
Bases and Dimension

Matrices are important in the study of vector spaces.  They provide a wealth of examples of

spaces (the spaces whose vectors are the matrices themselves as well as null spaces, column

spaces, and row spaces as we have seen) and they also provide basic mappings between vector

spaces as we shall see in a later chapter.  Fundamental notions for all vector spaces are the

concepts that we now consider: linear independence and spanning.  

Definition

Suppose that v1, v2, ..., vn are vectors in some vector space V.  We say that they are linearly

independent if c1 v1 + c2 v2 + ... + cn vn = 0 implies that c1 = c2 = ... = cn = 0, i.e., the only  linear

combination of the vectors that gives the zero vector is the one in which the coefficient of each

vector is zero.  The sequence of vectors is linearly dependent if there exist scalars c1, c2, ..., cn

that are not all zero with c1 v1 + c2 v2 + ... + cn vn = 0.

Examples

1. The vectors (8, -1, 9), (4, 3, -7), (22, 6, -4) in R3 are linearly dependent since 

3(8, -1, 9) + 5 (4, 3, -7) + (-2) (22, 6, -4) = (0, 0, 0) = 0.

2. The vectors , , and  in M2×2 are clearly linearly independent
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since if a  + b  + c  = 0 = , then from the 1, 1 position
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we must have a = 0, from the 1, 2 position b = 0, and from the 2, 1 position c = 0.

3. The vectors x2 + 5x -2 and 3x2 + 10 in P3, the set of polynomials of degree 3 or less with

real coefficients, are linearly independent since if a(x2 + 5x -2) + b(3x2 + 10) = 0 = 0,

then the coefficient of x in the sum must be 0, so a = 0, and then, e.g., the coefficient of

x2 , that is, a + 3b, must be 0, so b = 0.



4. Suppose that the sequence of vectors v1, v2, ..., vn is linearly dependent and that w is any

vector.  Then v1, v2, ..., vn, w is a linearly dependent set of vectors.  Why?  

5. Any set of vectors which includes the zero vector is linearly dependent.

Theorem

Suppose that v1, v2, ..., vn is a linearly dependent set of at least two vectors (n >1).  Then there is

some vector in the set which is a linear combination of the others.

Proof

Since the set is linearly dependent, there are scalars c1, c2, ..., cn, not all 0 such that c1 v1 + c2 v2 +

... + cn vn = 0.  Choose one of these scalars which is non-zero.  By renumbering the vectors and

scalars, if necessary, we may assume that cn … 0.  Solving for vn we get vn = -c1/cn v1 - c2/cn v2 - ...

- cn-1/cn vn-1.   Thus, vn is a linear combination of the remaining vectors in the set.

It should be clear that the theorem above can be stated as an if and only if result; if some vector

in a set can be written as a linear combination of the others, then the set is linearly dependent. 

Thus linear dependence of a set of vectors can be characterized in terms of writing some vector

in the set as a linear combination of the others.

Example

We have defined <v1, v2, ..., vn> to be the subspace generated by the vectors v1, v2, ..., vn,

Suppose that the  vi are linearly dependent.  By the theorem above one of the vectors can be

written as a linear combination of the others, say vn is a linear combination of v1, v2, ..., vn-1.  It is

then easy to see that <v1, v2, ..., vn> = <v1, v2, ..., vn-1>, i.e. this subspace is also generated by a

smaller subset of the vi.

How does one decide whether or not a sequence of vectors is linear independent?  Write the

definition - simply set up a linear combination of the vectors using variables for the scalars and

equate this to 0.  Then solve this equation to see if there is a solution other than the trivial

solution in which each scalar is 0.



Example

Determine whether the following set of vectors is linearly independent. 

(4, -3, 9, 5), (0, 7, 1, -2), (-5, 2, 0, 6), (1, 6, -8, 0)

Using the definition the question is exactly can we express the zero vector, 0, as a nontrivial (not

all the scalars being zero) linear combination of these vectors?  Thus we proceed to solve the

vector equation below for the scalars a, b, c, and d.

a(4, -3, 9, 5) + b (0, 7, 1, -2) + c (-5, 2, 0, 6) + d (1, 6, -8, 0) = (0, 0, 0, 0)

This becomes

(4a - 5c + d, -3a + 7b + 2c + 6d, 9a + b - 8d, 5a - 2b + 6c) = (0, 0, 0, 0)

which, equating the components of the vectors on each side of the equation, amounts to the

homogeneous system

 4a          - 5c +   d = 0

-3a + 7b + 2c + 6d = 0

 9a +   b          - 8d = 0

 5a -  2b + 6c         = 0

Therefore we row reduce the coefficient matrix

to the equivalent matrix .
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3 7 2 6

9 1 0 8
5 2 6 0
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This tells us that the only solution to the system (and so for the scalars in the vector equation) is

the trivial solution.  Hence, the vectors are linearly independent.  If we replace the last vector in

the set by (9, 2, 10, -3), the coefficient matrix becomes

.  Since this matrix reduces to  the corresponding
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system of linear equations has many solutions (take d to be any value and adjust a, b, and c

accordingly) and the new set of vectors is linearly dependent.

