) = (F1 \ F2) ∪ (F3 \ F4) ∪ · · · ,

where the last term in the union is Fq−1 \ Fq if q is even and Fq if q is odd.
We hence can view the aforementioned process as choosing x to be beyond
all facets of P that contain T1, except beneath those that contain T2, except
beyond those that contain T3, . . . , except beyond/beneath those that contain
Tq.

Shemer [22] developed a construction called sewing a vertex onto a poly-
tope, or sewing for short, which when applied to a neighborly 2m-polytope,
yields a neighborly 2m-polytope with one more vertex. He began with a cyclic
2m-polytope and sequentially “sewed” on new vertices that were chosen to
be exactly beyond specific flags of length m. We will generalize Shemer’s
concept of sewing to include choosing the new point x to be exactly beyond
an arbitrary flag. To simplify the wording, we often will say that we are
sewing a vertex x onto a polytope P over a flag T .

Figure 1 illustrates sewing a new point x onto a pentagonal prism P over
the flag {a} ⊂ [a, b] ⊂ [a, b, c, d, e] (pictured on the left). The point u is in
the interior of the prism. We sew outward through a point in the relative
interior of the pentagon [a, b, c, d, e] to arrive at the point v, which is beyond
precisely the top pentagon. Then we sew through a point in the relative
interior of the edge [a, b] to arrive at the point w, which is now beneath the
top pentagon, beyond the right-front rectangle, and beneath the remaining
facets. Finally we sew through the vertex a to arrive at the point x, which is
now beneath the right-front rectangle, beyond the top pentagon and the left-
front rectangle, and beneath the remaining facets. The polytope pictured on
the right is then Q := [P, x].

All new facets, and hence all new proper faces, obtained by sewing a new
vertex onto a simplicial polytope must be simplices, as any new k-face is the
convex hull of a (k − 1)-simplex and a point outside of its affine span. If we
wish to create a non-simplicial polytope by adding a new vertex to a given
polytope, we must either begin with a non-simplicial polytope or modify the
sewing process so that A is non-empty. We will do the latter by creating
a process that we will refer to as A-sewing a vertex onto a polytope, or A-
sewing. We again choose a flag T = {Tj}q

j=1, but we now choose x to be in
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Figure 1: Sewing a point x onto a pentagonal prism

the affine span of Tq and exactly beyond T ′ = {Tj}q−1
j=1. The “A” in A-sewing

is chosen to represent the fact that A 6= ∅.

Proposition 3.3 Let P be a d-polytope, and let T = {Tj}q
j=1 be a flag of P .

We partition the facets F of P into A,B, C, where

• A := Fq

• B := F1\(F2\(F3\(· · · \Fq−1) · · · ))\Fq

= ((F1 \ F2) ∪ (F3 \ F4) ∪ · · · ) \ Fq

• C := F\(A ∪ B)

Then, B | A and B | ∅ are coverable.

Proof: To prove that B | A is coverable, we consider the polytope Tq sitting
in the ambient space aff Tq. We make the following assignments:

• F ′ := {F ′ : F ′ is a facet of Tq},
• T ′ := {Tj}q−1

j=1, (note that Tj ⊂ Tq for j = 1, . . . , q − 1 ), and
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Figure 2: A-sewing a point x onto a pentagonal prism

• F ′
j := {F ′ ∈ F ′ : Tj ⊆ F ′} for j = 1, . . . , q − 1.

By Proposition 3.2, there exists a point x ∈ aff Tq that covers B′ | ∅, where
B′ := B(Tq, T ′) = F ′

1\(F ′
2\(· · · \F ′

q−1) · · · ). By construction, this point x
covers B | A.

We now will verify that B | ∅ is coverable. If q is odd, then we define
T ′ := {Tj}q−1

j=1, and if q is even we define T ′ := T . In either case, Proposi-
tion 3.2 implies that B | ∅ = B(P, T ′) | ∅ is coverable. ¤

We will say that the point x that covers B | A in Proposition 3.3 is almost
exactly beyond the flag T . Figure 2 illustrates A-sewing a new point x onto
a pentagonal prism P over the flag {a} ⊂ [a, b] ⊂ [a, b, c, d, e] (pictured on
the left). We begin with a point v in the relative interior of the pentagon
[a, b, c, d, e] (and beneath the remaining facets). Then we sew through a point
in the relative interior of the edge [a, b] to arrive at the point w, which is in
the affine span of the top pentagon, beyond the right-front rectangle and
beneath the remaining facets. Finally we sew through the vertex a to arrive
at the point x, which is now beneath the right-front rectangle, beyond the
left-front rectangle, still in the affine span of the top pentagon, and beneath
the remaining facets. The polytope pictured on the right is then Q := [P, x].
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We also note that when A-sewing a point x onto P over T = T1, we have
Q := [P, x] = P . Hence, when A-sewing we will assume that the flag length
is at least 2.

3.1 Sewing and A-sewing 3-polytopes

We define Pd
σ to be the set of all d-polytopes that can be obtained by perform-

ing a sequence of sewing and A-sewing operations starting with the d-simplex.
We hence will let f(Pd

σ) denote the set of all f -vectors of polytopes in Pd
σ .

The following theorem characterizes the f -vectors in f(P3
σ).

Theorem 3.4 A vector (f0, f1, f2) of nonnegative integers is the f -vector of
a 3-polytope that can be obtained by performing a sequence of sewing and
A-sewing operations beginning with the 3-simplex if and only if the following
conditions hold.

(i) f1 = f0 + f2 − 2.

(ii) f2 ≤ 2f0 − 4.

(iii) f0 ≤ f2.

Proof: Steinitz’ Theorem implies that f(P ) must satisfy conditions (i) and
(ii) for any polytope P ∈P3

σ.
We will verify (iii) by induction on f0 ≥ 4. The 3-simplex establishes our

basis. We choose P ∈P3
σ and inductively assume that

f0(P ) ≤ f2(P ).

