Diagonalizing a Matrix

Definition

- 1. We say that two square matrices *A* and *B* are *similar* provided there exists an invertible matrix *P* so that $B = P^{-1} A P$.
- 2. We say a matrix *A* is *diagonalizable* if it is similar to a diagonal matrix.

<u>Example</u>

1. The matrices
$$\begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$$
 and $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ are similar matrices since
 $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.
We conclude that $\begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$ is diagonalizable.
2. The matrices $\begin{pmatrix} 2 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 3 & 1 \end{pmatrix}$ and $\begin{pmatrix} 2 & 1 & -1 \\ 10 & 4 & -7 \\ 6 & 2 & -3 \end{pmatrix}$ are similar matrices since
 $\begin{pmatrix} 2 & 1 & -1 \\ 10 & 4 & -7 \\ 6 & 2 & -3 \end{pmatrix} = \begin{pmatrix} -1 & -1 & 2 \\ 2 & 1 & -2 \\ 1 & 1 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 3 & 1 \end{pmatrix} \begin{pmatrix} -1 & -1 & 2 \\ 2 & 1 & -2 \\ 1 & 1 & -1 \end{pmatrix}$.

After we have developed some additional theory, we will be able to conclude that the

matrices
$$\begin{pmatrix} 2 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 3 & 1 \end{pmatrix}$$
 and $\begin{pmatrix} 2 & 1 & -1 \\ 10 & 4 & -7 \\ 6 & 2 & -3 \end{pmatrix}$ are *not* diagonalizable.

Theorem

Suppose A, B and C are square matrices.

- (1) A is similar to A.
- (2) If A is similar to B, then B is similar to A.
- (3) If A is similar to B and if B is similar to C, then A is similar to C.

Proof of (3)

Since *A* is similar to *B*, there exists an invertible matrix *P* so that $B = P^{-1} A P$. Also, since *B* is similar to *C*, there exists an invertible matrix *R* so that $C = R^{-1} B R$. Now,

$$C = R^{-1} B R = R^{-1} (P^{-1} A P) R = (R^{-1} P^{-1}) A (PR) = (PR)^{-1} A (PR)$$

and so A is similar to C.

Thus, "A is similar to **B**" is an equivalence relation.

Theorem

If *A* is similar to *B*, then *A* and *B* have the same eigenvalues.

Proof

Since A is similar to B, there exists an invertible matrix P so that $B = P^{-1} A P$. Now,

$$Det (B - \lambda I_n) = Det (P^{-1}AP - \lambda I_n)$$

$$= Det (P^{-1}AP - P^{-1}(\lambda I_n)P)$$

$$= Det (P^{-1} (AP - (\lambda I_n)P))$$

$$= Det (P^{-1} (A - \lambda I_n) P)$$

$$= Det (P^{-1}) Det (A - \lambda I_n) Det (P)$$

$$= Det (P^{-1}) Det (P) Det (A - \lambda I_n)$$

$$= Det (I_n) Det (A - \lambda I_n)$$

$$= Det (A - \lambda I_n)$$

Since A and B have the same characteristic equation, they have the same eigenvalues. >

Example

Find the eigenvalues for $\begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$.

Solution

Since
$$\begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$$
 is similar to the diagonal matrix $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, they have the same eigenvalues.

Because the eigenvalues of an upper (or lower) triangular matrix are the entries on the main

diagonal, we see that the eigenvalues for
$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$
, and, hence, $\begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$ are

 $\lambda = 2$ & $\lambda = 3$. As a check we observe that

$$\begin{vmatrix} 1 - \lambda & 1 \\ -2 & 4 - \lambda \end{vmatrix} = (1 - \lambda) (4 - \lambda) - (1) (-2)$$
$$= \lambda^2 - 5\lambda + 6$$
$$= (\lambda - 2) (\lambda - 3).$$

Continuing with the above example, we can show that an eigenvector associated with $\lambda = 2$ is

 $\begin{pmatrix} 1\\1 \end{pmatrix}$ and an eigenvector associated with $\lambda = 3$ is $\begin{pmatrix} 1\\2 \end{pmatrix}$. Recall that

$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} = P^{-1} \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} P$$

where $P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$. Observe that the columns of **P** are the linearly independent eigenvectors

for $\begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$. We note that interchanging the two columns in **P** to obtain a new matrix **P** and

computing $P^{-1} \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} P$ yields $\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$

which is another diagonal matrix with eigenvalues of $\lambda = 2$ & $\lambda = 3$.

The next result characterizes matrices that are diagonalizable.

Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

Proof

(Z) Assume A has n linearly independent eigenvectors. Assume these n eigenvectors are column vectors $v_1, v_2, v_3, ..., v_n$ with associated eigenvectors $\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n$. Define $S = (v_1 \\ \vdots \\ v_2 \\ \vdots \\ v_3 \\ \vdots \\ ... \\ \vdots \\ v_n)$ and let Λ be the diagonal matrix with ii-entry equal to λ_i .

Since the columns of S are linearly independent, S is invertible. Now,

$$A \ S = A \left(v_{1} \ \vdots \ v_{2} \ \vdots \ v_{3} \ \vdots \ \dots \ \vdots \ v_{n} \right)$$

= $\left(A \ v_{1} \ \vdots \ A \ v_{2} \ \vdots \ A \ v_{3} \ \vdots \ \dots \ \vdots \ A \ v_{n} \right)$
= $\left(\lambda_{1} \ v_{1} \ \vdots \ \lambda_{2} \ v_{2} \ \vdots \ \lambda_{3} \ v_{3} \ \vdots \ \dots \ \vdots \ \lambda_{n} \ v_{n} \right)$
= $\left(v_{1} \ \vdots \ v_{2} \ \vdots \ v_{3} \ \vdots \ \dots \ \vdots \ v_{n} \right) \Lambda$
= $S \ \Lambda$.

Since $A S = S \Lambda$, it follows that $S^{-1} A S = \Lambda$. Thus, A and Λ are similar and so A is diagonalizable. >

The next result gives us sufficient conditions for a matrix to be diagonalizable.

Theorem

Let A be an $n \times n$ matrix. If A has eigenvalues that are real and distinct, then A is diagonalizable.

Example

Determine if the following matrices are diagonalizable.

$$1. \qquad \begin{pmatrix} \mathbf{0} & -\mathbf{1} \\ \mathbf{2} & \mathbf{3} \end{pmatrix}$$

Solution

Since
$$\begin{vmatrix} -\lambda & -1 \\ 2 & 3 - \lambda \end{vmatrix} = (-\lambda) (3 - \lambda) - (-1)(2) = \lambda^2 - 3\lambda + 2 = (\lambda - 2) (\lambda - 3)$$
, the

given matrix
$$\begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix}$$
 has distinct real eigenvalues of $\lambda = 2$ & $\lambda = 3$. Thus,

$$\begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix}$$
 is diagonalizable.

 $2. \qquad \begin{pmatrix} 1 & -3 & 3 \\ 0 & -5 & 6 \\ 0 & -3 & 4 \end{pmatrix}$

Solution

Here

$$\begin{vmatrix} 1-\lambda & -3 & 3\\ 0 & -5-\lambda & 6\\ 0 & -3 & 4-\lambda \end{vmatrix} = -\lambda^3 + 3\lambda - 2 = -(\lambda - 1)^2(\lambda + 2)$$

and so we have repeated eigenvalues. So, we must go ahead and find the associated eigenvectors

for $\lambda = 1$ & $\lambda = -2$ and determine if they are linearly independent. We seek the null space for

$$\left(\begin{array}{rrrr} 0 & -3 & 3 \\ 0 & -6 & 6 \\ 0 & -3 & 3 \end{array}\right)$$

corresponding to $\lambda = 1$. Since

(0	-3	3		(0	1	-1)	
0	-6	6	~	0	0	$ \begin{array}{c} -1 \\ 0 \\ 0 \end{array} \right) $,
	-3			0)	0	0)	

the null space has a basis of $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \right\}$.

The null space for

corresponding to $\lambda = -2$ is obtained by

(3	-3	3)		(1	0	-1)	
0	-3	6	~	0	1	-2	
0	-3	6)		0)	0	0)	

From this row reduced matrix we see that a basis for the null space is $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$.

We close this section with a result that can simplify the computation of powers of a square

matrix A.

Theorem

Suppose that A is diagonalizable, say $P^{-1}A P = D$, a diagonal matrix. Then

$$A^{k} = PD^{k}P^{-1}$$
 for all $k \in \mathbb{N}$.

Proof

For k = 1 we have that $A = PDP^{-1}$. Assume $A^{k} = PD^{k}P^{-1}$ holds and show that $A^{k+1} = PD^{k+1}P^{-1}$. Now, $A^{k+1} = A^{k}A = (PD^{k}P^{-1})(PDP^{-1}) = PD^{k+1}P^{-1}$.

So, by mathematical induction, $A^{k} = PD^{k}P^{-1}$ for all natural numbers k. > k