Definition

Suppose that v1, v2, ..., vn are vectors in the vector space V and that S is a subset of V.  The

vectors span S provided each element of S can be written as a linear combination of the vectors 

v1, v2, ..., vn .

Examples

1. Decide whether (676, -677, 363) and (95, 71, -68) are in the span of (41, -25, 16), 

(-38, 61, -29), and (53, 119, -36).

Combining the augmented matrices resulting from the vector equations

a (41, -25, 16) + b (-38, 61, -29) + c (53, 119, -36) = (676, -677, 363) and also this left

hand side equal to (95, 71, -68) we get the matrix 

41 38 53
25 61 119

16 29 36
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The equivalent reduced row echelon form of this matrix is

1 0 5
0 1 4
0 0 0
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Therefore, (676, -677, 363) is in the span of these vectors but (95, 71, - 68) is not.

2. Prove that the vectors , , , and span the space
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M2×2.  We need to show that for an arbitrary element in M2×2, there are scalars
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a, b, c, d such that 

a  + b  + c  + d  =  .
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Performing the scalar multiplications, adding the matrices and equating corresponding

elements results in the system  5a +   b         - 7d = w

-2a + 7b + 8c - 3d = x

                 -4b + 5c + 4d = y

 3a +  6b -   c + 9d = z

The coefficient matrix  of the system row reduces to the identity

5 1 0 7
2 7 8 3

0 4 5 4
3 6 1 9
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matrix  so M2×2 is spanned by these vectors.

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



















3. Notice that any set that is spanned by the vectors v1, v2, ..., vn is contained in <v1, v2, ...,

vn> and is also spanned by v1, v2, ..., vn+1 for any vector vn+1.

A subspace is defined by its generators.  As a vector space, the number of generators in a

minimal set of generators for any subspace completely determines the space.  This is actually

true of any vector space which motivates the following definition.



Definition

The vectors v1, v2, ..., vn form a basis for the vector space V if

1. They are linearly independent and

2. They span V.

Example

1. The standard basis for Rn is the set e1, e2, ..., en where each ei has all zero components

except for a 1 in its ith component.  In R3 we have the standard basis e1 = (1, 0, 0), 

e2 = (0, 1, 0), and (0, 0, 1).

2. For the vector space of n by m matrices, Mm×n, the standard basis consists of the matrices

eij for i = 1, 2, ..., m and j = 1, 2, ..., n where eij = (ast) and ast = 0 if (s,t) … (i, j) and aij = 1. 

Thus, e.g., M2×3 has as its standard basis the vectors
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3. The vector space consisting of all polynomials of degree n or less, Pn, has {1, x, x2, ..., xn}

as its standard basis.

Every spanning set of a vector space contains a basis for the space.

Theorem

Suppose that S = {v1, v2, ..., vn} spans the vector space V.  Then there is a basis of V consisting

of a subset of S.

Proof

 S is a linearly independent set, then S is a basis for V.  So suppose that S is a linearly dependent

set.  Then there is some vector (say vn) in S which is a linear combination of the others.  By a

previous example we know <v1, v2, ..., vn> = <v1, v2, ..., vn-1>.  Thus the set {v1, v2, ..., vn-1} spans

V.  Repeating his argument we arrive at a subset of S which is linearly independent and also

spans V, i.e. is a basis for V.

Any two bases for a fixed vector space have the same number of elements.

Theorem



Suppose that S = {v1, v2, ..., vn} and T = {w1, w2,..., wm} are both bases for a vector space V. 

Then n = m.

Definition

The dimension of a vector space V, denoted dim(V), is the number os elements in any basis of

V.

Examples

From the standard basis given earlier we observe that dim(Rn) = n, dim(Mm×n) = nm, and dim(Pn)

= n + 1.

Theorem (Unique Representation)

Suppose that {v1, v2, ..., vn} is a basis for V and w is a vector in V.  Then there exist unique

scalars c1, c2, ..., cn such that w = c1 v1 + c2 v2 + ... + cn vn.

Proof

Since S is a basis, it spans V so w is a linear combination of the vi.  This gives the existence.  For

the uniqueness, suppose that w =  c1 v1 + c2 v2 + ... + cn vn and also w = d1 v1 + d2 v2 + ... + dn vn. 

Then 0 = w - w = (c1 - d1) v1 + (c2 - d2) v2 + ... + (cn - dn) vn.  But since S is a linearly independent

set, ci - di = 0 for each i.  Hence, ci = di for all i = 1, 2, ..., n which proves uniqueness.

 