We let Q be the 3-polytope obtained by sewing or A-sewing x onto P over
T = {Tj}q

j=1, and we define ∆fi = fi(Q)− fi(P ). It is sufficient to verify that
∆f0 ≤ ∆f2. We observe that x is the only new vertex, and T1 is the only
possibility for a vertex that is destroyed by the construction. It follows that
∆f0 ∈ {0, 1}. We will consider two cases:

• Case 1: ∆f0 = 0. In this case, we must either be sewing over a {0}-
flag or A-sewing over a {0, p}-flag, where p ∈ {1, 2}. In either case, any
destroyed facet must contain T1. Any such facet must have at least
one edge, e, that does not contain T1 and hence also is contained in a
facet in C. This edge e will correspond to a new facet, [e, x], of Q and
it follows that

∆f2 ≥ 0 = ∆f0.
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• Case 2: ∆f0 = 1. The above argument implies that ∆f2 ≥ 0, as every
destroyed facet still corresponds to at least one facet of Q that was
not a facet of P . If T1 is a vertex, then the assumption that ∆f0 = 1
implies that T1 is not destroyed, and hence T1 must be contained in
both a facet in B and a facet in C. It follows that there must be at least
one edge, e, that contains T1 and also is contained in both of facet in
B and one in C. Any such new edge will create a new facet, [e, x], of
Q, and it follows that ∆f2 ≥ 1.

If T1 is an edge or a facet, however, then any destroyed facet must have
at least two edges that do not contain T1 and hence also are contained
in a facet in C. Each destroyed facet, of which there must be at least
one, consequently corresponds a minimum of two new facets, and it
follows that

∆f2 ≥ 1 = ∆f0.

In either case, we may conclude that f0(P ) ≤ f2(P ) for all polytopes P ∈ P3
σ.

We now must verify that every integer vector (f0, f1, f2) satisfying con-
ditions (i) − (iii) belongs to f(P3

σ). We first observe that we can construct
a pyramid over an n-gon from a pyramid over an (n − 1)-gon by A-sewing
over a {1, 2}-flag T = T1 ⊂ T2, where T1 is any edge of the (n−1)-gon T2. It
follows that we can obtain a pyramid over an n-gon (n ≥ 3), with f -vector
(n + 1, 2n, n + 1) by performing a sequence of n − 3 A-sewing operations
starting with the 3-simplex.

A traditional technique for constructing 3-polytopes whose f -vectors
lie in Steinitz’ cone and satisfy both Euler’s relation and the inequality
f0 < f2 involves sequentially making shallow pyramids over triangular faces,
beginning with a pyramid over an n-gon. Such f -vectors belong to f(P3

σ),
as making a shallow pyramid over a triangle T is equivalent to sewing over
the flag T = T . ¤

We observe that the f -vectors of polytopes in P3
σ correspond to “half” of

the f -vectors of all 3-polytopes, and we can obtain f -vectors for the other half
by considering polytopes that are dual to those in P3

σ. Although Theorem 3.4
characterizes the f -vectors of polytopes in P3

σ, there exist 3-polytopes that
do not belong to P3

σ, although their f -vectors lie in f(P3
σ). An open problem

hence would be to determine a set of necessary and sufficient properties that
a polytope in P3

σ (or Pd
σ) must satisfy.

9



3.2 Sewing/A-sewing and proper faces

We now will consider the proper faces of a d-polytope in Pd
σ .

Remark 3.5 If P2 is the polytope obtained by sewing x onto the d-polytope
P1 over T = {Tj}q

j=1, then Pyr (P2) is combinatorially equivalent to the poly-
tope obtained by A-sewing x onto Pyr (P1) over T ′ := T1 ⊂ · · · ⊂ Tq ⊂ P1.

Remark 3.6 If P2 is obtained by A-sewing x onto P1 over T = {Tj}q
j=1, then

Pyr (P2) is combinatorially equivalent to the polytope obtained by A-sewing x
onto Pyr (P1) over T .

The following theorem demonstrates that the property of being sewn/A-
sewn is inherited by the proper faces of a polytope.

Theorem 3.7 Let P be a d-polytope in Pd
σ, and let F be a proper k-face of

P . Then F ∈ Pk
σ .

Proof: We will prove this by induction on the number of sewing/A-sewing
operations, `, that are performed in sequence starting with the d-simplex. If
P1 is the d-polytope obtained by sewing or A-sewing x1 onto the d-simplex,
then any k-face that remains unchanged by the construction trivially satisfies
the desired property. Any new k-face of P1 is of the form [S, x1] = Pyr (S),
where S is a (k − 1)-face of the d-simplex, and hence all new k-faces of P1

are k-simplices. It remains only to consider k-faces of P1 that are of the
form F = [G, x1], where G is a k-simplex that is the intersection of facets
belonging to A. In this case, we must be A-sewing, and G must contain Tq.
It follows that F is combinatorially equivalent to the polytope obtained by
A-sewing x1 onto the k-simplex G over T .

We inductively assume that the desired result holds for any k-face of a d-
polytope P` that is obtained by performing a sequence of ` sewing/A-sewing
operations starting with the d-simplex, and we let P`+1 be the polytope
obtained by sewing or A-sewing x`+1 onto P` over T = {Tj}q

j=1. Any k-face
of P`+1 that was a face of P` and remained unchanged by the sewing/A-
sewing belongs to Pk

σ by the induction hypothesis. For k-faces of P`+1 that
are of the form F = [S, x`+1] = Pyr (S), where S is a (k − 1)-face of P`, the
induction hypothesis hence implies that S ∈ Pk

σ . As stated in Remark 3.5, the
sequence of sewing and A-sewing operations used to construct S starting with
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the (k−1)-simplex corresponds to a sequence of sewing/A-sewing operations
that will construct F = Pyr (S) when starting with the k-simplex.

It remains only to consider k-faces of P`+1 that are of the form F = [G, x],
where G is a k-face of P` that is the intersection of facets contained in A.
In this case, we must be A-sewing, and G must contain Tq. As stated in
Remark 3.6, it follows that F is combinatorially equivalent to the polytope
obtained by A-sewing x`+1 onto G over T . Since the induction hypothesis
assumes that G can be obtained by performing a sequence of sewing and
A-sewing operations starting with the k-simplex, the desired result follows. ¤

4 Sewing and A-Sewing 4-Polytopes

The following lemmas and theorem investigate which vectors (f0, f1, f2, f02)
belong to f(P4

σ). The inequalities contained therein arose by using Komei
Fukuda’s cdd program [16] to determine the equations for the hyperplanes
bounding the region of flag f -vectors of known polytopes in P4

σ.

4.1 Inequalities for Sewn and A-Sewn 4-Polytopes

Lemma 4.1 Any flag f -vector (f0, f1, f2, f02) in f(P4
σ) must satisfy the lin-

ear inequality
−2f0 + 2f1 + 2f2 − f02 ≥ 0.

Proof: The Generalized Dehn-Sommerville Equations for 4-polytopes imply
that f03 = f02 + 2f0 − 2f1 and f23 = 2f2. The desired inequality hence is
equivalent to

f23 − f03 ≥ 0.

It is sufficient to show that f2(F )− f0(F ) ≥ 0 for every facet, F , of a polytope
P ∈ P4

σ. Theorem 3.7 implies that F ∈ P3
σ, and Theorem 3.4 consequently

implies that
f2(F )− f0(F ) ≥ 0.

¤

Theorem 4.2 Any flag f -vector (f0, f1, f2, f02) in f(P4
σ) must satisfy the

linear inequality
3f0 − 2f1 + f2 ≥ 5.
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Proof: Euler’s relation for 4-polytopes implies that the desired inequality is
equivalent to

f1 − 2f2 + 3f3 ≥ 5,

which clearly is satisfied by the f -vector of the 4-simplex.
We let P be an arbitrary 4-polytope in P4

σ; we let Q := [P, x] be the
4-polytope obtained by sewing or A-sewing x onto P over T = {Tj}q

j=1; and
we define ∆fj := fj(Q)− fj(P ) for j ∈ {0, 1, 2, 3}. It hence is sufficient to
verify that

∆f1 − 2∆f2 + 3∆f3 ≥ 0.

We let A,B, C be the partition of the facets F of P determined by
sewing/A-sewing x onto P over T , and we let K(A),K(B),K(C),K(F) be
the polytopal complexes that arise from the respective collections of facets.
We make the following assignments with respect to f(P ).

• Let f b
j denote the number of j-faces that are contained in K(B) ∩ K(C).

These are faces that lie on the boundaries of both K(B) and K(C), and
each will be joined to x to create a (j + 1)-face of Q.

• Let fa
j denote the number of j-faces that are contained in

(K(B) ∩ K(A)) \ K(C). These j-faces of P only arise when A-sewing,
and they will be destroyed by the construction.

• Let f i
j denote the number of j-faces that are contained in

K(B) \ K(A ∪ C). These are the faces that lie on the interior of K(B),
and they also will be destroyed by the construction.

Observe that K(B) ∩ K(C), (K(B) ∩ K(A)) \ K(C), and K(B) \ K(A ∪ C)
partition K(B). Since any face that is created by the construction must
extend from a face on the boundary of K(B), and any destroyed face must
lie in the interior of K(B) ∩ K(A), it follows that

∆f1 − 2∆f2 + 3∆f3 = (f b
0 − f i

1 − fa
1 )− 2(f b

1 − f i
2 − fa

2 ) + 3(f b
2 − fa

3 )
= (f b

0 − f b
1 + f b

2)
+[−f1(K(B)) + 2f2(K(B))− 3f3(K(B))]

(1)
We observe that for sewing, we have fa

j = 0 for 0 ≤ j ≤ 3. We now will verify
that

−f1(K(B)) + 2f2(K(B))− 3f3(K(B)) ≥ −2 for sewing, and
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−f1(K(B)) + 2f2(K(B))− 3f3(K(B)) ≥ −1 for A-sewing,

by induction on f3(K(B)) ≥ 1.
Propositions 3.2 and 3.3 imply that some ordering of the facets belonging

to B form the initial segment of a Bruggesser-Mani line shelling of ∂P . It
hence is sufficient to consider

−f1(K) + 2f2(K)− 3f3(K)

for any shellable, 3-dimensional polytopal complex K, whose facets contain
a common face, T1, and belong to P3

σ.
If f3(K) = 1, then Theorem 3.4 and Euler’s relation imply that

f2(K) ≥ f0(K) = f1(K)− f2(K) + 2.

It follows that

[−f1(K) + 2f2(K)]− 3f3(K) ≥ 2− 3 = −1,

and the basis for induction is established.
We inductively assume that for any shellable, 3-dimensional polytopal

complex K consisting of f3(K) < k facets, all of which can be obtained by
performing a sequence of sewing and A-sewing operations starting with the
3-simplex, we have

−f1(K) + 2f2(K)− 3f3(K) ≥ −1.

We now let K′ be a shellable, 3-dimensional polytopal complex consisting
of k such facets; we let F be the last facet of K′ in a shelling order; and
we define K := (K′ \ K(F )) ∪ (K′ ∩ K(F )). We observe that K is a shellable,
3-dimensional polytopal complex for which the induction hypothesis holds,
and consequently we have

fj(K′) = fj(K) + fj(K(F ))− fj (K ∩ K(F )) ,

for j ∈ {1, 2, 3}. It follows by taking a linear combination of these three
equations that

−f1(K′) + 2f2(K′)− 3f3(K′) = [−f1(K) + 2f2(K)− 3f3(K)]
+ [−f1(K(F )) + 2f2(K(F ))− 3f3(K(F ))]
− [−f1(K ∩ K(F )) + 2f2(K ∩ K(F ))
−3f3(K ∩ K(F ))]

≥ (−1) + (−1) + f1(K ∩ K(F ))− 2f2(K ∩ K(F ))
+3f3(K ∩ K(F )),

13



where the inequality is true by the induction hypothesis applied to K and
K(F). Since K ∩ K(F ) is a shellable, 2-dimensional polytopal complex, it
follows that f3(K ∩ K(F )) = 0. It thus remains to verify that

f1(K ∩ K(F ))− 2f2(K ∩ K(F )) ≥ 0,

if K′ arises as the set of facets in B determined by a sewing operation, and

f1(K ∩ K(F ))− 2f2(K ∩ K(F )) ≥ 1,

if K′ arises as the set of facets in B determined by an A-sewing operation. If
T1 is a facet, then the desired result holds trivially as no 2-face can contain
T1. Otherwise, all 2-faces in K ∩ K(F ) must contain T1, and we consider the
following three cases.

• T1 is a 2-face. In this case K ∩ K(F ) = K(T1), and it follows that

f1(K ∩ K(F ))− 2f2(K ∩ K(F )) ≥ 1.

• T1 is an edge. In this case T1 ⊆ K ∩K(F ) and consequently K ∩ K(F )
contains either a single 2-face or two 2-faces sharing the edge T1. In
either case, it is apparent that

f1(K ∩ K(F ))− 2f2(K ∩ K(F )) ≥ 1.

• T1 is a vertex. Again, if K ∩ K(F ) consists of a single 2-face, then it is
apparent that

f1(K ∩ K(F ))− 2f2(K ∩ K(F )) ≥ 1.

Adding an additional 2-face (n-gon) to K ∩ K(F ) increases
f2(K ∩ K(F )) by one and f1(K ∩ K(F )) by n ≥ 2. It follows that

f1(K ∩ K(F ))− 2f2(K ∩ K(F )) ≥ 1.

The only exception to this occurs when two edges of the addi-
tional 2-face are adjacent to T1, and in this case f2(K ∩ K(F )) and
f1(K ∩ K(F )) both increase by one. It hence follows that

f1(K ∩ K(F ))− 2f2(K ∩ K(F )) ≥ 0.

This can only happen when sewing over a {0}-flag, however, and this
presents the reason for distinguishing between sewing and A-sewing.
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It hence follows that

−f1(K(B)) + 2f2(K(B))− 3f3(K(B)) ≥ −2 for sewing, and

−f1(K(B)) + 2f2(K(B))− 3f3(K(B)) ≥ −1 for A-sewing.

To complete the proof of this theorem, we again will consider the cases
of sewing and A-sewing separately.

• Sewing. In this case Theorem 3.1(iii) implies that the faces of [P, x]
containing x are of the form [F, x], where F ∈ K(B) ∩ K(C). Thus
K(B) ∩ K(C) is combinatorially equivalent to the vertex figure of x in
[P, x] and hence is a 2-dimensional sphere. It consequently has Euler
characteristic 2 (i.e. f b

0 − f b
1 + f b

2 = 2), so equation (1) implies that

∆f1 − 2∆f2 + 3∆f3 = (f b
0 − f b

1 + f b
2) + [−f1(B) + 2f2(B)− 3f3(B)]

≥ 2 +−2 = 0.

• A-sewing. The faces of Q := [P, x] are of types (i), (ii), and (iii),
as given in Theorem 3.1. Choose a point y beyond precisely the facets
containing x, and another point z beyond precisely the facets containing
the face [Tq, x]. By ensuring that y and z are in sufficiently general
position and that z is sufficiently close to Q, the line through y and z
induces a line shelling of Q that first shells the facets of Q of type (ii),
then those of type (iii), and finally those of type (i). The reversal of
this shelling induces a shelling of the facets containing x that first shells
those of type (iii), then those of type (ii). The facets of type (iii) form
a proper subset of the facets of Q, and these facets are pyramids over
the maximal faces of K(B)∩K(C). Thus shelling only the facets of Q of
type (iii) induces a shelling of a proper collection of facets of the vertex
figure of x. We conclude that K(B) ∩K(C) is a 2-dimensional ball and
hence has Euler characteristic 1 (i.e. f b

0 − f b
1 + f b

2 = 1). It follows from
equation (1) that

∆f1 − 2∆f2 + 3∆f3 = (f b
0 − f b

1 + f b
2) + [−f1(B) + 2f2(B)− 3f3(B)]

≥ 1 +−1 = 0.
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¤

Using Maple we were able to verify which flag f -vectors correspond to
polytopes in P4

σ with at most eight vertices.

Theorem 4.3 Any flag f -vector (f0, f1, f2, f02) in f(P4
σ) must satisfy the

following linear inequalities:

1. −3f2 + f02 ≥ 0

2. −4f0 + f1 − 3f2 + f02 ≥ −10

3. −2f0 + 2f1 + 2f2 − f02 ≥ 0

4. 3f0 − 2f1 + f2 ≥ 5

It also must also satisfy the following quadratic inequality:

f02 − 4f2 + 3f1 − 2f0 ≤
(

f0

2

)
.

Furthermore, all flag f -vectors that satisfy these inequalities and for which
f0 ≤ 8 do correspond to flag f -vectors of polytopes in P4

σ with the following
exceptions:

(8, 22, 25, 78) (8, 23, 27, 83) (8, 24, 29, 88) (8, 25, 31, 93).

The first two linear inequalities in Theorem 4.3, as well as the quadratic
inequality, hold for flag f -vectors of all 4-polytopes and were recorded by
Bayer [2]. The third linear inequality was proved in Lemma 4.1 and the
fourth in Theorem 4.2.

The four vectors listed as exceptions in Theorem 4.3 lie on the common
line

` = {(8, f1, 2f1 − 19, 5f1 − 32)}.
If we let Q denote the 4-dimensional cone that is described by the linear
inequalities of Theorem 4.3, then a cross section of Q is a tetrahedron. The
rays

`′1 = {(f0, 3f0 − 5, 3f0 − 5, 10f0 − 20) : f0 ≥ 5},
`′2 = {(f0, 4f0 − 10, 5f0 − 15, 15f0 − 45) : f0 ≥ 5}, and
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Figure 3: Cross section of Q, and the duals of these flag vectors, inside a
cross section of the polyhedron determined by all known linear inequalities
for 4-polytope flag f -vectors [2].

`3 = {(f0, 4f0 − 10, 6f0 − 20, 18f0 − 60) : f0 ≥ 5}
are extreme rays of Q, as they each contain an infinite sequence of flag f -
vectors of polytopes in P4

σ. The ray

`4 = {(5, f1, 2f1 − 10, 6f1 − 30) : f1 ≥ 10}

is an extreme ray of Q, but it does not contain any flag f -vector in f(P4
σ)

other than that of the 4-simplex.
The flag f -vector of the 4-simplex satisfies the four linear inequalities of

Theorem 4.3 tightly, and we observe that all flag f -vectors on `′1 satisfy (2),
(3) and (4) tightly; all flag f -vectors on `′2 satisfy (1), (2) and (4) tightly;
and all flag f -vectors on `3 satisfy (1), (2) and (3) tightly. All flag f -vectors
on the ray `4, which lies in the closure of conv(f(P4

σ)) but not in conv(f(P4
σ))

itself, satisfy linear inequalities (1) and (3) of Theorem 4.3 with equality.
Figure 3 provides a Schlegel diagram of the cross section of the polyhedral

4-cone determined by the linear inequalities known to be satisfied by the flag
f -vectors of all 4-polytopes [2]. The facets are labeled in accordance with
the corresponding linear inequalities of Theorem 2.1, and the tetrahedron
illustrated by the dashed lines and determined by vertices `′1, `

′
2, `3, and `4 is
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a cross section of Q. The tetrahedron determined by vertices `′1, `
′
3, `5, and

`6 is a cross section of the polyhedral 4-cone that is determined by dualizing
the linear flag f -vector inequalities of Theorem 4.3. Note in particular that
Q is full dimensional within the cone of flag f -vectors.

4.2 Extremal Families in P4
σ

Four sewing/A-sewing operations can be applied to the 4-simplex to ob-
tain the four flag f -vectors of 4-polytopes with six vertices. Each of these
operations is repeatable, and the first three provide infinite sequences of 4-
polytopes that verify that `′1, `′2, and `3, as pictured in Figure 3, are extreme
rays of f(P4

σ). The fourth sequence determines a ray that passes through
(6, 15, 18, 54), which lies on the boundary of the quadratic inequality of The-
orem 4.3. In the following discussion, we will let ∆f and ∆Ψ represent,
respectively, the changes in the flag f -vector and the cd-index that occur as
a result of the indicated sewing or A-sewing operation.

1. ∆f = (1, 3, 3, 10) and ∆Ψ = dc2 + c2d + 2cdc + 2d2.
Consider A-sewing over a {1, 2}-flag T = T1 ⊂ T2, where T1 is an edge
that is contained in exactly three facets, at least one of which is a 3-
simplex. We pick T2 to be the 2-face that is the intersection of the other
two facets. We must show that such a flag exists at each iteration of
our sequential A-sewing and that A-sewing over the flag will produce
the desired changes in the flag f -vector.

Assuming that such a flag exists, the facets of P are partitioned by
A-sewing x onto P over T in the following manner:

• A = {F1, F2}, where F1 and F2 are the two facets that contain T2,

• B = {F3}, where F3 is the 3-simplex that contains T1 but not T2.

• C = F \ (A ∪ B).

Theorem 3.1 implies that the facet F3, the 2-faces F1 ∩ F3 and F2 ∩ F3,
and the edge T1 will be destroyed by the A-sewing. Each of the four
vertices and five edges that are contained in K(B) ∩ K(C) will corre-
spond to a new face of one greater dimension that contains x. It follows
that

∆f0 = 1, ∆f1 = 4− 1 = 3, and ∆f2 = 5− 2 = 3.
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The n-gon T2 = F1 ∩F2 is precisely the intersection of facets in A, and
consequently it will be stretched to an (n + 1)-gon containing x. This
accounts for one additional {0, 2}-flag than was present in P . Since all
new and destroyed 2-faces are 2-simplices, it follows that

∆f02 = 3∆f2 + 1 = 3(3) + 1 = 10.

We now will inductively prove that at each iteration of the sequential A-
sewing, there is at least one flag that possesses the properties described
above. The 4-simplex provides the basis for induction, as any {1, 2}-
flag satisfies the desired conditions. Assuming that the 4-polytope P ,
which has been constructed in this manner, possesses such a flag T ,
we A-sew x onto P over T to obtain Q. Our assumptions regarding T
imply that either vertex of T1, say x1, is contained in precisely three
2-faces of K(B). Two of these 2-faces are destroyed by the A-sewing
and the other corresponds to a new facet, G, of Q. The edge [x1, x] is
contained in the 3-simplex G, as well as the two stretched facets, [F1, x]
and [F2, x]. The flag T ′ = [x1, x] ⊂ [T2, x] thus satisfies the specified
conditions.

2. ∆f = (1, 4, 5, 15) and ∆Ψ = dc2 + 2c2d + 3cdc + 3d2.

We now will sequentially A-sew over a {1, 3}-flag T = T1 ⊂ T2, where
T1 is an edge that is contained in exactly three facets, at least two of
which are 3-simplices. We pick T2 to be the third facet, which may or
may not be a 3-simplex. It can easily be verified that such a flag will
exist at each iteration of our sequential A-sewing and that A-sewing
over such a flag will produce the desired changes in the flag f -vector.

3. ∆f = (1, 4, 6, 18) and ∆Ψ = dc2 + 3c2d + 3cdc + 4d2.

For this family, we iteratively sew over a flag T = T1, where T1 is a
3-simplex. Since sewing over a simplicial polytope always results in a
simplicial polytope, such a flag always will exist. The only face that will
be destroyed by the sewing is T1, while its four vertices and six edges
will provide four new edges and six new 2-faces for the new polytope.
Since no 2-faces will be stretched or destroyed, and all new 2-faces are
2-simplices, the desired changes result.
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4. ∆f = (1, 5, 8, 24) and ∆Ψ = dc2 + 4c2d + 4cdc + 6d2.

To obtain these changes, we sew over a {2}-flag T = T1, where T1 is a
2-simplex that is the intersection of two 3-simplices, F1 and F2. As the
polytope obtained at each iteration must be simplicial, it again follows
that such a flag always will exist.

The facets F1 and F2 and the 2-face T1 will be destroyed by the sewing,
and the five vertices and nine edges of K(B) will provide five new edges
and nine new 2-faces. Since no 2-faces will be stretched by the sewing
and all 2-faces that are either created or destroyed are 2-simplices, the
desired changes follow.

We also can combine two sewing or A-sewing operations, and in so doing,
we can obtain several repeatable, two-step constructions. We will consider
one such combination.

5. ∆f = (2, 8, 10, 31) and ∆Ψ = 2dc2 + 4c2d + 6cdc + 7d2.

In (2) and (3), we established sewing and A-sewing constructions that
produce changes of (1, 4, 5, 15) and (1, 4, 5, 16), respectively, in the flag
f -vectors of 4-polytopes. It can be inductively verified that when be-
ginning with the 4-simplex and alternating in either order, the flags
necessary for the changes described in (2) and (3) will be successively
present. It follows that after each iteration of this 2-step process, a
change of (2, 8, 10, 31) in the flag f -vector will occur.

The aforementioned 2-step construction creates an infinite family of poly-
topes whose flag f -vectors lie on the edge connecting `′2 and `3 and separat-
ing the facets F1 and F3 in Figure 3. The g-vectors [26] of these 2-simplicial
polytopes all satisfy the equation g2 = 0.

5 Cyclic and Ordinary Polytopes

The cyclic polytope C(n, d), n > d ≥ 2 is defined to be the convex hull of
n points on the moment curve (t, t2, . . . , td). It also can be described it
combinatorially in the following manner. Let V (P ) = {x0, . . . , xn−1} denote
the set of vertices of P , and define a vertex array to be a total ordering of
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V (P ), x0 < x1 < · · · < xn−1. A collection of vertices X ⊆ V (P ) is said to
satisfy Gale’s Evenness Condition [17] if any pair of vertices in V (P ) \X
has an even number of vertices from X between them in the vertex array.
Recalling that [X] := conv X, C(n, d) can be defined as the d-polytope with
vertex array x0 < x1 < . . . < xn−1 whose facets are of the form [X], where
X ⊂ V (P ), |X| = d, and X satisfies Gale’s Evenness Condition. Beyond
realizing the bounds of the Upper Bound Theorem [20], cyclic polytopes
play a crucial role in the construction of polytopes for the g-Theorem [10].
Introduced by Bisztriczky [11, 13] and proved realizable by Dinh [14], the
class of ordinary polytopes provide a nonsimplicial analog to cyclic polytopes.
Their interesting structure and flag f -vectors have been studied by Bayer [3,
4] and Bayer-Bruening-Stewart [6]. In this section we show that both cylic
and ordinary polytopes can be constructed by generalized sewing.

5.1 Cyclic Polytopes

Theorem 5.1 The cyclic polytope C(n, d), d ≥ 2, is achievable by sequen-
tially performing n− d− 1 sewing operations starting with the d-simplex.

Proof: We will prove this by induction on ` := n− d− 1.
The desired result holds trivially for the case ` = 0, as C(d + 1, d) is

the d-simplex. We assume that the cyclic polytope P` := C(d + ` + 1, d) is
achievable in this manner with vertices V (P`) := {x0, . . . , xd+`}. We then
sew the vertex xd+`+1 onto P` over the flag

T = {xd+`} ⊂ [xd+`−1, xd+`] ⊂ [xd+`−2, xd+`−1, xd+`] ⊂ · · · ⊂ [x`+1, . . . , xd+`]

to create the polytope
P`+1 := [P`, xd+`+1].

Recall that

F1\(F2\(· · · \Fd) · · · ) = (F1 \ F2) ∪ (F3 \ F4) ∪ · · · ,

where the last term is Fd−1 \ Fd if d is even and Fd if d is odd. We observe
that any facet of P` that does not contain xd+` lies in C, and hence it will
remain a facet of P`+1. Furthermore, F is a facet in C that contains xd+` if
and only if

V (F ) = {x0, . . . , xi} ∪ Y ∪ {xd+`−j, . . . , xd+`}, (2)
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where Y is a paired subset of {xi+2, . . . , xd+`−j−2}, and j is a positive odd
integer. By defining {xd+`−j, . . . , xd+`} := ∅ when j < 0, we can write V (F )
in form (2) for all facets F ∈ C. Our induction hypothesis thus implies
that the facets of P`+1 not containing xd+`+1 correspond precisely to those
d-subsets of V (P`) that satisfy Gale’s Evenness Condition when considered
as subsets of V (P`+1). It remains only to verify that F is a facet of P`+1 that
contains xd+`+1 if and only if V (F ) is a d-subset of V (P`+1) that contains
xd+`+1 and satisfies Gale’s Evenness Condition.

The facets in B determined by the sewing operation are precisely those
facets F for which V (F ) can be written in form (2), where Y is a paired
subset of {xi+2, . . . , xd+`−j−2}, and j is a non-negative even integer.

Let X be a d-subset of V (P`+1) that contains xd+`+1 and satisfies Gale’s
Evenness Condition. This implies that

X = {x0, . . . , xi} ∪ Y ∪ {xd+`−j+1, . . . , xd+`+1},
where Y is a paired subset of {xi+2, . . . , xd+`−j−1}, and j ≥ 0. It follows
that {x0, . . . , xi} and Y may be empty, but {xd+`+1−j, . . . , xd+`+1} cannot
be. Hence, X = (X1 ∩X2) ∪ {xd+`+1}, where

X1 = {x0, . . . , xi+1} ∪ Y ∪ {xd+`−j+1, . . . , xd+`}, and

X2 = {x0, . . . , xi} ∪ Y ∪ {xd+`−j, . . . , xd+`}.
Since X1 and X2 are subsets of V (P`) that satisfy Gale’s Evenness Condition
and |X1| = |X2| = d, it follows that F1 = [X1] and F2 = [X2] must be facets
of P`. If j is even, then F1 belongs to C and F2 belongs to B, while if j is
odd, then F1 belongs to B and F2 belongs to C. In either case, Theorem 3.1
implies that [X] is a facet of P`+1.

We now let F be a facet of P`+1 that contains xd+`+1. Then,
F = [G1 ∩G2, xd+`+1], for some facets G1 ∈ C and G2 ∈ B. It follows that

V (G1) = {x0, . . . , xi1} ∪ Y1 ∪ {xd+`−j1 , . . . , xd+`}, and

V (G2) = {x0, . . . , xi2} ∪ Y2 ∪ {xd+`−j2 , . . . , xd+`},
where Y1 and Y2 are paired subsets, j1 is odd (possibly negative), and j2 is
even. Since |G1 ∩ G2| = d − 1, we must have |i1 − i2| = 1, Y1 = Y2, and
|j1 − j2| = 1. Assuming without loss of generality that i1 > i2 and j1 < j2,
we have that

V (F ) = {x0, . . . , xi2} ∪ Y1 ∪ {xd+`−j1 , . . . , xd+`+1},

22



where Y1 is a paired subset. It follows that V (F ) is a d-subset of V (P`+1)
that contains xd+`+1 and satisfies Gale’s Evenness Condition. ¤

We now will introduce some notation and terminology that was developed
by Bisztriczky [11, 13] and Dinh [14]. We let P be a d-polytope with n + 1
vertices that satisfies the necessary part of Gale’s Evenness Condition, and
we call such a polytope P a Gale Polytope.

Definition 5.2 Let P be a d-polytope, d ≥ 2, with vertex array
x0 < x1 < · · · < xn. Notationally, we define xi := x0 for i < 0 and xi := xn

for i > n. We say that P is a d-multiplex if the facets of P are precisely
Fi = [xi−d+1, . . . , xi−1, xi+1, . . . , xi+d−1] for i = 0, 1, . . . , n.

Bisztriczky [12] developed multiplices as a generalization of simplices and
observed that they behave like simplices in several important ways. For odd
values of d, any d-multiplex is a Gale polytope; and for even values of d, the
only d-multiplices that are Gale polytopes are the d-simplices.

5.2 Ordinary Polytopes

In 1994, Bisztriczky [11] generalized cyclic 3-polytopes to a class of polytopes
that he named ordinary 3-polytopes, and he further generalized this concept
to create the notion of ordinary d-polytopes, d ≥ 3.

Definition 5.3 Let P be a d-polytope, d ≥ 3. If there is a vertex array
x0 < x1 < · · · < xn of P , n ≥ d such that

1. P is a Gale polytope with this vertex array, and

2. each facet of P is a (d− 1)-multiplex (with the induced vertex array),

then we say that P is an ordinary polytope.

Bisztriczky established that if P is an ordinary d = (2m + 1)-polytope,
m ≥ 2, then there is an integer k ≥ d such that the vertices sharing an edge
with x0 are precisely are precisely x1, x2, . . . , xk, and the vertices sharing an
edge with xn are precisely xn−k, xn−k+1, . . . , xn−1. This number k is called the
characteristic of P . For odd d ≥ 5, the combinatorial type of an ordinary d-
polytope, P d,k,n, is completely determined by its dimension d, the cardinality
of its vertex set n + 1, and its characteristic k. Dinh [14] provided a simple
description of the facets of an ordinary (2m + 1)-polytope, m ≥ 2, in the
following theorem.
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Theorem 5.4 (Dinh) Let n, k, d,m be integers so that n ≥ k ≥ d =
2m + 1 ≥ 5, and let P be a d-polytope with n + 1 vertices. Then P is
an ordinary d-polytope with characteristic k if and only if there is a vertex
array x0, x1, . . . , xn of P so that the facets of P are conv X, where

X = {xi, . . . , xi+2r−1} ∪ Y ∪ {xi+k, . . . , xi+k+2r−1},

i ∈ Z, r = 1, 2, . . . , m, and Y is a paired (d− 2r − 1)-subset of
{xi+2r+1, . . . , xi+k−2} for which |X| ≥ d.

Dinh used this characterization of the facets of P d,k,n to prove that
the ordinary d-polytopes are realizable. He began with the cyclic poly-
tope C(k + 1, d) = P d,k,k. He then demonstrated that given an ordinary d-
polytope, Pn := P d,k,n, we can find a point xn+1 such that Pn+1 := [Pn, xn+1]
is an ordinary d-polytope with characteristic k and n + 2 vertices. We will
reconstruct Dinh’s argument using the terminology of A-sewing.

Lemma 5.5 Let x0, x1, . . . , xn ∈ Rd, and let Pn := [x0, . . . , xn] be an or-
dinary d-polytope with characteristic k and vertex array x0 < x1 < · · · < xn.
Then, [xn−k, xn−k+1, xn] is a 2-face of Pn.

Proof: We first note that it is enough to show that [xn−k, xn−k+1, xn] is a
face of Pn, as by assumption xn−k, xn−k+1, and xn are all vertices of Pn, and
hence dim [xn−k, xn−k+1, xn] = 2. For each j ∈ {−2m + 2, . . . , 0}, we define

Xj = {xn−k+j, . . . , xn−k+j+2m−1} ∪∅ ∪ {xn+j, . . . , xn+j+2m−1}

and observe that xn ∈ Xj since n + j + 2m− 1 ≥ n + 1. It follows that

(i) If n− k + j ≥ 0, then
|Xj| = [(n− k + j + 2m− 1)− (n− k + j) + 1]

+ 0 + [n− (n + j) + 1]
= 2m− j + 1
≥ 2m + 1 = d.

(ii) If n− k + j < 0, then
|Xj| = [(n− k + j + 2m− 1) + 1] + 0 + [n− (n + j) + 1]

= 2m + 1 + n− k
≥ 2m + 1 = d.
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Theorem 5.4 thus implies that [Xj] is a facet of Pn with i = n − k + j;
r = m; and Y = ∅. We still must demonstrate that ∩0

j=−2m+2 Xj =
{xn−k, xn−k+1, xn}.
Since −2m + 2 ≤ j ≤ 0, we have

n− k + j ≤ n− k < n− k + 1 ≤ n− k + j + 2m− 1,

which implies that

xn−k, xn−k+1 ∈ {xn−k+j, · · · , xn−k+j+2m−1} ⊆ Xj,

for each j ∈ {−2m + 2, . . . , 0}.
We also saw above that xn ∈ Xj for each j ∈ {−2m + 2, . . . , 0}, and it

follows that {xn−k, xn−k+1, xn} ⊆ ∩0
j=−2m+2 Xj. It remains only to show

that x` /∈ {xn−k, xn−k+1, xn} implies that x` /∈ Xj for some j. If ` < n − k,
then x` /∈ X0, and if n− k + 1 < ` < n, then

x` /∈ X1+`−n = {x`−k+1, . . . , x`−k+2m} ∪∅ ∪ {x`+1, . . . , x`+2m}.
¤
The following proposition was established by Dinh [14], but we will provide
an alternate proof using A-sewing.

Proposition 5.6 (Dinh) Let x0, x1, . . . , xn ∈ Rd such that
Pn = [x0, . . . , xn] is an ordinary d-polytope with characteristic k and
vertex array x0 < x1 < · · · < xn. Then there exists a point xn+1 ∈ Rd such
that:

(i) [xn−k, xn−k+1, xn, xn+1] is a convex 4-gon where [xn−k, xn+1] is one of
its diagonals,

(ii) xn+1 is beyond all facets F of Pn with the property that xn ∈ F and
xn−k /∈ F , and

(iii) xn+1 is beneath all facets F of Pn with the property that xn /∈ F .

Proof: We consider the flag

T = {xn} ⊂ [xn−k, xn] ⊂ [xn−k, xn−k+1, xn],

observing that xn is a vertex of Pn; [xn−k, xn] is an edge of Pn by definition
of characteristic k; and [xn−k, xn−k+1, xn] is a 2-face of Pn by Lemma 5.5.
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Proposition 3.3 hence guarantees the existence of a point xn+1 that is almost
exactly beyond T . We will A-sew xn+1 onto Pn and verify that xn+1 satisfies
properties (i)− (iii).

Since [xn−k, xn−k+1, xn] ∈ A, Theorem 3.1 implies that it will be stretched
to become the 2-face [xn−k, xn−k+1, xn, xn+1]. The choice of T , in combination
with the A-sewing construction, guarantees that xn−k, xn−k+1, and xn are
each contained in a facet belonging to C and will remain vertices of Pn+1.

In order to verify that [xn−k, xn+1] is not an edge of Pn+1, we first observe
that all facets of Pn not containing xn belong to C. Furthermore, any facet
that contains both xn−k and xn belongs to either C or A. It follows that
no facets containing xn−k are elements of B, so Theorem 3.1 implies that
[xn−k, xn+1] will be a diagonal of the newly created 4-gon. This verifies that
xn+1 satisfies (i). Properties (ii) and (iii) are also clearly satisfied by xn+1

by definition of being almost exactly beyond T . ¤

Dinh also proved that the polytope constructed in Proposition 5.6 is of
combinatorial type P d,k,n+1. Beginning with a cyclic polytope and proceeding
by induction on n, he hence concluded that the ordinary d-polytopes are
realizable. We consequently have verified that starting with the d-simplex, we
can apply k−d sewing operations to arrive at a cyclic polytope C(k+1, d) =
P d,k,k. We then can apply n− k A-sewing operations to obtain a polytope of
combinatorial type P d,k,n. It follows that all polytopes of types C(n, d) and
P d,k,n belong to Pd

σ .

6 Open Problems

We have approached the problem of generating flag f -vectors of 4-polytopes
through sewing and A-sewing, starting from a simplex. What are the (say,
linear) constraints on higher dimensional flag f -vectors in Pd

σ? Theorem 3.7
demonstrated that all proper k-faces of a polytope in Pd

σ can be realized by
applying a related sequence of sewings and A-sewings starting with the k-
simplex. The proofs of Lemma 4.1 and Theorem 4.2 then used Theorem 3.7
and an inequality satisfied by all f -vectors in f(P3

σ) to verify an inequality for
all flag f -vectors in f(P4

σ). It is reasonable to assume that such a technique
will work in higher dimensions as well, but such an extension has not yet
been considered.

It can be shown that the cd-index of a 4-polytope is monotonically non-
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decreasing under sewing or A-sewing [21]. Does this hold in higher dimen-
sions as well? This would generalize a result of Billera and Ehrenborg [9].

What are some of the combinatorial properties of polytopes in Pd
σ?

Finbow-Singh [15] (using the term tailoring instead of sewing) constructed
seventy-eight combinatorial types of neighborly 5-polytopes with nine ver-
tices. Can one characterize the polytopes in Pd

σ?
The ordinary polytopes provide an infinite family that includes many

nonsimplicial polytopes and is achievable using the sewing and A-sewing
constructions. Are there other combinatorially nice families of nonsimplicial
polytopes that can be described by iterated sewing and A-sewing?
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